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SUMMARY 

Feedback laws based upon optimal control theory were de

rived. and these resulted in a reduction of the structural loads 

on the wing of a simulated aircraft. Various models of the 

aircraft dynamics were used. the most complete being of order 

79. This model included rigid body motion. structural flexi

bility effects. unsteady aerodynamics. gust dynamics .and ac

tuator dynamics •. The structural effects were characterised by 

the first fifteen bending modes. The subject aircraft studied, 

was considered to employ active ailerons and elevators and was 

subjected to manoeuvre commands and simulated atmospheric 

turbulence. 

Extensive numerical tests have shown that feedback laws 

derived from reduced dimension models performed comparably with 

the feedback law based on the most complete model. Tests were 

made on feedback laws ranging from order 79 to order 5. It was. 

however. not possible to reduce the number of feedback variables 

below five as this then affected the stability of the aircraft. 

The law based upon five state variable feedback was given the 

designation 'safety law'. 

One of the consequences of operating under the action of 

the 'safety law' was that the same level of load reduction 

could not be achieved as was obtained whenever a full state 

feedback law was employed. In addition. 'safety law' operation 

was often marked by large transient oscillations of the wing 

root bending moment and it was considered that this would 

Hi 



subsequently affect t'he fatigue life of the structure. An 

observer design was then investigated which reconstructed the 

complete state vector from a selection of measurements of the 

sensor signals appropriate to the 'safety law'. Results have 

shown that it is possible to achieve a practical implementation 

of such a scheme which will possess all the attendant advan

tages of full state feedback control. 

A consequence of reducing the strength of the wing of 

the aircraft as a result of employing an active load allevia

tion scheme is that a considerable degree of reliability of 

the control system, higher than that of both the basic airframe 

and its propulsive system, will be required. Because the use 

of hardware redundancy techniques as a means of providing the 

required degree of reliability would be expensive, software 

redundancy techniques suggest an attractive alternative. One 

example of how software redundancy may be employed is demon

strated in respect of , checking the analogue feedback gain 

controller used in the aircraft to implement linear feedback. 

It is shown how a-microprocessor may be effectively employed 

to introduce a surrogate gain should one or more of the channels 

of the controller fail. 
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CHAPTER 11 INTRODUCTION 

1.1. Problem Descriotion 

Current mission and design requirements for modern air

craft are such that the resulting configuration of the vehicle 

is greatly altered from the familiar earlier designs. These 

design requirements stem principally from a need to improve 

one or more of the fuel economy. cruise efficiency or tactical 

manoeuvrability of the aircraft dependirig upon its particular 

role •. To achieve these design requirements has resulted, in 

the use of one or more ofl 

(a) thin lifting surfaces 

(b) long slender fuselages 

(c) high stress design levels 

(d) low load factors. 

Inevitably this design trend has produced aircraft which 

are lighter and as a consequence more flexible. Such aircraft 

can develop both large amplitude displacements and high accel

erations due to flexure, in addition to those due to rigid body 

motion. These displacements and accelerations may, for instance, 

in the case of the wing, induce high levels of bending and tor

sional moments at different locations from root to tip. In ad

dition, large oscillations may occur as a consequence of flying 

through atmospheric turbulence thereby contributing to the fa~ 

tigue of the structure. High load levels may also occur as a 

result ofaeterministic manoeuvre demands made by the pilot, 

especially in the case of fighter aircraft, or in having to take 

sudden and evasive action, in the case of commercial aircraft. 



Flexible aircraft pose a new class of flight control 

problems in which the classical methods of approach to the 

solution of such problems become hopelessly impractical. How

ever. by the use of optimal control theory. solutions may be 

obtained quickly although the synthesis of the control laws 

so derived still tend~to pose some difficulty especially if . 

the order of the mathematical models used is high •. However. 

with the availability of very effective airborne digital com

puters. the synthesis problem may now be solved by re-

laxing the requirements on state measurements and providing 

2 

in its place some form of state-estimation. .It has thus be

come possible to consider. practically. the problem of design

ing a control system to alleviate the loads to which an air

frame may be subjected by automatically deflecting active con

trol surfaces. Such systems are variously referred to in the 

literature as: 

(a) Manoeuvre Load Control Systems (MLCS).( Burris & Bender,1969) 

(b) Active Load Control Distribution Systems (ALCDS) 
(Stone C.R. et.al.; 1972) 

(c) Load Increment Control Systems (LICS) ~an Dierendonck. 1973) 

(d) Gust Load Alleviation Systems (GLAS) (Harpur. 1973) 

(e) Structural Load Alleviation Control Systems (SLACS) 
(McLean & Prasad, 1980) 

The application of optimal control methods to alleviate 

structural loads on aircraft was considered in this research. 

The subject aircraft chosen for the study was the Lockheed 

C-5A. Both the synthesis and flight integrity aspects of 



implementing such control are considered in some detail. 

Digital simulation was used throughout the study in order 

to assess the performance of the various control schemes 

-proposed. 

J 
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1.2 Historical Background. 

structural load alleviation in one fonn or another has 

occupied the interest of aircraft designers from the earliest 

days of aviation. However, with the advent of highly flexible 

aircraft over the last two decades or so, coupled with the 

fact that optimal control techniques haseexpanded to cover a 

-much wider usage, there has been ple nty of new interest in the 

alleviation of structural loads on aircraft by the use of 

active controls. While early alleviation systems were desig

ned to alleviate loads due to gusts, more recent designs also 

take into consideration the loads, (which in the case of flex

ible . aircraft can be substantial), due to deterministic 

control commands • 

Real interest in the und-erstanding of -the effects 

of atmospheric turbulence on flight vehicles began when the 

German aviator Otto Lillienthal was killed in 1896 when his 

glider became upset as a result_of flying through a,gusty at

mosphere. It appears,however, that the earliest technical 

reference, (which incidentally was the first NACA report), was 

not available ~~til 1915 (Hunsaker and Wilson, 1915) although 

a U.S. patent had already been granted to Sprater (1914) fora . . 
"stabilising device to counteract the disturbance (gust) and 

prevent it from having an injurious effect on the machine." 

Continued study of atmospherio turbulence resulted in two 

major contributions _ which are still often in use today. Von Karma! 

(1937). and_more important. Taylor (1937), established the bases 
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for suitable majhematical representations of atmospheric tur

bulence. As regards the design and implementation of load allev

iation systems. Ihowever, the approach has been, in the earlier 
I 

stages of development of SLACS, to use an open-loop design phi-
'. , 

losophy, while)~n more recent years, closed-loop designs have 

b~en more commo1' The chief reason for adopting an open-loop 

design philosophy was that the knowledge of the dynamics and 
, 

stability characteristics of the aircraft then in use, particu-
. , 

larly unsteady aerodynamic effects and structural flexibility, 

was not very wetl known •. In any case, none of the servo

mechanisms the:) I in use was sufficiently fast; '.:>.~, to be 
, , 

capable of impl~menting active load alleviation. One advantage 

however, of opeLlooP control i.s that the stability of the air-
. , 

I 
craft is not affected by its presence, while improper choice 

I 

of feedback gains for closed-loop control systems could seriously 
I 

affect the stability of the aircraft~with 9ften disastrous 

effects. Becau~e fast servomechanisms were unavailable. it was 

necessary to sense gusts well in advance in order to allow time 
Q . 

for corrective controlling action to be taken. As servoactuator 
I 

performance increased. it became feasible to provide countering 

action due to gusts almost instantaneously and all the necessary 

sensing could then be achieved by the use of strap-down+ accel

erometers and gyros. 

The earli1est open-loop designs used aeromechanical control 

in order to all.eviate gust loads. 
! 

Waterman (1930), built an 

aircraft with ~ings attached to the fuselage by means of skewed 

* Speed of actuation is necessary in the case of active load 
alleviation especially when travelling through atmospheric 
turbulence si'nce the time delay between sensing and required 
countering acition becomes very small. ~>;", .... 

+ Strap-down de~ices are normally easily attached'~ the surface 
(for example.1 on the wing of the aircraft). In addition. such 
nAvi t".~C! ~'Y'A ,..nmn~,..+~ ; n ~; '70 o:l"ln ,..hc.":l'n +" T'\~""~I~"".o. 



hinges. The wing was balanced in steady flight by means of 

pneumatic struts. In unsteady conditions. the wing deflected. 

thus changing the angle of attack. The system however caused 

lateral control of the aircraft to be affected since the de-

ployment of ailerons also result7d in deflections of the wing. 

In 1938. a French proposal for a flap-type l~ad allev

iation system was made by Hirsch (1957). Initially. only 

model tests were carried out and the system used a horizontal 

stabilizer as an angle of attack sensor.After World War II. the 

approach was further developed and in 1954. flight tests were 

made using a Douglas DC-3. 

In 1957. work carried out on the implementation of Weiner's 

optimum filter theory for the minimisation of an aircraft's 

open-loop response to atmospheric turbulence was reported upon 

~y Tobak. (1957). Tobak's proposal depended upon the accurate 

measurements of variations in the angle of attack of the air

craft.· His analysis validated earlier work carried out by 

Phillips and Kraft (1951) using classical analysis techniques. 

The Weiner optimum filter theory applied to G.L.A. sys-

tems was 

proposed 

lation 

not investigated until 1970. when. Coupry 'L9~ , 
Cm.) 

such a system for a Mirage IIIB fighter" Both simu-

and also flight tests were carried out using the system. 

The simulation tests indicated that by using vanes. gyroscopes 

and accelerometers. enough information could be obtained to 

effect sUbstantial reductions in accelerations sustained by the 

aircraft, These results, however. were not confirmed from flight 

tests. 

6 



In 1949. a Bristol Brabazon was fitted with a G.L.A.s, 

specifically designed to reduce bending moments on the wing 

of the aircraft. As a result. the wing structure was made 

20% weaker than the figure that would normally be required 

to meet gust levels in the absence of any G.L.A.!:'_The system 

was intended to employ symmetric deflection of ailerons to 

counteract the effect of gusts and sensing of the gust was to 

be done by means of a gust vane fitted at the nose of the air

craft. In 1953. the whole project was abandoned and the sys

tem remained untested. (Harpur. 1973). 

In the U.S.A •• in 1950. Douglas Aircraft Corp. carried 

out tests ona Dakota 0-47 aircraft which employed auxiliary 

flaps to provide GLA (Hawk. Conner and Levy (1952». and in 

7 

1952. tests were carried out by NAOA on a 0-47 aircraft 

(Kraft.(1956)., Hunter and Kraft'(1961». In the U.K •• a number of 

tests were at the time carried out by R.A.E. using an Avro 

Lancaster Bomber (Zbroze~ Smith and White (1957). Zbrozek 

(1961 ». All these tests employed the use of gust vanes to 

detect either changes in pressure or sudden changes in the 

relative wind. and, with the exception of the Bristol Brabazon. 

only alleviation of gust-loads on the rigid body motion was 

attempted. In tests with the Avro Lancaster. considerable 

loss of stability was experienced due to large pitching moments 

caused by aileron deployment. This led to a decrease in effect

iveness of the gust vane systems at large gust gradient distances 
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The gust vane systems employed at the time were unsuccess

ful because it was not sufficiently appreciated that the gust has 

components normal to the plane of symmetry of the aircraft and 

because account was not taken of other secondary effects such 

as changes in flight conditions. the effect of downwash acting 

on the tailplane , and the time 'delay between the wing encounter

ing the gust and then the ta,il. The gust vane systems. which 

were really feedforward,systems. could not at the time be de

signed to provide the necessary speed of response required. or 

be made insensitive enough to the secondary effects. These pro

blems were noted and avoided by Attwood. Cannon. Johnson. and 

Andrew, who, in 1955)put forward a patent application for a 

,GLA system which. "would sense linear and angular accelerationo 

and would use auxillary control surfaces to produce forces and 

moments required to minimise the accelerations." The patent 

, application was granted in 1961 and specifically took into 

account airframe and wing fiexibility by using blended outputs 

from a pair of accelerometers and a pair of rate gyros so that 

unwanted'signals due to bending motion would be cancelled. This 

proposed system was however mainly considered from the point of 

view of ride quality of passengers. and the specific aim of 

using a control system to alleviate structural loading. although 

implicit. was not until the present time considered. In 1962. 

the prototype UK fighter bomber. the TSR-2 depended upon aug

mented static directional stability to reduce its sensitivity 

to a gusty environment when operating in a high-speed, low-level 

role. (Os~gaard. (1976». In the USA. a system designed to re-



duce structural loads due to gusts was first tried in a 

USAF program involving the prototype bomber, the XB-70. The 

program involved a significant amount of development work 

and this has been reported upon in Davis and Swaim (1966), 

Wykes and Mori (1966). Smith and Lum (1966) and Smith, Lum 

and Yamamoto (1966). 

9 

In 1964, a B-52H bomber of the strategic Air Command of the 

USAF on a low level mission over Western USA encountered se

vere turbulence of estimated peak velocities of about 35 m/so 

About 6 seconds after penetration into the gust, the yaw dam

per of the aircraft saturated. The response of the now unaug

mented rigid body dynamics ~as so pronounced that 80% of the 

tail fin broke off. This unfortunate incident however acc

elerated interest in the study of GLA. One such study became 

the start, in 1965. of an extensive program of flight control 

system development known as the Load Alleviations and Mode 

Suppression (LAMS) program. The program produced very encour

aging results and were reported in some detail by Burris and 

Bender (1969>.. The ride control- systems developed under the 

LAMS program were later extended to accomodate GLA (Stockdale 

and Poyneer (1973». Another such program centered around 

the C- y\ aircraft known as the Load Improvement Control System 

(LICS) and was conducted by Van Dierendonck. Stone and Ward 

(1973'. The B-1 Bomber developed for use with the USAF has 

been fitted with a Low Altitude Ride Control (LARC) system 

with the aim of alleviating the effect of gusts encountered 

at low altitudes using specially developed active surfaces 



in the form of fore planes located just aft of the nose of the 

aircraft ( Interavia (1976), Hinsdale, (1976)). A Quantas 

B-747 aircraft has been fitted with a sideslip gust vane 

which is used to suppress gust-induced lateral acceleration. 

A load alleviation system has for some time been available as 

an optional extra for the Loclcheed L-l011 aircraft, Hobli t 

.( 1973), although, only .one. has so far been fitted *. 

Gust load alleviation schemes have also been applied to 

a number of light aircraft, for instance, the Cessna Cardinal 

has been fitted with a GLA system acting through spoilers 

(Brainerd & Kohlman, (1972).). An aeromechanical system em

ploying auxilIary wings to sense changes in angle of attack 

ana to drive the flaps to compensate the resulting lift has 

been applied to the Cessna 172 aircraft. Reductions in normal 

acceleration of up to 50% were achieved by this system, 

10 

(Roech and Harlan (1974), Stewart (1975)). A NASA Jetsteam air

craft now incorporates a GLA system amongst other Active 

Control Technology (ACT) functions which has proved to be very 

successful. (Lange et.al. 1975)). 

A number of m·ore recent studies conducted by McLean, 

(1976, 1978). have established the feasibility of using mod-

ern optimal control methods to design very effective active con

trol systems to alleviate structural loads on aircraft. In this 

research. studies ~ made of the practical implementation of 

such systems which must necessarily employ either reduced or-

* On a British Airways aircraft In 1980. 
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der control or the use of state-estimators to inplement full 

state feedback control. Practical aspects of synthesizing such 

controllers with some attendant degree of flight integrity are 

also considered. 
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1.). Scope of the Research Investigation. 

This research investigation was concerned with a study 

of the application of optimal control theory,in conjunction 

with advanced electronic technology, to provide, in current and 

future operational aircraft, a means of alleviating structural 

loads on _ such aircraft when subjected either to deterministic 

manoeuvre demands or to flying through atmospheric turbulence, 

by. the use of continuously active control surfaces. 

The subject aircraft for the study was a large jet trans

port, the Lockheed C-· 5A. Because of the limited amount of 

data available, only longitudinal motion was studied, and then 

only for a single flight condition. Several mathematical mod

els representing the aircraft were used. The nlodel representing 

the most complete set of dynamics contained equations describing 

rigid body motion. structural flexibility effects, actuator 

dynamics and unsteady aerOdynamics. In the structural flexib-

ili ty equations up to fifteen bending mo.des associated with the 

wing of the aircraft were represe~ted. The bending and tors

ional moments at five different wing stations including the 

wing root were described by a set of output equations. 

Optimal control theory was used to derive a number of 

linear full-state feedback laws using mathematical models df 

different order. Control laws corresponding to 24, 17, 14, and 

5 state variable feedback were derived. The effect which dif

ferent orders of feedback had upon the bending and torsional 

moments associated with the 5 chosen stations on the wing of 
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the aircraft was extensively tested by means of digital simu

lation. The work completed up to this stage has been reported 

elsewhere (McLean and Prasad (1980A), Prasad, Saoullis and 

Tsitsilonis (1980), McLea~ and Prasad (1980B)). 

Because reduced order feedback appeared to be an attrac~ 

tive proposition from the point of view of practically syn

thesising the control law in an economical manner, a number of ob

server or state-estimator algori~hms were considered to see if it 

would be possible to recoup some ,of the advantages of full-

state feedback control based upon the measurements of only a 

few motion variables. It is believed that development of an 

algorithm of the type considered for synthesising the full-

order observer has not been attempted previously. The theory 

used in the consideration of reduced-order observers had to be 

modified slightly to allow quadratic weightings used in the 

performance index of the control problem to be placed upon the 

output vector instead of the state vector. 

Finally, a microcomputer system (MCS) available to the 

author was used for demonstrating the feasibility of employing 

software reliability techniques for monitoring the behaviour of 

a typical flight controller. Simulation of failure of the flight 

controller to produce the correct controlling signals to the 

servo-actuators was achieved by means of a self-repairing con

troller test unit (SRCTU) designed by the author. The MCS was 

then used to show how distortion of the output signals may be 

detected and how a reconstructed signal may be produced by 
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using surrogate gain values stored in ROMS - in the computer. 

This part of the ,work has also been reported elsewhere {;;!cLean 

and Prasad, (1980C». 

In Chapter 2, an extensive analysis is made of the way in 

which the most complete mathematical model was derived. The 

other models used, (of lower order), are described in less de-

tail because all were simplif'ications of the most complete 

model. 

In Chapter 3. the theory relating to the derivation of 

the optimal control laws is 'considered. Obtaining of 

time responses by the use of transition matrix methods of sol

ution of the aircraft's state equation also forms a section, 

of this chapter. In a final section of the chapter, a scheme 

to evaluate the r.m.s. levels of bending and torsional moments 

acting on the wing of the aircraft as it 'flies' through 

simulated atmospheric turbulence is also considered. 

In Chapter 4. extensive tests by digital simuLation of 

the effectiveness of control laws derived: are reported. Both 

full and reduced-order control are considered together with 

servoactuator requirements and the performance of the control

led aircraft in simulated atmospheric turbulence. 

In Chapter 5, an algorithm for synthesising a full-order 

observer is developed •. ~ , -
t, ...... ,·· , . >..'. Optimal control theory is 

used for the sOlution of the observer parameters and several 

time response tests are made to assess the performance of the 



observer and to compare with results obtained previously. 

which assumed that the full system state would always be 

available for feedback. 

In Chapter 6. l.!iller's theory for the design of optimal 

minimal-order observers is .used to derive a reduced order 

observer. A small addition was made to the theory to allow 

quadratic weightings on the output vector rather than the 

state vector to be made. The change however did not affect 

the final specifications of the observer design as proposed 
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by Miller. Time responses were aga.in obtained by digital simula

tionand comparisons were made with results obtained previously. 

In Chapter 7. workaone on' establishing the feasibility 

of using .a microcomputer system (MCS)to provide software re

liabili ty is reported upon. A Bell and Howell MCS avail-

able to the author was used to detect simulated failure of 

~aircraf~£ flight controller and the 'servoactuator signals' 

were then reconstructed with the MCS by sampling.the 'sensor 

signals' an~ by using surrogate gain values stored in ROM. Sim

ulation of Flight Controller failure was accomplished by the 

use of a simple logic circuit designed by the author. 

Chapter 8 contains a concluding summary of the work re

ported in this thesis. Several recommendations for' further 

study are included in the closing section of the chapter. 



CHAPTER 21 MATHE~~TICAL REPRESENTATION OF THE AIRCRAFT 

2.1 Introduction 

The equations used to represent the motion of the 

flexible aircraft which was chosen for the research investi-

gation took into account the geometric, aerodynamic and 

structural properties of that aircraft. The way in which 

such equations are prese'nted, however, depends upon the 

coordinates chosen to describe the motion, (Milne (1964 », 
i.e. whether these coordihates are relative either to an 

inertial axis set fixed in the Earth,or to some non-inertial 

set fixed in the aircraft. Although the results obtained 

from either set will be the same, the body-fixed axis system 

was used in this research principally because many of the 

criteria for aircraft handling and performance are expressed " 

in this set, (Schwanz (1972», and because pilot response 

appears to be mostly based upon body-fixed motion cues, 

(Gundry 0.977». 
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The derivation of equations in the body-fixed axis system 

are normally most easily carried out by first writing down 

the Lagrange equations,(Milne (1964), Schwanz (1972»1 

- F - -\ ... (2.1) 

where ~ is the coordinate vector, Fi is a forcing vector and 

L. is' the associated Lagrangi'an. There are two possible sets of 
1 

equations which can result from using (2.1), viz., 
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(a) Equations containing constant coefficients which 

have been derived from steady state aerodynamics 

with unsteady aerodynamics being approximated by 

Kussner and Wagner lift growth functions. 

(b) Equations containing non-constant coefficients 

which depend upon the use of more exact methods 

for representing unsteady aerodynamics. 

In this study the former set was employed primarily 

because such equations are easy to formulate, and, provided 
. . 

~ 

that some additional approximations ~ be made on the 

Kussner and Wagner representations, solutions of .which,can be 

quickly determined. One disadvantage, however, of using 

linearised equations is that it is not easy to incorporate the 

effect of changes in flight conditionsl. some of the coefficients 

of the equations may vary over a wide· range, even changing sign 

at different points of the aircraft·'s flight envelope. For 

example, the stability derivative, Mw' which represents the 

change in pitching moment due to a change in vertical velocity, 

w, is one of the most difficult derivatives to determine and 

consequently the derivative represents a significant uncertainty 

where the design of. an APeS is concerned. Also Kussner and 

Wagner lift growth functions used to represent unsteady aero

dynamics. are. more acpurately represented graphically. The 

expressions which represent the KUssner and Wagner functions 

are extremely difficult to incorporate into model equations, 

anc" approximations provided in the literature, (in particular, 

see Bisplinghoff et al (1955)), have be~n employed. 



The form of the aircraft equations resulting from the 

Lagrangean approach. is typically as shown in (2.2) •. viz •• 

F2g + Flg + F q + 
0-

G "*w + 2.9- G • *w = C F*K· 
1.9. . 1- ••• (2.2) 

where. 

F2 = Matrix ·of generalised inertia of the aircraft 
structure 

Fl = Matrix of generalised structural damping 

Fo == Matrix of generalised structual stiffness 

G2 = Matrix of generalised aerodynamic damping 

Gl = Matrix of generalised aerodynamic stiffness 
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Cl = Matrix of coefficients of the generalised forcing 

function. 

F is the forcing functionl W is the Wagner lift function 

and K is the Kussner function. The'* is used to denote con-

volution and ~ is the vector of generalised coordinates. 

The generalised coordinates are calculated assuming that the 

elastic.behaviour of the structure is linear and that struc-

tural displacements are small. 

When aircraft equations are derived on the basis of 

small perturbatio~s and account is taken of unsteady aer~

dynamic effects. the resulting set is known as an EXACT 

formulation. Equations so derived are difficult to solve 

numerically, primarily because of their complexity I often, 

approximations are used. The equation set so derived may be 

referred to aSI 

. 



(a) Quasi-Static 

(b) Modal Substitution 

(c) Residual Stiffness 

(d) Residual Flexibility 

(e) Modal Truncation 

When the motions of the structure are assumed to be in 

phase with the rigid body motions, i.e., accelerations of the 
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structure are instantaneous, the resulting formulation is known 

as the QUASI-STATIC. set. In order that the AFCSs designed on 

the basis of using such a set be capable of providing sufficient 

damping of all modes, it has to be ensured that the frequency 

separation between the rigid body and the elastic motions are 

large. 

Whem'the motions of the structure are related to the 
• 

orthogonal, in vacuo, eigenvectors, the resulting equations 

are known as the MODAL SUBSTITUTION set. The associated eigen-

vectors will.normally be composed of real, numbers only. 

By RESIDUAL STIFFNESS is meant that only a number of 

modes from the modal sUbstitution set are retained, although, 

a quasi-static aeroelastic correction·factor is also employed 

relating to the deleted modes. The chief disadvantage of the 

residual stiffness formulation is that all mode shapes must be 

calculated including those associated with the deleted modes. 

These extra calculations may be avoided by re-developing the 

equations associated with the exact formulation using the 

'free-free' flexibility matrix, (Schwendler and MacNeal (1962». 

The resulting formulation is then known as the RESIDUAL 

FLEXIBILITY set. 



The MODAL TRUNCATION set is obtained when the deleted 

modes of the residual flexibility set are not represented by 

any correction factor. If is the most common dynamic aero

elastic formulation reported in the literature. 

20 
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2.2 The Subject Aircraft 

The specific type of aircraft chosen for the study was 

the C-5A, a large jet transport manufactured by Lockheed, be

cause much of the data needed for the mathematical models 

required for the research study were available "in Stone (1972) 

and Harvey and pope, (1977). However, only information about 

the longitudinal motion, and then only for a single flight 

condition, was provided. The chief parameters associated with 

the flight condition studied are given in Table 2.1. 

Total weight (N) 3.107 x 106 " . 

Mach No. 0;448 

Altitude (m) 2.3 x 103 

Dynamic Pressure (N/m2) 9.15 x 103 

Airspeed (m/s) 1.43 x 102 

C of G (%mac) 31 

Trim angle of attack (deg) 5.15X 10-2 

Load Factor "I 

Table 2.11 Flight Condition Parameters 

At the same flight condition· six separate mathemati

cal models, all" of different dimensions,were used. For ease 

of identification, these models were named I 

ARNE 

BACH 

CLEMENTI 
." FAURE 

GERSHWIN 

HANDEL 



The model ARNE was the largest, its state vector being 

of dimension. 79,' while .the model HANDEL was the smallest. 

its state vector being of dimension.5. Sin~e all the models 

were derived from ARNE. only this model is described in some 

detail in this chapter. The other models however. are 

briefly described in the final section of the chapter. Also. 

·the. ,composition of the state t, control and output vectors 

of each model are summarised in Appendix I.a -':d "'r~ CfI. .. 

22 
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2.) State~~ation Representation 

For work connected with AFes design, it is convenient 

to arrange that the aircraft equations be expressed in state 

'variable form; that is to say, as a set of first-order 

differential equations in which only the first derivatives of 

the state variables appear on tne left hand side of the equa

tion, and, on the right hand side, appear terms containing 
, * the state variables, ~. When the control and disturbances 

are considered as separate vectors, say u and ~ , then an 

appropriate form of the state variable equation iSI 

* 1c_ = ,AX* + Bu + Dz - - -g ... (2.) 

where ~*€Rn, !:le.Rm and ~ e. Rr. The disturbance vector 

~g is usually solved through a second equation, viz., 

••• (2.4) 
ih~ 

where "l. represents a scalar white' noise input to" - .. ' ,-;c':----::'1' 

filter. For the models used in this research, it was found 

more convenient to combine (2.) and (2.4) resulting in 

(2.5). viz., 

+ 

or 
= A~ + By + G1 ... (2.6) 
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, where, 

[i:] z ~ , ... (2.7) 

A .. [~ g] ~ ... (2.8) 

B 6 [~ ] = ••• (2.9) 

G ~ [cr ] ... (2.10) 

The sienificance of sometimes separating (2.6) into 

its components (2.) and (2.4) will be described in greater 

detail in Section 2.4.5. Since the main aim of the research 

was to achieve some reduction of bending and torsional loads 

on the wing of the aircraft, it was necessary to define an 

output -vector, y. which was related to the state vector, ~-, 

and control vector, y, in ,such a way that these loads may 
, 

be determined at any time.Thus the appropriate output equa-

tion wasl 

l = C~ + Eu 

where, l E RP. 

... (2.11) 



2.4 The Mathematical Model, ARNE 

The state vector, ~, of ARNE had dimension n of 79. 

Its control vector had dimension m of 2. Its output vector 

had dimension p of 56. In table 2.2 is shown ho', the 

state vector of the model, ARNE was composed. 

Xl - x2 
x3- x17 
x18 -x32 
x

33
-x35 

X36- X40 
x41- x42 

x43- x79 

Table 2.2 

rigid body dynamics 

bending mode velocities 

bending mode displacements 

control surface displacements 

Ki.issner -dynamics 
Gust Dynamics 

Wagner Dynamics 

Composition of the State Vector 
of the Model ARNE 

2.4.1 Rigid Body Motion 
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The rigid body motion of the aircraft was represented 

by the linearised. small perturbation equations associated 

with the short period mode, viz., 
-m 

Vi <= Z w + U 01 + W 0 --yn:J, L Z.s.6j 
j=l ~ 

M w + M. * + M 0/+ W- W q -rn. 

where, 

w = vertical velocity (.0254 m/s) 

... (2.12) 

... (2.13) 



= 'translational pitch rate'* (.0254 m/s) 

dimensional stability derivatives 
associated with vertical motion 
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Mi = dimensional stability' derivatives associa-
ted with pitching motion. 

Uo = Forward speed (m/s.) 

6j = deflection of the jth control surface. 

It is easy to arrange that all the first derivatives 

appear on the left hand side by 'substituting for * in (2.13) 

using (2.12), viz~, 

••• (2.14) 

'" (M+M.Z)w w w w + (M +M.lb.)q/n2 +L;(M6.+M,Z.s.)6j q w. j., :l W :I 

... (2.15) 

wand q/n2 were designated state variables xl and x2 

respectively. The control surface deflections employed were 

6E, - Inboard section of elevator 

6Eo - Outboard section of elevator 

6A - symetrically deflected ailerons 

2./~.2 Structura! Flexibility Equations (x
3 

- xJ2 ) 

The' usual structural dynamics equations ei'Ten as (2.2) 

are in"anunsuitable form for use in flight control work 

for two principal reasonsl 

-------
.. n2 is a conversion factor of 0.6066' x 10-3 rad/m. valid 

over small angles <0.2 rad. 



.1' , 

, 
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(a) the equations are expressed as 2nd order vector 

differential equations rath;er than 1st order scalar 

as required for state variable representation. 

(b) the vector gcontains control inputs. OJ. 

(which are terms which Should~pear on the 

right hand side of the state equation). 

An alternative method of. expressing the structural 

dynamic equations, is to represent each mode by an -, ' '. 

equation of the forml 

= Q . 
~ 

... (2.16) 

where. q !,. and 'q' correspond i' 'U l to generalised stiffness. 

damping and mass terms respectively. A.. B. 
l l 

efficients of the ith generalised coordinate 

generalised force" co"-t~ ~ ~ v;"":~b\~. 

Let. 

).1' t ~ qi 
~. ~ 

, 
),1- = 4· i l ~ 

and Ci are co-

and Qi is a 

"J<-
,Jf: 

... (2.17) 

••• (2.18) 

substituting definitions (2.17) and (2.18) into (2.16) 

yields I 

... (2.19) 

• 
• = ... (2.20) • • 

C. 
--l 

[t 

[~ to 
1 It"] + [iJ' Q

i 

-~; "2~ Ai 
o-,.C- , . .-.:'1-

k ~ ,,~~'/. ~tr~~f- v1 ~'c~~~~ ""-• 

rJ4''''~'o 
"': 

c:.c ~~ Y' .. lCi) Ik., 'l.?- ~ 
'. ,'. ,} " ,I,. 

~ ~ c . 
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Hence each bending mode can be represented by two first 

order differential eq uatici.ns of the form given by (2.20), 

where . ).2i' is the rate and , ),li' the displacement associ

ated with the ith mode. For ARNE. the first fifteen'bending 

mode rates were represented by the state variables xJ -x17 , 

and the corresponding bending mode displacements by the state 

variables x18 · xJ2 ••. The damping ratios of each mode were 

small. all being <'0.1.· The units' of?>. were O.0254m an~ . . ~ 

~i were O.0254m/s. 

\

lC,o-r ~ 
C-~L\ .- \ 

2.4.JControl Surfac~~~tuation_ (xJJ - xJ5) 

The deflections of the control surfaces were considered 

to arise as a result of control signals being applied to their 

servo-actuators. The dynamic responses of these actuators 

were considered to be linear and were assumed to be represented 

by simple time lags. 

The three control surfaces used werel 

Ailerons (symmetrically deflected) 

Inboard section of elevator 

Outboard section of elevator. 

However. only the signals to the actuators associated 

with the ailerons and the inboard section of the elevator.were 

used as control inputsl the outboard section of the elevator 

was left free for receiving other commands such as would be 

required for carrying out normal ifrflight manoeuvres. Its 

dynamics were however represented in the state vector of ARNE. 



The actuator dynamics associated with those control 

surfaces used were represented bYI 

Aileronl 

= 6.0 
s +6.0 (s) ••.• (2.21) 

Inboard elevatorl 

s + 7.5 ••• (2.22) 

From (2.21), 

~ = ••• (2.2J) 
and from (2.22), 

~. 
F~. = • •• (2.24) 

The actuator dynamics associated with the outboard 

elevator was simply represented by the equationl 

• 6Eo 
= 

l"or ARNE. 
6A = 
6E. 

1. = 

°Eo = 

and, 
6A = 

c 

6Eic:= 

-7.50
Eo 

xJJ 
xJ4 

xJ5 

u1 

u2 

...(2.25) 

••• (2.26) 

• .. (2.27) 

... (2.28) 

~ •• (2.29) 

... (2.JO) 

The Kussner function, K(c) , (Kussner (19]6), is 
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related to the change in lift on an aerofoil due to the inci

dence of a sharp·edged gust striking the aerofnil. The dimen

tionless lift development, L(c), based upon the aerofoil 

mean semichord. c, is given as, (Bisplinghoff et al (1955 )1 
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... (2.31) 

where b is the aerofoil semispan and, ~', is the vertical 

gust velocity. 00 is the forward 

f is the air density. The form 

speed of the aircraft and 
tt l (t) 

of K(c) makes,'ll difficult - , , 
to express in simple algebraic terms, and approximations 

are qften employed, (Fung (1955), Dowe11 (1978 ). One 

approximation is the Sear's function (1940) which, for aero

foils with aspect ratio >6~ is given by, 
,/.. 
QS<c) = 1 

where. 
c A Uo t 

= le/2' 

... (2.32) 

... (2.33) 

and r is a Mach number correction fact·or. (2.32) is the 

expression for the output obtained when a step input (such as 

the edge of a gust) strikes,', the aerofoil. The appropriate, .. 

transfer function for the wing of the chesen subject aircraft 

is 
- 0·5 
- s+ 2.857 + 

O. 5 ' 
"00 (2.)4) s+ 21.98 

and for the tail, iSI 

_ 0.5 
- s+ 5.781 + '* De " s+ il:J7.Y 4-4 . .s- ' ; .. (2.)5) 

The corresponding numerical values of Uo', 1 and Cl have 

been sUbstituted in (2.34) and (2.)5). For the C-5A, these 

numerical values arel 

Uo = 14) m/s 
y = 1.)8 

Cw = 9.429 m 

eT = 4.66 m 

* For the C-5A, the aspect ratio of the wing is 7.75." 

\ 



)1 

In Harvey and Pope (1977), in the determination of 

(2.))), the value of the chord was used instead of that of the 

semi-chord and this error was noted in McLean and Prasad (1980B). 

However, the Harvey and Pope representation was followed in 

this work to permit valid comparison of results. Also some 

approximation was made to the transfer functions (2.)4) and 

(2.)5). which, in Harvey and Pope,was given aSI 

10.983 
s+ 10.98) ... (2.)6) 

22.185 
s + 22.185 • • • (2.)7) 

The corresponding equations describin~ the Kussner 

dynamics for the wing wasl 

= • •• (2.)8) 

and for the tail wasl 

= -22. 185x)6 + 22.185wg } 

-22; 185X)6 + 22.185x42 
• •• (2.)9) 

= 
Because the edge of the gust will strike the wing first 

and then the tail some finite time after the aircraft pene

trates the gust field. pure delays were used to represent this 

time delay. For the tail, a distance of 56.1m behind the nose, 

the time delay wasl 

This delay 

mation, (Richards 

r = T 

was 'represented 

(1979», which 

x)8 = x)9 -

0.)9)s. • •• (2.40) 

by a 2nd order Pade approxi-

was given as: 

2 (2.41) -r x)6 • •• 
T 
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... (2.42) 

... (2.43) 

X39 = -38.953 x38 - 10.192 x39 + 90.891 x36 

... (2.44) 

(2.39). (2.43) and 2.44) are easily expressed in terms 

of Laplace transformations. viz •• 

sX39 (s) = -38.953 X38 (s) -10.199 X
39

(s) + 90.891X36(s) 
••• (2.47) 

, From (2.45) . ~ •.. 

22.185 
s+22.185 

1 = --=----
1 + 0.045s 

••• (2.48) 

MUltiplying (2.47) throughout by ·s and sUbstituting for 

X38(s) using (2.46) yieldsl 

• • • 

s2X39 (s) = -38.953[X39 (s) - 5. 096X36 (s)] -lO.199sX39(~ 

+ 9~.891sXJ6(s) ••• (2.49) 

... (2.50) 

In block diagram form. the Klissner dynamics associated 
.. 

with the tail is shown in Figure 2.1 



X42 (s) 1 X,6(s) 198.5 ( 1 + 0.458s) X,9(s) 

1+ .045s s2 + 10.199s + 38.953 . 

Figure 2.1 I Kussner Dynamics applied to Tail 

The appearance of the gust at the wing1a distance of 

16.772m from the nose of the aircraft, wa's delayed byl 

. ~. 16. 772 = (2 51) ~ ~ 0.117s. ••• • 
Uo 

This delay was represented .by a simple time lag, viz., 

••• ( 2. 52) 

or, 
X37 = -8.549X

37 
+ 8.549x40 ••• (2. 53) 

(2.38) together with (2.53) express the form of the 

Kussner dynamics applied to the wing of the subject aircraft. 

The equations,expressed in terms' of Laplace transformations arel 

SX40(s) = -10.983X40(s} + 10. 983X42(s) 

sX37 (s) = - 8.549X
37 (s) + 8.549X40 (s) 

• 10.983 
J 

• • X!l:o (s) = 
X42 (s) s + 10.983 

1 = 1 + 0.09ls 

and, 
Xn(s) = 8.549 
X40 (s) s + 8.549 

= 1 
1+ 0.117s 

... (2.54) 

... (2.55) 

... (2.57) 
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"In Figure 2.2 is shown the appropriate block diagram 

representation of (2.56) and (2.57). 

__ X--,4:u2 .... (_s_) --'>-+1-:0-_1--:--:-:- ~ __ X...!.4-,,-0 >-,,( S'-')_-''''~I . 1 I· X 37 ( s) .. 
> :n. + • 0918 1 + • 117~ 

Figure 2.2 Ktlssner Dynamics applied to Wing 

A number of suitable representations of continuous 

~tmospheric turbulence are available (Taylor (1937), Von Kar

man (l937)~ Possibly the most faithful is that proposed by 

Von Karman since, of all such representations available, the 

Von Karman model is in closest correspondence with the. observed 

behaviour of turbulence. The power spectral density (p.s.d) 

associated with the Von Karman model, for vertical gust velo

city, Wg (which was the only component of the gust 

required for this research), is given aSI 

... (2.58) 

The Von Karman model cannot easily be programmed for 

simulation in real time because of the non-integer exponent in 

(2.58). A suitable alternative, the Dryden model (Chalk et al 

(l969»provides a p.s.d which closely matches that of the Von 

Karman model. Some small differences occur at the higher fre

quencies. but this is generally of small consequence in AFCS 

design. The Dryden p.s.d iSI 
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It is easily shown. (Tr.uxal (1955». thatl 

••• (2.60) 

Thus. the transfer function of the Dryden ·filter may be 

obtained, vi z ••. 

G ~w ~ ( 1 + /J it s ). 
wg(s) = ( 1 + 

1" 0--2 ••• (2.61) g Uo ~s ) 
-c; Uo I 

In figure 2.3 is shown the appropriate block diagram 

representation for the Dryderi filter. The filter is excited 

, by zero mean. white noise."l. and·its output is the vertical· 

gust velocity. 

(1 + IJ iJ:t s ) wp':(s) 
(1 + ~ s )2 

o 

Figure 2.3 Block Diagram Representation of Dryden Filter 

The transfer function (2.61) may be easily expressed 

in sta~e variable form. Letl 

~ W· g ••• (2.62) 

••• (2.63)* 

* This definition of x41 was employed in order to avoid 
termsin1(t) from the final expressions. 
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It can be shown, (see Appendix II) , that I 

• 
x41 = 
• 
x42 

For the c-5A, 

Uo 
ut 3 

0 + ~ .(l-2fj) -2-- - L~ x41 Lyt L , 

w~ 1 0 x42 (f~ _-2. 
Lw 

the following parameters applied I 

L ;" 576Ih w 

l(t) 
•• (2.64) 

Uo = 14)m/s ••• (2.65) 

The standard deviation of, the,vertical gust v

3

elOCitY, ~Wg' 

was chosen to b 0.)048m ,so ~ ~ Cc, 7 ' TG....--c -.-. J 
Using (2.65), • . ecomesl' , t4... ~ . 

+ [-0.09))"1 
0.26) 

... {2.66) 

It should be noted that (2.64) is of the form of (2.4), 

where I 

, 
••• (2.67) ~g = 

[X41] 
Xl} 2 

D = _2Uo _U2 
... (2. 68) 0 

Lw 12 w 

1 0 

= •• , (2.69) 
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2.4.6 The Wagner Dynamics (x43 - xZ9 ) 

The Wagner function, W(c), (Wagner (1925», represents 

. the growth in lift on any of the lifting surfaces such as the 

wing, the tailor any of .the control surfaces due to a step 

change in their angle of attack. The circulatory lift due to 

this motion is given as (Bisplinghoff (1955' » 1 

L(c) = •• (2.70) 

where ~o is the trim angle of attack and W(c) is the Wagner 

function. As with the Klissner function, the form ofW(c) is 

such that it cannot be 'expressed in simple algebraic 

terms and often. approximations have to be made. One such 

approximation suggested by Fung (1955), for an aerofoil section 

of high aspect ratio (AR>6), iSI 

where c is defined in (2.33). The associated transfer function 

of (2.71), in the case of the wing, iSI 

WW(s) = 0.165 + 0.335 
(s+1.0)(s + 6.594) 

and, in the case of the tail, iSI 

Wr (s) = 0.165 
(s+2.024) 

+ O. 33 5 
(s + 1).32) 

•• (2.72) 

.. (2.73) 

The error made by Harvey and Pope concerning the evaluation 

of (2.38), (where the chord was used instead of the semichord), 

was again carried through in the determination of the Wagner 

function. Although this error was noted, the Harvey and Pope 



representation was followed to permit comparison with pre

vious results obtained. In Harvey and Pope the transfer 

functions (2.72) and (2' •. 73) were taken aSI 

Taill 

WW(s) = s + 10.4~ 
. s + 10.99 

WT(s) =s'+21.732 
.. s +22.237 

•• (2.74) 

.. (2.75) 

The Wagner dynamics are not incorporated into the air

craft dynamics in a straight-fonvard manner. Not only are 

contributions to the growth of lift on the flying surfaces 
f,-. 

made from the rigid body motion. but also~each of the fifteen 
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bending modes represented. In table 2.3. are shown those state 

variables in the mOdel. ARNE. representing the Wagner dynamics. 

Wwing x43 

• 
q/n 

2 wing x44 

~wing 
• 

-).15 wing x45 - x59 

• x60 Wtail 

• 
q/n

2tail x61 

. ~ail - ),15 tail x62-x?6 
• 
6A wing x77 
• 
0E tail x78 

0E tail x
79 

Table 2.3: State Variables of ARNE associated 
with Wagner Dynamics. 
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The subscript, (wing), is used to indicate the Wagner dynamics 

associated with that variable having an effect on the wing 

and the subscript, (tail), indicates the corresponding- effect 

on the tail. 

Inspection of (2.74) and (2.75) indicates that the trans

fer functions associated ~ith the representation of "the Wagner 

dynamics are approximately unity. From the Bode diagram re

presentations of (2.74) and (2.75~ presented in Figure 2.4, 

it is clear that their contribution to the dynamic behaviour 

of the aircraft is unlikely to be of ar.y siGnificance. Con-

sequently. it was decided to use a lower order :n0d.el not in-

corporating the Wagner dynamics and this is further discussed 
in Section 2.5. 

2.4.7 Output Variables. 

Since levels of bending and torsional momen~s experienced 

in the wing of the aircraft were of particular significance 

for the research study, it was necessary to derive suitable 

expressions from which these moments could be evaluated. Five 

wing stations were chosen for the subject aircrafta wing 

station 1 (w.s.l) was at the wing root, w.s.] was at the mid-

span and w.s.5 was at the wing tip; w.s.2 was equidistant be-

tween w.s.l and w.s.],and,w.s.4 was equidistant between w.s.] 

and w.s.5. 

_ The bending moment (Yk) at wing station (k) is given asa 

Yk = -EI d2~1!. I y:;o dy2 .. (2.76) 
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where. (El). is the flexural rigidity term and.~~. is the gen

eralised displacement at w.s(k).l1~. according to normal mode 

theory. is given aSI 

-r~ = •• (2.77» 

where. A,"'-represents the displacements associated with the 

bending modes. (i = 3; •• 18 in the case of ARNEj. Also • 

.. (2.78) 

+ 

... (2.79) 

By sUbstituting. (2.79). into (2.70). the general ex-;: 

pression for the bending moment at any wing station. (k). is 

obtained. viz •• 

•• (2.80) 

By differentiating Yk,(2.80) with respect to time. it 

is possible to de.termine the expression for the bending rate 

associated with wing station.k. Also included in the output 

description were expressions for the torsional moments together 

with their associated rates of change. at the five wing stations. 

In the case of the mathematical model. ARNE, the displacement 



and rates of change of displacement associated with the first 

fifteen bending modes were also included in the output vector 

as well as the motion variables of the rigid body'and both 
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the deflections and rates of change 'of deflection of the con

trol surfaces commanded. Thus the output vector, y, (EqUation 

(2.11». of ARNE. had dimension. 56. 
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2.5. Reduced Order Models. 

.-
The other models used. viz •• BACH. CLEMENTI. FAURE. 

GERSHWIN and HANDEL were all derived from the model.ARNE. 

In Table 2.4. is shovm a comparison of the dimensions of the 

models considered. 
. 

MODEL VECTOR DIMENSIONS 
-

state control output 
n m p 

ARNE 79 2 56 
BACH 42 2 56 
CLEMENT I 24 2 )8 

" 17 )8 FAURE 2 
GERSHWIN 14 .2 )8 
HANDEL 5 2 )8 

Table 2.~.IDimensions of Mathematical Models Use~ 

The mOdel. ARNE. proved t6 be too difficult for computation. 

although1it represented the most complete model by containing 

equations relating to both structural flexibility effects and 

unsteady aerodynamics. 

The model. BACH. was represented by '.the same equations 

as the model. ARNE. but omitting the equations representing 

the Wagner dynamics. Its output vector was identical to that 

defined for ARNE. The reason for neglecting the Wagner 

dynamics was that the lift growth dynamic's were being repre

sented by the approximate transfer functions given as (2.74) 

and (2.75) and these were nearly unity. 

The· model. CLEMENT I • included in its description only tre ' 
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first six structural bending modes but was otherwise identical 

to BACH. Quite early in the research program, it was found 

from the associated digital simulation studies that the res

ponses obtained from BACH, did not differ significantly from 

those obtained when the nine upper bending modes were omitted 

Consequently. most of the research effort was directed to 

CLEMENTI. 

The model FAURE included equations representing the same 

dynamics as the model CLEMENTI, but it excluded both the vert

ical gust and the Kussner dynamics. The model G~RSHWIN, how

ever reintroduced both the gust and the Kussner dynamics, 

but included in its description only the first 'bending mode 

and its rate, the higher bending modes being neglected. This 

model was used principally to test the hypothesis that much 

of the bending energy ( 60% or more)is·contained in the first 

bending mode (Schwanz (1972». 

The model. HANDEL. only contained in its description. 

the rigid body motion variables and the variables associated 

with the actuator dynamics • 

• 



CHAPTER jl THEORY FOR THE DESIGN OF A SLACS 

In this chapter. the major theoretical aspects re

lating to the design of a fee~back controller to provide, 

for the subject aircraft,a certain amount of structural load 

alleviation are presented. 

The analysis of the math.ematical models described in 

Chapter 2 indicated that it was desired to use two of the 

control surfaces of the subject aircraft to affect up to 

56 output variables. Such a control problem may not easily 

be solved by conventional methods. which are in the main 

more suitable to single-input, single-output systems, or "even 

mUlti-input single-output systems. Such methods depend 
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upon interpretation of time responses in order to determine 

settling time. time-to-peak overshoot. frequency of 

oscillation. time-of-half amplitude. and so on; inevitably 

the design procedure is slow and needless to say expensive 

since for the size of mathematical models studied. digital 

computation has to be employed*. 

* Analogll/computation would require an extremely large amount 
of integrators to be employed; for CLEMENTI at least 24 
integrators would be required in addition to a SUbstantial 
amount of summing amplifiers and potentiometers.The analogue 
computer available to the author. a TR-48)did not have the 
capacity for handling models of such complexity. However. 
the model HANDEL was patched on the TR 48 in relation to 

work to be reported in Chapter 7. 



, 
Optimal control methods are particularly suitable for 

designing automatic flight control systems to provide ACT* 

functions like Structural Load Alleviation. By such methods, 

it is possible to specify a desired performance which may be 

met exactly. When a particular performance criterion is 

employed subject to the constraints imposed by the chosen 

state equation formulation, the resulting design is unique. 

46 

The control problem is most adequately represented as a regula

tor problem. A regulator is designed to keep a system within 

an acceptable deviation .from a.reference condition using 

acceptable amounts of control (Bryson and Ho (1969». For 

dynamic systems,adequately represented by linear models, it is 

relatively easy to determine very satisfactory feedback control

lers. However, a particular disadvantage of synthesising any 

feedback laws obtained as solutions of the optimal regulator 

problem is that full state feedback is required. In the research 

discussed here, tests were often made on the aircraft employing 

reduced state feedback. It was found that there was a limit to 

the number of variables which could be eliminated in the feed-

back loop and this limit is dictated by controllability and 

stabilisability criteria. These criteria are discussed in a 

subsequent section with particular reference to the models 

used. 

* There are other active control technology (ACT) functions 
such as Fatigue Reduction, Flutter Mode Control, Ride Control 

and Augmented Stability. 



).2 OPTIMAL CONTROL. 

The basic principles presented in this section are 

due in great measure to Pontryagin (1962). 

).2.1. General Problem Formulation 

It is usual practice to employ as a measure of 

the quality of performance of an optimal system, an integral 

of the form 
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T 
J'= JtuL(~'!J,t)dt * •• • ().l) 

subject to the constraint, • 
... ().2) 

where XE.Rn , 'd€Rm and t is the independent variable,time. 

The scalar, J, is referred to as the performance index (p.i. ) 

of the system; the functional L(~,~,t) can be considered to 

, be the cost of being at some specific point in the state 

space of the problem, with a particular value of control,at 

some particular time (Fuller (1959». The problem is to find 

a control. yo·, which. minimises+ the p.i over the interval 
. 

to to T. A form of the p.i which is convenient to use in 

flight control work is I 

J = if(KQ<> + yGy)dt 
o 

... ().) 
By taking the limits of the integral over the semi-infinite 

*Here the problem is assumed to be purely deterministic 
See ).).1.2 

+In some cases the maximum of the p.l. ~s found in which 
_ case the sign of the integrand is'simply the opposite to 

that used in ().l). 



interval, it turns out that the parameters of the resulting 

control law are constant. The t is used simply for analytical 
. . 

48 

convenience. The properties of the weighting matrices Q and G 

will be discussed in Section ).2.1.1. When the system is des

cribed by a linear vector differential equation of the form I 

~ =A~ + B.!! ••• (J.4) 

and the associated performance index to be minimised is of the 

form of ().), the problem is referred to as the Linear 

Quadratic Problem (LQP). It has been shown (Kalman (1960), 

that the optimal control which minimises ().) is 

• • • 

where K is the positive definite solution of the algebraic 

matrix Riccati equation given as ().6), viz., 

KA + A'K KBG- 1B'K + Q = 0 •• ().6) 

).2.1.1. Solution of the LQP 

For a system described by the linear vector dif

ferential equation ().4) with performance index given as ().), 

the procedure for determining the optimal control is quite 

straightforward, and, for small problems, computing requirements 

are not excessive. 

The associated Hamiltonian (H) of the system (Athans 

and Falb (1966 » is expressed aSI 
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u'Gu) • •• 

where ~ is the co-state vector of dimension, n, and, 

• 
~ ••• (J.8) 

Therefore, 

= IP = 
and 

.... ().lO) 

For H to be minimised with respect to~, (hence J), thenl 

2lH ;;: 0 · ..•• ().ll) 
Cl!! 

• yO = _G-1B~ " ••• ().12) • • 

For G- l to exist, the weighting matrix G must be positive 

definite (p.d). 

For" ().lO) and hence (J.12) to be true, (Le; for the 

system to be at least locally optimal), the associated . 
Jacobian matrix must be p.d., viz., 

> o ••. ().l) 

(3.9) and (J.10) are differentiated appropriately to form 

the elements of the Jacobian matrix of ().l) Le., 

> . 0 • ••• (J .14) 



To ensure that the Jacobian matrix is p.d., it is essential 

that Q be made at least non-negative definite (n.n.d), (since 

G is positive definite). 

substituting for ~ in (J.4) using (J.12) yields 

. -1 , 
x = A~ - BG B ~ .. , (J.15) 

Combining (J.15) and (J.9), giveSI 

... (J.16) 

Since the problem must satisfy the transversality conditions 

i.e. ~~) = 0; ~(~) = O,~ is related to ~ by (J.17), viz., 

~ = Kx ... (J.17) 

50 

where K is the p.d. solution of the algebraic Riccati equation 

().6). Substituting ().17) into lJ~12) yields ().5). Also, 

it can be shown that the minimum value of J is given as 

J = h'(O)K~(O) • •• (J.18 ) 

where ~(O) is the initial state vector. 

). ,;.1. 2. The Linear Quadratic Gaussian (LQG) Problem 

Explicit account may be taken of the effects of atmos

pheric turbulence and measurement noise by determining the feed

back controller as a solution of the Linear Quadratic Gaussian 

(LQG) problem. 

For the completely controllable and observable*, linear, 

time-invariant sy!?tem described bYI 
• Ax + Bu + G"l (J.19) x = • • • 
Y..* = C*~ + & • • • ().20) 

* Complete controllability and observability are properties of 
the system normally required for obtaining a linear feedback 
law. These properti~s are normally required. regardless of 
whether the oro blem 1'" T,c)P nl" T.or. _ ("'>e> <.:",..+,,..~ ., '> 10 \ . 



where both"l and e are Gaussian. white. zero mean, mutually 

independent, stationary noise signals. i.e., 

cov t'Z(t); -Z('C)] = 86(t-r); 
.-. ~. 

.::..=.::..'""0 

cov [e(t); E.( -r)] = ®6{t- t:); <ID =®'iy 0 
. 

• •• 

• •• 

().21) 

(J. 22) 

and ~* is an output vector comprising elements which have a 

linear relationship with the elements of the state vector; 

51 

the LQG problem is to find y{t). for all t. such that the cost 

functional. 

= • •• (J.2) 

is minimised. where the weighting matrices Qo and Go are such 

that*. 

= 
= 

Q '~O 
o '" 

G '> 0 . 0 

, . . 
, , , 

().24 ) 

(J.25) 

It can be shown. (Athans (1971», that the optimal control is 

given bYI 

= Fx • • • (J. 26) 

where Ko is the solution of an algebraic Riccati equation. viz •• 

KoA + A'Ko - K BG- 1B'K + Q = 0 o 0 0 0 
... (J.27) 

It is seen that the control law ().26) will be the same as 

that obtained for the LQP (see Equation ).5), provided that. the 

associated weighting matrices are chosen to be the same. How

ever. in this case it is assumed that the state vector x. which 
/avaIlable 

"from ().19) can be seen to be affected by 1, is notLfor feed-

* The matrices Q and G are usually assumed to be diagonal. 
Since weightin~ value~ are chosen empirically, such an 
assumption facilitates the assessment of each particular 
choice of weighting values. " 
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back; rather. a Kalman-Bucy filter*driven by the output. 
C.Y-

'l.*, and the control. la, j&;. used to form an estimate, g, on-

line and this estimate is then used to implement the feedback 

control. The expression for the Kalman-Bucy filter is 

.••• (J.28) 

where, 

••• (J.29) 

and where, K satisfies an algebraic Riccati equation 

associated with the filter. viz., 

RA + A'R: ... (J.JO) 
.. -If a filter can be designed so that the estimate, A' is 

always very close to the actual:. state, ~, tnen '(J.26) is the 
same as (J.31). viz, 

U
o = ... (J.Jl) 

substituting (3.27) into (J.28), yields 

~. =.[A + BF He] & + H~* ... (J.J2) 

In block diagram form, the controlled aircraft with Kalman-Bucy 

filter incorporated i$ .. as shown in figur., j .1"1; 

A Kalman filter is in practice difficult to synthe

sise b~ause of its dimensionality. However. if no account 

is to be taken of noise. a Luenberger observer of reduced 

dimension (which may also be regarded as a form of filter.) , 

may be used in place of the Kalman filter. The principal advan

tage of these filters is that they may be designed to be 

driven only by those signals which can be easily measured 

t The equations associated with such a filter have been derived 
by Kalman and Bucy (1961). 

'" The control. u, has been taken into account implicitly in 
(3.32) by means of (3.31). 
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... ... 
y* lJO 

B ~Z ic S(·) dt 
x C ... E . ... 

A -
r- -- -1-- .- --- --- - -I 

1 I X- f(' )dt ~ 
I 

F I H 
I 

J I 1 
I I I 
I 1 1 
I I A+BF-llC 1 I c-
I 

IMAL OPT I 1 
~ONTROLLER L KALMAN-BUCY FILTER I c. _________________ ~ 

Figure 3.1 g.o_l'ltrq.J';~ed._Aircraft with Kalman Fil1~L 
Incorporated. 
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,\ll!lnd will have as their output an estimate of the full state 

of the system. It is considered that since the optimal 

feedback control obtained will be the same whatever the 

approachJif full state feedback were to be employed and a 

Kalman filter ~not implemented, the worst that would be 

likely to occur is that some decrease in the performance 

cost will result.With strong feedback control, the perfor

mance degradation is not likely to be great. However, because 

it 1 - d f h ..t - - -was rea ~se rom t e o~set ~n th~s research invest~ga-

tion that it would not be possible practically to implement 



full state variable "feedback (FSVF) , two approaches to the 

problem have been considered, 

(a) use of reduced-order control 

and (b) use of observers: in particular. reduced-order 
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observers, to see whether it is possible to recoup 

some of the advantages of full state feedback 

control. 

The assessment of (a) and (b) are reported upon in 

detail in subsequent chapters. 
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).2.2 Specific Probtem Statement - 0Etimal OutEut Regulato~ 

Since the prima.ry aim of the research was to determine 

some means of alleviating the structural loads on the wing 

of the subject aircraft by the use of 'active control, it 

was decided to include those variables associated with bend

ing and torsional moments into the performance index (p. i,) 
t;.5 

Thus the problem was cast Qn an optimal output regulator and 

and the chosen performance index, J, was· 
co 

J = t t ('fQ;t + U'Gu) dt 

The Hamiltonian, H, is expressed aSI 

H = t(~'Q~ + lo!' Glo!) + !'tA~ + Bu) 

... ().))) 

= t[(C2£ + Elo!~;(C2£+~!:!)+!!'G!! ] +.t' (A~ + B!!) .. (J.)4) 

For H to be minimised w.r.t~, (hence J), thenl 

aH 
E'oQC~ (G + E"QE)!!o + 

, 
... (J.J5) 

Cl !a = + B~ = 0 

;' • !a
0 = - (G + E' , QE) -1 [ E;'QC ~+ B'.~] ... (J.)6) • • 

Also, 

~Ii A • 
C' QC~ + c'QE!:! + J(.'f! ... (J.)7) = -1f.J = 

00 

Substituting for !a in ().4) and ).)7) using ().)6), yields 

the canonical equation of the opti~al system, viz., 

or, 

[-~1 -[A-B(G+E,oQE)-lE"QC : -B(G+E'·QE)-lB'o. . 1 [~l 
r - :'C'[Q-QE(G+E'QE)-=lE' Q]c!-=-lo;-B(G+E"QE)-li'oQCI'] ¥:,J 

.... (J.J8) 

• 
2 = M~ 

where 

~ ~ [~1 ... (3.4 0 ) 

. "."." 



and M is the system matrix of (3.38) of order 2nX 2n. 

The optimal solution is obtained from the solution of 

(3.38) with the known boundary conditions ~(to) =0 and 

~( 00 ) = O. An explicit solution of (3.38) may be obtained 

in the form of two single-point boundary-val;xe problems 

using eigen-analysis. As in (3.17), ~ is found to be 

related to ~ by the equationl 

'P= 
.. (3.4') 

where K is the p.d. solution of an algebraic Riccati 

equation, viz., 

~ ... ... ,~ 
KA + A K 

and where, 

A <1= A -
A 

G ~~ G+ 
".. C' [Q Q = 

KBe-1B'j( + 

Ba·-lE'QC 

E'QE 

QEe-1E'Q]C 

A 

Q = 0 ... (J.42) 

... (3.43) 

... (3.44) 

••• ().45) 

).2.) Numerical Solution of the ~imal Control Laws 
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The time response associated with ().)8) may be 

defined in terms of the eigenvalues and the eigenvector 

components of the matrix M,viz •• (Marshall and Nicholson 

(1970»): If U is the modal matrix made up of columns of eigen-

. vectors and if A is a diagonal matrix made up of the 

elements;' )..1' ~. 'J" ...•.... ~n' 

*Assuming that the eigenvalues, At ' of the system are 
distinct. 



then, 

• • • (J .46) 
where, 

••• (3.47) 
Also, 

MU = UA ••• (3.48) 

M consists of convergent and divergent mode pairs 

with eigenvalues,equal in magnitude but opposite in sign. 

Partitioning ~ into two sets of 'eigenvalues, with 

Pf=[~l. i = 1,2, ••••••• n consisting of negative~ real 
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parts and Az = [Aj 1, j =" 1',2, •••••• n consisting of posi

tive real parts.~~imilarly partitioning (3.46) yieldsl 

o J [Vu 
eA,-t. V 21 

where, 
VU = I ... (3.50) 

From (J.49) 

!(t) - Uli eAi' [V nl!;( t 6 )rV 12 ~(to)] + u12e.il..![v 21! (to )+V 22le( to)J 

... ().51) 

The divergent modes corresponding to the unstable roots must 
/asYllltotic 

be eliminated in order to s,a ti sfy condi tions of [!lt~blli ty, vi z •. 

... {).52) 

or, using (3.50), 

!(to) <= U21 Uii ~(to ) ••• (3.53) 

... (3.54) 



Similarly from ().49). 

w(,t) I\. 1: -1 = U21e • U 1l~ 

= U21 Uii ~(t) ... (J.55) 

By substi~uting for ~in ().)6). using ().55), the 

required control law applying for all time. t. was obtained. 

The method outlined is by far the fastest* and was used in 

the program. OUTREG (Appendix IV). For inversion of the Ull 

·sub-matrix of the modal matrix. U. the method of Lanczos 
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(1957) was used. Although simple to program. the method of 

Lanczos required that the real and imaginary n x n matrices 

associated with Ull to be used to form a 2n x 2n matrix for 

inversion. The approach did pose some computational difficulty 

when the program OUTREG was run .for the model. BACH. Conse-. 

quently it was decided to break the program into a two-pass 

one and these programs were then run on a CDC 7600 computer 

at the Regional Computing Centre of the University of Manchester 

All the computations of the feedback law associated with the low 

order models were completed on an ICL 1904S computer and sub

sequently a PRIME 400 at Loughborough University of Technology • 

. . As regards the choice of suitable weights for the matrices 
/ in the 

Q and G. (which· were chosen to be diagonal)iperformance index 

().))), no specific technique other than a method of trial and 

error was employed. A number of methods to assist in the 

* Golubet al (1979) have published an algorithm which is re
puted to be faster ()0%-70% is claimed by the authors); 
however. the.approach still requires eigenvector methods 
(involving the Schur vector).and transfor~ation techniques. 
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choice of Q and G have been proposed (Bryson and Ho (1969 ) 

Harvey and Stein (1979». The method proposed by Bryson and 

Ho suggests that the matrices Q and G be diagonal. Each 
.s 

diagonal element of Q and G ~ determined from the expressions: 

q. 
1 = n~ [x> ] ... (3.56) 

max 

= -1[_1 ] 
mt 2 u. 

... (J.57) 

. Jmax 

where. 
n is the dimension of the state vector 
m is the dimension of the control vector 

'C is the interval over which the time response is 
to be obtained 

x. is the maximum possible value attained by 
lmax the ith state variable 

u. is the maximum possible value attained by 
Jmax the jth control vector. 

\~~o.i. . 
The method allows staltD'g values of q. and g. to be 

1 J 

easily determined and is helpful in situations where par-

ticular difficulty is experienced in selecting a set of 

weighting values. However. in the research study. it was 

found that weighting values selected in this way did not have 

any special relationship with the performance of any feedback 

law derived. In addition. the method proposed by Harvey and 

Stein was not considered since it appears that a restriction 

must be placed on the dimension of the output vector to that 

of the control vector. It was found that in all cases studied. 

empirical selection of the weighting values for the Q and G 

matrices proved to be adequate. 



3.2.4 Controllability and Stabi1isabi1ity Requirements. 

Often in this research, the closed-loop behaviour of the 

aircraft was assessed using reduced order feedback control. 

The concepts of complete state controllability and stabi1-

isabi1ity of the aircraft were found to be important con

siderations whenever a new feedback law was to be evaluated 

and tested. 
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It was shown by Larson and Dress1er, (1968), that complete 

state controllability is only a sufficient but not a necessary 

cond1tion for closed-loop system stability. If the original 

state description of the aircraft was itself stable, then 

this alone was a. necessary and sufficient con~ition for ob

taining a feedback law which would guarantee the stability of 

. the closed-loop system. In, a number of cases in this study" 

it was found that some of the mathematical models of the air

craft which were used, were not completely state controllable. 

This fact then required that additional tests be made to de

terminewheiher the aircraft was at least stabi1isab1e. The 

dynamic stability of the uncontrolled aircraft is most easily 

checked by observing the signs of the eigenva1ues of the co

efficient matrix of the state equation, i.e. matrix A of, 

•• <3.4) 

The concept of complete controllability is due mainly 

to Ka1man (1960),' By. complete controllability is meant, 

that property of a system which will allow the system to be 

transferred from any given state to another state in a 



finite time. ().4) is completely controllable if the con-

trollability matrix,' X, given aSI 

2 n-l ) X = (B, AB, A B •••• A B ;.(J.53) 

spans the n~dimensional space, i.e. 

ran1c (X) = n 

A simple check for controllability may be achieved by 

means of a state transformation (De Russo et al (1966», 

of ().4) into a canonical form. The most convenient trans

formation is the matrix of eigenvectoD coktmns of A. Thus 

using the transformation I 

T~. = ~ .. ().60) 

(3.4) is then written in the form I 
" 

.. (3.61) 

Provided that the eigenvalues of A are distinct, (T- 1AT) is 

a diagonal matrix. Thus (3.61) represents a decoupled form 

of ().4). It can be easily shown that for ().4) to be com

pletely controllable, the row~of (T- 1B) of ().61) must all 

contain non-zero elements.. This check was used in :the com-

futer program CONOBS (see Appendix IV). 
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).) A SCHEf,lE TO EVALUATE THE MODEL'S PERFORMANCE 
IN SIf;1ULA TED AT1.10SPHERI C TURBULENCE 

In this section. a method for assessing a particular 
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SLACS scheme when the aircraft is subjected to atmospheric 

turbulence. is outlined. In particular. a method for evaluating 

the r.m.s.values of bending and torsional moments experienced 

at each wing station of the aircraft. for light turbulence* is 

described. The method is due to Swaim et al (1971), and is 

presented below. 

The state equation given as ().19) is repeated here for 

convenience, i.e •• 

... ().19) 

A linear control law may be derived by the method 

outlined in section ).2.) and given as (3.26). i.e •• 

••• (J. 26) 

Substituting for.!! in (3.19) using' ().26). the equation 

representing the controlled aircraft results, viz •• 

:ic = (A+BF)~ + G"I ... ().62) 

or. 
Se = AX + G"l ••• (J.6)) 

where. 

* 

'" ~ (A+BF) A ... ().64) 

To allow. comparison with dynamic response tests. described 
in Section 4.1. a vertical gust having an r.m.s. intensity 
of about 1. Om/s. "was assumed throughout the research. This 
was considered adequate for the purposes of tests since only 
percentage reductions in bending and torsional loads were of 
interest. . 



The output equation given as (2.9). iSI. 

y.. = C)S. + E~ • •• (3.65) 

Again substituting for ~in (3.65) using (3.26). yieldsl 

y.. = (C+EF)! ... (3.66) 

or. 
A 

y.. = C,!S. ... (3.67) 

where. 
c ~ (C+EF) ... (3.68) 

The mean squared value of~ y.. which is the expected value of 

y'
2 • iSI 

• • • (3.69 ) 

or .. 

• •• 

where. ~(.) is the expectation operator. ~[!.'!s"J is the 

covariance matrix and can be obta~ned in the following waYI 

Post-multiplying (3.63) by !S.' and taking the expected value. 

yieldsl 

... (3.71) 

Transposing (J. 63) thrciugho·ut. pre -mul tiplying by. ,!S.. and 

then taking the expected value. yieldsl 

• •• 

For a linear system of state vector • .e.. driven by zero mean. 

unit Gaussian white noise. the correlation between e. and "l 

is. (Swaim et al (1977). Bryson and Ho (1969 ))1 

63 
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... (J.73) 

Substituting (3.73) into (3.71) and (3.72) and adding the 

resulting equation yieldsl 

... (J.74) 

For the co~ariance matrix ~[J>.. :Kt] to be time-varying requires 

that the statistical properties of the state vector, ~, vary 

with time. But since the noise source is, 1 ,.(white noise) and 

of zero m.ean, then I 

... (3.75) 

Thus, (3.74) becomesl 

= 0 • •• (3.76) 

By solving for the covariance matrix in (3.76), and then 

sUbstituting the result into (J.70), the r·.m.s. values of the 

variables which constitute the' output vector, ~, was obtained. 

(3.76), is of 'the form, 

AX + XA' A = -Q 

where. 

Q ~ GG' 

Let, 

Substi tuting for A in (J.77) using (3.80), yields I 

... (3.77) 

• • • 

• •• 

(3.78 ) 

(J. 79) 

... (3.80) 



-~ XA = ~ 

-Q ••• (J. 81) 

().81) is in the form of a Lyap~ov equation an«:a degenerate 

case of an algebraic matrix Riccati equation. The equation 

may be solved using the method of Golub et al (1979), or of 

Marshall and Nich~lson (1970). The latter method is simple 

to program and was used in the computer program COVRNC 

(Appendix IV). The results of the tests carried out are presen

ted in section 4.~. 
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CHAPTER 41 ASSESSMENT OF VARIOUS SLACS SCHEI.lES. 

4.1. Introduction. 

The computer programs OUTREG and RESPON (Appendix IV) 

were used extensively in order to carry out tests on the 

mathematical models discussed in Chapter 2. The control laws 

obtained using OUTREG were tested using both simulated deter

ministic and simulated turbulcn'tl'-situations. In this research 

study. a number of artificial test situations were used for 

assessing and comparing various SLACS schemes. Table 4.1 

shows the test situations employed for the deterministic cases 

studied, while in Table4.2 are shown those test situations em-

ployed for simulation in atmospheric turbulence. For the sim

ulation of vertical gust, which was the only component of the 

gust required in the tests, a Dryden filter was used with zero 

mean white noise as its input. The simulated gust signal which 

was the output of the Dryden filter also had the property of 

zero mean and was of an intensity which depended upon the am

plitude of the noise input.* Test cases D and E allowed a 

qualitative assessment to be made of a number of SLACS schemes. 

A quantitative assessment was also made using the computer pro

gram 'COVRNC, (Appendix IV) to evaluate the r.m.s bending and 

torsional levels achieved in the wing of the subject aircraft. 

These results are discussed in Section 4.6. 

* The amplitude of the noise input was adjusted until. the 
evaluated r.m.s intensity of the gust field was 
approximately 1.0m/5. 
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CASE .SITUATION 

Initial State Commanded Control Surface 
Deflection (~",·n 

Aileron 6A c Inboard Elevator 6E. 
l.c 

A w==1:=40=m.is-U1 .~ 0..0. 0..0. 
All other 
states set 
to zero. 

B All states set 0..0.25 0..0. 
to zero. 

C All states set 0..0.1 0..0.1 
to zero. 

Table 4.1 I Test situations employed for deterministjc case. 

CASE SITUATION 

Initial state Forcing Terms* Standard Deviatio 
of vertical Gust 

.' . ;' Velocity 
w (m/s) 
~ 

D All states set None / .1.0.+ '\ to zero 
.2...8\ ·s ) 

E . w '" -'{.;::105=1nk- None 1.0. 
All other \ states set to t-.. zero. ~ h.. ... .'\ 1 b 

""" 71 

Table 4.2 I Test Situations emploved for atmosDheri~turbulence. 

777 
I I 

* No commanded control surface deflections were used. 
+ These values correspond to·,light turbulence. 
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4.2 Derivation of Optimal Control ~~~. 

The model, ARNE, proved too large to be handled by any 

computer available to the author, even when the computer pro

gram, OUTREG, (Appendix 1V) was broken into a two-pass one. 

The main difficulty always arose when it was necessary to 

invert the n/xn matrix partition of eigenvector columns (which 

often had complex elements) of the modal matrix associated 
, 

with the optimal canonical matrix (see Eqn 3.49). Complex 

inversion by the method of Lanczos· (1957), was used which in
volved the formation and inversion of a 2n x 2n matrix. This 
matrix in the case of ARNE was of dimension 158 x 158. 

Feedback laws associated with the model BACH were found 

by using the 'two-pass' version of the OUTREG program on a 

CDC 7600 computer at the University of Manchester Regional 

Computer Centre (UMRCC). For the lower order models, no fur-

ther difficulty was experienced and it was possible to make 

all the required runs on an ICL 1904S computer at Loughborough 

University of Technology Computer Centre (LUTCC). It is pos

sible that the recent report by Laub (1979) using the 9hur . 

method for solving the A.RE may remove most of the numerical 

difficulties previously experienced. 

4.2.1 Selection of Weighting Matrices~ 

A number of trial runs of the program,OUTREG, were made 

for the model CLEMENTI in order to establish a suitable weight

ing scheme for the output vector weighting matrix, Q, and the 
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control vector weighting matrix. G. Although a number of 

methods are available to assist in the choice of Q and G 

(Bryson and Ho (1969); Harvey and Stein (1979)). none of these 

methods could be relied upon to give adequate results. A 

typical set of weighting values found to be suitable for the 

model BACH. is given as (4.1) and (4.2). viz. , 

Q = diag. 10-4 10-4 10-4 10-4 10-4 10-4 10-4 10-4 10-4 10-4 

10- 5 10- 5 10- 5 10-5 10- 5 10- 5 10-5 10-5 10-5 10- 5 

.1 • 1 . 1 .1 • 1 .1 .1 .1 .1 .1 (4.1 ) 

. 1 .1 .1 .1 • 1 .1 .1 • 1 .1 • 1 

. 1 .1 .1 ' .1 • 1 • 1 .1 • 1 .1 .1 
'1 1 10 10 10 .5 

G = diag. ( .01 .01) ••• , (4.2) 

The resulting optimal control gain matrix. F. (Equation (3.26)). 
was determined to bel 

F = -3.07E-2 -6.582E-2 5.178E-2 
-6.111E-2; 1.867E-1 2.007E-2 

8.248E-3 -3.506E-2 2.855E-3 
9.101E-2 9.646E-l -1.J17E+0 

-6.218E-l -2.142E-l -1.252E-3 
-1.974E+0 -4.484E+0 -2.987E+1 
-1.874E-l 7.729E-2 1.579E-2 

-7.001E-2 4.250E-2 7.52JE-2 
-1.82JE-l 2.2J9E-l J.2J9E-2 

1.460E-l 8.010E~2 -4.846E-1 
-8.617E-l J.152E-l ~4.JOOE+0 
-2.459E+l -2.604E+l 1.055E+1 
- 4. 6J7E+ 1 - J. 957E+ 1 -1. 084E+ 2 
-9.764E-l -1.244E+0 -5.769E-J 

5.0J5E-3 
-1.948E-3 

4.161E-3 
":J.26JE-2 
1.960E-l 

-1.J70E+ 1 
-1.604E-l, 

2.21JE-2 
6.729E-l 

-8.017E-l 
J.J~70E+0 
1. 053E+l 

-3.907E+2 
-1.895E-l 

, 

1.472E-l -9.786E-2 
3.370E-2 1.46JE-J 

-1.172E+0 -1.898E-l 
7.996E-l 8.725E-l 

-2.316E-l -5.58SE-l 
-1.827E+O 2.672E-2 
-2.857E-3 -1.949E-l 

5.77JE-2 
2.790E-l 

-5.637E+O 
-6.046E+O 

1. 54JE+ 1 
-2.909E+l 

2.971E-l 

• • • 

J.019E-l 
1.022E-l 
9.S64E-l 

-1. 270E+ 1 
-2. 849E+ 1 

1.799E-l 
6.700E-l 

(4.3) 



Since the model CLEMENT I had an output vector similar to 

that of BACH exc~pton1y that the upper nine bending mode 

variables were omitted, the weighting scheme adopted for 

CLEMENT I was similar to that given as (4.1) and (4.2). Thus 

for CLEMENTII 
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Q = diag 10-4 , 10-4 , 10-4 , 10-4 , 10-4 , 10-4 , 10-4 ,10-4 ,10-4 ,10-' 
10-5 , 10- 5 , 1_-5 , 10- 5 , 10-5, 10-5 , 10-5 ,10- 5 ,10- 5 ,10-

.1 .1 .1 • 1 .1 .1 .1 .1 .1 .1 

1, . 1, 10, 10, 10, .5 

•• (4.4) 

G = diag {.Ol, .at} • • • 

The resulting optimal control was determined to bel 

u°-:-= -.015 -.0066 .026 .021 .141 -.196 -.019 .12 .019 -.078 
.005 .714 -1.079 3.724 -19.434 -12.846 -2.904 .022 -.1 
-.063 .003 -.032 .0072 -.032 

. -.037 .158 -.434 .109 1.289 -.877 -.512 1.312 -.473 
.202 .306 -3.864 .425 .602 -97.373 -378.7 -67.869 .347 
.058 -1.789 -.0011 .114 .239 .162 

.. (4.6) 
, 

.1 
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The effectiveness of control laws such as (4.6) were carried 

out initially by .inspection of the eigenvalues of the closed loop 

system and then by making appropriate response checks under 

the test conditions specified in Tables 4.1 and 4.2. If it was 

found that a particular control law derived did not produce a 
-

desired effect on the controlled aircraft then the appropriate 

elements of the weighting matrices Q and ~ were made heavier _ 

(or 'lighter' , as the case may b~ and the program. OUTREG re-

run to produce a new law. 
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4.). Eigenvalue Anal~sis. 

Eigenvalue analysis. was carried out primarily to determine 

the extent to which damping of the structural bending modes had 

been augmented by the use of a particular SLAGS scheme. The 

assessment was made by comparing with the eigenvalues of the 

controlled aircraft. 

From Table 4.) .. it may be seen that. for the uncontrolled 

aircraft. all bending modes were only very lightly damped 

where in every case.?'O.l. Also. it should be noted that the 

frequency of the short period mode was only separated from the 

frequency of the first bending mode by a factor of four. For 

the 'controlled aircraft however. this frequency separation has 

been increased by a factor of .eight.Such frequency separation 

has the desirable effect of reducj,ng the possibil.ity of frequency 

coupling between the rigid body motion and any of the flexural 

modes. With close coupling at these frequencies. it may not 

be possible to generate sufficient controlling action to reduce 

the amplitude of the attending motion. 

It can also be seen that the short period frequency of the 

rigid body motion has been slightly reduced in the case of 

the controlled aircraft although the damping ratio has re~ 

mained unchanged. Thus. there has been little change to the 

handling qualities of the basic uncontrolled aircraft. 

For the controlled aircraft. the damping ratios of bending 

modes 1,).5 and 6 were increased as were the frequencies of 



UNCONTROLLED AIRCRAFT CONTROLLED AIRCRAFT 

Short'Period Mode -.877 + j 1.27 -.73 + j 1.07 

Bending Mode 1 -.51 + j 5.46 - 3.93 + j 8.49 

" " 2 -.23 + j 11.12 -.23 + j 11.15 

" " 3 -.58 + j 13.79 -2.1 + j 15.1 

" " 4 -.6 + j 15·59 -.36 + j 17.62 

" " 5 - .43 + j 17.48 -2.25 + j 18.94 

" " 6 -.62 + j 18.78 -35.43 + j 23.99 

Inboard Elevator Servo -7.5 -2869.0 

Outboard Elevator Servo -7·5 -7.5 

Aileron Servo -6.0 -6.68 

KUssner Dynamics -0.2 -0.2 

" " -0.3 -0.3 

" " -8.55 -8.55 

" .. -10.98 -10.98 
.. .. -22.19 -2,2.19 

" .. -5.1 + j 3.6 -5.1 + j 3.6 
• 

Table l~. 3 I EIGENVALUES OF MODEL CLEMEN'rI WPrHOUT AND WITH 
;FEEDBACK CONTRO~. 

.. 

-
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modes 1.1.4.5 and 6. The damping ratio of mode 4 was halved 

from 0.04 to 0.02. However the frequencies associated with all 

bending modes are rela~ively well spaced. It should also be 

noticed that the dynamic characteristics associated with mode 2 

h~remained unc~anged by the use of feedback control. It was 

pointed out by Harvey and Pope (1977). that mode 2 was uncon

trollable and this gave cause for some concern in the research 

study. Also. it may be seen from Table 4.J. that the KUssner 

dynamics also have remained unaffected under the action of 

feedback control. A check for state controllability using the 

program CONOBS (Appendix IV). showed that mode 2 was controllable 

although those states associated with the KUssner dynamics and 

th~ servo-actuator dynamics connected with the outboard sec"ions 

of the elevator were not controllable. 'l'hese phenomena are 

discussed further in Section 4.4-.3", under the heading of con

trollability and stabilisability. 



4.4. Responses. 

4.4.1 Response of the Uncontrolled .Aircraft to 

Deterministic Commands 

A number of evaluations wre first carried out on the 
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mathematical models of the uncontrolled aircraft. In Figure 

4.1a. is shown the response of one of the rigid body motion 

variables (vertical velocity, w) when the models BACH. and 

CLEMENT I were subjected to a case A test situation. It is 

seen that there is little significant difference between the 

responses of these two models.. There also appears to be little 

noticeable difference in the plots of wing-root bending moment 

(WRBM) as can be seen from Figure.4.1b. 

Figures 4.2 and 4.) show the corresponding responses for 

the case B and case C test situations respectively. All the 

responses indicate that there is little .. significant difference 

between the models BACH and CLEMENTI. However)in the case C 

test situation, although the transient responses are identical, 

it is seen that there is a small but finite steady-state error 

in the responses produced by the two models. Since this re

search was aimed at obtaining sUbstantial reductions in bending 

and torsional loads in the wing of the aircraft. it was con

sidered that these small steady-state differences would not 

greatly influence the accuracy of the end result. In the 

later stages of the research, a method was devised whereby the 

value of the steady-state bending and torsional moments could 

be easily evaluated provided that the magnitude of the command 

vector and the aircraft dynamics were known. The method used 
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is described in Section 4.4.)&. The results discussed above in-

dicated that the model CLEMENT I was sui table for all 

work connected with the design of a structural load alleviation 

control system for the subject aircraft and these results also 

suggested that most of the aeroelastic energy of concern is 

contained in the first six bending modes. 

4.4.1a. Forcing the Controlled Aircraft. 

The artificial test situations Band C given in Table 

4.1 were only used for forcing the uncontrolled aircraft. The 

chief reason for this is that when the same control surface 

demands were made on the controlled aircraft. the latter did 

not experience the same rigid body motion as the uncontralled 

aircraft I· in particular the steady-state levels of vertical 

velocity. w. and pitch rate. q. experienced in the uncontrolled 

and'controlled situations were different •. 

In order to validly compare the performance of the con

trolled with the uncontrolled aircraft. and to assess any SLACS 

scheme. a method of forcing the .controlled aircraft to the 

same state-state levels of rigid body motion. as experienced 

by the uncontrolled aircraft,was devised. 

The equation representing the uncontrolled aircraft iSI 
" ". 

!. = A~ + B!! •• (4.7) 

The optimal control law is. 

!!o = F~ 

y :.L I!, l cv'" C-'" re l L" IN G.M c(O • 

•• (4.8) 
• 

I 
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By substituting (4.8). into (4.7>., the equatio_n representing the COl 

trolled aircraft is obtained, viz., 

i· = (A+BF)!ic 
G 

.. (4.9) 

(4.9) was forced by adding to the .:.right hand side, an additional 

vector, ~, acting through a driving matrix, H, i.e • 

• (A -I- BF) .!ic + H~ !ic - • , (4.10) 

where, 

~ ~ [',a J 
%2 s.s. ..(4.11) 

11 Co 1 0 
"'- 1 0 

0 0 

• • 
• • , (4. i2) 
• • 
0 0 

Figure·4.4. shows a block diagra~ representation of the 

uncontrolled aircraft while in Figure 4.5 is shown the block 

diagram of the controlled aircraft with forcing vector, ~, 

included. Figure 46 shows plots of rigid body heave motion 

(i.e. vertical velocity, ~) for test situations A,B and C. 

Similar graphs were obtained for pitch rate,q and the steady

state values attained for the uncontrolled aircraft were used 

to form table 4.). These values then formed the elements of 

vector,~, (4.11) and were used to force the controlled air

craft. From Figure 4.6 it is seen that the method was very 
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effective in producing the same steady level of vertical 

CASE wSS in/s (m/s) Vn2 in/s (rad/sl 
ss 

A 0.0 0.0 
B -18.75 (0.48) -2".5 (1.52>( 10-3) 
C -39.5 (1.00) -6.9 (4.19 x10-3 ) 

Table 4.4. I Steady State Values I Rigid Body Motion. 

velocity within about 5 seconds. Table 4.1 was used extensively 

in all tests relating to an assessment of each SLACS scheme. 

4.4.2 Responses of the Controlled Aircraft Employing Full 
state Feedback. 

The feedback law (4.6) derived on the basis of the 

model CLElIIENTI was tested using the program RESPON (Appendix 

IV). Figures 4.7 and 4.8 show the bending responses at the 

wing root and at wing station 3 (w.s.3) for the case B and case 

C* test situations respectively. It can be seen how effecti~e,x 

the presence of feedback was in causing reductions of 50% orlNs~~ 
'U;w.s. 

more at these wing stations. All the plots associated 'with ,.JI-~I. 
CW 

the other wing stations studied indicated a similar pattern. 

An additional welcome feature of the feedback control was the 

reduction in oscillatory motion in the bending response at 

each wing station. Such reductions were achieved by augment-

* The responses associated with the case A test are not indic
ated in this case because they were all small deviations 
about the abscissa which tended to obscure portions of the 
other responses. 
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ing the damping of the elastic modes and will contribute to 

a reduction in the accumulation of the fatigue of the wing 

structure, i.e. if it is accepted that fatigue accumulates 

according to Minor's Hypothesis (Burris and Bender (19~9». 

Although sUbstantial reductions in bending moments were 

obtained, it was not possible, with the same control law, for 
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all the test situations studied to simultaneously achieve a 

reduction in torsional moments. If Figure 4.9 is shown a com

parison plot, of torsional moments at the wing root. between 

the uncontrolled and controlled aircraft. It is seen that for 

the Case B situation. a reduction of about 50% in torsional 

moment was possible. However. for the case C situation. 

tl:lere was a 15% increase in torsional moment. As a result. a 

number of tests were made which involved only different choices 

of Q and G weighting matrices from which it was shown that it 

would be feasible to produce a feedback law which would effect 

a reduction of both bending and torsional moments. A typical 

set of weighting matrices used arel 

Q = diag 

and. 

10- 7 5~10-7 10- 9 5~10-8 10-7 5K l0- 7 10-9 5~10-8 

10-9 5xl0-8 10- 8 10- 9 10- 8 10-9 10-9 10- 8 10- 9 

10- 9 10- 8 10- 9 10-2 10-2 10-2 10-2 10-2 10-2 

10-210- 2 10-2 10~2 10-2 10-2 1 1 10 10 10 0.5 

.. (4.1) 

G = diag (.01 .01) ... (4.14) 
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The corresponding control law was calculated to bel 

~ = -.0605 -.0022 .15 .0098 .364 -.356 -.151 .739 .0212 x 

.151 2.38 -3.44 -4.·26 12.7 -35.4 -37.8 -10.4 .0567 
-.443 -.164 .0009 -.189 .090 -.b505 

-.1670 .0102 -.0778 .11 1.970 -1.510 -.951 3.08 
-.0822 .289 5.22 -9.06 -11.1 33.9 -151.0 -438.0 
-87.4 -464 -1.08 -2.03 .0022 -.307 .515 .237 

•• (4.15) 

The responses associated with control law (4.15) are 

shown in Figures 4.10 - 4.12. From the plots, it is evident 

that the magnitude of reductions achieved was not the same 

as was possible with control law (4.6). However, in the case 

where control law (4.15) was employed, it was possible to con

tain the torsional moments experienced by the wing of the air-

craft to within an acceptable level, i.e. even in an acute 

manoeuvre situation such as case et it was still possible to 

effect a small reduction in torsional moments. In none of the 
.... tA 

control laws applied so far ~ the basic handling qualities 

of the aircraft found to be impaired. The reduction in bend

ing moment at the wing root were in the case of control law 

(4.15), in the region of 40% while)with control law (4.6), a 

reduction of 55% was obtained. Thus, if it is necessary to 

maintain torsional moments at their ori.ginal level, or even 

to effect some small reductions, it would still be possible 
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to achieve sUbstantial reductions in wing root bending moments. 

Similar reductions were recorded at all other wing stations 

although only the results for wing station 3 have been pre-
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sented in Figure 4.11. 

4.4.3. Controlled Aircraft Employi~Reduced State Feedback. 

The feedback laws derived so far. based upon the model 

CLEMENTI. employed full state variable feedback (FSVF). which. 

in practice. would be extremely difficult to synthesise. Not 

only are those state variables involving the displacements and 

the rates of each of the six bending modes required. but also 

the six variables associated with the Kussner dynamics* in add

ition to the gust velocity. which. is an extremely difficult 

quantity to measure. A number of further tests were therefore 

carried out to determine the robustness properties of the feed-

back laws used previously (see section 4.4;:2.). A robust flight 

controller is considered to be one. 'which. without replication 

of equipment. or swi tch-:over. to stand-by. equipment does not 

lead to a loss of control or to system instability when some 

motion sensor or controller failure., occurs (Steinhauser. (1978». 

These tests involved the derivation of new feedback 'laws using 
,.. 

less complete models such as FADRE. GERSHWIN andHANDEL. but 

applying these laws to the model CLEMENTI. By this means. it 

was possible to determine the effect which the absence of one 

or even an entire group of feedback variables had upon the 

overall stability of the aircraft. Since robustness must take 

into account the controllability and stabilisability properties 

.... 

* 
These variables have no explicit physical existence. 



of the system. these properties were investigated and re

ported upon in the following section. 

4.4.Ja Controllability and Stabilisability. 

Inspection of the eigenvalues of the uncontrolled air

craft. considered to be adequately represented by the mathe

matical model CLEMENTI. showed that the aircraft was stable. 

However. further checks using the program CONOBS (Appendix IV) 

indicated that CLEMENT! was not completely state controllable. 

L
it was indicated 

In Section J.2.4., that only stabilisability was necessary 

and sufficient for evaluating a feedback law which would 

guarantee the stability of the controlled aircraft. The 

closed loop stability of the aircraft can be judged from 

an inspection of the eigenvalues given in Table 4.J. 

A more detailed comparison of the eigenvalues given in 

Table 4.J will show that those eigenvalues associated with 

the KUssner states and the outboard-elevator servo have re-

mained unchanged. It is these which account for the result 

that CLEMENTI was not completely state controllable. Similar 

results were obtained when the models FAUR1!;. GERSHWIN and 
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HANDEL were tested. In all cases either the presence of the 

Kussner dynamics or the outboard elevator dynamics. or both. 

resulted in the models being not completely state controllable. 

However. because the Kussner dynamics and the outboard-elevator 

dynamics are themselves stable. the closed-loop model was al

ways found to have stable roots. In Table 4.5 is shown the 



feedback gains obtained when the output regulator problem 

was solved for each model. Each set of feedback gains was then 

applied to the model CLEMENTI. and the eigenvalues of the new 

'closed-loop' system found (Table 4.6). 

I for instance, 
In Table 4.6, .17-SVF Lis used to indicate that feedback 
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law evaluated on the basis of using the mode~ FAURE.but applied 

to the model CLEMENT I. Where some of the gain values are missing, 

these were replaced by zero, and assumed unavailable for feed-

back. The eigenvalues for the uncontrolled aircraft and for 

CLEMENT! with FSVF listed in Table 4.) have been reincluded in 

Table 4.6 for convenience. It can be seen from Table 4.6 that) 

even with what appears to be a severe loss of feedbac~ as is 

the case with 5-SVF, there appears to be no significant effect 

on the stability of the aircraft. The results obtained with 

5TSVF4;·were of particular significance sInce as it turns out 

all five state variables are relatively easy to measure. It 

was however necessary to investigate the effects of any further 

loss of feedback. A systematic scheme of testing was made on 

the model CLEMENTI with various combinations of the gains 

. associated.with 5-SVF in the feedback loop. By means of eigen

analysis, it was possible to establish the condition that 

both pitch rate, q. (i.e. q/n2) and aileron deflection. 0A' 

must always be available as feedback signals to guarantee the 

stability of the closed-loop SLACS. However, in all subsequent 

tests;in this research, it was assumed that all five variables 

would be available for feedback and consequently 5-SVF is 

referred to as the 'safety law'. 



w q/n2 At ~ 
• .$.4 A; ;. :s ).6 >-t >.z ~ ~ AS "0 

CLEMENTI -.0605 -.0022 .150 .0098 .364 -.356 -.151 .739 .0212 .151 2·38 -3.44 -4.26 12.7 
.• 1670 .0102 -.0778 .1100 1.970 -1. 510 -.951 3.080 -.0822 .289 5.22 -9.06 . ':'11.10 33.9 

.-
-.019 -.0052 .031 .010 ~126 -.161 -.030 .154 .012 .039 .298 -.250 -.897 3.124 FAURE 
-.044 -.0033 -.433 .118 1.296 -.943 -.480 1.188 -.121 -.089 -1.734 -.975 .600 1. 220 

GERSHl1IN .0138 .0225 .0524 .847 
.0111 .0536 -.3 13 8 1.64 

HANDEL .0003 .054 
-.0027 .187 

6A ~i ~o Pi P2 P3 P4 P5 P6 Wg 

CLEr~ENTI 
-35.4 -37.0 -10.4 .0567 -.443 -.164 .0009 -.lo~ .O?O -.0505 

-151. 0 -438.0 -87.4 .4640 -1. 08C 2.030 ,0022 -.307 ·515 .237 

FAURE -17.44 -13.80 -3.068 
-101. 3 -377.7 -67.6 

GERSH'IIIN -28.2 -38.7 -6.77 .0432 .0246 .181 .0002 .0486 .0798 .169 
-1;4.0 -440.0 77.5 ./~63 .0105 -2.070 .0006 .255 .482 .798 

HANDEL -31.3 -40.1.j· -5.85 
-144.0 -446.0 -76. ° 

Table 4.51 COMPARISON OF FEEDBACK GAINS OBTAINED USING DIFFERENT MODELS 



UNCONTROLLED CONTROLLED AIRCRAFT 
AIRCRAFT, 

FSVF - CLEMENTI 17-SVF 14-SVF 5-SVF -

Short Period -.877+j1.27 -1.14 ... jO.849 -·.985 + jO.785 -1.0 + jO.973 -1.13 + j1.12 Mode - -
Bending Mode 1 -.51 + 15.4(; -1.35 + ;7.96 -3.37 + j8.60 -11.9+ j10.4 -0.53 + j 5.4 7 

.. .. 2 -.23 + j11.12 -.23 + j11.12 -0.?2 + j11.12 -0.24+ j 11.12 -0.24 + j 11. 12 

.. " 3 -.58 + j 13. 79 -1.92 + j15.6 -2.12 + j 14.7 -0.74+ j13.5 -0.64 + j13.8 

" " 4 -.6 + p5.59 -0.37 + j17.6 -0.37 + j17.6 -0.79+ j15.1 -0.58 + j15.6 

" .. 5 -.43 + j 17.48 -1.68 + j27.6 -2.31 + j18.8 -0.43 + j17.5 -0.43 + j17.5 

" .. 6 -.62 + j18.78 -58.0 + j51.4 -35.2 + 123.7 -0.62 + j18.7 -0.61 + j18.8 
Inboard Elev. -7.5 -3380.0 -2860.0 -3380.0 -3430.0 Servo. 
Outboard Elev. -7.5 -7.5 -7.5 -7.5 -7.5 Servo. 

Ai leron Servo. -6.0 -5.71 -5.98 -79.9 -113.0 
K"tissner Dynam. -0.2 -0.2 -0.2 -0.2 -0.2 

" .. -0.3 -0.3 -0.3 -0.3 -0.3 

" " -8.55 -8.55 -8.55 -8.55 -8.55 .. " -10.98 -10.98 -10.98 -10.98 -10.98 

" .. -22.19 -22.19 -22.19 -22.19 -22.19 .. " .51 + j3.6 -5.1 + j3.6 -5.1 + j3.6 -5.1.:!:. j3.6 -5.1 .:!:. j3.6 - -

Table .4.6 Comparison of Eigenvalues of the Controlled Model CLEMENTI Using Reduced Order Feedback 

; .,. 
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4.4.3b. Responf!.e!!._ 

". 

The feedback laws evaluated using the models FAURE, 

GERSHWIN and HANDEL were tested using the model CLEMENTI. A 

typical set of dynamic responses are shown for the wing root 

and w.s.3 in Figures 4.13-4.15. It can be seen from these plots 

hoVl effective reduced-order feedback was in still securing sub-

stantial levels of bendtng moment reductions both at the wing 

root and at w.s. 3. Although no significant reduction in tor-

sional moments was possible, in no circumstance did these moments 

turn out to be greater than those experienced by the uncon

trolled aircraft. Although not included in this set, the res

ponses obtained for wing stations 2,4 and 5 followed a similar 

pattern. Alzo because the responses obtained from using the 

feedback law based on the model FAURE did nffdiffer significantly 

from the responses of CLEMENTI with FSYF, these responses were 

not included in the plots. The result is however not unexpected 

since FAURE only differs from CLEMEN'l'I in the absence of the 

Kussner and gust dynamics. Since the tests made so far are all 

deterministic, the gust dynamics were not excited. 

The response obtained using the law derived from the model 

GERSHWIN presents an interesting result since it confirms the 

general belief in Aeronautical Engineering that much of the 

aeroelastic energy is contained in the first bending mode. The 

results of Figure 4.13 indicate that it is possible to achieve 

the same level of reductions in WRBM even when only those state 

variables associated with the first bending mode are fed back. 
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With 5-SVF it was not possible to achieve the same level 

of bending moment reductions as was possible with' either 14-

SVF, 17-SVF or full state-variable feedback. At the wing root 

bending moment reductions were in the region of 20% when 

5-SVF was used, compared with 40% for the FSVF case. Also/ 

with 5-SVF, it was not possible to augment the damping of the 

bending modes·to the extent achievable with higher orders of 

feedback. Asa result there is some oscillation associated 

with the bending responses when ·the 'safety law' was employed. 

From these results. it may be inferred that the use of 5-SVF) 

although an attractive proposition from the point of view of 

being easy to synthesise. has associated with it a number of 

limitations. Reduced state feedback~which may result~ bec

ause enough sensors cannot be provided, or, when present, 

cannot provide accurate measurements. or may have failed in 

their operation,may be expressed in t,erms of the increased 

level of bending moments which will result together with the 

presence of some oscillation in the bending responses. 

4.4.3c Steady-State Check~~ 

Since this research was primarily concerned with the 

reduction of structural loads on the wing of the subject air

craft and since,in all tests carried out so far, each SLACS 

was judged principally by the steady-state level of load re-

duction it provided. a method was developed for quickly eval

uating the steady-state loads from a khowledge of the aircraft 

dynamics and the command vector being applied. 
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Consider the aircraft equations given aSI 

! = A!'+ B.H 

y.. = C;. + Eu 

In the steady-state. 

:ic ~ 0 

Therefore from (4 •. ,'1) , 

x --ss 

and from (4.16) 

}Ass = 
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•• (4.7,) 

•• (4.16) 

.. (4.17) 

•• (4.18) 

.. (4.1~ ) 

(4.19) was used to determine the steady-state level of any of 

the variables constituting the'vector,!, (chiefly the bending 

and torsional moments), which was achieved by the uncontrolled 
. 

aircraft "when subjected to' a case B or a case C test situation. 

In order to compare these load levels with those achieved when 

feedback was present, it was first necessary to take into 

account, in (4, 7),the change in the basic aircraft dynamics, 

i.e., for an optimal control law given aSI 

'0 
.H = F . .;, •• (4. $.) 

the equations representing the controlled aircraft arel 

• (A + BF).;,c '0' (4.20) !c = 

and, Y..c = (C + EF )lfc •• (4.21) 
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where ~c is a vector identical to x, but only ,:,used to dis

tinguish between the contnolled and the uncontrolled situations. 

In order to force the controlled aircraft, an extra vector,!:, 

was introduced into (4.20) acting through a driving matrix, 

H,(see section 4.4.2) i.e. 

= (A +BF)x + Hr -c 

'Again, in the steady ,state, 

• . . !c 

From (4.21) 

. ~ x" -0 
o 

=- (A + BF)-l H.[ 
ss 

= _ (C+EF) (HBF) -1 H:;: 

•• (4.22) 

•• (4.2J) 

.. (4.24) 

•• (I}. 25) 

(4.25) was used for determining the steady state levels of 

bending and torsional loads induced in the wing of the controlled 

aircraft and these were then compared for the equivalent test 

situation with those levels induced in the wing of the un

controlled aircraft. Both full and reduced state feedback was 

stuc;iied Le. F' took a range afvalues (from Table 4.5) dependent 

upon the order of feedback studied. The vector, !:, took the 

values appropriate to a case B or a case C test situation (see 

Table 4.J). For a solution of (4.25) to exist, (A+BF) must be 

non-singular. The feedback matrix, F,is the solution of a 

linear quadratic problem (LQP) and that solution guaranteed that 

(A+BF') must be at least positive semi definite (p.s.d); that is 

to say,that the eigenvalues of (A+BF) have negative real parts 
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and (A+BF) is therefore a stability matrix and is invertible. 

Some results obtained for the wing root and wing station J 

are presented in table 4.7. The table allows steady-state 

bending levels of the uncontrolled aircraft to be compared with 

those achieved by the controlled aircraft for the Case Band 

Case C test situations. Results for the controlled aircraft 

with reduced feedback down to 5-state variables are shown. It 

is seen that in almost every case where feedback was implemented. 

it was possible to achieve some reduction in bending and tor

sional loads. All the results were confirmed independently 

through response tests. Since~from previous response tests. 

it was evident that the transient response of the aircraft with 

SLACS incorporated, did not alter ::.significantlY,even with a 

severe loss of feedback down to five motion variables, the method 

provides a fast and accurate way of predicting the effect that 

different types of reduced order control would have on the air

craft. Also the results of table 4-.7 lends support to the 

suggestion made earlier in Section 4-.4Jb that the cost of pro -

viding more sensors, or alternatively~ the cost of a failure~ 

to provide measurements, can be expressed .in terms of the re

sultant increase in the load levels experienced in the wing of 

the aircraft. Even when only 5-SVF is employed.(a much simpler 

and hence cheaper engineering task). the reduction in bending 

moment that was possible at the wing root was in the region of 

18%. However, in practice it will be necessary that the wing 

of the aircraft be designed to withstand loads incurred with 

the minimum of SLACS action. 



.. 
Aircraft WRBM WRTM VI.S.~ BM Control B C B C B C Condition 

Uncontrolled -.535 3.54 .784 .843 -1. 01 .932 
FSVF .976 2.17 .362 (.801) .155 .352 
17-SVF .871 2.17 .490 .801 -.019 .352 
14 ·SVF 1. 01 2.25 .348 .773 .184 .418 

5-SVF 1. 00 2.30 .351 .751 .179 .464 

All Moments quoted in 10 Nm. 
. 
, 

Table 4.71 ~OMPARISON OF STEADY-STATE BEN NG AND TORSIONAL MOMENT 
/ 

. 
k H~ ( fou~ if 'i') 

~f(TrJ). r {'J>-L G l,o 1 •. rCo .(~~/~)i??7 

S 

.... 
o 
\J\ 
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From the response tests 'carried out on the uncontrolled 

aircraft represented by. the mathematical models BACH and 

CLEi'IIENTI. it was evident that the transient and steady-state 

behaviour of these models were identical· (see Figures 4.1 -

4.Jt. (4.25) was used to confirm these results. Furthermore. 

when the feedback law evaluated on the basis of the model 

CLEMENTI was used with BACH. the steady_state loads predicted 

were identical to those predicted ·for CLEMENTI with FSVF. Thus 

CLEMENTI was regarded as being of the highest dimension re"" 

quired for any work connected with the design of a suitable 

SLACS for the s4bject aircraft. The results also clearly in

dicate that the upper nine bending modes. represented only in 

BACH. ;t;;;; not contributing significantly to the total aero

elastic energy involved. 

4.4.Jd Servo-Actuator Reguirements~ 

In all cases involving full and reduced-order contro~ it 

was noticed from the eigenvaluesobtained (see for instance 

table 4.6). that the root associated, with the inboard section 

of the elevator shifted over a very wide range. from -7.5 to 

about - JOOO. O. This suggested that the' response time of the 

inboard elevator was required to be reduced by some 400 times 

in order to achieve the required structural load alleviation. 

Such a requirement implied almost instantaneous action from 

the servo-actuator associated with the inboard elevator. a re

quirement which cannot be met in practice. In an 

attempt to more fully appreciate the need for 
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such a fast response, a number of tests were carried out which 

enabled the dynamic response of each actuator used in the study 

to be plotted. The tests were made using·the model CLEMENTI and 

employing both full. and reduced-order control. In Figures 

4.16 and 4.17 are shown the results of the tests made for the 

case C situation in which the control· surfaces were found to 

be the most active. . '" In none of the plots.aare the requirements 

for control surface deflection,or its rate,so high as to be 

beyond the capability of currently available servo-actuators. 

However, it is evident from Figure 4.17, that the use of 17-SVF 

and 14-SVF may require sudden demands for control surface rate 

and this is certainly likely to ,cause practical difficulties 

with the duty-cycle ratings of currently available servo

actuators. 
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4.5 Aircraft Response in Atmospheric Turbulence. 

Only a limited numb.er of tests were carried with the aircraft 

model (again considered to be adequately represented by CLEMENTI) 

in simulated atmospheric turbulence since each response required 

a large amount of computing.time for its generation. For the 

input noise to the Dryden Filter, random number generation was 

used and these were ~rovided by standard NAG* library routines • 

The sequence of numbers approximated to the white noise input 

required for the Dryden filter and had the property of zero 

mean and of standard' deviation which was adjusted to give an 

r.m.s. value of vertical gust velocity, (the Dryden filter out

put). of about 1.0 m/so In Figure 4.18a is shown the input to 

the Hryden filter while its output has been plotted in Figure 

4.18b. Some of the responses of the uncontrolled and controlled 

aircraft for test situations D and E are shown in Figures 4 •. 19 

and 4. 20 respectiv~~y. In the case D test situation, no initial 

conditions on the state variables were used and no commanded 

control surface deflections were employed. Thus the case D sit

uation approximated to the aircraft travelling in steady level 

flight and suddenly enc9untering atmospheric turbulence. From 

the graphs it is seen that this type of turbulence resulted in 

the highest peak levels of bending moment at the wing root, 

greater than any.of those experienced in the deterministic 

command situations. In the case E situation, the aircraft was 

assumed to have an initial vertical velocity of 7.15 m/so 

* NAG Numerical Algorithms Group, University of Oxford. 
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Overall. little difference was noticed between the case D and 

the case E situations. ~owever. the initial state values 

of bending moment induced at the wing root in the case E 
6 situation was quite high,approaching -J x 10 Nm. 

For the tests on the bontrolled aircraft. the full-state 

feedback law, which secured in the deterministic situations 
. . 

wing-root bending moment reductions of up to 40% without causing 

an increase in the corresponding torsional moments,was used. 

i.e. control law~. ~5)In none of the-tests with simulated 

atmospheric turbulence was reduced-order control used. The 

reason for this was primarily because the tests were expensive 

to carry out in terms of CPU time and the heavy computational 

burden did not permit further tests to be made. However. for 

those tests reported upon. t~e responses were obtained for 

JO seconds. (only 5 seconds were used in the deterministic testsl 

chiefly to ensure that any tendency of the SLACS to cause either 

sudden changes of st~ess or excessive levels of peak loads 

would be .detected. 

Figures 4.19 and 4.20 show that even in turbulence. the 

SLACS was very effective in securing for the air~raft~ sub

stantial reductions in bending moment at the wing root. Although 

not ·shown here. similar levels of reductions were obtained at 

the other wing stations •. It is also seen from the responses of 

the controlled aircraft that vertical velocity is also reduced 

by the action of the SLACS and this implies lower rigid body 

accelerations which will contribute towards improving the ride 
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quality of the aircraft. 

. .. 
4.5.1 Predictin~m.s. reductions in Wing load so 

The method of .predicting the levels of bending and tor

sional moment reductions achieved for an aircraft fitted with 
-

a SLACS. which was outlined in Section ).3. was employed here 

for the full state feedback case. In table 4.8 is shown the 

percentage reductions 4 predi.cted . to be possible with full state 

feedback control. Results for each wing station are presented ir 

the table • 

. 

Percentage Reductions. 

Wing WS2 WS ) WS 4 ws 5 
Root 

Bending Moments 95.5 98.) 99.1 95.) 8).9 

Rates of Change 
of Bending .. 99·5 99.0 97.1 9).0 85.) 
Moments 

Table 4.8 Percentage reductions of r.m.s values of 
Bending and Torsional moments in the 
Presence of Turbulence using full state 
feedback control. 

'It is seen that the greatest reductions are possible at 

the mid-span although the reductions overall are quite sub

stantial. At the wing tip. the reduction$ possible was some

what less than those achievable at the other wing stations,being 

only 84%;llb oh,at the wing root. up to 95% was possible. 
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CHAPTER 5 I OBSERVERS FOR THE Sh~eSI FULL ORDER 

5.1. Introduction. 

A serious impediment to any practical implementation 
r;. 

of the SLAeS considered is...a- requirement that the number of 

state variables fed back is l~rge. Most of these variables 

either cannot be measured or are not physically realisable, 

having arisen only as a result of mathematical manipulation. 

Previous work reported upon in Chapter 4 showed that substan

tial reductions in bending moment., (*'40% at the wing root) . . 
can be achieved, for the aircraft under consideration, by 

implementing full state-variable feedback (FSVF). However, 

because of the practical difficulties of implementing FSVF-, 

a number of digital simulation studies were carried out using 

reduced-order feedback control. It was demonstrated, (see 

Section 4.~.J.), that even with 5-SVF, some reductions in 

bending moment, (~~% at the wing root), were still achiev-

able)although further loss of state v.ariable feedback could 

lead to the aircraft becoming unstable. Thus, the control 

law associated with 5-SVF was referred to as the 'safety law'. 

While the 'safety law' has the advantage of being relatively 

easy to synthesis e,when compared with the problem of pro:

viding FSVF, the principal disadvantage associated with its 

use is that·the same level of bending moment reductions could 

not be achieved as with FSVF. Another disadvantage,observed 

from time responses of the aircraft in deterministic situations~ 

was that the transients associated with bending moments were 
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much more prolonged when compared with the transients of 

those responses obtained as a result of applying higher 

orders of feedback. A typical example of the-effect dif

ferent orders of feedback had upon the wing-root bending 

response of the aircraft was plotted in Fi&4.1). -It was 

considered that the oscillatory nature of the bending res

ponse, caused as a result of the safety law being operational, 

may affect the fatigue life of the structure, if it is accept

ed that fatigue accumulates according to Minor's hypothesis 

(Burris & Bender (19p~». 

In an attempt to recover some of the a9;vantages associated 

with implementing FSVF, further investigations were made at 

this stage in the research study to determine whether FSVF 

may be effectively implemented by obtaining a reconstruction 

of the missing state variables. There are several methods 

available for determining, on-line, an estimate of the state 

vector. One such method is due to Kalman and Bucy, (1961 ) 

where, the state vector is formed on-line by means ,of a 

Kalman-Bucy filter using available measurements of the output 

vector, ~, and of control inputs,!:!. The filter design takes 

explicit account of the presence of noise due to both atmos

pheric turbulence effects and sensor signal measurements and 

is derived as a solution of a Linear Quadratic Gaussian (LQG) 

problem. It is well-known, (Athans (1971 », 

that the control law obtained from the solution of the LQG 

problem is identical to that obtained from the solution of 

the LQP (considered in this study) provided that the 
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same weightings on the appropriate Q and G matrices are 

used (see Sec. ).2.."1.). ThusJin the case where the two 

solutions matched, the worst that i~ likely to occur if,the 

Kalman-Bucy filter was ignored, is that an increase in the 

performance cost, "(given as Equation ).18), would "result. 

In practice, if strong feedback control were to be used. the 

resulting performance degradation is not likely to be great. 

An alternative,and somewhat simple~design approach is 

to use a SUb-system~n a strictly deterministic settin~often 

referred to ac a Luenberger observer (Luenberger (1966, 1971». 

Like the Kalman filter, the observer has?as its inputs. the 

inputs and available outputs of the system whose state is to 

be approximated; however, the characteristics of the obser-
jby the 

ver system are,to some extent free to be determinedLdesigner. 

This chapter is concerned with the theory, and test)bY digital 

simulation,of an observer designed to reconstruct the full 

state vector based upon one or more of the measurements of 

the five state variables of the "safety law". The error be

tween the actual state and the observed state was used to 

form part of a performance index (p.i.) to be minimised. 

Minimisation of this performance index resulted in the sol

ution of the .. gain matrix" of the observer and ensured that 

the error in the" estimate of the state vector decayed ex

ponentially to zero. To the knowledge of the author, neither 

the approach used nor the algorithm developed for the full

order observer studies has been reported in the literature. 

although some suggestions as to how a suitable p.i. may be set 

up has been sketched in Kuo (1975). 
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For convenience. some of the equations used for the· 

derivation of the full-state feedback law are repeated in 

this section. The flexible aircraft. subject only to comman

ded manoeuvres,can be described by the differential equationl 

• 
Se = Ax + Bu • (5.1) 

where ~ "" Rn • ~e Rm and A and B are of appr9priate 

order. 

Assuming that only a few output·variables (defined as 
* . 

the constituents of a new vector. l ). are available for 

measurement. a suitable output equation iSI 

Y.* = C* ~ .. (5.2) 

where il* ii: RP. The matrix C* depends upon which variables 

of the state vector were available for measurement. If. for 

example, only the first two variables xi and x2 were avail

able then C* takes the form. 

C* = o 
i 

o 
o 

. ..... .... Ol 

........ . oJ .. (5.).) 

In section ).Z., it was shown that the optimal feedback 

control was of the formi" I 

.. (5.4.) 

Since normally only the estimated state vector. x , 
-e 

and not the actual state • .1£, will be available for feedback. 

and since the system will be designed so that • .1£e' approaches 

In this Chapter. the matrix. D. 
back gain ma.trix instead of the 
in previous chapters. 

is used to denote the feed
matrix, F. which was used 



" ->- "'" 
lS.~ w~h--~I!le. (5.4.); is written as. (5.5.). where. 

= Dx --e t_ "" 
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• Miller (1973) has shown that a separation-type theorem 

holds for the design of observers where the matrix. D. is 

solved assuming. that the full state is available for feed

back; the observer desIgn may then 'be considered quite 

separately regardless of the parameters chosen for the sol-

ution of the full state feedback problem. 

L~t the equation of the full-order observer for (5.1.) 

and (5.2.) be given by. 

2se ;z F2Se + Gi'+ Hu .. (5.6) 

Subtracting (5.1.) from(5.6.) and sUbstituting for ~* from 

(5.2.) results in • 

If. 

H = B 

Fx .+ (B-H)_u -e 

and •. if a stable observer can be designed, then. in the 

steady-state. for any control input, ~, 

x = 2Se 

F.= A - GC* 

Let an error vector £ be defined by. 

• 
• • 

£ = x - x -e 
. . 
e = x 

.. (5.9) 

•• (5.10) 

..(5.11) 

.. (5.12) 
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Using (5.8), (5.10). (5.11) and (5.12), (5.7) may be 

written as. 

.. (5.13) 

Thus. a stable observer will result if (A-GC*) is a stability 

matrix and the problem reduces to the determination of an 

observer 'gain matrix', G. which will. ensure that the error 

vector, e. decays to zero with time. - . 

Consider the deterministic optimal control problem given bYI 

i = Kfl + C*' Y 

J = it 1(~' Q g + 
o 

,;. 
y'R y) dt 

(5.14) and (5.15) defines the well-known state regulator 

problem. and sufficient conditions for the existence of an· 

optimal control law for (5.14) and (5.15), are, that the 

pair, [A',ciJ ,be completely controllable and that, R, 

be' positive definite and,Q, be at least non-negative definite 

(Kalman (1960), Athans and Falb (1966)). The optimal con-

trol law is then given byl 

where P is the positive definite solution of an algebraic 

matrix Riccati equation given bYI 

Let, 
•• (5.18) 

t To avoid confusion with the use of G as the observer 'gain 
matrix'. R is used in this chapter and in Chapter 6. as the 
weighting matrix on the control vector. ~. 
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then, sUbstituting (5.18) into (5.16) gives I 

y'
0 = -G~ ... (5.19) 

, 

Thus the optimally controlled system is found by substit-

uting y'
0 of (5.19) for y. in (5.14) giving I 

e = , ." (A - C* G) .!t .. (5.20) 

Let, 
s' ~ (A - c*' G' ) .. (5.21) 

I Since the eigenvalues of any square matrix, S , are the 

same as those of S, the stability of the closed-loop system 

implies that the .eigenvalues of, 

S = (A - GC-lf:) .. (5.22) 

have negative real parts. 

Equations (5.14) - (5.19) provided a design algorithm for 

ensuring that (5.1) was a stability matrix and that the 

decay of the error in the estimated state vector is, in a 

sense optimal depending upon the choice of weightings used 

for the matrices Q and R of (5.15). The design is seen to 

be an exact dual of that employed for the linear, time in

variant, optimal state regulator problem. The controllability 

requirement was met by ensuring beforehand that the pair, 

[A',C*') ,was completely controllable or alternatively that 

[A, c*l was completely observable (Kuo, (1975». It was also 

easy to select a' matrix, R, that was positive definite, and 

a matrix, Q, that was at least non-negative definite in 

forming the performance index given by (5.15). Several sol

ution methods of the algebraic matrix Riccati equation of the 
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form given by (5.17) were available although the eigenvector 

solution with asymtotic stability proposed by Marshalland 

Nicholson (1970~ proved the easiest to program. 



5.3. Modelling the Observed System. 

Let the estimated output vector, X:' be given bys' 

,,* = C* x .Le -e 

C* was defined in (5.2). 

Substituting for F and H in (5.6 ) using (5.10) and 

~.8) respectivel~ gives, 

• x -e = (A - GC*)x + G"*' + B,!d -e .z.. 

Using (5.2) and (5.23), (5.24) may be written as, 
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(5.25) shows that the observer model is very similar in 

structure to the original model of the aircraft, (Equation 5.1), 

except only that the error between'the available outputs and 

the estimated outputs forms an additional forcing term in the 

observer equation. 

Substituting for:;t* in (5.24), using (5.2»)'yields (5.26) 

viz.-, 
re = (A - GC*)x + GC*x + B_u -e -e 

For the purposes of assessing the performance of the con

trolled aircraft incorporated with an observer, an output 

vector, Xe ' similar to that used in (2.25) is defined,i.e • 

= •• (5.27) 

For the optimally controlled aircraft, ·the control,!d, of 

(5.26) is substituted by uq and, using (5.5), (5.26) becomes, 



x = (A -GC* + BD)~e + GC*x -e 

In the controlled situation. it should be still possible to 
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manoeuvre the aircraft to some desired flight state; for example , 

in response to a demand for a'certain ~alue of ve~tical velocity~ 

Such demands were considered by ~sing an additional forcing 

vector. ~, acting through a matrix H* as had been used in 

earlier studies. (See Section 4.4) 

(5.1) was therefore augmented after SUbstituting for Q using 

(5.4) •. Thus. 

~ = (A + BD)~ + H*~ 

The output equation~ were also written in the form. 

Y. = (C + ED)~ •• (5.JO) 

v = (C + ED)x ol..e -e .. (5.Jl) 

(5.28) and (5.29) and also (5.JO) and (5.Jl.) were combined to 

allow comparison. by digital simulation. of the controlled 

aircraft without .and with the observer incorporated. viz •• 

[tJ = 

= 

.. (5.J2) 

.. (5.JJ) 

block diagram f the observed system is shown in Fig 5.1. 
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5.4. Selection of Observer Weighting Matrices. 

Equations (5.)2) and (5.))) were used to assess the 

performance of the observer design. Only deterministic test 

situations were considered. Once all the observer parameters 

had been solved. it was decided that the relevant matrices 

of (5.)2) and (5.))) be formed directly to allow simultaneous 

comparison of full state-variable feedback (FSVF) with full 

reconstructed state-variable feedback (FRSVF). Simultaneous 

comparison implied that the order of a particular model stu

died was effectively doubled, For CLEMENTI. this would have 

meant computations on a system with a state vector of dimen

sion. 48. and an output vector of dimension. 76. Since the 
, . 

model. FAURE dlffered from CLEMENTI only in the absence of 

Kussner dynamics and since in all deterministic tests made. 

the bending responses associated with FAURE did not differ 

significantly from those obta,tned with CLEMENTI (see Figs. 

4.1) - 4.16) it was considered that FAURE was adequate enough 

for the purposes of testing the observer design. In the case 

where the controlled aircraft with FRSVF is to be further 

tested. in response to simulated atmospheric turbulence. the 

KUssner dynamics would have to be reincluded. i.e. the model 

CLEMENTI will have to be used. 

Thus the chosen system. based upon FAURE. had a state 

vector of dimention.)4. and an output vector of dimension. 76. 

Previous tests (see,Sec. 4.4.3) had shown that the model, 

FAURE was not completely controllable. This was found to be 



due to the presence of the state associated with the out

board elevator servo in the $tate description of FAURE. The 

lack of complete state controllability did not however pr~

vent a feedback law from being determined.. Also the result~ 

ing closed-loop system was stable as will be evident from 

the eigenvalue tables to be presented later in this section. 
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The weighting matrices associated with the determination .. 
of the optimal control law for the model FAURE were chosen to 

bel 

0.lE-6 0.5E-6 0.lE-8 0.5E-'l 0.lE-6 
0.5E-6 0.lE-8. 0.5E-7 0.lE-8 0.5E-7 

~ = diag 1.0E-8 1. OE-9 1. OE-8 1. OE-9 1. OE-8 
1. OE-9 1. OE-8 1. OE-9 1. OE-8 1. OE-9 
.01. 01 .01 .01 .01 .01 .01 .01 .01 .01. 01 .01 

1 1 10 10 10 0.5 , 

•• (5.34) 

R = diag {.01 .Ol} 

The corresponding control law was found to bel 

-.019 -.0052 .031 .010 !126. _.161 -.030 .• 154 ~ 
.012 .0)9 .298 -.250 -.897 3.142 -17.44 -13.80 -3.068 

-.044 -.003 -.433 .118 1.296 -0.943 -.480 1.188 
-.121 -.089 -1.734 -.975 .600 1.220 -101.30 ~377.7 -67.6 

The computer program. RAPEST, (Appendix IV ), was used to 

. evaluate the observer matrices together with the relevant 

matrices of (5.32) and (5.33) in order to allow assessment 

by digital simulation to be made. RAPEST was used to evaluate 

the matrix. P, of (5.17) by the eigenvector solution method 



proposed by Marshall and Nicholson (1966). Once the matrix. 

p. had been obtained. the 'observer gain matrix'. G. was 

easily evaluated using (5.18) The solution of. P, required 

that suitable weighting values be assigned to the matrices 
. . 

Q and R of (5.15). The dimensions of. Q. which was square, 
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were the same as the dimension of the· state vector while ·.the 

dimension of. R. depended upon the number of state variables 

assumed available for measurement. As an example~a typical 

weighting scheme chosen for solution of the observer matrices 
, . 

for the model FAURE~assum1ng only the measurement of the ver-

tical velocity. w • was to. be. used.,is I 

"" 
• diag to l Q 5.0 

.01 .01 .01 .01 .01 .01 
. .01 .01 .01 .01 .01 .01 

10 10 10 
.. (5.37) 

"" = {2.0} R 

The corresponding observer gain matrix was evaluated aSI 

G = [3 2 • 2 
44.5 

. 1.99 

229.0 
-41.8 
-3.44 

-291. 0 
-2.24 
-0.88 

24.0 
0.486 

-2.26 

170.0 171.0] 
2.64 8.32 
-0.318 

In Table 5.1. is shown the eigenvalues of the observer matrix, 

S, of (S.22) when compared with the eigenvalues of the con

trolled aircraft with FSVF. It is seen that the real parts of the 

eigenvalues of the observer should at least have been greater 

than those of the eigenvalues of the controlled. aircraft 

(considered in this case to be adequately represented by the 

model FAURE). This observer design was· nevertheless tested 



with the controlled aircraft by means.of digital simulation 

and using the same deterministic test situations employed 

previously (Table 4.1). 

., 
1----- PAURE OBSERVER 

Short Period Mode + -.985 - jO.785 + -.517 - j5.45 

Bending Mode 1 + -J.J7 .- j8.60 + -.225 - j11.10 
.. .. 2 + -0.22 - jll.12 + -.442 - jlJ.JO 
.. " J + -2.12 - j14.7 + -.908 - j15.50 

~ " 4 + -0.J7 - j17.6 + -.J95 - j17.50 
.. .. 5 

oj< 
j18.8 + j18.70 -2.J1 - , -.529 -

.. .. 6 + -)5·2 - j2J.7 + -12.5° - j)2.4 

Inboard Elevator 
Servo 

-2860.0 -2J.) 

Outboard Elevator -7.5 -7.5 
Servo 

Aileron Servo -5.98 -6.06 

Table 5.l! Comparison of Eigenvaluesl 
". 

PAURE (FVSP) . with OBSERVER 

1JO 
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5.5 Time Response Te~. 

The same test situations that were used earlier, (see 

Table 4.4) were used again here to evaluate the performance 

of the 'observed' system. All comparisons were made using the 

model FAURE. The particular type of'feedback used was distin

guished by FSVF, (assuming all the variables of the state 

vector could be measured directly), and by FRSVF, assuming 

that the variables of the state vector were reconstructed by 

an observer of the type reported upon in this chapter. In 

Figs. 5.1L - 5.~ are shown comparative responses* using FSVF 

and FRSVF for test situations A-C. In order to produce a re-

construction of the state vector, only a measurement of ver-

tical velocity,w was required by this particular observer 

designl also all initial conditions were set to zero. It is 

remarkable how effective was the observer in predicting the 

state and as a consequence, the output of the original system. 

In a number of reports, (Newmann(1970),Arimoto and Hino 
!..,..o 

(1974), it):lad been suggested that the performance of an 

observer will deteriorate substantially if the' initial con-

ditions on its states are not matched with those of the sys

tem being observed. In an attempt to confirm the validity of 

thisproposition, a number of tests were made for the situation 

* Only the wing root bending moment together with either pitch 
rate (q) or vertical velocity (w) are plotted although the 
other responses were found to be just as closely matched. 



en , 
t: 
v 
)0-
I.... 
U 
o 
det-------~--~~~$-~~~~~~~~~~~~ 
> 234 5 

...J 
< 
U .... 
I
~ 
W 
> 

·-1 

en . 

" t: 
Z 
v 
I
Z 

". 

+ FSVF 
o RSVF 

TIME(SECS) 

Figure 5.2a 

~e±-______ ;-__ ~~~~~~~~=e~~~~~~ 
o. 2 3 4 5 
t: 

(!) 
Z 

o z 
w 
m 

TIME( SECS) 

Fi"ure 5.2b 

132 

COMPARISON RESPONSE: FSVF WITH FULL"ORDER.OBSERVED SYSTEM: CASE 
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COMPARISON RESPONSE: FSVF WITH FULL-ORDER OBSERVED SYSTEM: CASE C 



where the initial conditions of the observer did not agree 

exactly with those of the model being observed. Figure 5.5 

shows the case where all thEl. initial states of the observer 
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were set to zero and the aircraft was considered to have an 

initial pitch rate of about 0.06 rad.s-1~ The plots indicate 

that the observer dynamics· are not fast enough to cope with 

the mismatch in initial conditions, a result which was evident 

when the eigenvalues were compared in Table 5.1. The obser-

ver design was however found to he iess sensitive to a mis-

match of initial conditions on inboard elevator deflection. 

Such a result is evident from Figure 5.6, where,the initial 

states of the observer were again set to zero and the in

board elevator was considered to have an initial deflection 

of about 0.1 rad. When there was a mismatch of initial con-

ditions on vertical velocity, (w), sUbstantial variations on 

wing root bending moment occurred (Figure 5.7) before the ob-

server transients decayed. These large variations may in 

some manner be related to the original specification of the 

particular observer design being tested. i.e. reconstruction 

of the system state was achieved by using measurements of 

. vertical velocity, (w) • A number of tests made using observer 

designs based upon the availability of other measurements viz., 

q, 6A and % .. are reported upon later in this section. 
~ , 

In an attempt to reduce the sensitivity of the observer 

to mismatching of ini tialcondi tions, ,further tests were made 

using only different choices of the weighting matrices assoc-
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EFFECT OF MISMATCH IN INITIAL CONDITIONS ON VERTICAL VELOCITY 
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iated with the design. It was found that in general. it was 

possible to obtain a desir,ed set of dynamics associated with 

each observer design although it was not possible to establish 

any fixed pattern for a suitable choice of weighting matrices. 

A.workable design can therefore result from carrying out a 

large number of test computer runs. during which1 both the 

locations of the obserVer's eigenvalues and its response need 

to be checked. 

A representative set of tests is shown in Figures 5.8 -

5.10. where. the same disparities in initial conditions, 

used earlier for tests shown.in Figures 5.5 - 5.7,have been 

implemented. In general. it is seen that the settling time 

of the observer design has been reduced to within three sec

onds although the transient excursions experienced are much 

higher when compared with those obtained in the previous de

sign. To achieve this reduced settling time. the error 

"weightings on vertical velocity. w. and pitch rate. q. had 

to be increased. However. there was a limit as to how much 

these weightings could be increased as it was not then pos

sible to obtain a solution to the Riccati equation (5.17). 

Most of the tests used until now were repeated for the 

condition where only the pitch rate. q. was available for 

measurement. The"tests however did not record any significant 

change in the observer performance when compared with that of 

the former design based upon the availability of vertical 

velocity. w. for measurement. 
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A number of checks were made to determine the effect of 

making more sensor signals available for measurement. Two such 

checks are presented here, where it .is assumed that I 

(i) both wand q were available simultaneously 
for measurement, and, 

(ii) the signals w,q,6A ,~., were all being measured • 
. 1 

A set of example results are presented below •. For test 

(i), the weighting matrices were'chosen.to bel 

~ 

diag {" OE+4 1. OE+7 1. OE-2 1.0E-.2 1. OE-2 1.0E-2 } Q = 

1.0E-2 1. OE-2 1.0E-2 1. OE-2 1.0E-2 1.0E-2 
1.0E-2 1. OE·2 25.0 10.0 10.0 

•• (5.40) 
A 

R = diag {2 10} .. (5.41) 

The observer 'gain matrix' was found to bel 

G= 77.6 
.958 

3.51 
-.282 

17.4 
3.64 

999.0 
.173 

59.1 
9.15 

17.4 
.657 

-7.76 2.40 
0.40 0.76 

-0.127 -.022 

155.0 
-.089 

.280 
-1.48 

7.71 6.30 
0.135 :,.204 

1.01 24.4 -82.7 
-.587 .:..096 

2.79 -2.59 
-.0503 

.. (5.4 ) 

For test (ii) , the weighting matrices were chosen to bel 

~ 

= diag roE>4 1.0E+6 Q 1. OE-2 1.0E-2 1.0E-2 ,.0E-2} 
1. OE-2 1.0E-2 1. OE-2 1.0E-2 1. OE-2 1. OE-2 
1.0E-2 1.0E-2 5.0E+1 1. OE+2 1. OE+l 

.. (5.4 ) 
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ft = diag {1.0E-1 1.0E-l 1.0E-3 1.0E-3} .. (5.44) 

The corresponding observer 'gain matrix' was calculated to bel 

G = 1000.0 4.35 
-24.6 -7.40 
-2.23 

-24.6 
3.74 

11.3 
16.5 

139.0 68.4 -3.97 
.615 -.761 -4.07 

4.35 10000.0 -53.3 10.4 74.3 69.3 26.6 
-6.08 .724 2.32 1.91 0.667. -.954 -1.21 
-2.52 

-40.8 -12.1 
-386.0 -3.0) 
-.503 -.534 

-44.2 -74.3 
1110.0 -1.25 
308.0 -0.884 

-3300.0 -16.5 -1280.0 
14.7 20.7 2.15 ~1.95 

808.0 
1.66 

1380.0 
2.80 

-2450.0 -2370.0 
12.4 -16.3 -9.42 

2.04 
-4.42 

23.3 
217.0 

-228.0 
-.501 

The comparative time responses corresponding to tests 

(i) and (ii) are shown in Figures 5.11 and 5.12 respectively. 

It appears that. as would be expected. the availability of 

more measurements had a beneficial effect upon the aircraft 

response. With 01'1.1y wand q available as measurements. 

(Figure 5.11). the bending moments experienced in the wing of 

the aircraft are initially quite severe although the transients 

oscillations decay rather faster than those associated with 

measurements of all four signals. (Figure 5.12). However it 

will be noticed that some of the elements of the observer gain 

matrix for test (ii),(5.45). are very large. (»103 ). when 

compared with those of test (i), (Equation 5.42). It would in 

practice be inappropriate to use gains >102 because not only 

the pure signal will be amplified but so is any noise present 
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in the feedback path •. Thus the results of Figure 5.12, al-· 

though the best so far, even·in situations where there are 

great disparities between initial conditions, cannot be 

guaranteed with the observer design considered for test (ii). 

However, it is possible that further experimentation with 

different weightings on the Q and R matrices may produce a 

workable design with the type of performance demonstrated in 

Figure 5.12. 
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CHAPTER 61 OBSERVERS FOR THE SLACSI REDUCED ORDER. 

6.1 Introduction. 

The full-order observer designs considered in the 

previous chapter were all extremely sensitive to mismatch

ing of initial conditions between the state vector of the 

aircraft and those of the observer model. Unless the initial 

conditions were perfectly matched, the observer could not 

be relied upon to accurately estimate the system state with 

the result that the peak structural loads experienced in the 

wing of the aircraft tended to be high. Although it was pos~ 

sible to design by numerica.l experimentation an observer with 

a ·fast or slow settling time, it was not always possible 

to, in addition, reduce the peak levels of bending and tor

sional oscillations induced at every wing station. 

In this chapter, studies made on an optimal reduced -

order observer design are reported. It was considered that 

if an obse·rver- were to be used to provide some measure of 

reliability, (in software), to the SLACS in reconstructing 

any missing feedback signals, then it would be w·asteful of 

computer storage and time to reconstruct signals which were 

in any case already being measured. Such was the case of 

the full-order·observer designs considered earlier, (see 

Chapter 5), where those signals associated with the 'safety 

law' were being reconstructed within the observer system. 

For the implementation of a SLACS it is expected that the 

presence of those motion variables connected with the 
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'safety law' will always be guaranteed by using a suitable 

hardware redundancy scheme. Thus it will not be necessary 

to re-construct these signals using an observer; furthermore, 

a reduced-order observer will pose a much simplified synthe

sis problem. Since it was important that the aircraft with 

observer system should perform comparably with the FSVF de

signs considered earlier, (see Chapter 4), only reduced-order 

observer designs using optimal control techniques were in-

vestigated. 

The problem of the decrease in performance of the op

timal regulator when an observer is incorporated to estimate 

some or all of the state variables of a linear system occup

ied the interest of many authors* for over a decade. How-

ever, it was the paper of Sarma and Deekshatulu (1968) which 

encouraged further interest in performance deterioration due 

to the use of observers. A number of errors in this paper 

led to an incorrect expression for the decrease in performance of 

th.e observed system;· . Porter and Woodhead (1968) have published 

as part of their paper, a corrected version of the problem con

sidered by Sarma and Deekshatulu, but it was Newmann(1969) 

who further suggested that the result of Sarma and Deekshatulu 

was incorrect due to a misunderstanding of the wa~ in which 

errors arise when using an observer. 

In a second paper, Newmann (1970) considered two separate 

optimal control approaches to the design ofobserve.rs for 

* See Eisenberg and Sage (1966). Sims and i.lelsa (1968), 
Burns-and Kumar ~1967), Bongiorno and Youla (1968). 



150 

linear systems using quadratic performance measures. One 

approach constrained the feedback gain to be the gain matrix, 

which solves the quadratic optimal control problem assuming 

that complete state measurements were available. The second 

approach left the feedback matrix as a design variable in the 

specific optimal control problem. Miller (1973) showed that 

due to an error in Newmann's paper, (Newmann (1970», the two 

approaches considered led to different results and further 

showed that the optimal feedbacK gain matrix was the same 

whatever the approach. Arimoto and Hino (1974-) have shown 

that the amount of performance deterioration. ~J. can only 

be made arbitrarily small if n-p = 1. where n is the order 

of the system whose state is to be observed and p is the 

order of the observer. For the case where n-p,) 2. the per

formance deterioration. 6J. is finite and may be large. 

An assumption made for analytical convenience in the 

design of a full-order observer. (reported in Chapter 5), was 

that the initial state. X(o), was always known. Newmann 

(1969). showed that setting the initial state. x (0). of the -e 

observer equal to the initial state of the system satisfied 

the optimal performance criterion used for the observer de

sign. In practice, it is unlikely that the initial state 

of the system would be known and Newmann(1970). and more im

portantly Miller (197J). have proposed a theory for design 'of 

optimal minimal order observers where only the mean values 

and the covariance of the initial state of .the system needed 
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to be known. Maeda and Hino (1974) have also proposed a de

sign algorithm for optimal minimal-order observers but pre

ferrad to use as a basis for their derivations, a frequency 

domain approach of the Luenberger observer (Luenberger,L1966V· 

In Section 6.2 of this chapter, the theory for optimal 

minimal-order observer design, proposed by Miller (197), is 

briefly outlined. Since the work reported has been conducted 

entirely in the time domain it was decided that the design 

method proposed by Miller was the most appropriate for in

vestigating the feasibility of using minimal-order observers. 

A small addition was however made in the specification of the 

optimal performance criterion,proposed by Millerl the per

formance index was chosen to take the same form as that used 

for obtaining previous results, (see Chapter J) i.e. the out

put vector was weighted instead of the state vector as pro

posed by Miller. This addition was necessary in order that 

w~ightings may be placed directly ~pon those variables approp

riate to the bending and torsional moments at each wing station 

considered. The change, however. did not affect the final de

sign specification of the reduced-order observer. 

In Section 6.) •• the method used for modelling the observed 

system is described and in Section 6.4 •• is included some of 

the results 'obtained which illustrate the effecti~eness of the 

performance of the observer design. 



6.2. THEORY. 

'.The theory outlined in this section is, with the ex

ception of a small addition in Section 6.2.2., principally 

due to Miller (197)). To avoid duplication, detailed proofs 

have been omitted and only the main results presented. 

6.2.1. Specifications of the Minimal-6rder Observer Design. 

For convenience, some of the equations derived pre-
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viously are re-included in this section. The system under con

sideration is described by, 

= Ax + 

= ex + 

Bg, 

Eu· 

.. (6.1) 

•• (6.2) 

where !",-Rn, g,4S.Rm, ;Y~RP and matrices A,B,C and E are of 

appropriate ~imensions. (6.1) is the state equation which was 

given as (3.4); (6.2) is the output equation given earlier as 

(2.11). It is required to design a reduced-order Luenberger 

observer represented by the equations I 

• Fz + G;y* + Hg, •• (6.)) z = 
- L;y* + M~ •• (6.4) x = 

as t· •. & .... ~ } .. (6.5) 
,'. D& -.. D2:£ ~. \.l0 

where !€.Rr, .Y:*E.Rn-r, and where Fis (r"r), G iser" (n - r)), 

H is (r" m); Lis (n" (n - r)), M is (n"r) and D is (m .. n). 

(6.5) is the control law defined earlier as (5.4). Since the 

vector, !e' was used previously to indicate a vector composed 

entirely of reconstructed states, here, ~ is used to indi

cate that vector which is composed of some measured state var-
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iables with its remainder consisting of re~onstructed state 

variables. The measured state variables are represented as 

in (5.2) by the equation I 

'11.* = C*x .. (6.6.) 

C* is the p x n. (in this case(n~r)x n). matrix defined in (5.2). 

For (6.) to be an observer, the following must hold • 

= F~ 
e = z - Tx - -

• • (6.7) 
.... (6.8) 

where ~ is defined as an error vector, (~e. 'Rr ) and T is 

defined as an (r" n) transformation matrix and where, 

TA - FT = GC* 

H = TB 

LC*"+ MT = I 

•• (6.9) 

.. (6.10) 

•• (6.11) 

If matrices T. M and L can be found which satisfy (6.11), by 

majcing use of the relation; 

the sUbstitutions I 

F = TAM 

G" = TAL 

I •• (6.12) 

•• (6.1) 

.•• (6.14) 

are necessary and sufficient for the satisfaction of (6.9). 

By postmul tlplying (6.12) by (g"r 1 and premul tiplying the resulting 

equation by (~<f) it is easy to show that I 

•• (6.15) 

.. (6.16) 



TL = 0 .. (6.17) , 
C*M = 0 .. (6.18) 

Substituting for ~ in (6.4»)! using (6.8) and making use of 

(6.11), gives I 

~ = X + M.!!, .. (6.19) 

The optimal control. ~o. of (6.S) may then be given byl 

.•• (6.20) 

It is seen that when the observer transients have decayed. 

the error vector • .!!,. is zero and (6.20) reduces to the op

timal control law determined earlier as ().26). 

Substituting (6.20) into (6.1) and (6.1) into (6.7) and com-

bining the resulting equations yieldsl 

!~::J[ =] .. (6.21) 

(6.21) can be used to·model the closed-loop response of the 

observed system~ where. from (6.8). 

£,(0) = ~(o) T.! (0) .~(6.22) 

Thus the observer matrices may be solved . ·by determining 

T. M. L. D AND. t(o) and the problem constraints are 

equations (6.4). (6.21) and (6.22). 

t It was proposed to carry out these tests in a slightly dif
ferent way fro~those reported upon in Chapter 5. In Chapter 5. 
the responses of the FSVF system and the observed system were 
obtained by combining the equations associated with each system 
i.e.(S.)2) and (5.))) were used. Although this required only 
a single computer run. it repeated some results already obtained 
in the FSVF tests (reported upon in Chapter 4). Thus for the 
tests reported upon in this Chapter. it was only necessary to 
make response checks on the observed system (by using (6.21». 



6.2.2 

same 

The Optimal Control Problem~ 

The performance index (p.i.) was chosen to take the 

formt as that used for obtaining previous results (see 

Section 3.3.2)lthe output vector was weighted instead of 

the state vector as used by Miller. (1973). ThUS I 

"" 
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~ (J) = i( :t:'. Q .:t: + !! ' . R. .!! ) d t .,(6.2J) 

where ~(.) denotes the expectation. operator. 

It is easily shown that by sUbstituting for :t: and u using 

(6.2) and 6.20), (6.23) may be rewritten aSI 

~(J) = (?[(!'~' )(Q + (YD)' + YD + D'RD . 
J~ M'(YD)' + M'D'RD o 

, .. ,.~; 

where. 
Q = C'QC 

E'QE + '" R . - R 

Y = C'eE 

YDM + D' RDM\ (2f)a 
M'D'RDM ) e ~dt 

.. (6.24) 

.. (6.25) 

.. (6.26) 

•• (6.27) 

Assume that P is an (n + .r) x (n. + r) constant positive def

inite matrix. which in partitioned form, satisfiesl 

P12) (A+BD BDM) + : ~A+BD)' 0 .)(Pll P12) 
P22 0 TAM \ (BDM) , (TAM) , P21 P22 

fo. + (YD)' + YD + D'RD YDM + D'RDMt . 
+ \M'(YD)' + M'D'RD M'D'RDM )- 0 

- .•• (6.28) 

t To retain consistency with Miller' s derivations. the.t; 

previously used for analytical convenience is omitted from the 

p. f (Equation 6.23). 
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Then as long as 3(t) and ~(t) approach zero with time, 

Since for any vector E and matrix P, the following equality 

holds (Brockett,1970), 

E'P E = tr (PJrQ') 
·t •• (6.JO) 

(6.29) may be written aSI 

?(J) = 

It is assumed that the initial conditions 3(0) are unknown, 

but that the mean and covariance of. the initial state, are 

known and given bYI 

1;(3(0» = !!! 

~[ (3(0) - ID>' (3(0) - ~'l-J = Lo 
•• (6.J2) 

•• (6.JJ) 

By using (6.J2) and (6.JJ), (6.J1) may be shown to be given bYI 

tr~(p l1:
P 

12)" 
LI P21 P22 

.,.' . 

~
z;, + !!!'!!' I - ~T' +' !!!<,~(o)-T!!!)' j-- - - _. __ - - - - - - _1- _________ _ 

, , '-T2t, +<,~(o)-T!!!)m' I TlbT'+<'~(O)-T!!!)<'~(O)-T!!!) _ 

.. (6.J4) 

l' 
"tr' is in this case used to denote the trace of a matrix. 



Thus the optimal control problem is to determine the matrices 

M.T.L,Pl1 , P12 • P21 ' P22 and the vector ~(o) subject to the 

constraints (6.11) and (6.28). 
. . 

The constrained optimization problem is converted to an un

constrained problem by adjoining the constraints (6.11) and 

(6.28) to the performance measure (6.)4) via Lagrange multi

pliers. The resulting Lagrangian. 1 . iSI 

"" tr 

(Q + (YD)' + (YD)+D'RD 

+ \M' (YD ). + M' D • RD 
. YDM + D' RDM ) ~r;.' 1 
M'D'RDM r' 112 

+ 2 (LC* + MT - I)D' 

.. (6.35) 

rand n are matrices of Lagrange Multipliers and the number 

2. in the expression is used for analytical convenience. Nec-

essary conditions for optimality are. (Athans and Schweppe. 

(1965». 

a§ =0 1~ = 0 81 =0 
c31~ aT aL 

a§ =0 and 
aD - 0 

The gradient matrix notation is described in some detail in 
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the Matrix Minimum Principle of Athans, (1968). Differentiating 

(6.)5) with respect to p, M. T. L. D and ~(o) in turn givesl 
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d$ , 
-= 
dP 

-Tu T' + !!!. (~ ( 0 ) - Tm)' ) 
T2bT' + (~(o) - T!!!)(~(o)-T!!!)' 

o ) 'I- (A+ BD . BDM \ (rh Ci2\ 
(TAM) , ' \ 0 TAM) 121 f22) = 0 

.. (6.)6) 

J2 = fiT' +[D'. (B'PH + RD 'I- Y') 'I- A 'T'P21 J r12 -;;/iYi 
+ [D'(B'P + 12 RDM) + A'T'P22 ] 122 = 0 

•• (6.)7) 

oi = M'n + P21 [112M'A' -~o -!!!!!! ' ] aT 
+ P22 [£;2 M'A' + TZ -0 (~(o) - T!!!)!!!'] = 0 

.. (6.)8) 

.. (6.)9) 

_ •• (6.40) 

T!!!) = 0 .. (6.41) 



6.2.). The Optimal Observer. 

The Bemmas used by'Miller to develop the design pro

cedure for the optimal observer are stated in this section. 

In particular. it was shown that the design parameters for 

the optimal observer can be found by essentially solving two 

algebraic Riccati equations. 

Let the feedback matrix, D, of (6.5) be defined aSI 
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•• (6.42) 

It is seen that provided the weighting matrices are 

the same, (6.42) is exactly the same as ().)6) which was de-

rived earlier. 

Statement of Lemma 1. 

Let T, L and M be matrices of appropriate dimension 

such that (6.11) is satisfied. Assume that (TAM) is a sta

bility matrix and letl 

= 

where, Pl1 is the solution ofl 

+ C'(Q - QER-1E'Q)C = 0 

Then (6.28) has a unique solution withl 

P12 = P21 ' = 0 

Do = D 

... (6,43) 

.. (6.44) 

•• (6.45) 

.. (6.46) 
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Statement of Lemma 2. 

Assuming that Lemmal holds. (6.)7) and (6.)9) may be 

satisfied simultaneously. if I , 

n = - (D'RDM + A'T'P2Z) • 122 M' .. (6.47) 

.Statement of LemmU!. 

Assume that Lemma 1 holds I assume that P22 is the pos

iti ve definite solution of the equation obtained by taking 
5tJk>~,"", 

the lower right rj*H'titioll of (6.28)' i. e •• 

+ (TAM) 'P22 + M'D'RDM = o .. (6.48) 

and set. 

~(o) = Tm 

then the matrix of Lagrange multipliers III exists and the 

necessary conditions for optimality are satisfied if and only 

ifl 

TZ .. + 

and. 

C; M'A' 22 

= 

Statement ot Lemma 4. 

+ TAM 122 M' = o •• (6.50) 

.. (6.51) 

Let S. V and M be any (rxn). (n><p) and (n><.r) matrices 

which satisfy. 

.. (6.52) 
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then there exists matrices L, T and 122 of appropriate dimen

sions such that (6.11) and (6.50) are satisfied simultaneously 

if and only if I 

L = (MG2M'A' + 4,). C*: (C* I:oc*,·)-l 

T = S - SLC* 

and r22 satisfies the algebraic Riccati equation 

where I 

A ~ S [I - ~C*' (C*. ~o .c*,)-lC*] AM 

Il ~. C*. AM 

R ~ C* lb C*' 

Q ~ S~ (I - C*'(C*·~o·c*,)-l~c*~~o)S' 

.. (6.5) 

.. (6.55) 

.. (6.56) 

.. (6.57) 

.. (6.58) 

.~(6.59) 

The optimal observer is virtually solved by Lemmas 1-4. Fur

'thermore, (6.44) has already been solved. (see Section ).).).) 

It only remains to show that a solution can be obtained for 

(6.55) and that the resulting observer is stable. 

Consider the deterministic, optimal control problem given bYI 

. -w = A'w + -B'v - -.. 
J=~(~'Q ~ + y~y) dt 

.. (6.60) 

•• (6.61) 

(6.60) and (6.61) define, the well-known state regulator pro

blem, and sufficient conditions for th'e existence of an op-
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-tima1 control law for (6.60) are that, R,be positive def-

inite, Q, be at least non-negative definite and that the pair 

~',B~ be comp1et~ly controllable. (Ka1man (1960), Athans and 

FaJb, (1966)). The optimal control law is then given by 1 

v* = •• (6.62) 

where f22 is the positive definite solu~ion of (6.55) 

From definition (6.58)' R is clearly positive definite if it 

is ensured that,~ , is positive-definite. 

To show that Q is positive definite, consider the change of 

variables, 

.. (6.63) 

.. (6.64) 

substituting for R using (6.58) and expanding the r.h.s. of 

(6.64) yields. 

X'R X = !!.' (C*IbC*')!!. + !!.' (C*~s')~ + ~'(S~C*')!!. 

+ w'(S~C*')(C*lbc*,)-l{c*~S')~ 

.. (6.65) 

Y!' (SToC*') (C*~C*' )-l{C*liF)~ 

.. (6.66) 

The integrand of (6.61) is therefore the sum of (6.65) and 

(6.66) which iSI 
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~'Q w+ v'R V = .§.'(C*~1P*').§.· + ~'(S~C*').§. 

+ .§.' (C*;'S'):!! + ~'(Szt,C*' )~ 

= (.§.'~') [C*zt,C*' C*lbS] (!) s;c*' S .Z:os' •• (6.67) 

= (~'~')(~)~o.(C'S')(~) 

By definition. (6.52) .(~*) is nonsingular; thus the integrand 

of (6.61) is zero. if and only if sand w are both zero and 

this implies that ~r must be at least non-negative definite. 

Controllability requirement. 

It is shown indirectly below that the controllability of 

[A> .13'] is guaranteed if the system defined by I 

x = Ax 

Y.* = C*~ 

is completely observable. 

.. (6.68) 

•• (6.69) 

, Substituting (6.6J) into (6.60) and making the relevant sub

stitution for A. Band R using (6.65) - (6.58) respectively 

yields I 

! = (SAM) '.~ + (C*AIvl)·.§. •• (6.70) 

If ~ can be controlled through.§. in (6.70). ~ can be controlled 

through v in (6.60) because of the linear relationship (6. 6J) •. l"or 

[SAM , .. ; . CAM'] to be completely controllable. 
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(C*AM) 
Rank./\: = Banl£ (C*AM)(SAM)2 

(C*AM) (SAM) 
.. (6.71) = r 

• 
(C*AM) (SAM) r-1 

Consider the similarity transformation, 

(::) =" (:*)! •• (6.72) 

• 

(::) = (C*A)! 
• • 

•• (6.7) 
" SA 

(6.52) may be rewritten as, 

(V M) (~*) .-= I •• (6.74) 

• (C*AV C*AM)(~) x = C*A~ •• (6.75) • • 

and, 

(SAV SAM) (~*)! = SA! •• (6.76) 

or, 

(!~ (C*AV C*AM)(~~ •• (6.77) 
= 

SAV SAM x 

and, y. = ~1 (6.78) 

Luenberger. (1971), has shown that complete observability of 

the system (6.77), (6.78) implies complete observability of 

the partitions [(C*AM), (SAM~ .Thus matrix A will have rank 

to, since transposing a matrix does not change its rank. -

(Kuo. (1975») 



It only remains to show that the resulting observer will be 

stable. The closed loop system of (6.60) with control law 

(6.62) will have a system matrix, K', defined bYI 
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•• (6.79) 

since. the eigenvalues of the square matrix,K', will be the 

same as those of its transpose. K, where, 

•• (6.80) 

substituting for A, Band R using (6.56) - (6.58) respectively 

and using (6.52), the r.h.s. of (6.80) becomes, 

K = SAM - S(Mr. M'A' + ~ )C* (C*~ C*' )-1C*AM 22 ~"~ " .. (6.81) 

Substituting (6.58) and (6.54) into the above expression 

results inl 

K = (S - SHC*)AM 

= TAM " •• (6.82) 

The r.h.s. of (6.82) is seen to be identical to the observer 

partition of"(6.21) 



6.). Modelling the Observed Sys~. 

To test the design of the reduced-order observer using 

the model. CLEMENTI. it was assumed that the mean value of 

the initial state vector was zero. i.e. 
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"?(~(O» = m = 0 .. (6.8) 

The covariance matrix. ZO0 was the solution of the de

generate algebraic Riccati equation given as ().1G)1 because 

the state equation was linear, this covariance matrix is con-

stant I 

• • • ~[~(t) • ~. (t)] .. (6.84) 

Also,from (6.8), 

~[(!(O) - !'!)(!(O) - m)'] = ~ = ?[~(O) .~' (oH 
•• -(g.85) 

There was no need to solve the Riccati equation, (6.44) 

since the feedback law thus obtained w~s identical to that 

derived previously (see Equation J J~), provided only that the 
~ ~ 

weighting matrices Q and R were chosen to be identical to the 

corresponding matrices defined in (4.~) and (4.~ respectively. 

The feedback law (4.15) was used in every test associated with 

the reduced-order obs~rver. To obtain the obs~rver-parameters, 

it iso-necessary to form the matrices defined in (6.56) - (6.59). 

Since it was found from previous tests, (reported in Chapter 5), 

that the presence of four measurements, viz., w,q,6A and 6Ei 
gave the best results in terms of the transient behaviour of 

a pro"posed observer design, the permanent and assured avail-
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ability of these measurements was again as~umed in subsequent 

studies on the reduced observer. The matrix·C*·was arranged 

to.be of the form. 

C* = 1 0 0 0 0 • • • • • • • • 0 

0 1 0 0 0 • • • • • • • • 0 • • (6.86) 
0 0 1 0 0 • • • • • • • • 0 

0 0 0 1 0 · .. ' ..... 0 

In practice;. this was achieved simply by redefining the 

state vector of the model CLEMENTI so that the states w, q, 

~ and ~j; formed the first four elements of the state 

vector, ~; Since the matrix, S, of (6.52) could be selected 

arbitrarily, a convenient definition of S was, 

S = "'0 0 0 o , 1 0 0 • •••••••••••• 0 

0 0 0 0 0 1 0 • •••••••••••• 0 

0 0 0 0 0 0 1 0 , · . • • • • • • • .. (6.87) 
• • • • • 

• • • • .. • 
• • • • • .. • • • 

o. 0 0 0 0 0 0 ~ ••••••••• •• -; 1 

(6.87) thus ensured that the matrix (~*) of (6.52) was an 

identity matrix and thus avoiding the need for inversion to 

solve for the matrices V and M. 

The computer program MILEST was used both to determine V and 111 , 

and to solve the equations (6.56) - (6.59). The algebraic 

Riccati equation (6.55) was next solved which then permitted 

matrices, L of (6.5) and, T of· (6.54) to be obtained. It only 

remained to obtain the matrix of (6.21) to test the closed-loop 
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response of the observed system. The observer matrices were 

fixed as a result of the choice of, 'm, and,~ , and they were 

used in all subsequent tests. (6.22) was solved to determine 

the appropriate initial conditions to be used for the error 

vector, e. Substituting (6.8) into (6.49) for m results inl 

!(O) = Tm = 0 ;.(6.88) 

From (6.22), 
~(O) = ~(O) T~(O) 

= - T~(O) •• (6.89) 

(6.21) was forced by including into the equation, a vector,~, 

'acting through a driving matrix*, H. Thus for the purposes of 

making re~ponse tests, (6.21) was of the form I 

= 
[

A + BD 

o . , 
BDMJ [x] + [HoJ~ 
TAM. ~ 

•• (6.90) 

For comparison with previous results,. vector, ~, was set to 

the values specified in Table 4.4. , i.e. the aircraft with 

its observer system was forced to the same values of vertical 

velocity, :!!. and pitch rate, q, as used in the test situations 

A,B and C. In the case of the test situation A, the initial 

state vec'tor, x(O) was defined bYI 

~'( 0) ~. [7. 15 0 0 0 • • • • • • • • • • • oJ •• (6.91) 

Hence for test situation A, the vector ~(O) was finite. For. 

cases Band C, lS,( 0) '. hence a(o) were zero. 

* See Section 4.~ of Chapter 4. 
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The time responses obtained by assuming that only measurements 

of w, q, 0A' and .%. were available, with the observer being 
~ 

used to reconstruct the remaining states are presented in 

Figures (6.1) - (6.)). Time responses which were obtained 

earlier by employing FSVF* have been included in the plots for 

comparison. 

+ Figure (6.1) shows a representative set of time responses for 

~est situation A. The plots indicate that in flight situations 

such as case A, the observer woul'd be very effective in acc-

. urately estimating the unmeasured states of the aircraft. This 

close matching with FSVF designs considered earlier (Chapter 4) 

was however not possible in all test situationsl a demand for 

a finite value of vertical velocity, (Figures 6.2 and 6.)), 

indicated that the observer dynamics could be pronounced enough 

to affect the wing bending and torsional moments. These fluctu

ations in bending and torsional moments were however not sub

stantial and certainly not as great as those when full recon-

* In the description of the time responses the following 
abbreviations are usedl 
FSVF - Full state Variable Feedback. 
RSVF - Reconstructed State Variable Feedback. 

+ Only the wing root bending moment together with either 
pitch rate (q) or vertical velocity (w) are included in 
time-responses presented in this Chapter. The other res
ponses .did not show any unusual features which were not 
already evident from those responses presented. 
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~OMPARISON RESPONSE I FSVF WITH REDUCED-ORDER OBSERVED SYSTml, 

CASE C. 
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structed state feedback was used. (described in the previous 

chapter). In all cases. the observer transients settled within 

two seconds. 

It appears that the reduced-order observer besides being 

simpler to synthesize than the full-order observer. has an

other advantage I it produces closer matching to the aircraft 

responses expected if full state variable feedback were to 

be used. Use of the mean and covariance of the initial state 

vector has served the purpose of making the resulting observer 

design less sensitive to imperfect matching of initial condit

ions. 



CHAPTER 71 USE OF A MICROPROCESSOR AS A SELF-REPAIRING 

CONTROLLER (SRC); 

7.1. Introduction. 
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A consequence of either reducing the strength of the 

wing of the aircraft or increasing its span*, as a result of 

employing an active load alleviation scheme)is that a con

siderable degree of reliability of the control system, higher 

than that of both the basic airframe and its propulsive system, 

will be required. For provision of a SLACS, such reliability 

cannot be accomplished solely by hardware redundancy techniques 

because of the large increase in cost that this would incurl 

not only triplex (and often quadruplex) systems 'have to be pro-

vided, but the attendant increase in weight would inevitably 

result in a reduction of payload capability. Some enhancement 

of the system reliability is possible by using software re-

dundancy techniques, where, with the "safety law" operational, 

one of the observers of the type reported upon in Chapters 5 

and 6 may be ,used to reconstruct any missing feedback signals. 

With an effective full-state feedbaak scheme implemented, the 

bending and torsional moments at various wing stations will be 

reduced and it may then be possible to reduce the weight of the 

wing by as much as J% of the aircraft gross weight. (The net 

* For commercial aircraft.principally, it is, in view of the 
mounting costs of fuel, an economically attractive scheme to 
take advantage of the reductions in bending and torsional 
moments by increasing the span of the wing. The increased 
span reduces the induced drag and improves the fuel efficiency 
of the aircraft. Such a scheme has been implemented on the 
LockheedL-1011 ~istar (Fink. 1980). 
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weight saving may be slightly lower when account is taken of 

the need to provide extra hydraulic systems and actuators and. 

perhaps, providing extra strengthening of the areas around the 

active surfaces). 2% of gross weight can, in some aircraft, 

represent 7-10% of the payload. A hardware redundancy scheme 

will still be required for the servo-actuators and those motion 

sensors required for measuring* the variables of the safety 

law, vi z., IV, 0/ ,6'A' "'-- and IL 
TOt. ~. • "Eo • 

~ . 

In recent years, with the advent of small dedicated micro

processor units (MPU' s), it has become possible to synthesise 

complex control systems such as those which will be required 

for providing structural load alleviation. Such systems may 

for instance be used to enhance the safety and reliability of 

operation of the SLACS considered, bYI 

(a) Flight controller monitoring, i.e., ensuring that 
the 5-SVF feedback control law is available at all 
times during flight. 

(b) state-estimation, i.e., employing a suitable observer 
algorithm to recreate any missing states from what
ever feedback signals are available. in addition to 
those five states always available for the 'safety 
law'. 

(c) Sensor signal monitoring, i.e., use of a suitable 
Uvoter" routine to provide "majority rule" output 
from monitoring three identical signals associated 

* An accelerometer may be used to measure vertical acceler
ation and the signal integrated to obtain vertical vel
ocity; for pitch rate, a rate gyro will be required,and 
for the control surface deflections, position transducers 
could be employed. 
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with each state variable of the 'safety law~ Such a 
system would replace the mechanical voter used with 
the triplex motion sensor. 

(d) Self-checking. i.e., use of computer routines to 
check the logic outputs of one or more of the MPU's 
required for synthesising the SLACS. 

The final exercise of this research investigation was 

concerned with a demonstration of h~Y (a) may be achieved. The 

microcomputer sys:tem (rIlCS) available for use was a Bell and 

Howell PMS-500 Polynomialised Mic;rocomputer," discussed in 

section 7.2. of this chapter. The MCS was used to detect a 

simulated failure of a linear feedback controllerl once the 

failure in the feedback signal was detected by the MCS, a 

surrogate gain was employed which restored the feedback signal 

to its proper value. When used in this way, the MCS was re

ferred to as a self-repairing controller (SRC) which is dis

cussed in detail in Section 7.). The available MCS did not 

have sufficient core space to allow any of (b), (c), or (d), 

to be adequately demonstrated, and, in the course of the de~ 

velopment work on the SRC, it was established that the need 

to:, use floating-point software techniques was a serious per

formance limitation in respect of the sampling rate which could 

be achieved. A,number of suggestions)based upon the exper

ience gained in this work, about necessary performance features 

needed in any MCS employed for similar purposes in future are 

given in the Sonclusions. 
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7.2. The r~icrocomputer System. 

The Bell and Howell. PMS-500. is a dedicated micro

comp·uter system (/IlCS) which can be dMi'{)~e~w.ca particular 

application by means of PROM programming. All the arithmethic 

processing is carried out using word lengths of 20-bit* while 

16-bit word working is used for system processing. The MCS 

has a set of 256 instructions I each instruction is an 8-bit 

binary word. Figure 7.1 shows the necessary hardware com-

posing the MCS. 

* 

ANALOG/ DIGITAL EVENT KEYBOARD & DIGITAL !.IULTIPLEXER MULTIPLEXER DATA ENTRY CONVERTER 
I 

I H ~ PROM DATA RAM MICROPROCESSOR STORAGE (J2 x 16) UNIT (256 x 8) 

DIGITAL/ DISPLAY & ANALOG PRINTER CONVERTER 
, 

Figure 7.11 B & H Microcomputer System 

The basic system was siow when compared with other avail

able systems+ having a cycle time of 1 • .3)ts. for 20-bi t word

working. Timing also affected A-D conversion ratesl 

the Analog - Digital converter provided with the basic 

To maintain a degree of accuracy to about 5 significant places. 
20-bit arithmetic·is used. 

+ For instance systems based upon the M6800 and 8086 with typ

ical cycle times of 500ns. and 200ns. respectively. 
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system could not be used because the totaltime*'requiredt for 

a conversion was in excess of 5540~s. 'As a result. an external 

system (an Analogic MP6812) was used in place of the A-D con

verter in the P~lS-500. With the MP-6812 in operation the 

total conversion time achieved was in the region of 60~s. 

The MP-6812 also contained a sample-and-hold amplifier which 

enabled any particular signal to be held at its current value 

until sampled again. In the case of Digital-to-Analog con

version. the D-A conversion unit on the PMS-500 was retained 

since it was possible to achieve a total conversion time of at 

least 40~s. In the PMS-500 MCS. all arithmetic was carried out 

using floating-point software. This inevitably affected the 'cycl 

time' of any program used. 

* the expressions 'total time' or 'total conversion time' 
are used in this section to indicate the sum of the 
'software' and 'hardware' times required to achieve a single 
conversion. 
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7.). Self-Repairing Controller (SRC) 

Figure 7.2. shows the way in which a self-repairing con

troller may be implemented in practice. MPU #1 represents the 

flight controller. while MPU #2 represents the self-repairing 

controller. 

Vi 
[;]PU #1 

Vo 

w -
q ~c IOg\C -- A/D D/A 

--->?;» 

[vo 6A - CON- control CON-
6e. 6E • 

1 ~ 

~ VEHTEF = VERTER -- u.,,, 

6eo ~ 

vi 
MPU #2 

~o 

Figure 7.2. Self-Repairing Controller._ 

An input signal Vi is reJated to the corresponding output 

signal Vo by the equationl 

.. (7.1) 

where k. is the feedback gain. 
. 1 

MPU #2 samples the inputs Vi 

and output v 0 of the flight controller (lvlPU #1). MPU #2 would 

have its own voter program to select the correct sensor signa~ 

based upon a 'majority rule' output* and wou;ld also have surro-

" gate gain values ki stored in ROM. An estimate (vo ) of the out-

put signal is made by MPU #2 using the relationship I 

A A 

V = k •• v. o :L 1 

* See note (c). Section 7.1 
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The two output sienals Vo and ~o are compared to within a 

prescribed tolerance (see Figure 7.) by using some logic con

trol (to be discussed later) between MPU #1 and MPU #2; it can 

be arranged that only the correct signal (i.e. vc' Fig.7.) 

is chosen. The appropriate signals are then summed to obtain 

the actuator signals 

IF 
r--_":YE=S_< V -v 1< TOL >----"N""O ___ -, 

o 0 

V ""V C . 0 

Figure 7.)1 Selection of Correct Output~ 

The failure of signals in the flight controller, Le. 

MPU #1, was simulated. MPU #2 together with A-D and D-A con-

version hardware were represented by the PMS-500 microcomputer 

system. For simulation of failures. a test unit, referred to 
• 

as a Self-Repairing Controller Test Unit (SRCTU) was designed. 

Figure 7.4. shows a functional diagram of the SRCTU, while in 

Figure 7.5. is shown a photograph of the SRCTU in its case. 

In Figure 7.6, is shown a photograph of the hardware* used for 

simulating the self-repairing controller. 

* The TR'-48 Analog Computer.was not used in these tests but for 
subsequent tests on self-repairing control for the SLACS 
(reported in Section 7.4.) 
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FIGURE 7.4. - FUNCTIONAL DIAGP~M OF SRCTU. 

The triggering signals were used to activate the 

analog switches. SPDT switches were used with one ter

minal connected to the input (sensor) signal, and the other 

connected to signal ground. The triggering signals were 

pseudo-random TTL signals, which, when the frequencies were 

properly selected, resulted in a high degree of distortion 
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Figure 7.61 PMS-500 MCS AND ASSOCIATED TEST HARDWARE 



to the input signals. A typical set of input and output 

signals associated with oQe of the analog switches is shown 

in Figure 7.7. The gains, ki' were set up on the SRCTU by 

the use of l.inear lO-turn potentiometers, the end terminals 
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of which were connected to positive and negative supply rails. 

A selector switch was used to connect each potentiometer wiper 

to a digital volt meter (DVM) in order to set up the gain 

values accurately. The potentiometer wipers were also con

nected to the input terminals of mUltiplexer #2 (MUX2). The 

distorted signals from the analog switches were connected to 

MUX1. The signals were mul tiplexed to ensure that each signal 

was scaled by its corresponding gain value in the multiplier 

unit befCl!'e being routed to the PMS-500 NOS for checking. The 

multiplexing was controlled by the PMS-500 to ensure an ordered 

and repetitive sequence of sampling. Thus vi(l) and vo(l) were 

sampled, followed by vi (2) and vo (2) and so on. 

In the PMS-500 MCS, a program was written to sample the 

signals vi 

(where the 

and vo ' to determine the estimate Vo using (7.2), 
. ... 

ga~n ki was stored in ROM) to compare the signals 

voand Vo using the logic arrangement shown in Figure 7.) and 

to output the reconstructed signal, vc' In Table 7.1, is 

shown a segment of the program used to compare and select the 

appropriate signal according to Figure 7.). 
In Figure 7.8 is shown a typical result where the recon-

structed signal vc' obtained by sampling the input signal vi' 

and the distorted output signal Vo \Figure 7.7), has been 

plotted. The gain ki has been assumed to be unity. To determine 
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the maximum rate of processing each signal, a pure sine wave 

was used as an input signal. Figure 7.9 shows some results 

for a pure 20iiz.' sine wave. By counting the number of sam

pling steps clearly evident from the plot of the reconstructed 

signal. it was found that with the PMS-500 MCS programmed to 

process 4 independent sensor signals in sequenc'e, a sampling 

rate of 100 samples/so could be achieved,. As the frequency 

of the sine wave increased, the quality of reconstruction of 
/i n the . 

the signall.!'MS- 500 MCS deteriorated. In Figure 7.10, are 

shown some plots associated with' a signal, frequency of 50Hz. 

50Hz.,.was regarded as the limiting frequency above which the 

ADDRESS 

o 
1 
2 
3* 4 
g 
7 
8 
9 
10 
11 
12 
13 
14 
15 
o 
1 
2 

Table 7.1 I 

8-BIT CODE 

10100000 
10010000 
10100000 
00101001 
10010000 
10100010 
10100000 
10010000 
10100000 
00101000 
01000010 
10110001 
00001010 
01001000 
00001000 
10101010 
00001001 

INSTRUCTION 

Complement Multiplex Toggle 
Input from Digital Source 0 
Complement MUltiplex Toggle 
Write Reg 'A' to RAM Location 9 
Staticis e Multiplexer Address 01 
Complement Output Control Line 
Complement Multiplex Toggle 
Input from Digital Source 0 
Complement ;.lul tiplex Toggle 
WriteReg 'A' to RAM Location 8 
Subtract A from B 
Absolute Value of A 
Read RAM Location 10 
Compare 
Read RAM Location 8 
Skip if 1 in P Flag 
Read Ram Location 9 
etc. 

PROGRAM SEGMENT USED TO COMPARE Vo and v 
0-

* although having the same 8-bit code as Instruction 0, this 
instruction is different because the Multiplex Toggle was 
complemented in Instruction 2. 
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Figure 7.91 Input and Reconstructed Output Using 
20Hz. Sine Wave. Gain (kil=1. 

SENSITIVITY I 

O.2V/div. 
TIr,g BASE: 

O.4ms/div. 

~-----

Figure 7.101 In ut and Reconstructed Outnut Usin 
OHz. Slne \'iave. Galn ki = 1. 
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PMS-500 could not be relie,d upon to give an adequate recon

struction of the input signals for this application. However • 
. ; . 

from the results obtained, in Frevious chapters. when the 

rigid body variables and the control surface deflections 

were plott~d out. it was considered that a processing rate 

of 50Hz. would be adequate if a micro-computer system such as 

the PMS-500 was used to act as a self-repairing controller. 



7.4 SRC for the SLACS 

As mentioned in Section ·7.1. MPU's may be used to 

enhance the safety of operation of a SLACS in a variety of 

ways I these were described briefly in the same section. 

A possible scheme employing such MPU's to' provide flight 

controller monitoring. state-estimation and sensor signal 
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monitoring is shown in Figure 7.11. It is assumed that only 

those state variables connected with the 'safety law'are being 

measured and in addition, using a triple redundant scheme 

for the associated motion sensors. A 'voter' routine to 

provide 'majority rule' output may be incorporated into MPU(C1) 

and MPU(C2). MPU(C1) can be used to check each of three iden-

tical signals associated with each variable of the 'safety law'. 

MPU's B1.,-B4 will contain reduced-order observer* algorithms, 

which can be used to reconstruct missing state variables re-

quired, for instance, for implementing a l?-SVF law. MPU(B1) 

will reconstruct those missing state variables based upon a 

measurement of vertical velocity, w. MPU(B2) will provide an 

independent reconstruction of the state vector based upon a 

measure of pitch rate, q. The reconstructions provided by 

MPU's BJ and B4 will be based upon the presence of wand q 

and of w,q,6A and 6g. respectively, The presence of 4 separate 
l. 

estimates of the state vector will again require a 'voter' and 

this 'function can be fulfilled by MPU(C2). 

* Such observers will require less storage and CPU time 
than full-order observers for their implementation. 
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The 'measured' state variables together with the 

'estimated' state variables must then be scaled using the 

appropriate gain values connected with the optimal feedback 

law and summed to provide the actuator signals. Scaling and 

summing forms part of the function of the flight controller 

of the aircraft. Because the presence of those signals as

sociated with the 'safety law' must be continually assured, it 

is proposed that an additional microprocessor unit (MPU(A», 

be incorporated to monitor the signal path through the flight 

controller. It is th]s function which dictated the form of 

the study reported upon in this chapter, 

In order to assess the performance of the SRC in a more 

realistic situation having typical aircraft sensor signals*, 

the mathematical model HANDEL, was patched" on an EAI TR-48"", 

Analogue computer. It was not possible to consider models of 

higher order for this test because of the limited amount of 

integrators available on the TR-48. In Figure 7.12 is shown 

a functional diagram of the way in which the test was carried 

out. The signals+w,q,6A and~. were connected to the SRCTU 
1 

where they were multiplexed with their appropriate feedback , 

* "A vertical 'gust' signal was used to drive the model. The 
gust signal was produced as the output from a Butterworth 
filter which was one of the 'components of the gust generator 
shown in Figure 7.6. The gust generator was designed in 
an earlier study, (McLean,1976). 

+ Since the PMS- 500 MCS was limited to 4 output channels on 
the D-A converter, and since for all tests, the outboard 
elevator deflection 6E was zero, this signal was not used 
as part 9f the SRC tes~s. 
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gains* using logic control from the PMS-500 MCS. Each signal, 

together with its appropriate gain. was then scaled and the 
-

resulting signal sampled by the PMS-500 MCS, (at point A, 

Figure 7.12). The SRCTU was also used to simulate a serious 

flight controller failure by providing as its output the ap

propriate scaled signals with a high degree of distortion 

associated with each of them. 

A program was then written (Appendix V), for the PMS-500 

MCS which sampled the pure and distorted signals. These signals 

were compared according to Figure 7.3 and as described in 

Section 7.3. The correct signal 'sample' was then stored 

in an 8-level data stack. A second pair of signals was then 

compared and stored in the 8-level stack and so on. After all 

4 sets of signals had been sampled .. the first four locations 

of the 8-level stack were output to the D-A 'converter and the 

whole program cycle repeated. 

In Figure 7.13 are shown the pure signals (point A, 

Figure 7.12) plotted together with the corresponding re con-
, 

structed output (point B,Figure 7.12). It is seen that as 

predicted from the results reported upon in Section 7.3, the 

sampling rate of the system used was quite adequate in pro

viding a reasonable amount of self-repair to distorted feed

back signals. 

* These gains were in this instance not stored in the 
PMS-500 MCS but were set up independently as analogue 
voltages using the gain potentiometers on the SRCTU. This 
approach was used to minimise the need for data transfers 
through the A-D and D-A converters. 
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CHAPTER 81 CONCLUSIONS 

8.1 Concludin~ Summary 

This research" investigation was concerned with a study 

of the application of optimal control theor~ in conjunction 

with advanced electronic technology, to provide for current and 

future operational aircraft a means of alleviating structural 

loads (on such aircraft) when subjected either to deterministic 

manoeuvre demands or to flying through atmospheric turbulence, 

or both, by the use of continuously active control surfaces. 

The aircraft type chosen for the study was the Lockheed 

C-5A and the specific aim was to design an active control system 

which would reduce the bending and torsional moments acting on 

the wing of the aircraft. This choice of aircraft was made be

cause all the data required were available in Stone (19"72) and 

Harveyand Pope (1977), although only info~mation about the 

longitudinal motion, and then only for a single flight condition, 

was provided. A body-fixed axis ~ystem was employed principally 

because the criteria for aircraft handling and performance are 

normally expressed in this set (Schwanz (1972)), and because 

pilot "response appears to be mostly based upon body-fixed motion 

cues (Qundry (1977)). 

The most complete mathematical model employed for the 

subject aircraft was referreq to as ARNE and was discussew in 

detail in Chapter 2 of this report. The model, ARNE, was of 

order, 79, and contained representations of rigid body motion, 

structural flexibility effects, actuator dynamics, gust dynamics 

and unsteady aerodynamics. 
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The rigid body motion of the aircraft was represented by 

the linearised. small perturbation equations associated w~th 

the short period model the lon~-period variation of the for

ward speed. known as the phugoid mode. was not believed to be 

significant. The chief reason for this is that it was consi

dered that the variations in~and q (the variables associated 

with the short period motion). are unlikely to affect u and 0 

(the variables normally affecting the phugoid mode). in any 

significant way. Thus only vert,ical velocity. w •. and pitch 

rate. q. were included in' the state vector of ARNE. 

For the representation of structural flexibility effects. 

up to fifteen bending modes associated with the wing of the air

craft were included. with frequencies ranging from O.8Hz (for 

mode 1) to 8Hz (for mode 15). However. it was observed that the 

frequency associated with the short-period motion was only sep

arated from the frequency of the first bending mode by a factor 

of 4 and this gave cause for some concern since it was known 

that if any frequency coupling occurred. it might not be possible 

with any APCS desi~n. to sufficiently augment the damping of 

coupled modes. It was found in all tests carried out that it was 

possible to obtain a feedback law which resulted in a separation 

of a factor of 8 or more between the two frequencies. 

Three control surfaces were employed and these werel sym

metrically deflected ailerons. and separately driven inboard and 

outboard sections of the elevator •. However. only signals to the 

actuators associated with the ailerons and the inboard sections 

of the elevator were used as control inputs for the SLACSI the 

outboard section of the elevator was left free to respond to 

other commands such'as may be required for carrying out normal 

in-fli~ht manoeuvres. 
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A Dryden filter was employed for the simulation of 

atmospheric turbulence. Although a Von Karman. model is in 

closest correspondence with the observed behaviour of turbu

lence. this model cannot easily be programmed because of a non

integer exponent in its p.s.d •• (See Eq.2.58). However. the 

Dryden model provides a p.s.d •• (See Eq.2.59). which closely 

matches that of the Von Karman model. although some small dif

ferences do occur between these models at the higher frequencies. 

It was considered that any,AFCS designed to provide load allevia

tion will cause the damping of the bending modes to be so aug

mented that most of the energy will then be contained in the 

rigid body motion. As a result. the differences at high frequen

cies between these models will be of little consequence. 

Unsteady aerodynamics were represented in the modeL ARNE, 

by KUssner and Wagner lift growth functions. Although these func

tions are more accurately represented graphically, such represen

tations are extremely difficult to incorporate into the model 

equations, and, therefore, well-established approximations (for 

instance,Bisplinghoff et al (1966)), were employed. In Harvey and 

Pope (1977). in the evaluation of the Kussner and Wagner function~ 

an error was noted (McLean and Prasad (1980B)), where the value 

of the chord of any aerofoil sections considered. was used insteac 

of the semi-chord. However. the Harvey and Pope representation 

was followed in this work to permit valid comparison of results. 

Since the chief aim of the research was to achieve some 

reduction of bending and torsional loads on the wing of the air

craft. it was necessary to form an output equation, Eq.2.11, 

from which such loads could be determined at any time. Normal 

mode theory was used to derive such equations. 
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Quite early in the research study it became evident that 

in terms of computational requirements, ARNE would be too large 

to handle on the computing facilities available at LUT. As a 

result a number of lower order models were considered, viz., 

BACH. of order 42; CLEMENTI. of order 24;· FAURE, of order 17; 

GERSHWIN. of order 14; and HANDEL, of order 5. However, because 

all the lower order models were derived from the model, ARNE, 

only this model was described in detail in Chapter 2. 

In Chapter 3, those aspects of the theory relating to the 

design of a feedback controller to· provide for the subject air

craft a certain amount of structural load alleviation were pre

sented. Because of the nature of the problem~ i.e., the re~ 

quirement that two of the control surfaces of the subject air

craft be used to affect up to 56 output variables, application 

of optimal control methods were considered to be the most ap

propriate. Specifically, the problem was cast as the optimal 

output regulator. A particular disadvantage, however, of synthe

sising any feedback laws obtained as solutions of the optimal 

regulator problem is that full-state variable feedback (FSVF), 

is required and it was therefore proposed to make some tests 

employing reduced-order control. However, it was first decided 

that some consideration be given to establishing the controlla

bilityand stabilisability of each model employed. 

In Chapter 3, it was stated that complete state control

lability is a sufficient, but not a necessary, condition for 

closed·loop system stability (Larson and DressIer (1968». If 

the original state description of the aircraft was itself stable, 

then this alone was a necessary and sufficient condition for 

.~ 
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obtaining a feedback law which would guarantee the stability 

of the closed-loop system. The dynamic stability of the un

controlled aircraft was most easily checked by observing the 

signs of the eigenvalues of the coefficient matrix of the state 

equation (Le., matrix A of Eq.(J.4». 

All the questions raised so far, and reported upcn· 

in Chapter 3,were considered in the following Chapter. However, 

some aspec~s of the theory still remained to be considered, in 

respect of the type of problem formulation to be pursued, i.e., 

whether a solution of the Linear.Quadratic Problem (LQP), as 

opposed to the Linear Quadratic Gaussian (LQG) Problem,was to 

be attempted. Solution of the LQP involves a purely determi

nistic approach,'while solution of the LQG attempts to take ac

count of the effects of atmospheric turbulence and of any mea

surement noise present. It is usual to employ a quadratic per

formance index (p.i) as a means 'of assessing the quality of 

performance achieved by the use of any feedback law derived. 

Such a performance index was characterised by the use of 

weighting matrices (typicallyQ' and G matrices, see Eq. (J. 3) ), 

on the state and control vectors. in its integrand. It is very 

difficult to determine the most appropriate values which must 

be used in the selection of Q and G matrices and,although a few 

methods have been proposed (Bryson and Ho (1969b)', Harvey and 
J-f"'" Stein (1973», none of these ~~ found to be suitable and cl1erefo 

empirical methods were employed. 

In·the solution of the LQP, or the LQG, provided that the 

weighting matrices are in each case chosen to be identical, the 

resulting control law will be the same. However, in the case 
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of the LQG, it is assumed that the state vector, ~, is not 

available for feedback. instead, an estimate of ! has to be 

formed for which a Kalman-Bucy filter drive'n by the output, Yo, 

and the control, ~, can be employed. However a Kalman-Bucy 

filter is in practice difficult to synthesise because of its 

dimensionality. It was considered that since the feedback law 

obtained will be the same, whatever the approach, if full state 

feedback were to be employed and a Kalman-Bucy filter not im

plemented, the worst that would be likely to occur is that 

Rome decrease in the performanc'e cost will resul t.Wi th strong 

feedback control, the attendant perf;JL'mance degradation is not 

likely to be great. Thus the solution of the LQP was adopted 

in all further tests. However, since it was realised from the 

onset in the research study that it,will not be possible to 

implement FSVF, two separate approaches to the problem were 

proposed, viz., 

(a) use of reduced-order control, 

and (b) use of Luenberger observers, in particular reduced

order observers, (which would be simpler to synthe

sise" al though they. do not take explicit account of 

the presence of noise), to see 'whether it will be 

possible to recoup some of the advantages of full 

state feedback control. 

(a) forned the basis of Chapter 4, while work on observers,(b), 

was reported in Chapters 5 ami cl. 

From a closer study of the model, ARNE, it became evident 

that the transfer functions representing the Wagner dynamics 
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in this model were almost identically unity (see Figure 2.4). 

Since BACH only differed from ARNE by the omission of the 

Wagner dynamics, BACH was used in subsequent tests to represent. 

the aircraft. However, further tests made by comparing the 

time responses to identical inputs obtained for the models 

BACH and CLEMENTI (in Chapter 4), indicated that a further re-

duction in model complexity was possible, for these time res-

ponses did not differ greatly even when what appeared to be 

severe manoeuvre demands were made on either model. (see Figures 

4.1-4.)). CLEMENTI only differed from BACH in the omission 

of the upper. nine bending modes. and, from considering th~ res-

ponses, it appeared that these'· higher bending modes were not 

contributing significantly to the total aeroelastic energy ~on-

tained in the wing of the aircraft. Thus the model CLE~lliNTI 

was regarded as being of the highest order needed for any 

work associated with the design of a suitable SLACS for the 

subject aircraft. 

The remaining models were used principally in those in

vestigations employing reduced-order feedback control. By the 

use of these models. it was possible to determine the effect 

which the absence of one, or an entire groupo~ feedback variables 

had upon the performance of a SLACS. All reduced-order feed-

back laws were however tested in conjunction with the model. 

CLEMENTI. FAURE included equations representing the same dy

namics as the model CLEMENTI. but excluded both the vertical 

gust and the Kussnerdynamics. The model GERSHWIN. howeve~ . . 

reintroduced both the gust and the Kussner dynamics. but in

cluded in its description only the first bending mode and its 
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rate, the higher modes being neglected. This model was used 

primarily to test the hypothesis that much of the bending ener

gy (60% or more), is contained in the first bending mode 

(Schwanz, (1972». The model. HANDEL, only contained in its 

description the rigid body motion variables and the variables 

associated with the actuator dynamics. 

In the study. all the control laws derived, and the air

craft dynamics, were tested by means of digital simulation. A 

number of artificial test situations, (see Tables 4.1 and 4.2), 

involving both manoeuvre command inputs and disturbing the air

craft with simulated atmospheric turbulence were employed for 

assessing and comparing various SLACS schemes. 

The effectiveness of any control law derived was carried 

out initially, by inspection of the eigenvalues of the closed

loop syst'em and then by making appropriate response checks 

using the artificial test situations. 

Eigenvalue analysis was carried out primarily to deter

mine the extent to which the damping of the structural bending 

modes had been augmented by the use of a particular SLACS scheme. 

From a comparison of eigenvalues of the uncontrolled aircraft 

with the controlled aircraft (Table 4.), it was found that the 

frequency separation between the first bending mode and the 

short period mode had been increased from a factor of 4 to a 

factor of 8 although the basic handling qualities of the aircraft 

had remained essentially unaltered. The damping ratios of modes 

1,).5 and 6 were increased as were the frequencies of modes 

1,),4,5 and 6. The damping ratio of mode 4 was halved from 0.04 



to 0.02. The dynamic characteristics of mode 2 remained un

changed. It was also noticed that the roots associated with 
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the outboard elevator servo and the Kussner dynamics remained 

unchanged,a result which was not unexpected, since previous tests 

showed that although these dynamics were stable their correspon

ding states were not controllable. Thus, any model incorporat

ing either the outboard elevator dynamics or the Kussnerdy

namics,or bot~were found to be not completely state controllable. 

With full state variable feedback. (control law.Eq.I.j..6). sul: 

stantial reductions of the wing bending moments. of the order 

of 50% or more were easily achieved (Figure 4.7), although at 

a cost of a small increase. (of about 12%). in torsional moments 

sustained at the wing root (Figure 4.8). However by adjusting 

the weighting matrices in the performance index of the optimal 

control problem. it was always possible to effect simultaneous 

reductions in the bending and torsional moments sustained by 

the wing in response to some command or disturbance. Figures 

4.10-4.12 show one such set of results for control law of Eq.4.15, 

where. for tee wing root, for example. whe'n a reduction in bend

ing moment of 40% was achieved. a reduction in torsional moment 

of about 5% could be achieved simultaneously using this control 

law. 

Be.cause of the obvious practical difficulty of implement

ing FSVF, a number of simulation tests on the aircraft was car

ried out employing reduced-order control. Tests made on reduced

order feedback control demonstrated how it was possible to re

duce the number of variables being fed back from 24 to 5. while 

still maintaining an acceptable level of alleviation of the 



205 

effects of the airloads. 

It turned out that the five variables were relatively 

easy to measure being vertical velocity, w, pitch rate, q, 

aileron deflection, 6A, inboard elevator deflection, ~. and 
1 

outboard elevator deflection, 6E • It was however necessary to 
o 

investigate the effects of any further loss of feedback and 

this led to a ~ystematic scheme of tests made on the model 

CLEMENTI with various combinations of the gains associated with 

5-SVF in the feedback loop. By means of eigenvalue analysis, 

it was possible to establish the condition that both pitch rate, 

q, and aileron deflection, 6A" must always be available as feed

back signals to guarantee the stability of the closed-loop SL~CS. 

However. in all subsequent tests in the research, it was assumed 

that all five variables would be available for feedback and 

consequently 5·SVF was referred to as the 'safety law'. 

It was found that the handling qualities of the aircraft 

were essentia'lly unimpaired by the use of different control laws, 

although. with the 'safety law' operational, oscillations in the 

bending moments on the wing of the aircraft occurred (Figure 4.1J) 

which" it was considered, could result in the accumulation of 

fatigue of the wing structure-. 

Since the research was primarily concerned with the re

duction of stru?tural loads on the wing of the aircraft, and 0 

since in all tests carried out, each SLACS was judged princi

pally by .the steady-state level of load reduction it provided. 

a method was developed. (reported in Section 4.4.Jc), for 

quickly evaluating the steady-state load levels from a knowledge 
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of the aircraft dynamics and the command vector being applied. 

The results of tests using the method showed (Table 4.7), 

that, in almost every case where reduced-order control0own to 

five motion variables). was employed, some reduction in bending 

and torsional loads on the wing was possible. However, with 

the 'safety law' operational, it was only possible to achieve a 

bending moment reduction-of about 25% at the wing root. From 

this result it was concluded that reduced state feedback, 'Nhich 

may result because enough sensors cannot be provided, or, when 

present. cannot provide accurate measurement, or may have failed 

in their operation,may be expressed in terms of the increased 

level of bending moments which will result • .In addition. 

there can be some oscillation in the bending responses. With 

higher orders of feedback, the reduction was in the region of 

40%. Such a result also served to confirm the previous remark 

that much of the aeroelastic energy appears to be contained in 

the first bending mode. 

Eigenvalue analysis indicated that the response time of 

the inboard elevator servo was required to be reduced by some 

400 times (a requirement which cannot be met in practice: see 

Wood and Lewis (1978)), in order to achieve the required structu

ral load alleviation. However, in none of the artificial test 

situations used in the research were the observed actuator 

rates so high as to be unachievable by currently available 

servo-actuators. It was concluded that such a high rate will only 

be required for a step change, for example- in angle of attack. In 

normal in-flight manoeuvres or even in atmospheric turbulence. th 

corresponding rate required may be well within the capability 

of present-day servoactuators. 
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Simulation tests involving atmospheric turbulence confirmed 

the result obtained from the deterministic tests. namely that 

the FSVF law, derived on the basis of the model CLEMENTI, was most 

effective in causing sUbstantial reductions in bending moments 

at ~ll five different wing stations. including the wing root. 

(see Figures 4.19 and 4.20). 

A separate method was employed (due to Swaim et al (1977». 

for predicting the r.m.s levels ~f bending moment at each wing 

station when the aircraft was 'flying' in simulated atmospheric 

turbulence. The tests showed that redu~tions in bending moment 

of between 80%-95% were achievable (Table 4.8). Even at the 

wing tip. where the ailerons are located, the reduction was 

greater than 80% when using FSVF control. With only the 'safety 

law' operational. a 25% reduction was still achievable at the 

wing tip. and better than 25% at the other wing stations. 

The synthesis of any SLACS ought to employ the highest 

order of feedback feasible. consistent with economic and practi

cal hardware constraints such as weight, cost and volume. Al

though FSVF resulted in the greatest reductions in bending and 

torsional moments on the wing of the aircraft. it was evident 

that it would not be possible to synthesise such control laws 

for two principal reasons. viz;. 

(a) a few of the state variables. such as those associated 

with the Kussner dynamics. were only used for analy

tical convenience and do not in themselves have any 

explicit physical significance; 

and (b) even if it were possible to provide such a large 
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number of sensors. this would be very costly. 

especially when it is considered that triplex or 

even quadruplex systems will be required. 

It is also important that not too great a dependence 

should be placed upon the availability of a large number of' 

measurements. since. as demonstrated earlier in this report. 

sudden loss of such measurements results in an increased level 

of bending and torsional loads sustained in the wing. a situa-

tion which. if unaccounted for. could cause disastrous results. 

For the reasons mentioned above. a number of studies were 

made to improve possible flight integrity. while at the same 

time attempting to secure maximum load reductions. by the use 

of state estimators. or Luenberger obser'lers. to reconstruct 

any missing signals. Both full and reduced-order observers. 

driven by the available outputs and controls of the system, 

were investigated. 

In Chapter 5. a simple algorithm based upon optimal 

control methods was developed and used.to derive all the para

meters required for implementing a fu1l-order observer. The 

performance criterion employed in this case was a weighting 

of the error between the actual state and the estimated state. 

Minimisation of the associated performance index resulted in the 

solution of the 'gain matrix' of the observer. All work with 
.. 

the full·order observer was carried out using the model FAURE 

because this model differed from CLEMENT! only in the absence 

of the KUssner dynamics and gust dynamics. and it was not 

proposed to excite these dynamics in the tests. 
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Initially, the observer perforI!lance was 'lssessed by in

spectin'g I the eigenvalues of eacn new design and comparing these 

eigenvalues with those of the controlled aircraft. One such 

resul t (assuming that only vertical ve'loci ty, w, was available), 

was given in Table 5.1 which was produced by a simple choice 

of observer weighting matrices, i.e Eq.5.)7 and Eq.5.)8." Some 

difficulty was experienced regarding the placement of observer 

poles since the only means by which such placement could be 

achieved was by e.mpirical selection of Q and R weighting matrices. 

According to Luenberger (1966), there is little reason to 

choose observer poles much faster than the poles of the closed

loop system. However, for the observer design, indicated in 

Table 5.1, the, real parts of the eigertvalues of the observer 

should at least have been greater than those of the eigenvalues 

of the controlled aircraft (considered in this case to be ade

quately represented by the model FAURE). This observer design 

was nevertheless tested with the controlled aircraft by means 

of digital simulation. and using the same deterministic test si

tuations employed previously (Table 4.1). 

With the initial conditions of the aircraft and the obser-

ver perfectly matched, it was possible to achieve the same res

ponse as originally determined for the aircraft employing FSVF 

(see Figures 5.1-5.)). 'In a number of reports (Newmann(1970) , 

Arimoto and Hino (1914)),' it had been suggested that the per-

formance of an observer will deteriorate substantially if the 

initial .conditions'on its states are not matched with those of 

the system being 'Dbserved'. In an attempt to confirm the vali

dity of this proposition, a number of tests were made for the 
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situation where the initial conditions of the observer did not , 
agree with those of the dynamic model of the aircraft. It was 

shown that for the particular design studied. the observer was 

most sensitive to a mismatch of initial conditions·on vertical 

velocity. w; somewhat less sensitive to a mismatch on pitch rate, 

q: and least sensitive to a mismatch of inboard elevator def

lection. 6E .• The strong sensitivity to a mismatch of initial 
l. 

conditions on vertical velocity was believed to be a result of 

the original specification of the particular observer design 

studied, viz •• reconstruction of the system state was to be 

achieved by providing an accurate measurement of vertical velo

city •. In addition. these results were not wholly unexpected 

because of the questions raised earlier. about the suitability 

of this particular observer in respect of the poor placement 

of its poles. 

Further tests (involving only different choices of weighting 

matrices) showed that it was possible to obtain a desired set of 

dynamics associated with each observer design although it was 

not possible to establish any fixed pattern for a suitable choice 

of weighting matrices. A workable design would therefore only 

result from carrying out a large number of test computer runs. 

during which, both the locations of the observer's eigenvalues 

and the response of the aircraft. with observer i~~orporated, 

need to be checked. 

A number of further tests were proposed for new observer 

designs based upon the availability of other measurements. viz •• 

q. 6A and 6E .• With only pitch rate. q. assumed to be available, 
l. 

no significant change in the observer performance was recorded 
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when compared with that of earlier d~signs based upon the avail-
, . 

ability of vertical velocity, w. However, further tests showed 

that, as would be expected, the availabilit~ of more measurements 

had a beneficial effect upon the aircraft's response. With w 

and q available simultaneously, the bending moments experienced 

in the wing of the aircraft were init~ally quite severe although 

the transients decayed quickly «ls.,see Figure 5.11.). With the 

presence of all four signals, viz., w, q, 6A, bg, the transient 
1 

excursions in bending moments were much less than in the pre-

vious design but the decay of such transients 'were not as fast. 

in some cases lasting up to 4 seconds,(Figure 5.1Z). Also the 

observer 'gain matrix' associated with the measurement of four 

variables cont"ained some elements which were large (» 103 ). It 

was considered that in practice it will be inappropriate to use 

gains >162 because not only the pure signal will be amplified but 

also any noise signal 'present in the feedback path. ConseStl!ently 

the re~ults associated with this test may not be ~~~iev8ble i~ ~ra 

tice. How~vir. it is possible that further numerical experiment 

with different weighting values in the Q and R matrices may pro

duce a workable design with the type of performance indicated 

in Figure 5.1Z, 

The full-order observers reported upon in Chapter 5 were 

regarded as being sUb-optimal. The chief reason for this was 

that an attempt was made to minimise the error between the re

constructed state and the actual state of the system without 

taking account'~'what amount of controlling action will be re

quired. Secondl~ these observers were used to reconstruct those 

signals associated with the 'safety law', for the implementa-
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tion of a SLACS. it is expected that. the presence of those mo

tion variables connected with the 'safety law'. i.e •• w. q. 6A• 

6E. and ~ will always be guaranteed by using a suitable hard-
10. 

ware redundancy scheme. Thus it was considered that if an ob-

'. server were to be used to provide some measure of reliability • 

. (in software) to the SLACS by reconstructing any missing feed-

back signals. then it would be wasteful of computer storage and 

time to reconstruct signals which were,in any case,already being 

measured. Thirdly. the full-order observers considered were all 

extremely sensitive to mismatching of initial conditions bet

ween the state vector of the aircraft and those of the observer 

model. 

For these reasons. an optimal minimal-order observer de-

sign, proposed by Miller. (1973). was considered and reported 

upon in Chapter 6. In this case. ·the design parameters were· 

chosen to minimise the expe~tation of the regulator cost functio-

nal,and not the state estimation 

of .the aircraft was not required 

error. Further. 
'ou" to be known. t!::he 

th~ initial stai 
only 
mean values 

and the covariances of the initial conditions were required. In 

the study the mean value of the initial state vector. ~ •. was 

taken to be zero and the covariance matrix. Zo' was taken as the 

solution of the degenerate Riccati equation given as (J.76). 

(see previous work reported in Section J.3 on the solution of 

the covariance matrix). The observer matrices,when solved. 

were fixed· as a result of the choice of ~ and ~ and these mat

rices were used in all tests reported upon in Chapter 6. Also. 

regardless of the initial conditions of the aircraft. the ini

tial conditions required to be set ·on the observer states were 
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also fixed and had to be evaluated for eayh new test situation 

by means of Eq;6.·8:1. The test situations employed previously 

were again used to.allow comparison of results obtained. Since 

it was found from previous tests (in Chapter 5). that the pre

sence of four.measurements • viz •• w. q. 6A and ~. gave the 
1 

.best results in terms of the transient behaviour of a proposed 

observer design. the permanent and assured availability of these 

measurements ""3." again assumed in all studies using the reduced-

order observer. 

Dynamic response tests indicated that the observer design 

considered 'was, in particular. less sensitive to imperfect match

ing of initial conditions •. In the case A test situation. the 

response of the aircraft (with the observer incorporated) was iden

tical to those responses obtained when FSVF design_were consi

dered (Figure 6.1). However. when more severe manoeuvre demands 

were made on the system, it was noticed that the observer dy

namics could be sufficiently pronounced to affect the wing bendin~ 

and torsional moments (Figures 6.2 and 6,'J). These fluctuations 

in bending and torsional moments were nevertheless insubstantial 

and certainly were not as great as those obtained when full-order 

observers were employed. In all cases. the observer transients 

settled within 2 seconds. 

In general then.the observer tests showed. that. even with only 

a few measurements. it was possible to reconstruct fairly ac

curate estimates of the state vector which, in turn, allowed 

full state feedback c.ontrol,together with its attendant advan

tages,to be made possible. The tests have also served to demon

strate that part of the flight integrity requirements for imple-
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menting the SLACS may be met by empl?ying:software reliability. 

In general a hardware redundancy scheme will still be required 

for the servo-actuators and particularly those mot1on sensors 

from which the 'safety law' is derived. 

With the advent of small dedicated microprocessor units 

(MPU's). it has become possible to consider the practical prob

lem of synthesising complex control systems such as those which 

will be required for providing s~ructural load alleviation. 

Such systems ma~ for instance, be used to enhance the safety and 

reliability of operation of the SLACS considered by providing: 

(a) Flight controller monitoring 

(b) State-estimation 

(c) Sensor signal monitoring 

and (d) Self-checking. 

The final exercise of the research investigation (reported 

upon in Chapter 7). was concerned with how (a) may be achieved. 

A Bell and Howell PMS-500 Micro-computer System (MCS) was used 

to detect a simulated failure of a linear feedback controller. 

Once the failure in the feedback signal was detected by the MCS, 

a surrogate gain (stored in ROM) was employed, which restored the 

feedback signal to its proper value. When used in this way. the 

MCS was referred to as a self-repairing controller (SRC). The 

available MCS did not have sufficient core space to allow any 

of (b). (c) or (d) to be adequately demonstrated. although. a 

possible schem~ was described in Section 7.4. Also, in the 

course of the development work on the SRC, it was established 

that the need to use floating-point software techniques was a 



215 

serious.performance limitation in respect of the sampling rate 

which could be achieved. 

For the simulation of failures, a test unit, referred to 

as a self··repairing contro~ler test unit (SRCTU) was designed. 

Because the.D-A converter on the PMS-500 MCS was limited to 4 

output channels, the SRCTU was designed to continuously process 

a maximum of 4 signals at a time. A failed signal was produced, 

in the SRCTU, by periodically grounding the pure signal (vi)' 

in apseudo-random fashion,(Figure 7.7). In addition, this sig

nal was scaled by means of an analogue multiplier unit, by using 

an appropriate gain value (k~). Thus, one of the output signals 

of the SRCTU was related to its corresponding input signal, by, 

v = k.v. 
01.1. 

... (8.1) 

The signals Vo and vi were then sampled by the PMS-500 MCS. 

" Using a surrogate gain (ki ), the PMS-500 MCS was programmed to 

produce an estimate of the output signal, based upon 

the sample of the pure signal, 

In'the MCS, the two signals Vo 

a prescribed tolerance and by 

... (8.2) 

A 

and Vo were compared to within 

this.means it was possible to 

arrange that only the.correct signal level was output through 

the D-A converter (Figure·7.8). 

All the tests reported upon in Chapter 7 were based upon 

simultaneous processing of 4 sets of signals. To determine the 

maximum rate of processing, it was arranged that one of these 

signals was a pure sine wave whose frequency could be varied. 
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The results showed that with the PMS:-500 MCS programmed to pro

cess 4 independent signals in sequence, a sampling rate of 

100 samples/so could be achieved. However it was found that 

50Hz should be regarded as a limiting frequency above which the 

PMS-500 !ilCS could not be relied upon to give an adequate recon

struction of the input signals (Figure 7.10). 

In order to assess the performance of the SRC in a more 

realistic situation having typ'ical aircraft sensor signals, the 

mathematical model, HANDEL, was simulated on an EA! TR-48 analogue 

computer. The model was continuously driven by means of a 'gust' 

signal derived as the output from a Butterworth filter. The 

signals 11', q, 6A and 6E• were connected to the SRCTU where they 
1 

were failed'before being sampled by the Pr.1S-500 MCS (Figure 7.12). 

From the results obtained, (Figure 7.13), it was evident that 

the system used was adequate in providing a reasonable amount 

of self-repair to distorted feedback signals. A number of areas 

of study however remained to be considered and these are treated 

in the remaining section of this Chapter. 
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8.2 Recommendations for further wo·rk 
( 

1. There.remains a clear need for further investigation of 

the suitability of the mathematical models employed in 

this research for the design of structural load allevia

tion control systems. Because of computational problems, 

the most complete model of the aircraft (model,ARNE), 

was not employed for the assessment of SLAGS schemes. 

Those less complete models used were a result of a number 

.of structural dynamic approximatiens and, in particular. 

the model GLEr,lENTI was a result .of a residualisation car

ried out on ARNE. Schwanz (1972) warns against the a 

prieri selectien of an inappropriate formulation since 

such selectien can lead to large errors in the design of 

the flight control system. Any such investigation should 

alse include a study of more accurate representations of 

the Kussner and Wagner functiens and of the actuater 

dynamiqs. 

2. The assessment of the SLAGS schemes may be enhanced by 

incorporating the effects of changes in flight conditions, 

.ef aircraft mass changes,and .of any coupling effects, 

whether structural er aerodynamic, produced as a result 

of lateral metion. 

). There remains a need fer a continued investigation re

garding the selectien .of suitable weighting matrices. 

The method proposed by Harvey and Steir. (1978). should 

be extended to include application .of weighting values 

on an output vecter .of any dimension. In addition. 
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there still exists a need for determining some possible 

explicit relationship between the selected weighting 

matrices and the desired output response of the aircraft. 

4. An attempt should be made to test the validity of the 

proposition made in Section 3.~1.2 that the incorpora

tion of a Kalman-Bucy filter into the feedback loop will 

not substantially improve the performance of the SLACS. 

However, particular note should be made of the fact that 

such a filter will only be required to be driven by those 

measurements which are easily available such as the signal3 

associated with the 'safety law'. Thus, wi th such a filter, 

it may be possible to recoup some of the bending moment 

reductions lost as a result of using only the 'safety law'. 

5. Because reduced-order Luenberger observers are simpler 

to synthesise, when compared with either a Kalman-Bucy 

filte~or a full-order Luenberger observer, further checks 

should'be made on the design considered to investigate 

the degradation in performance of the observer, in the 

presence of noise such as atmospheric turbulence or 

measurement noise. Some degradation in performance is 

expected since the 'observer design did not take explicit 

account of the presence of noise. 

6. The practicability of synthesising the SLACS designs 

considered should be further investigated by the use of 

microprocessor oriented computer systems (MCS' s). Such 

. systems will be required to be fast with cycle times of 

200ns., or less,since they will be required to work in 



'.' 

219 

real time. The storage requirements of such systems 

must also be highl for the reduced-order observer design 

studied, about 10k of ROM will be required to implement 

17-SVF. An MCS must also be capable of at least 16-bit 

Vlord working in order to maintain the numerical accuracy 

required, (for example when an observer algorithm is 

being implemented), in the manipulation of large matrices. 

7. An attempt should be made ~o confirm some of the findings 

of this research investigation by carrying out tests on 

the C-5A aircraft. The variables associated with the 

'safety law' will be easy to derive from appropriately 

positioned measurement sensors. Bending moments in the 

wing structure could be evaluated from computations on 
()..~ 

readings taken from a number of strain gttages. Such tests 

may however require modifications to be made to the 

actuation system incorporating the ailerons and inboard 

sections of the elevatorl since these surfaces will be 

continuously active, some strengthening of the areas 

surrounding the surfaces may be required; also, it may 

not be possible with· the hydraulic actuators employed 

on the aircraft, to derive the actuation rates required 

for load alleviation especially in atmospheric turbulence. 
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APPENDIX 1 

COMPOSITION OF THE STATE AND OUTPUT VECTORS OF EACH 

MATHEMATICAL MODEL CONSIDERED. 

1. ~RNE 

i 
a. State Vector 

-
Variable Symbol Vector Element 

Vertical Velocity W xl 

Normalised Pitch Rate q~ x2 2 
Rate of Change of Bending 'i Displacement x3-x17 ~ 

Bending Displacement 
(i= 1.2 ... 15) A. 

~ 
x1S-xJ2 

Aileron Deflection °A x3J 

Inboard Elevator Deflection 6e . 
~ x34 

Outboard Elevator Deflection be 
0 xJ5 

, 
! Kassner Dynamics - xJ6-x41 

I I 
Vertical Gust Velocity Wg x42 

I Wagner Dynamics - x4J-x79 I 
I 
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b. ~utput Vecto~ 

-'----------------t------t-------

~.-
Variable 

Bending moments at Wing 
Stations l-S 

Torsional Moments at Wing 
Stations 1- S 

Rates of change of B.M. at 
WS l-S 

Rates of change of T.M. at 
WS l-S 

Rates of change of Bending 
Displacement 

Bending Displacement 
(i=1.2 .. is) 

Aileron 

Inboard Elevator 
Rate 
Aileron Deflection 

Rate 

Inboard Elevator Deflection 

Vertical Velocity 

Normalised Pitch Rate 

a. State Vecto~ 

Symbol 

).. 
l. 

A. 
l. 

w 

Vector 
Element 

Yj 
j=2.4,6,8,10 

Y.k 
k=l1,lJ;lS, 

17.19 
Yl-
1=12,14,16, 

18,20 
Y2l-Y3S 

Y36-YSb 

YSl 

YS2 

YS3 

Y54 

Y5S 

Y56 
-' 

Xl - x42 identical to xl - x42 of ARNE 

No Wagner Dynamics included. 
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b. Output Vector 

Identical to that of ARNE. 

3. CLEliiEl'I"rI 

a. State Vector. 

I··' .. -------------------,r----- ------, 
Variable 

Vertical Velocity 
Normalised Pitch Rate 

Bending 

Bending Displaceme~t 
(i=1.2.3·4·5·6. ) 

Aileron Deflection 

Rate 

Inboard Elevator Deflection 

Outboard " " 

KUssner Dynamics 

Vertical Gust Velocity 

; Symbol Vector Element 

W xl 

q-h
2 

x2 
• 
-\ x3 Xs 

).i x9 - x14 

6A x15 

6e . 
1 X16 

6e 
0 Xl? 

-. xiS - x23 

Wg x24 
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b Output Vector. 

Variable - -
Symbol Vector Element 

Bending Moments (BM) at ws 1-5 - Yi, 1=1.3.5.7.9 
Torsion Moments (TM) at ws 1-5 - Y j, j=2.4,6,8,10 

BM Rates at WS 1-5 - Yk' k=11,13,15,17,19 

TM Rates at WS 1-5 - Yl' 1=12,14,16,18,20 

E~nding """or J--c..- Rates • 
at-W5-1-5 >-C' ';- \ ,l--'.'>''{I S-& 4- Y21 - Y26 

M~ Ben' Displacement >-j, Y27 - Y32 a;t--WS 1 5 ')< ~ -- \ 1')- " <\- {" (.. 

Aileron Rate !SA 
YJ3 

Inboard Elevator Rate 
~ Y34 

Aileron Deflection 4\ Y35 
Inboard Elevator Deflection 

~i Y36 
Vertical Velocity w Y 
Normalised Pitch Rate. q; 37 

12 Y38 

4. FAURE 

a. State Vector 

Xl - xl? identical to xl - xl? of CLEMENTI 

No Klissner Dynamics. 

No vertical gust. 

b. Output Vector. 

Identical to that of CLEMENTI.~ 
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5. GERSHWIN 

a. State Vector 

.. Vector 
Variables Svrnbols Elements 

Vertical Velocity " xl I 

Normalised Pitch Rate q~2 x2 
First Bending Mode Rate • 

":t xJ 
First Bending Mode Displacement· . 

~ x4 
Aileron Deflection 6A x5 
Inboard Elevator Deflection 6Ei x6 
Outboard Elevator Deflection be X7 0 

Mussner Dynamics -
xa-xlJ 

Vertical .Gust Velocity ~ x14 

b. Output Vector 

Identical to that of CLEMENTI. 

6. HANDEL 

a. State Vector 

Variable Vector 
Symbols . Elements 

Vertical Velocity w xl 

Normalised Pitch Rate ql x2 n2 
x] Aileron Deflection 6A 

Inboard Elevator Deflection 6e 1 
x4 

I 
Outboard Elevator Deflectiol'l °e x5 0 

I 
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b. Output Vector. 

Identical to that of CLEMENTI. 
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APPENDIX IT 

Expressing the Transfer Function of the Dryden Filter 

iLLTerms_of a State Variable Representation 

Equation (2.29) giveSI 

The vertical gust velocity is the given bYI 

Let, 

U I 
__ J). 

-2L W 
W g 

xp 

xp_l 

~ Wg 

~ Wg er. ~o. 7(t) W W 

... (II.l) 

... (II.2) 

• • • (IT. 5) 

••• (IT.6) 

(II. 6) was so defined in order that terms in 7( t). such as 

is found in (11.4) be avoided from the final expressions. 
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u 
X• - 2-0 x " p-l - - L p-l 

w 

... (n.B) 

Also. 
• •• (1I.9) 

(11.2) has now been rendered into state variable form given . 
by (11. B) and ( I I. 9 ) • 

Thus. 

U . --et x
p

_
1 = 

w 

• 1 p 

(n.l0) is of the 

U 2 

-p x 
w p-l 

0 xp 

form of (2.4 \, 

·z __ 
-g 

= 

1'1 = Li. 

k3 
(1-2,1j) + 1.( t) 

•• (11.10) 

~wf~ 
where a 

••• (11.11) 

••• (11.12) 

... (II.13) 
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APPENDIX rrI 

III.l Solution of the State Equation with Stochastic 
Inputs by the Transition Matrix Method 

The state equation given in (2.4) is: 

Se = A~ + Bu + G'l • •• (rrr.l) 

Let a solution of x be given by 

where, 
dl(t-t ) 
dt 0 ••• (rrr.)) 

Differentiating (III.2) and using (III.)) gives: 

iUt) = Ax(t) + sP(t-to ).C 1 (t) ••• (rrr.4) 

Comparing (III.l) and (III.4), 

Using (III.2) ana 

l(t-to) ,C l (t) = BU + G'l 
t 

= it [~-l(t_to)(BY + G"I~dt + C2 
o 

(rrr.6) , at t~= t o 

• •• (rrr. 5) 

• •• (rrr.6) 

... (rrr.7) 

Substituting for C2 of ~quation (III.7) into (III.6) and then 

sub,stituting for Cl in equation (rrI.2) gives: 

If(t) = ~(t-to)x(to) + l. {1(t-to ) ~-l(t_to)[BU(":)+Bg'lt(-r)¥d'Z:' 
to 

... (Irr.8) 
Using two well known properties of the transition matrix 

(Brockett (1970)). given by: 
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= ~(_'C) • • • (III.9) 

• • • (III,10) 

equation (III.8) can be rewritten in the form I 

~(t) = ~(t-to)~(to) + / j(t-t)By.(t:)dZ' + l.i(t-t)G"l( t)d'C 
t t' 

• o. , 0 

Deterministic' Solution ... (III,l1) 

The terms on the right hand side of (III.ll) correspond with 

those on the r.h.s of (III.l). Since the system is linear. the 

superposition theorem applies. Thus it turns out that the 

inclusion of atmospheric turbulence (represented by G1. in 

(III.l». simply results in an extra additive term to the 

deterministic solution. 

III.2 Computer Algorithm for Solution of the State Eguatio~ 

For numerical &olution of (III.ll). it is usual to 

assume the control ~ and the input noise.1. to be piecewise 

constant over the interval T. The interval. T. can be made 

as small as desired. 

Let 

.t\(T) ~ fa if(T-1:') .Z.dt ... (III,12) 

where. Z. is a general driving matrix. If the system is 

regarded as being discrete. (III.ll) may be re-expressed aSI 

~ lir+l)T] = mfTl .3[rT] + ,\.[T] .u[rT] +6g [T}Z[rT] 

... (III,13) 
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In this research. the Dryden filter*. driven by white noise. 

~. was used to introduce simulated atmospheric turbulence into 

th~ model. If the model was to be subjected to disturbances, 

then the matrix G. in (III.1), was set to the appropriate 

coefficient values specified according to equation (11.10) of 

Appendix II, using the relationship given by (2.8). In a 

deterministic study, G would be set to zero. 

The transition matrix,~, may be expressed as a series 

expansion which converges if A is a stability matrix. To ensure 

convergence of that series in a limited number of terms, it is 

usual to determine .~, over a very small step size 6T, where I 

f!(6T) .. I + A6T + 

.... (III,14) 

The series is truncated by using a stopping criterion based 

upon the magnitude of the relative difference between elements 

of the ith term and the i+1th term, (Nicholson (1966». Re

peated squaring of ~(6T) results in ~(T) using a property of 

the transition m~trix thatl 

sfj( 26T) 

~ (46T) 
I 
I 
I 
I 

ll(n6T) 

= {>2(6T) 
= ~2(26T) 

I 
I 
I 
• 

= ~2(ncST) 
2 

... (rII,lS) 

= f$(T) 

Thus for a discrete interval (T) of 0.1 seconds, 6T may be chosen 

to be 0.78125E-3 and p(T) may then be obtained in 7 iterations. 

* See Appendix II. 
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From (rrI.12), if A is non-singular. 

.t.z(T) = A-t!tT)-I ].Z • •• (rrL16) 
or, 

AT2 ~3 } 6 z (T) = {IT + 21 + 31 + ... . Z • •• (rrL17) 

llz (6T) ={r6T + 
A(c5T)2 A2(6T)3 
2T +y. ,. ... }. Z 

• • • (rrL18) 

From (rrI.16) • 

llz (6 T) = A -1[ ~(OT)-Il.z 

Az (2oT) = A-1:~(20T)-I }.z 

[I + i(6T»). Az(bT) 
• • • (rrL19) 

= 

6z(n6T) = [I +(~) ]'L\(~) = J\(T) 

In the computer program RESPON. (Appendix IV). the 

stopping criterion used was to truncate (III.18). if the 

error between all corresponding elements of the ith term and 

the i+1th term was less than 0.001. Thus for a prespecified 

value of 6T. ~(6T) and tz(6T) were evaluated using (III.14) 

and (III.18) respectively. These calculations then allowed 

t(T) and a:T) to be determined using (III,15) and (rrI.19) 

respectively. The appropriate matrices were then sUbstituted in 

(III.13) and a recursive routine used to determine the state 

vector at each interval of time. typically every 0.1 seconds. 

The output vector was determined using the relationshipl 

... (rrI.20) 
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APPENDIX IV 

COMPUTER PROGRAMS 

Digital programming was used extensively throughout the 

period of this research. The bulk of the initial work relating 

to det'ermination of the feedback control laws and the obtaining 

of time responses of the aircraft was carried out using an~· 

ICL 19045 computer at Loughborough University of Technology 

(LUT). In the particular case of determining feedback control 

laws for the model BACH. the computer program. OUTREG. had to 

be split into a two-pass one and program runs carried out on 

a CDC 7600 computer at the University of Manchester. This 

computer has a greater storage capacity and is somewhat faster 

than the ICL 19045 machine at LUT. All the programs run on 

these computers were written in ALGOL 60*. During the latter 

stages of this research study. Loughborough University Computer 

Centre acquired a PRIME 400 computer which became available on 

a semi-interactive basis. All the studies relating to the ap

plication of obs-ervers were accomplished on the PRIME facility. 

As an ALGOL 60 compiler is not available on this machine. some 

of the computer programs+ written in ALGOL 60 were rewritten in 

FORTRAN primarily to facilitate speedier testing of the observer 

performance on a single computer, but also to improve the 

efficiency in terms of core and run-time requirements of the 

original programs. All the computer programs used are available 

in the Department of Transport Technology at Loughborough 

University and are described briefly in Table IV.l. 
* Originally written by Dr. D.McLean. Department of Transport 

Technology. Loughborough University. Loughborough. Leics •• LEll J 
+ 

See Table IV.1. 
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Table '!V.l Description of Computer Programs used. 

PRIME 400 ALGOL 60 
COMPUTER EQUIVALENT DESCRIP.l'ION. 
PROGRAM 

CONOBS OBSERVTROL Determination of Con-
trollability and/or 
Observabili ty 

RESPON STHRAN Transition Matrix 
Solution of the state 
Equations •. 

OUTREG OUTREG Solution of the Feed-
back Gain Matrix 

COVRNC COVAR Determines r.m.s. values 
of the output vector of 
the aircraft in response 
to simulated Atmospheric 
Turbulence. 

MILEST Uses Miller's Algorithm 
to determine all the rel-
evant matrices of an op-

, timal reduced- order ob-
server. 

RA PEST Determines all relevant 
matrices for a Full-Or-
der Observer design. 

--
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APPENDIX V 

MICRO-COMPUTER PROGRAM 

Prog Addr. Instr. ;:; 

Page Line No. Instruction pROM 8-bit code 

0 217 Load 1/10 11011.001 
1 074 Divide by 2 01001010 
2 192 Square A 11000000 
3 042 Load A to RAM 10 00101010 
4 147 Stat. MXA 0011 10010011 
5 162 Comp OCL 1 10100010 
6 113 Jmp. to PPG. 1 01110001 

0 7 
8 
9 

10 
11 
12 

I 13 
14 
15 

0 114 Jmp. to PPG.2 01110010 
1 130 Jmp. to LN.2 10000010 
2 114 Jmp. to PPG. 2 01110010 
3 
4 
5 
6 128 Jmp. to LN.O 10000000 

1 7 
8 
9 

10 • 
11 
12 
13 
14 
15 
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Prog Addr Instr. Instruction pROM 8-bit code Page Line No. 

0 160 Comp. MT 10100000 
1 168 Comp. SDT 10101000 
2 147 Stat. MXA 0011 10010011 
3 162 Comp. OCL 1 10100010 
4 162 Comp. OCL 1 10100010 
5 159 Stat. MXA 1111 10011111 
6 162 Comp. OCL 1 10100010 

2 7 156· Stat. MXA 1100 10011100 
8 160 Comp. MT 10100000 
9 160 Comp. MT 10100000 

10 145 Stat. MXA 0001 10010001 
11 162 Comp. OCL 1 10100010 
12 144 Stat. MXA 0000 10010000 
13 162 Comp. OCL 1 10100010 
14 145 Stat. MXA 0001 10010001 
15 162 Comp. OCL 1 10100010 

0 160 Comp. MT 10100000 
1 144 Inp. via Ch.O 10010000 
2 160 Comp. MT 10100000 
3 049 Load A to RAM 9 00101001 
4 144 Stat. MXA 0000 10010000 
5 162 Comp. OCL 1 10100010 
6 160 Comp. MT 10100000 

3 7 144 Inp. via Ch.O 10010000 
8 160 Comp. MT 10100000 
9 040 Load A to RAM 8 00101000 

10 066 B - A 01000010 
11 177 . Abs A 10110001 
12 010 Input to A (RAM 10) 00001010 
13 072 Compare 01001000 
14 008 Input to A (RAM 8 ) 00001000 
15 170 Skp. if 1 in P Flag 10101010 
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Prog Addr Instr. Instruction pROM 8·bit code Page Line No. 

0 009 Load A to RAM 9 00001001 
1 208 A to 8 Level Stack 11010000 
2 088 Ext State to P Flag 01011000 
3 171 Skp if 0 in P Flag 10101011 
4 117 Jmp to PPG 5 01110101 
5 146 Stat MXA 0010 10010010 
6 162 Comp. OCL 1 10100010 

4 7 162 comp. OeL 1 10100010 
8 160 Comp. MT 10100000 
9 163 Cornp. OCL 2 10100011 

10 160 Cornp.lIlT 10100000 
11 142 Jmp~ to LN 14 10001110 
12 
13 
14 144 Stat MXA 0000 10010000 

- 15 114 Jmp. to PPG 2 01110010 

0 
1 
2 
3 
4 158 Stat. MXA 1110 10011110 
5 162 Cornp OCL 1 10100010 
6 027 Input to A (RAM '27) 00011011 

5 7 077 Multiply by 2 010011 01 
8 070 Comp MSD 01000110 
9 208 A to 8 Level Stack 11010000 

10 156 Stat. MXA 1100 10011100 
11 103 

, 
A to Data Output 01100111 

12 163 Cornp. OCL 2 10100011 
13 027 Read RAM 27 00011011 
14 077 Multiply by 2 01001101 
15 070 Comp. MSD 01000110 
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Prog Adtlr Instr. Instruction pROM 8-bit code Page Line No. 

0 208 A to B Level Stack 11010000 . 1 157 Stat MXA 1101 10011101 
2 103 A to Data Output 01100111 
3 163 Comp. OCL 2 10100011 
4 027 Input to A (RAM 27) 00011011 
5 077 Multiply by 2 01001101 
6 070 Comp. l>'lSD 01000110 

6 7 208 A to B Level Stack 11010"000 
B 158 Stat MXA 1110 10011110 
9 103 A to Data Output 01100111 

10 163 Comp. OCL 2 10100011 
11 027 Input to A (RAM 27) 00011011 
12 077 Multiply by 2 01001101 
13 070 Comp. MSD 01000110 
14 20B A to B Level Stack 11010000 
15 159 Stat. MXA 1111 10011111 

0 103 A to Data Output 01100111 
1 163 Comp. OeL 2 10100011 
2 114 Jmp. to PPG 2 01110010 
3 
4 
5 
6 

7 7 
8 I 
9 

10 
11 
12 
13 
14 
15 , 
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APPENDIX VI 

COEFFICIENT MATRIX DATA MODEL CLEMENTI 

The state equation representing the dynamics of the subject 
aircraft is given in (2.6) as 

(VI.l) 

The appropriate output equation is given in (2.11) as 

:t. = Cx + Eu (VI. 2) 

For the majority of cases studied, the aircraft was 
considered to be adequately represented by the model CLEMENTI 
and only data relating to this model is included in this 
Appendix. A more extensive data set can be obtained in Harvey 
and Pope (1975). 

In Section 3 of Appendix I is shown a table of the composition 
of the state and output vectors of CLEMENTI. These vectors can 
be conveniently divided into subvectors by partitioning matrices 
A, B, G, C and E of (VI.l) and ·(VI.2) thus separating the rigid 
body dynamics, structural flexibility effects, actuator 
dynamics, Kussner dynamics and gust dynamics, viz., 

, 
w , , w 
l., Al A2 A3, A4 

, 
a 

_/,,~ ~.t 
+ 

- -, - - -1- -:\, )I, 

o "1 a 

~ 
. 

A 7' 
;.,. 

J.. AS. A6 1 AB 0 I" o a . . 
~~ -. - • "-" - = - - - - - - -?;.. SA 
0.:, a • 0 A9, 0 a &:, 
""- , -,- a.. 
- - - - - - - - - - - - - -

Bl 0 , ,- -fI 
, 

f. 
, 
, 

0 , 0 0 Ala' All f .. _ - - - - ,- - - - -,- - - r .. , 
, 

0 0 , 
- -

~ 0 0 0 0 An "1 
, 

0 Gl i 
'- -

(VI.3) 
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-

fBl w 8

J 
, 
Tl "r" + 
B2 • bE T2 Cl

1 
C2 C3 C4 0 .I.. 0 , 'c. • • • BS 

TS 
1 

$.. 
- - - - - - - - - - - - - - 1-, 

~1 
t1 

~4_ B2 I I 
12 CS C6 C7 C8 C9 &.. El • 8<.; • 
85 Se" 
TS 1', 

- - - - - - - - - I'" - -r -• }., · • '" 1"0. 
~~ 

j 
)" 0 Cl0 0 O. 0 

t.J~ 
0 

• 
1 

- - - - - - _1- - .. - - - -
0 I 0 Cll 0 I 0 E2 1 .L - - - - - - - - - - - - -

C~ 

~li. 0 • 0 I C12 , 0 0 0 , - - - - - - - - - -w 
~~. C13 0 

1
0 0 0 0 

Al and A3 are the coefficient submatrices 
rigid body dynamics, viz., 

describing 

Al = r= O.68EO _ 
.1.= O.SSEO 

0.328El[ 
0. 117E..:L 

A3 = I - 0.23E3 - 0.190E3 - 0. 301Eil l= 0.S76E3- 0.250E4 - 0.440E3 

A2 contains the coupling terms due to the structural 
flexibility effects on the rigid body motion, viz., 

,-
; 3 4 5 6 1 

A2. - 0.400E-01 -O.100E-01 - O.200E-Ol 0.200E-01 
0.400E-Ol -0.400E-01 -0.330E 00 -0.320E 00 

7 8 9 10 
- 0.200E-01 O.SOOE-Ol -0.640E 00 -0.6S0E 00 
- 0.120E 00 0.2S0E 00 -0.110E 00 -0.168E 01 

11 12 13 
, 

14 
-0.171E 01 0.4S0E 01 1 -0.136E 01 0.185E 01 
-0.103/ 02 -0.570E 01 2 -0.494E 01 O.911E 01 

(VI.4) 

the 

(VI.S) 

(VI. 6) 

(VI. 7) 



" A4 contains the coupling terms due to the Kussner dynamics, 
viz. , 

A4 = 

l_a~:8," 00 
0.271E 01 

19 
-0.70SE 
-O~lOSE 

20 
01 -0.920E 
01 -0.119E 

21 
00 O.OOOE 
02'0; OOOE 

22 ~-00 O.OOOE 00 (VI 8) 
00 O.OOOE 00 • 

AS contains the coupling terms due to the effects of the 
rigid body dynamics upon the -structural flexibility effects, 
viz., 

AS = 3 -0.149E 01 
4 O.SOOE-Ol 
S O.SOOE-Ol 
6 -0.111E 01 
7 -0.200E 00 
8 0.460E 00 
9 O.OOOE 00 

10 'O.OOOE 00 
110.OOOE 00 
12 O.OOOE 00 
13 O.OOOE 00 
14 O.OOOE 00 

O.llOE 00 
-0.900E-Ol 
-0.8S0E 00 
-0.990E 00 
-0.240E 00 

0.420E 00 
O.OOOE 00 
O.OOOE 00 
O.OOOE 00 
O.OOOE 00 
O.OOOE 00 
O.OOOE 00 

-

(VI.9) 

A6 represents the coefficient sub-matrix of the structural 
flexibility effects. 

A6 = 

-0.990E 00 -0.200E-Ol -0.lS0E 00 O.SlOE 00 0.200E-Ol -0.260E 00 
O.lOOE-Ol -0.470E 00 -0.700E-Ol -0.600E-Ol -0.100E-Ol O.OOOE 00 
O.SOOE-Ol -0.700E-Ol -0.129E 01 -0.410E 00 -0.300E-Ol -0.600E-Ol 
0.800E-Ol -0.400E-Ol -0.270E 00 -0.109E 01 -0.180E 00 0.440E 00 
0.600E-Ol -0.200E-Ol -O.SOOE-Ol -0.110E 00 -0.860E 00 0.120E 00 

-O.llOE 00 0.200E-Ol 0.400E-Ol 0.180E 00 0.100E 00 -O.llSE 01 
0.100E 01 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 0.100E 01 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.lOOE 01 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.lOOE 01 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.lOOE 01 

-0.299E 02 -0.409E 01 -0.166E 02 -0.406E 02 -0.S84E 01 -0.669E 01 
0.270E 00 -0.124E 03 -0.870E 00 -0.lS8E 01 -0.160E 00 0.lS1E 01 
0.140E 01 -0.6S0E 00 -0.193E 03 -0.lS4E 02 -0.980E 00 -0.31SE 01 

-0.200E 00 -0.680E 00 -0.937E 01 -0.243E 03 -0.718E 01 0.170E 02 
0.230E 00 -0.7S0E 00 -0.130E 01 -0.323E 01 -0.306E 03 0.608E 01 

-0.120E 00 0.201E 01 O.BOE 01 0.4S1E 01 0.477E 0'1 0.3S2E 03 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOF. 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE'OO O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 



A7 is the sub-matrix representing the effects of control 
surface deflections upon structural flexibility, viz., 

A7 = 

-0.340E 04 0.142E 04 0.260E 03 
-0.133E 03 ':'0. 292E 03 -0.639E 02 
-0.142E 04 -0.257E 04 -0.5B2E 03 

0.B04E 03 -0.253E 04 -0.625E 03 
-0.131E 02 -0.653E 03 -0.179E 03 
':'0.411E 03 0.112E 04 0.323E 03 

O.OOOE 00 O.OOOE 00 O.OOOE 00 (VI.ll) 
O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.boOE 00 O.OOOE 00 

L-
AB is the sub-matrix representing the effects of the 

Kussner dynamics on structural flexibil lty, viz. , 

AB = 

0.630E 00 -0.231E 02 0.66BE 01 O.OOOE 00 O.'OOOE 00 
-0.210E 00 0.16BE 01 -0.133E 01 O.OOOE 00 O.OOOE 00 
-0.230E 01 0.112E 02 -0.119E 02 O.OOOE 00 O.OOOE 00 
-0.101E 01 -0.426E 01 -0.115E 02 O.OOOE 00 'O.OOOE 00 
-0.330E 00 -0.400E-Ol -0.295E 01 O.OOOE 00 O.OOOE 00 

0.440E 00 0.163E 01 0.503E 01 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00' O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.ooot 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.O()OE 00 

(VI.12) 

A9 and Bl are the sub-matrices associated with the model 
of the actuator dynamics, viz., 

A9 z LO.600E 01 -O.OoO!: GO O.OOOE ill O.OOOE 00 -0.750E 01 O.OOOE 00 
O.OOOE 00 OO.OOOE 00 -0.750E 01 

(VI.13) 

Bl 
= ~~ 0.600E 01 O.OOOE O~ O.OOOE 00 0.750E 01 

17 O.OOOE 00 O.OOOE 00 
1...-

(VI.14) 



.. 
A10 is the sub-matrix representing the Kussner dynamics, 

viz., 

A10 = 

-0.222E 02 O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 
O.OOOE 00 -0.855E 01 O.OOOE 00 O.OOOE 00 0.855E 01 

_0.510E 01 O.OOOE 00 O.OOOE 00 0.100E 01 O.OOOE: 00 
0.909E 02 O.OOOE 00 -0.390E 02 -0.102E 02 O.OOOE 00 
O.OOOE 00 O.OOOE 00 O.OOOE 00 O.OOOE 00 -0.110E 02 

(VI.15) 
-¥ 

All is the sub-matrix representing the 
• 

," effects of vertical" • 
~usts upon the KU5s ner dynamlcs, viz., 

A11 = O.OOOE 00 
O.OOOE 00 
O.OOOE 00 
O.OOOE 00 
O.OOOE 00 

0.222E 02 
O.OOOE 00 
O.OOOE 00 
O.OOOE 00 
0.110E 02 

(VI.16) 

A12 and G,are scalar values representing the appropriate 
coefficients of the Dryden model of the gust, viz., 

A12 =' ,:0.5EO -0.6E--j (VI.17) O.lEl 0.0 

G1 e 1='0. 9 3E- TI (VI.18) I 0.26 EO 
-- -

The sub-matrices of C and E (VI.4) are defined as follows:. 
1 2 

Cl e 1 -0.~14E 05 -0.210E 04 
2 -0.168E 05 -0.176E 04 
3 0.216E 04 0.945E 03 
4 -0.869E 04 -0.123E 04 
5 0.325E 04 0.869E 03 
6 -0.457E 04 -0.457E 03 
7 -0.202E 04 -0.370E 03 
8 -0.637E 04 -0.110E 04 
9 -0.176E 04 -0.513E 03 

10 -0.364E 04 -0.702E 03 (VI. 19) 

32 = 4 5 6 7 8 
0.119E 05 -0.112E 04 -0.105E 05 0.596E 04 0.378E 04 -0.960E 

-0.137E 04 -0.102E 04 -0.171E 04 0.621E 04 -0.894E 03 -0.302E 
0.877E 04 -0.406E 03 -0.437E 04 0.402E 04 0.263E 04 -0.528E 

-0.173E 04 -0.107E 04 -0.204E 04 0.548E 04 -0.104E 04 0.326E 
0.540E 04 0.579E 02 0.106E 04 0.909E 03 -0.103E 04 -0.758E 

-0.193E 04 -0.104E 04 -0.174E 04 0.398E 04 -0.164E 04 0.878E 
0.284E 04 O.l72E 03 0.302E 04 -0.107E 04 -0.146f; 03 -0.194E 

-0.179E 04 -0.216E 03 -0.657E 03 0.132E 04 -0.340E 03 0.216E 
0.136E 04 0.996E 02 0.202E 04 -0.778E 03 -0.339E 03 0.211E 

-0.133E 04 -0.154E 03 -0.820E 03 0.858E 03 -0.678E 02 -0.424E 

(VI.20) 

04 
04 
04 
04 
03 
03 
04 
03 
04 
03 



- C2 .. -
9 10 11 12 13 14 

0.127E 07 -0.274E 06 -0.335E 07 0.196E 07 0.165E 07 -0.433E 07 
-0.796E 05 -0.270E 06 -0.570E 06 0.163E 07 -0.402E 06 0.156E 07 

0.100E 07 -0.104E 06 -0.147E 07 0.144£ 07 0.114E 07 -0.246E 07 
-0.781E 05 -0.276E 06 -0.607E 06 0.160E 07 -0.388E 06 0.150E 07 

0.647E 06 0.172E 05 0.358E 06 0.321E 06 -0.436E 06 -0.332E 06 
-0.706E 05 -0.264E 06 -0.451E 06 ~,()~116E 07 -0.648E 06 0.524E 06 

0.384E 06 0.469E 05 0.103E 07 -0.509E 06 -0.497E 05 0.862E 06 
-0.264E 05 -0.412E 05 -0.980E 05 0.253E 06 -0.743E 05 0.498E 05 

0.181E 06 0.327E 05 0.782E 06 -0.393E 06 -0.150E 06 0.111E 07 
-0.177E 05 -0.250E 05 -0.775E 05 0.145E 06 -0.281E 05 -0.301E 05 

'-
C3 = 

(VI.20) 

15 16 17 
-0.492E 07 -0.427E 07 -0.327E 06 

0.355E 05 0.232E 06 0.142E 06 
-0.986E 06 0.156E 07 0.103E 07 

0.732E 05 0.496E 06 0.186E 06 
0.162E 07 0.164E 07 0.602E 06 
0.185E 07 0.155E 07 0.465E 06 (VI.21) 
0.542E 06 0.146E 06 -0.557E 05 
0.541E 07 0.466E 06 0.152E 06 

-0.781E 06 -0.632E 06 -0.326E 06 
0.531E 07 0.294E 06 0.101E 06 

C4 = 
18 19 20 21 22 

0.746E 04 -0.132E 06 -0.183E 05 O.OOOE 00 O.OOOE 00 
0.878E 04 -0.211E 06 o .112E 04 O.OOOE 00 O.OOOE 00 

-0.279E 04 0.240E 05 0.683E 04 O.OOOE 00 O.OOOE 00 
0.629E 04 -0.112E 06 0.229E 04 O.OOOE 00 O.OOOE 00 

-0.181E 04 0.359E 05 0.710E 04 O.OOOE 00 O.OOOE 00 
0.139E 04 -0.610E 05 0.696E 04 O.OOOE 00 O.OOOE 00 (VI.22) 
0.151E 04 -0.262E 05 0.639E 03 O.OOOE 00 O.OOOE 00 
0.523E 03 -0.783E 05 0.205E 04 O.OOOE 00 O.OOOE 00 
0.194E 04 -0.212E 05 -0.271E 04 O.OOOE 00 O.OOOE 00 
0.172E 03 -0.448E 05 0.129E 04 O.OOOE 00 O.OOOE 00 

CS = 

11 0.181E 06 0.447E 06 
12 0.354E 04 -0.808E 03 
13 0.106E 06 0.273E 06 
14 0.585E 03 0.811E 04 
15 0.502E 05 0.130E 06 
16 -0.442E 04 -0.488E 04 (VI. 23) 
17 0.268E 05 0.590E 05 
18 -0.260E 03 -0.124E 04 
19 0.110E 05 0.250E 05 
20 -0.278E 03 -0.197E 03 



C6 = 

0.124E 07 -0.259E 06 -0.322E 01: 0.204E 07 0.173E 07 -0.451E 07 
-0.520E 05 ;;:0. 246E 00 -0.S21E 06 0.152E 07 -0.387E 06 0.158E 07 

0.982E 06 -0.995E 05 -0.139E 07 0.150E 07 0.117E 07 -0.254E 07 
-0.554E 05 -0.252E 06 -0.556E 06 0.150E 07 -0.374E 06 0.151E 07 

0.638E 06 0.187E 05 0.339E 06 0.348E 06 -0.425E 06 -0.355E 06 
-0.524E 05 -0.247E 06 -0.404E 06 0.107E 07 -0.640E 06" 0.552E 06 

0.384E 06 0.531E 05 0.106E 07 -0.5l5E 06 -0.398E 05 0.861E 06 
-0.770E 04 -0.270E 05 -0.454E 05 0.149E 06 -0.5532 05 0.573E 05 

0.182E 06 0.382E 05 0.792E 06 -0.398E 06 -0.142E 06 0.ll0E 07 
-0.747E 04 -0.166E 05 -0.450E 05 0.794E 05 -0.158E 05 -0.294E 05 

-0.3l2E 06 0.706E 06 0.568E 07 0.139E 07 0.572E 06 -0.130E 06 
-0.124E 05 0.136E 06 0.262E 06 -0.105E 07 O.268E 06 -0.124E 07 
-0.237E 06 0.391E\06 0.307E 07 0.7l0E 06 0.247E 06 -0.197E 06 
-0.206E 04 0.136E 06 0.302E 06 -0.906E 06 0.299E 06 -0.129E 07 
-0.153E 06 0.155E 06 0.857E 06 0.600E 06 0.8llE 06 -0.705E 06 

0.435E 04 O.lllE 06 0.132E 06 -0.684E 06 0.459E 06 -0.460E 06 
-0.877E 05 . 0.562E 05 -0.108E 06 0.7l7E 06 0.3llE 06 -0.126E 07 

0.368E 04 0.123E 05 -0.142E 05 -0.891E 05 0.604E 05 -0.147E 06 
-0.444E 05 0.132E 05 -0.254E 06 0.426E 06 0.204E 06 -0.105E 07 

0.770E 04 0.1.01E 05 0.751E 05 -0.704E 05 -0.790E 04 0.116E 06 

(VI.24) 

C7 = 

0.208E 09 ·0.979E 09 0.173E 09 
0.154E 08 0.2l8E 08 0.372E 07 
0.ll6E 09 0.590E 09 0.103E 09 
0.128E 08 . 0.141E 08 0.261E 07 
0.435E 08 0.280E 09 0.484E 08 
0.424E 07 -0.131E 08 -0.244E 07 (VI.25) 
0.128E 08 0.134E 09 0.239E 08 
0.977E 06 -0.2l9E 07 -0.478E 06 
0.147E 07 0.531E 08 0.965E 07 

-0.287E 07 -0.122E 07 -0.303E 06 -
C8 = 

-0.101E 07 0.442E 06 0.459E 07 -0.443E 04 -0.461E 06 
-0.688E 05 0.894E 06 0.103E 06 -0.470E 03 -0.898E 06 
-0.626E 06 -0.850E 05 . 0.276E 07 0.184E 04 0.425E 05 
-0.220E 05 0.827E 05 0.679E 05 0.480E 03 -0.107E 06 
-0.305E 06 -0.123E 06 0.131E 07 0.500E 03 0.107E 06 

0.163E 05 -0.163E 05 -0.607E 05 0.3l7E 03 -0.678E 04 (VI.26) 
-0.132E 06 0.142E 06 0.627E 06 -0.153E 04 -0.115E 06 

0.386E 04 0.168E 05 -0.104E 05 0.394E 03 -0.144E 05 
-0.537E 05 -0.4l0E 05 0.294E 06 -0.9l8E 02 0.567E 05 

0.380E 04 -0.240E 05 -0.579E 04 0.159E 03 0.234E 05 



C9 = 

Cl0 = 

Cll = 

C12 = 

C13 = 

O.OOOE 00 0.236E 05 
O.OOOE 00 0.454E 05 
O.OOOE 00 0.685E 03 
O.OOOE 00 0.308E 04 
O.OOOE 00 0.759E 04 
O.OOOE 00 -0.S50E 04 
O.OOOE 00 -0. 341E '04 
O.OOOE 00 -0.415E 04 
O.OOOE 00 -0.287E 04 
O.OOOE 00 -0.343E 04 

rl~ 
!-0.600E I O.OOOE 

·O·100E 
O.OODE 

01 O.OOOE 00 
00 -0.750E 01 

01 O.OOOE 00 
00 0.100E 01 

O.OOOE 001 
O.OOOE O~I 

O.OOOE 00 
O.OOOE 00 

"--

11 -0.849E 07 0.318E 07 
12 -0.127E 08 0.247E 06 
13 -0.617E 06 0.7S6E 06 
14 -0.104E 08 0.820E 06 
15 0.870E 06 -0.879E 06 
16 -0.55SE 07 0.112E 06 
17 -0.608E 06 -0.441E 06 
18 -0.17SE 07 -0.S18E 05 
19 -0.123E 07 0.11SE 06 
20 0.902E 07 -0.489E 05 

1
33 
34 
l-

0.600E 01 
O.OOOE 00 

O.OOOE 001 
0.750E 01 

(VI.27) 

(VI.28) 

(VI. 29) 

(VI.30) 

(VI.31) 

(VI.32) 

(VI. 33) 
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