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Abstract 

For the purpose of the sustainability assessment 
of distributed renewable energy resources it is 
desirable to better understand the social, 
economic and environmental impacts (SEE) 
resulting from their deployment. Often only one, 
or at most two, of these knowledge domains is 
considered, partly due to the difficulty of 
devising an integrated assessment 
methodology. An approach based on 
probabilistic graphical models (PGM), has been 
developed which helps address this problem. 
Data for several UK urban census areas have 
been systematically collected and processed in 
order to furnish a PGM with the probabilistic 
data required in order to simultaneously make 
inferences about the SEE impacts of domestic 
solar PV, deployed to high penetrations. Results 
show that an integrated probabilistic 
assessment contributes to transdisciplinary 
knowledge, providing decision makers with a 
tool to facilitate deliberative and systematic 
evidence-based policy making incorporating 
diverse stakeholder perspectives. 

Introduction 

Renewable energy technologies deployed in 
community contexts are seen as a valuable 
contribution to a number of energy policy 
objectives, and as such are benefitting from a 
range of financial support mechanisms 
internationally [1]. In the UK the feed-in-tariff 
scheme (FIT), coupled with rapidly decreasing 
technology costs, has resulted in rapid diffusion 
of solar PV within the domestic and community 
sector. Recently the milestone of 500,000 solar 
PV installations has been reached [2].  

However, significant uncertainty exists with 
regards to the potential impacts of community 
scale PV in terms of specific policy goals, 
including actual (as opposed to projected) 
greenhouse gas reductions, renewable energy 
generation capacity and socio-economic 
benefits such as fuel poverty alleviation. Such 
uncertainty derives from the wide variability of 
SEE parameters which characterise solar PV 
within its deployment context. These 
uncertainties represent a significant risk for 
investors and policy makers alike, particularly as 

their interdependencies are rarely modelled and 
little understood. 

Using a sustainability lens researchers in a 
number of disciplines have explored the 
challenges of integrating environmental 
assessments by developing models which meld 
socio-economic with environmental factors in 
order to furnish stakeholders with decision 
support, diagnostic and simulation tools [3]. 
Handling uncertainty, both aleatory and 
epistemic, is a recognised problem when using 
such methods. Deterministic methods, for 
example, need to incorporate sensitivity analysis 
to better measure the variability of output 
parameters as a function of input parameter 
variability over a multi-dimensional space. With 
a large number of parameters this can be 
difficult and often excludes a consideration of 
dependencies between inputs.  

Latterly PGMs have grown in popularity for 
modelling problems that require the integration 
of two or more knowledge domains and which 
endogenise uncertainty. Model inputs and 
outputs are intrinsically probabilistic, rendering 
their variability explicit and their sensitivity to the 
multi-dimensional parameter space a simple 
matter of querying the model’s joint probability 
distribution. Specifically, Bayesian Networks 
(BN) can model and integrate knowledge 
domains in a way found to be intuitive to 
interdisciplinary researchers and stakeholders [4]. 

BN are increasingly applied for integrated 
environmental modelling in ecology and 
resource management and energy studies. 
Recently they have been used for modelling 
optimum carbon mitigation and economic 
decision making in agriculture [5] and energy 
scenario studies for a national energy system 
[6]. The endogenising of uncertainty which 
allows decision makers to visualise risk as part 
of a due diligence approach is a distinct 
advantage of this modelling approach [7]. 

The match between the largely unquantified 
uncertainties for integrated assessment of 
community deployed PV and the methodological 
benefits of BNs, suggest a number of research 
questions pertaining to the applicability of this 
methodology. A key question is: can the use of 
this approach furnish stakeholders with a 
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decision support or deliberative policy making 
tools in this problem domain? To explore this, 
and related questions, a BN has been 
constructed and is described here. This paper 
looks briefly at the theory of BNs, the 
development of a candidate model, and the 
sourcing and the processing of data with which 
to encode the dependencies between variables. 
Finally, some results are explored and 
discussed in the light of implications for decision 
support and policy making using this 
methodology. 

Bayesian Networks 

A BN is a mathematical model depicted by a 
directed acyclic graph (DAG) where each 
variable is represented by a node and 
dependencies between variables are 
represented by directed edges between them 
(Figure 1]. 

 

Figure 1. A directed acyclic graph 

A root variable has no incoming edges and the 
corresponding node is encoded with a 
discretised probability distribution. A child node 
has one or more incoming edges leading from 
parent nodes and is encoded with a conditional 
probability distribution for each combination of 
parent node values. The conditional probability 
distributions quantify the relationship, causal or 
observational, between a variable and its 
parents’ variables in the DAG.  

This state space can be statistically enumerated 
using a joint probability distribution (JPD),     , 
which provides the probability of each possible 
combination of every variable in the BN. The 
semantic of the BN is the independency 
assumption: each variable of every pair of 
unconnected variables is independent of the 
other, given their parent values. The JPD can 
thus be factorised using the chain rule (Equ. 1). 
Thus the BN’s encoded probability distributions 
encapsulate the JPD and thereby the entire 
knowledge domain for which the DAG is a 
conceptual model. 

                  

 

   

 Equ. 1 

The utility of this highly compact knowledge 
representation is further enhanced with 
reasoning algorithms which propagate evidence 
- observations on one or more variables - in 
order to calculate a posterior probability 
distribution of all other variables in the BN [8]. 
Bayes Rule for conditional probability is used, 

which given a variable A, calculates the 
posterior distribution,        given evidence B, 

from the prior distributions,      and      and 

the likelihood        (Equ. 2). 

        
           

    
  Equ. 2 

The benefits of a BN are: 

I. The efficient storage and encapsulation of an 
entire knowledge domain.  

II. An efficient inference making in both a 
prognostic sense, when an observation is 
applied to a root node, or a diagnostic sense 
when an observation is applied to a leaf node 
(one with parent but no child nodes)  

III. A visual conceptual model in the form of a 
DAG which is an intuitive causal or influence 
diagram for the problem domain 

IV. The integration of knowledge domains using 
probabilistic relationships between model 
parameters to create transdisciplinary 
knowledge. 

Object Orientated Bayesian Networks (OOBN) 

An OOBN consists of a collection of connected 
BNs, each of which encapsulates a particular 
knowledge domain [9]. Thus Figure 1 can be 
reinterpreted such that each object, A,B,C,D and 
E represents a functioning BN with its own 
factorised JPD, and the connections represent 
an interface between output nodes of one 
network and input nodes of another to enable 
the transfer of probabilistic information from one 
network to another. 

An OOBN facilitates transdisciplinary enquiry 
and, particularly for a large network, provides a 
hierarchical model with each sub-network 
delivering the benefits listed above. Because of 
the complexity and multi-disciplinary nature of 
the problem domain discussed in this paper this 
was the approach employed in this study. In the 
next section the knowledge domains which were 
integrated into a single OOBN are discussed. 

Construction of the OOBN 

A BN is often constructed using expert 
knowledge to define the dependencies and 
independences between the parameters 
included in the study [10]. An OOBN facilitates 
this approach and the academic literature was 
employed to support the DAG structure of each 
object. Figure 2 presents a UML schema for the 



model with each titled box representing a 
network object and the crow-foot connections 
depicting an interface between the output node 
of one object and the input of another. Space 
unfortunately does not permit the displaying of 
the intra-object connections in this paper. 

The evaluation of SEE impacts in domestic and 
community contexts suggested a focus of the 
OOBN around defined UK geographic census 
areas known as a Lower Super Output Area 
(LSOA). Thus the root BN object was designed 
to probabilistically characterise the LSOA. The 
key parameters for which probabilistic data were 
obtained were the building type, age and floor 
area (from the Geoinformation Group LTD), the 
southernmost area, pitch and orientation of roofs 
from LiDAR data (Bluesky LTD) and modelled 
household income distributions from census 
data and the English Housing Survey using an 
iterative proportional fitting approach [11]. 

The roof parameters are provided as inputs to 
the yield object which calculates the specific 
yield. To calculate this PVGIS was used to 
provide a modelled yield for every property in 
the LiDAR dataset. This deterministic value is 
augmented with an uncertainty parameter 
calculated from empirical data supplied from the 
Sheffield Microgeneration database and PVGIS 
modelled data for the same systems (Figure 3). 

Outputs from the Yield and Area objects enable 
the modelling of a system yield in the PV system 
object. A building energy demand object was 
constructed using empirical datasets from the 
NEED framework [12]. This furnishes the energy 

cost object with the inputs to provide a 
probabilistic domestic energy cost. The FiTs 
subsidy object takes as inputs the energy 
demand and PV system yields to determine 
income from export and generation tariffs. To 
account for self use variability data from the UK 
solar PV field trials were used to derive the 
probability distribution which was found to be 
influenced by both the quantity of PV electricity 
generated and the total household electricity 
demand. 

  

Figure 3 (see text) 

The last three objects are used to deliver three 
SEE indicators; the socio-economic object 
provides fuel poverty indicators, the NPV object 
provides a discounted cash flow analysis and 
the Carbon object provides the carbon savings. 

It is worth emphasising that the above brief 
description masks somewhat the nature of the 
model’s quantitative data. All the parameters 
have been solicited to furnish 

 

Figure 2. UML diagram of the salient features of the OOBN for solar PV
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it with probability mass functions (PMF) - a 
discretised probability distribution, much as in 
Figure 3. Furthermore, nodes which have parent 
nodes have to be encoded with a PMF for each 
combination of parent values. Thus there is a 
significant degree of data processing and 
statistical analysis in order to derive these 
distributions. Further discussion of all variables, 
data sources and preparation of PMFs can be 
found in a forth-coming paper [13]. 

The OOBN itself was constructed using Netica 
BN software [14] which allows the simple 
entering of observations on any node in order to 
observe the influence of the evidence on all 
other variables as discussed in the next section. 

Using the Model and Discussion 

The BN imparts an 
informative prior 
probability distribution 
for every variable in the 
network. The example 
Figure 3 shows the 
system yield distribution 
for an urban LSOA in 
Loughborough, UK. 

The BN offers 
diagnostic or prognostic 
utility by fixing one or 
more specific node 
values (observations or 
predictions) and 
evaluating the resultant 
posterior - distributions 
of all other variables of 
interest. 

Of particular interest in 
this project is the 
development of a tool to 
evaluate SEE impacts 
for distributed renewable 
energy. Figures 4, 5 
and 6 show the 
distribution of Net 
Present Value (NPV), 
carbon emission 
reductions and the 
percentage of household 
income spent on fuel 
respectively, each with 
a hypothetical 100% PV 
penetration. 

The model achieves the 
objective of creating an 
integrated decision 
support tool with which 
a large spectrum of 
queries can be asked 

 
Figure 3 (see text) 

 
Figure 4 (see text) 

 
Figure 5 (see text) 

 

Figure 6 (see text)  

and probabilistic answers delivered. 

Conclusion 

The candidate sustainability indicators provide a 
valuable multi-criteria parameter set for decision 
support which can account for diverse 
stakeholder perspectives. A probabilistic 
assessment of parameters of interest openly 
declares the risks pertaining to the attainment of 
key performance indicators (KPI) in a wide 
number of simulated scenarios using the BN. 
The prospects of renewable energy acceptance 
may be improved by deliberative policy and 
decision making using evidence where 
uncertainties are transparent. Further work is 
required to test these hypotheses and to 
incorporate other KPIs and technologies. 
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