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SUMMARY

Feedback laws based upon optimal control theory wefe de-
rived, ahd these resulted in a reduction of the structural loads
on the wing of a simulated éircraft. Various models of the
aircraft dynamics were used, the most complete being of order
79. This model included rigid body motion, structural flexi-.
bility effects, unstéédy aerodynamics, gust dynamics .and ac-
tuator dynémics.- The structural effects were characterised by
the firgst fifteen bending modes. The subject aircraft studied,
was considered to employ active ailerons and elevators and was
subjected to manoeuvre commands and simuiated atmospheric

turbulence.

Extensive numerical tests have shown that feedback laws
derived from reduced dimension modéls performed comparably with
the feedback law based on_the most complgte model. Tests were
made on feedback laws ranging from order 79 to order 5. It was,
however, not possible to reduce the number of feedback variables
below five as this then affected the stability of the aircraft.
The law based upon five state variable feedbéck"was given the

designation 'safety law'.

One of the consequences of operating under the action of
the ‘'safety law' was that the same level, of load reduction
could not be achieved as was obtained whenever a full state
feedback law was employed. In addition, 'safety law' operation
was often marked by large transient oscillations of the wing

root bending moment and it was considered that this would



subsequently affect the fatigue life of the structure. An
.observer design was then investigated which reconstructed the
complete state vector from a selection of measurements of the
sensor signals appfopriate to the ‘'safety law'. Results have
shown that it is possible to achleve a practical implementation
of such a scheme which will possess all the attendant advan-

tages of full state feedback control.

A consequence of reducing the stréngth of the wing of
the aircraft as a result of employing an active load allevia-
tion scheme is that a considerable degree of reliability of
the control system, higher than that of both the basic airframe
and its propulsive system, will be required., Because the use
of hardware redundancy techniques as a means of providing the
requiredwdégree of reliability would be expensive, software
- redundancy techniques suggest an attractive alternative. One
example of how software redundancy may be employed is demon-
strated in respect of checking the analogue feedback gain
controller used in the aircraft to implement linear feedback.
It is shown how a -microprocessor may be effectively employed
to introduce a surrogate gain should one or more of the channels

of the controller fail.
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CHAPTER 1: INTRODUCTION

1.1, ProBlem Description

Current mission and design requiréﬁents for modern air-
craft are such that the resulting configuration of the vehicle
is greatly altered froﬁ the familiar earlier designs. These
design reqﬁirementé stem principally frém a need to improve
one or more of the fuel economy._cruise efficiency or tactical
'manoeuvfability of the aircraft depending upon its particular
role, ' To achieve these design requiremenfs has resulted. in
the use of one or more of:

{(a) - thin lifting surfaces
-(b) long slender fuselages
{c) high stress design levels
(d) low load factors.

Inevitably this design trend has produced aircraft which
are lighter and as a consequence more flexible. Such aircraft
can develop both large amplitude displacements and high accel-
erations due to flexure, in addition to those due to rigid body
motion. These displacements and accelerations may, for instance,
in thé case of the wing, induce high levels of bending and tor-
sional moments at different locations from root to tip. In ad-
dition, large oscillations may occur as a consequence of flying
through atmospheric Furbulence thereby contributing to the fa=
tigue of the structure. High load levels may also occur as a.
result of deterministic manoeuvre demands made by the pilot,
especially in the case of fighter aircraft, or in having to take

sudden and evasive action, in the case of commercial z2ircraft.



Flexible aircfaft pose a new clags of flight'control'
problems in which the classical methods of approach to the
solution of such problems become hopélessly impractical. How-
ever.‘by the use of'optimal control theor&. solutions may be
obtained quickly'élthougﬁ ‘the synthesis of the control laws
so defived still tends to pose some diffichlty especially if -
the order of the matﬁematical mddels used is high. ' However,
 with the availability of very effective airborne digital com-
puters, the synthesis problem may now be solved by re-
laxing the requirements on state measurements and providing
in its place some form of state-estimation. It has thus be-
come possible to consider, practically}-the problem of‘design-
ing a control system to alleviate the loads to which an air-
frame may be subjected by automatically deflectihg active con-
trol surfacés. Such systems are variously referred to in the

literature as:

(2) Manoeuvre Load Control Syétems (MLCQ):( Burris & Bender,1969)

(b) Active Load Control Distribution Systems (ALCDS)
' (Stone C.R. et.al,, 1972)

(¢) Load Increment Control Systems (LICS) (Van Dierendonck, 1973)

(d) Gust Load Alleviation Systems (GLAS) (Harpur, 1973)

(e) Structural Load Alleviation Control Systems (SLACS)
(McLean & Prasad, 1980)

The application of optimal control methods to alleviate
structural loads on aircraft was considered in this research.
The subject aircraft chosen for the study was the Lockheed

C-5A. Both the synthesis and flight integrity aspects of



implementing such control are considered in some detail.
Digital simulation was used throughout the study in order
to assess the performance of the various control schemes

'proposed}



1.2 Historical Backeround.

Structural load alleviation in one form or another has
occupied the interest of aircraff designers from the earliest
days.of'aviation. However.,with the advent of highly flexible
aircraft over the last two decades or so, coupled with the
fact that optimal control fechniques hage expanded to cover a
much wider usage,fhere has been plenty of new interest in thé
alleviation of structural loads on aircraft by the Qse of
active controls. While early alleviation systems were desig-
ned to alleviate loads due to gusts, more recent designs also
take into consideration the loads, (which in the case of flex-
ivle ‘aireraft can Dbe substantial), due to deterministic

control commands.

Real interest 1n‘the understanding of the effects
of atmospheric turbulence on flight vehicles.began when the
German aviator Otto Lillienthal was killed in 1896 when his
glider beCamé upset as a result of flying through a gusty at-
mogsphere., It appéarsyhowever, that the earliest téchnicai
reference.r(which incidentally was the first NACA report), was
not available until 1915.(Hunsaker and Wilson, 1915) although
a u.s. patent had already been granted to Sprater (1914) fora
"stabilising device to counteract the disturbaﬁce (gust) and
prevent it from having an injurious effect on the machine.F
Continued study of atmospheric turbulence resulted in two

ma jor contributions which are still often in use today. Von Karmar

(1937), and more important. Taylor (1937), established the bases
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for suitable majhematical representations of atmospheric tur-
bulence, As regards the design and implementation of load allev-
iation systems.lhowever. the approach has been, in the earlier
stages of develqpment of SLACS. to use an.open-loop design phi-
losophy, while)ﬂn more recent years, closed-loop designs have
been more common. The chief reason for adopting an open-loop
design philosophy was that the knowledge of the dynamics and
étability chéraétefiStics of the aircraft then in use, particu-
larly unsféady éerodynamic effects and structural flexibility,
was not very well known. In any case, none,bf the servo-
mechanisms thenTin use was sufficiently fast; ~=--_ . to be
capable of implémenting ac%ive load alleviaﬁion. One advantage
however..of'ope$-loop control is that the stability of the air-
eraft is not af%ected by its presence, while improper choice
of feedback gains for closed-loop cdontrol systems could seriously
- affect the stab£lity of the aircraft“gifg_gften disastrous

effects., Because fast servomechanisms were unavailabie, it was
necessary to sehse gusts well in advance in order to allow time.-
for corrective con%rolling action to be taken. As servoactuator
performance inc%eased, it became feasible to provide countering
action due to gusts almost instantaneously and all the necessary
sensing could tLen be achieved by the use of strap—down+‘accel~

erometers and gyros.

The earliést open-loop designs used aeromechanical control

in order to alvaiate-gust loads. Waterman (1930), built an

aircraft with wings attached to the fuselage by means of skewed

* Speed of actuation is necessary in the case of active load
alleviation esp901ally when travelling through atmospheric
turbulence since the time delay between sensing and required

+ countering acblon becomes very small,

Strap-down devices are normally 9351ly attached’ $o the surface

« In addition, such

Aamnantodl in eire and Aahecan A nraduino

devirea arne r\



hinges. The wing was balanced in steady flight by means of
pneumzatic struts. In unsteady conditions, the wing deflected,
thus changing the angle of attack. The system however caused
lateral control of the aircraft to be affected since the de-

ployment of ailerons also resulted in deflections of the wing.

In 1938, a French proposal for a flap-type load allev-’
jation system was made by Hirsch (1957). Initially, only
model tests were carried out and the system used a horizontal
stabilizer as an angleof attack‘sensoruAfter World War II, the
approach was further developed énd in 1954, flight tests were

made using a Douglas DC-3.

In 1957, work carried out on the implementation of Weiner's
optimum filter theory for the minimisation of an aireraft's
open-lo0p response to atmospheric tﬁfbulence was reported upon
by Tobak, (1957). Tobak's proposal depended upon the accurate
measurements of variations in the angie of attack of the air-
craft.. His analysislvalidated earlier work carried out by
Phillips and Kraft (1951) using classical analysis techniques.

" .The Weiner optimum filter theory applied to G.L.A. syé-
tems was not investigated until_l9?0. when, Coupry fl9¢ N
proposed such a system for a Mirage IIIB fighte%2N)Both simy-
lation and also flight tests were carried out usinglthe system.
The simulation tests indicated that by using vanes, g&roscopes
and accelerometers, enough information could be obtained to
effect substantial reductions in accelerations sustained by the
aircraft, These results, however, were not confirmed from flight

tests,



In 1949, a Bristol Brabazon was fitted with a G.L.A.S,
specifically designed to reduce bending moments on the wing
of the aircraft. As a result, the wing structure was made
20% weaker than the figure that would normally be required
to meet gust levels in the absence of any G.L.A.S.The system .
wasg intended to emploj gymmetric deflection of ailerons to
counteract the effect of gusté and sensing of the gust was to
be done by means of a ghst vane fitted at the nose of the air-
eraft. In 1953, the whole project waé abandoned and the sys-

tem remained untested. (Harpur, 1973).

| In the U.S.A., in 1950..Douglas Aireraft Corp. carried
out tests on a Dakota C-47 aircraft which employed auxiliary
flaps-to provide GLA (Hawk, Conner and Lévy (1952)), and in
1952. tests were carried out by NACA on a C-47 aircraft
(Kraft,(1956),. Hunter and Xraft (1961)). In the U.K., a number of
tests were at the time carried out by R.A.E. using an Avro
Lancaster Bomber (Zbrozek Smith and White (1957}, Zbrozek
(1961 5). All these tests employed the use of gust vanes to
detect either changes in pressure or sudden changes in the
relative wind, and, with the exception of the Bristol Brabazon,
only alleviation of gust-loads on the rigid body motion was
attempted. In tests with the Avro Lancaster, considerable
loss of stability was experienced due to large pitching moments
caused by aileron deployment. This led to a decrease in effect-

ivenesg of the gust vane systems at large gust gradient distances



The gust vane systems employed at the time were unsuccess-
ful because it was not sufficiently appreciated that the gust has
components normal to the plane of symmetry of the aireraft and
because account was not taken of other secondary effects such
as changes in flight conditions. the effect of downwash acting
on theltailblane.and the timé‘delay between the wing encounter-
ing the gust and then the tail. The gust vane systems, whiéh
were really'feedforwardtsystems. could not at the time be de-
signed to provide the necessary speed of regponse required, or
be made insensitive enough to the secondary effects. These pro-
blems were noted and avoided by Attwood, Cannon, Johnson, and
| Andrew,rwho, in 1955)put forward a §atent application for a
,éLA system which, "would sehse iinear and angular accelerations
and would use auxillary control surfaces to produce forbes and
moments required to minimise the accelerations."” The pa@ent
"application was granted in 1961 and specifically took into
éccount airframe and wing flexibility by using blended outputs |
from a pair of accelerometers and a pair of rate gyros so that
unwanted signals due to bending motion would be cancelled. This
proposed system was however.mainly considered from the point of
view of ride quality of passengers, and the specific aim of
using a control system to alleviate structural loading, although
implicit, was not until the present time considered. In 1962,
the prototyﬁe UK fighter bomber, the TSR-2 depended upon aug-
mented stétic directional stability to reduce its sensitivity
to a gusty environment when operating in a high-speed, low-level

role. (Qstgéard, (1976)). 1In the USA, a system designed to re-



duce structural loads due to gusts was fifst tried in a -
USAF program involving the prototype bomber, the XB-70. The
program involved a significant amount of development work
and this has been reported upon in Davis and Swaim (1966),
Wykes and Mori (1966). Smith and Lum (1966) and Smith, Lum

and Yamamoto (1968).

In 1964. a B-52H bomber of the Strategic Air Command of the
USAF on a low level mission over Western USA encountered se-
vere turbulence of estimated peak velocities of about 35 m/s.
About 6 seconds after penetration into the gust. the yaw dam-
per of the aircraft satufated. The responsé of the now unaug-
mented rigid body dynamics was so pronounced thatABO% of the
tail fin broke off. This unfortunate incident however acc-
eleréted interest in the study of GLA. One such study became
the start, in 1965, of an extensive program of flight control
system development known as the Load Alleviations and Mode
Suppression (LAMS) prograﬁ. The program produced very encour-
aging results and were reported in some detail by Burris and
Bender (i9691; The ride control systems developed under the
LAMS program were later extended to accomodate GLA (Stockdale
and Poyneer (1973))}. Another such program centered around
‘the C-54 aircraft known as-the Load Improvement Control System
(LICS) and was conducted by Van Dierendonck, Stone and Ward
(19737. The.B-l Bomber developed for use with the USAF has
been fitted with a Low Altitude Ride Control (LARC) system
with the éim of alleviating the effect of gusts encountered

at low altitudes ‘using specially developed active surfaces
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in the form of foreplanes located just aft of the nose of the
aircraft ( Interavia (1976), Hinsdale, (1976)). A Quantas
B-747 aircraft has been fitted with a sideslip gust vane
which is used to suppress gust-induced lateral acceleration.
-A load alleviation systemlhas for some time been available as

an opfionai extra for the Lockheed 1-1011 aircraft, Hoblit

(1973), although, only one has so far been fitted*.

Gust load alleviation schemes have also been applied to
2 number of light aircraft, for instance, the Cessna Cardinal
has been fitted with a GLA system acting through spoilers
(Brainerd & Kohlman, {1972}). An aeromechanical system em-
ploying auxillary wings to sense changes in angle of attack
and to drive the flaps to compensate the resulting 1lift has
been applied to the Cessna 172 aircraft. Reductions in normal
acceleration of up to 50% were achieved by this system,
(Roech and Harlan (1974), Stewart (1975)). A NASA Jetsteam ajir-
eraft now incorporates a GLA system amongst other Active
Control Technology (ACT) functions which has proved to be very
successful. (Lange et.al. 1975)).

A number of -more recent studies conducted by MecLean,
(lé?é, 1978). have established the feasibility of using mod -
ern optimal control metheds to.design very effective active con-
trol systéms to alleviate structural loads on aircraft. In this
research,'studiesﬁézg made of the practical implementation of

such systems which must necessarily employ either reduced or-

* On a British Airways aircraft in 1980,
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der control or the use of state-estimators to implement full
state feedback control. Practical aspects of synthesizihg such

controllers with some attendant degree of flight integrity are

also considered,
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1.3. Scope of the Research Investigation.

This research investigation was concerned with a study
of the application_of optimal control theory,.in conjunction
with advanced electronic technology, to provide, in current and
future operational aifcraft, a means of alleviating structural
loads on Léuch aireraft when subjected either to deterministic
manoeuvre demands or to flying through atmospheric turbulence,

| by the use of continuocusly active control surfaces.

The subject aircraft for the study was a large jet trans-
port, the Lockheed C-5A. Because of the limited amount of
data.available, onl& longitudinal motion was studied, and then
bnly for a single flight condition. Several mathematical mod-
els representing the aircraft were used. The model representing
the most complete set of dynamicé contained equations describing
rigid pody motion, structural flexibility effects, actuator .
dynamics and unsteady aerodynamics. ‘In the structural flexib-
ility equations up to fifteen bending modes associated with the
wing of the aircraft were'represented. The bending and tors- .
ional moments at five different wing stétions includingrthe

wing root were described by a set of output equations.

Optimal control théory was used to derive a number of
linear full-state feedback laws using mathematical models of
different order. Control laws ﬁorrespon&ing to 24, 17, 14, and
5 state variable feedback were derived. The effect which dif-
ferent orders of feedback had upon the bending and torsional

moments associated with the 5 chosen stations on the wing of
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the aircraft was extensively tested by means of digital simu-
lation. The work completed up to this stage has been reported
elsewhere (McLean and Prasad (1980A), Prasad, Saoullis and

Psitsilonis (1980), McLean and Prasad (1980B)).

Because reduced o?aer feedback appeared to be an attrac-
tive proposition from the point of view of practically syn-
thesising the control law in an economical manner, a number of ob-
server or state—estimétor algori?hms were considered to see if it
would be possible to recoup some of the advantages of full-
state feedback control based upon the measurements of only a
few ﬁotion variables. It is believed that development of an
algorithm of the type congidered for synthesising the full-
order observer has not been attempted previously. The theory
used in the consideration of reduced-order observers had to be
modified slightly to allow guadratic weightings used in the
performance index of the control probleﬁ to be placed upon the

output vector instead of the state vector.

Finally, a microcomputer systém (MCS) available to the
author was used fof dempnstrating the feagibility of employing
software reliability techniques for monitoring the behaviour of
a typical flight controller. Simulation of failure of the flight
controller to produce the correct controlling signals to the
servo-actuafors was achieved by means.of a self-repairing con-
troller test unit (SRCTU) designed by the author. The MCS was
then used tdwshow how distortion of the output signals may be

detected'and how a reconstructed signal may be produced by
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using surrogate gain values gtored in ROMS- in the computer.
This part of the work has also been reported elsewhere (licLean

and Prasad, (1980C)).

In Chapter 2, an extensive analysis is made of the way in
which the most complete mathematical model was derived. The
other models used, (of iower order), are described in less de-
tail because all were simplifications of the most complete

model.

In Chapter 3. the theory relating to the derivation of
the optimal control laws is ‘considered. = Obtaining of
fime responses by the use 6f transition matrix methods of sol-
ﬁtion of the aircraft's state eduation also forms a section .
of this chapter. 1In a final section of the chapter, a scheme
to evaluate the r.m.s. ievels of bending and torsional moments
acting on the wing of the aircraft as it *flies' through

simulated atmospheric turbulence is also considered.

In Chapter b. extensive tests by digifal simulation of
the effectiveness of control laws derived, are reported. Both
full and reduced-order control are considered together with
servoactuator requirements and the performance of the control~

led aircraft in simulated atmospheric turbulence.

In Chapter 5, an algorithm for synthesising a full-order
observer is developed,: . ic: -u. Optimal control theory 1is
used for the solution of the observer parameters and several

time response tests are made to assess the performance of the
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observer and to compare with results obtained previously,
which assumed that the full system state would always be

available for feedback.

In Chapter 6, lMiller‘'s theory for the daesign of optimal
minimal-order obsefvérs is_.used to derive a reduced order
observer., A small addition was made to the theory to allow
quadratic weightings on the output vector rather than the
state vector to be made. The change however did not.affect
the final specificétions-of the observer design as proposed
by Miller. Time responses were again obtained by digital simula-

tion and comparisons were made with results obtained previously.

In Chapter 7, worktione'on'establishing the feasibility
of using .2 microcomputer systenn(mcs)to provide software re-
liability is reported upon. A Bell and Howell MCS avail-
able to the author was used to detect simulated failure of
gﬁ‘aircrafﬁs flighf controller and the 'servoactuator signals"
weré then reconstructed with the MCS by sﬁmpling_the 'sensor
signals' and by using surrogate gain values stored in ROM. Sim-
ulation of Flight Controller failure was accomplished by the

use of a simple_logic circuit designed by the author.

Chapter 8 contains a concluding summary of the work re-
pdrted in this thesis. Several recommendations for ° further

study are included in the closing section of the chapter.
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CHAPTER 21 MATHEMATICAL REPRESENTATION OF THE AIRCRAFT

2.1 Introduction.

The equations used to represent the motion of the.
flexible aircraft which was éhosen for the research investi-
gation took into account the geometric, aerodynamic and
structural properties of that aircraft. The way in which
such equations are presented, however, depends upon the
coordinates chosen to describe the motion, (Milne (1964)),
i.e. whether these coordinates éfe relative either to aﬁ
inertial axis set fixed in the Earth,or to some non-inertial
set fixed in the aircraft. Although the results obtained
from either set will be the same, the body-fixed axis system
was used in this research principally because many of the
criteria for aircraft handling and performance are expressed:
in-this' set, (Schwanz (1972)), and because pilot response
appears to be mostly based upon bedy-fixed motion cues,

(Gundry Q977).

The derivation of equations in the bady-fixed axis system
are normally most easily carried out by first writing down
the Lagrange equations, (Milne (1964), Schwanz (1972)}):
d (2L 2L, _ . ;

where q is the coordinate vector, Fi

is a forcing vector and
Li ig the associated'Lagrangéan. There are two possible sets of

equations which can result from using (2.1), viz.,
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(a) Equations containing constant coefficients which
have been derived from steady state agrodynamics
with‘unsteady aerodynamics being approximated by

Kissner and Wagner 1ift growth functions.

(b) Equations containing non-constant coefficients
which depend upon the use of more exact methods

. for representing unsteady aerodynamics.

In this studj the former set was employed primarily
because such equations'afe easy to formulate. and, proviged
thét some additional approximations QQQid be made on the
Kiigssner and Wagner representations, solutions of which, can be
quickly determined. One disadvantage, however, of using
linearised equations is that it is not easy to incorporate the
effect of changes in flight conditions:. some of the coefficients
of the equations may vary over a widé-range; even changing sign
at different points of the aircraft's flight en&elope. For
example, the stability derivative,.Mw, which represents the
change in pitching moment due to a change in vertical velocity.
wf'is one of the most difficult derivatives to determine and
conseguently thé dgrivative represents a significant uncertainty
where the design of an AFCS is concerned. Also Kiissner and
Wagner lift_grqwth'functions used to represent ﬁnsteady aero-
dynamics, are more acpurately répresented graphically. The
expressions which represent the Kiissner and Wagner functions
ére_eitremely difficult to incorporate into model equations,
anc, approximatiqns prdvided in the literature, (in particular,

see Bisplinghoff et al (1955)), have been employed.
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The form of the aircraft equations resulting from the

Lagrangean approach.is typically as shown in (2.2), viz.,

F,4 + F1§ + Foa+ Gzﬁ*w + G q*W = ClE*K' ...(2.2)
where,
: F2 = Matrix of generalised inerﬁia of the aircraftl
structure
F, = Matrix of generalised structural damping
F, = Matrix of generalised structual stiffness

Gz = Matrix'qf generalised aerodynamic damping

Gy = Matrix of generalised aerodynamic stiffness

Matrix of coefficients of the generalised forcing
function.
F is the fofcing function: W is the Wagner 1ift function
énd‘K is the Kussner function. The"#* is used to denote con-
volution and q is the vector of generalised coordinates.
The generalised coordinates are calculated assuming that the

elastic.behaviour of the structure is linear and that struc-

tural displacements are small,

‘ When aircraft equations are derived‘on the baéis of
small perturbations and account is taken of unsteady'gerqf
d&namicreffects. the resulting set is known as an EXACT
formulation. Equations so derived are difficult to éolve
numerically, primarily because of their complexity: often,
approximations are used. The equation set so derived may be

referred to as:
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(a) Quasi-Static

(b) Modal Substitution
(c) Residual Stiffness
(d) Residual Flexibility

{e) Modal Truncation

When the motions of the structure are assumed to be in
phase with the rigid body motions, i.e., accelerations of the
structure are.instantaneous. the resulting formulation is known
as the QUASI-STATICiset. In order that the AFCSs designed on
the basis of using such a set be capable of providing sufficient
démping‘of all modes, 1t has to be ensured that the frequency
separation betweeﬁ the rigid ﬁody and fhe elastic motions are

large.

Wheén the motions of the structure are related to the
orthogonal, in vacuo, eigenvectors, the resulting‘equations
are known as the MODAL SUBSTITUTION set. The associated eigen-

vectors will normally be composed of real numbers only.

By RESIDUAL STIFFNESS is meant that only a number of
modes from the modal substitﬁtion set are retained, although,
a quasi-static éeroelastié correction factor is also employed
relating to the deleted modes. The chief disadvantage of the
residual stiffness formulation is that all mode shapes must be
calculated including those aésqciated with the deleted modes.
These extra calculations may be avoided by fe—developing the
equations associated ﬁith the exact formulation using the
'‘free-free' flexibility matrix, (Schwendler and MacNeal (1962)).
Tﬁe resulfing formulation is then known as the RESIDUAL
FLEXIBILITY set,
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The MODAL TRUNCATICN set is obtained when the deleted
modes of the residual flexibility set are not representéd by
any correction factor. It is the most common dynamic aero-

elastic formulation reported in the literature.
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2.2 The Subject Aircraft

The specific type of aircraft chosen for the study was
the C-5A, a large.jet trahsport manufactured by Lockheed, be-
cause much of the data needed for the mathematical models
requiréd for the fesearch study were available 'in Stone (1972)
and Harvey and Pope, (1977). However, only information about
the longitudinal métion. and then only for a single flight
condition, was provided. The chief parameters associated with

the flight conditibg studied are given in Table 2.1.

Total weight (N) 3.107 x 106'_
Mach No. o 0.448
Altitude (m) 2.3 x 10°
Dynamic Pressure (N/hz) 9.15 x 107
Airspeed (m/s) : 1.43 x 10°

C of G (%mac) _ 31

Trim angle of attack (deg) | 5.15x 10™2
Load Factor . 1

. ]

Table 2.1l: Flight Condition Parameters

At the same flight condition six separate mathemati-
cal models, all of different dimensions, were used.‘ For ease
of identification, thesé models were named:

ARNE
BACH
CLEMENTI
FAURE
&ERSHWIN
HANDEL



The model ARNE was the largest.'its.state vector being
of dimension, 79, while the model HANDEL was the smallest,
its state vector being of dimensic;n.5. Since all the models
were derived from ARNE. only this model is described in some
detail in this chapter. The other models however, are
briefly described in the final section of the chapter. Alsb.
‘the composition of the state, control and output vectors
of each model are éumma_xrised in Appendix I_,fﬁ Appordx IE 4

shown  The - dda. assoaaj‘._)- et e model ClemMemTI.

22
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2.3 State Equation Representation

For wofk connected with AFCSIdesign, it is convenient
to.arrange that the aircraft equations be expressed in state
‘variable form; that is to say, as a set of first-order - .-
differential'equations’in which only the first derivatives of
the state variables appear on the left hand side of the equa-
tion, and. on the right hand side, appear terms containing
fhe state variables.'g*. When the control and disturbances

are considered as separate vegtors,‘say u and zg , then an

appropriate form of the state vafiable.equation is:

%" = Kx* + Bu + Dz, e (2.3)

where x*¢R®, ueR™ and Zy R*. The disturbance vector
Zy is usually solved through a second equation, viz.,
:Eg =D_Z¢_E?:-+a'l' - >ool(2.h‘)
' ’ Yhe
where % represents a scalar white noise input to . . - = oot
filter. For the models used in this research, it was found

more convenient to combine (2.3) and (2.4) resulting'in

(2.5) . ViZQ'p )

S R N O R

AE"' BL)."' G“z . : c--(2-6)

| e
e
%k

1

or

e
i



" where,

g
x & .Eg] ‘ oo (2.7)
A & § g] - v (2.8)
p & LE N - | vee(2.9)
G & L%] | eee(2.20)

The significance of sometimes separating (2.6) into

its components (2.3) and (2.4) will be described in greater

detail in Section 2.4.5.

Since the main aim of the research

was to achieve some reduction of bending and torsional loads

on the wing of the aircraft, it was necessary to define an

output -vector, Yy,

24

vhich was related to the state vectcr, x-,

and control vector, u, in such a way that these loads may

be determined at any time,Thus the appropriate output equa-

tion was:

4
where, y € RP,

Cx + Eu

e (2.11)
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2.4 The Mathematical Model, ARNE

The state vector, %X, of ARNE had dimension n of 79.
Its contrdl vector had dimgnsionxn of 2. Its output vector
had dimension p of 56. 'In table 2.2 is shown how the

state véctor of the model, ARNE was composed.

xl—'x2 rigid body dynamics

X3 X} bending mode velocities
xls-x32A bending mode displacements
x33-x35 control surface dL?Placements
X36=Xp0 Kﬁssner'dy?amics

X 4= X0 Gust.DynamlcF

Xu3~%Xng Wagner Dynamics

Table 2.2 Compositioﬁ'of the State Vector
of‘the Model ARNE

2.4.1 Rigid Body Motion (xl-x2

The rigid body motion of the aircraft was represented
by the linearised, small perturbation equations associated

with the short period mode, viz.,

W=z w Uy + ?Zélz%éj | e (2.12)
| o m

&/ny = MW+ Mo W+ Mg+ Z:lMaJdJ vee(2.13)
where, ’

- w = vertical velocity (.0254 m/s)
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‘translational pitch rate* (.025% m/s)

a/n, =

Zi = dimensional stability derivatives
associated with vertical motion

M3 = dimensional s%ability'derivativés associa-
ted with pitching motion.

U, = Forward speed (m/s.)

6j = deflection of the jth control surface.

It is easy to arrange that all the first derivatives
appear on the left hand side by ‘substituting for % in (2.13)

using (2.12), viaz,,

W= Zwr gt 236 | voe{2.14)

Jay

§/n, = (MFMZ Jw + (Iv'Iq-H\'I‘.%,Ib-A)q/n2 +§.(M6,-+Mg,zaj)55
. s e (2- 15)

w and q/'n2 were designéted state variables Xy and x5

respectively. The control surface deflections employed were

be, - Inboard section of elevator
SE, - Outboard section of elevator

&, - symetrically deflected ailerons

2;4,2 Structural Flexibility Equations (x3 - sz)

The usual structural dynamics equations §iven as (2.2)

are in}u1unsuitéble form for use in flight control work

for two principal reasons:

*n, is a conversion factor of 0.6066 x 1072 rad/m, valid

over small angles <0.2 rad.



- equation of the form:

. Adamping and mass terms respectively.

: : . _ e
~ generalised forcey confomuy crersdiy ot vam ol eo “ﬁk-uoth
: a2

Let; [ Ty

Ay; & |

i = q4 ver(2.17)

- =
121 - li - Qi cno(2n18)

v Sw T A by

]

-~
’

(a) the equations are expressed as 2nd order vector

- differential equations rather than lst order scalar

as reguired for state variable representation.

(b) the vector q contains control inputs, 53.
(which are terms which shouldhagpear on the
right hand side of the state equation).

An alternative method of expressing the structural

- o

dynamic equations, is to represent each mode by an

eee(2.16)

i
where, q; a4 and ‘§; correspond to generalised stiffness,

A,

30 B.l and Ci are co-

efficients of the i'! generalised coordinate and Q is a

Substituting definitions (2.17) and (2.18) into (2.16)

yields :
o= Dl o- Sty e S vee(2.19)
A = 0 1_ . }15. + [0 ..Qi ve0(2.20)
. =b. A 1
L) ..__l —l 2- o
24 Ay A : Ay g
lLH—“‘"CQ k."- @"ﬁe"u'\:e,

Ar edur VI, e :
b”-ﬂ 222 N
] -;l”f,i!‘

é\»“/?““@'.a co &»\,&Q}Jﬁ



Hence each bending mode can be represented by two first
order differential equations of the form given by (2.20),
where . 121. is the rate -and, Ali' the displacement associ-

ated with the i°® mode. For ARNE, the first fifteen bending

mode rates were represented b& the state variables X3=Xyp:

and the corresponding bending mode displaéements by the state

variables X18 - 32... The damping ratios of each mode were

small. all being <0. 1 The unlts of.A were 0,0254m andi ?
5y were 0.02%m/s. . .o : K“‘

2.4.3 Control Surface Actuation (x33 - XBS)V

The deflections of the control surfaceé were considered
to arise as a result of control signals being applied to their
. servo-actuators. The dynamié¢ responses of these actuators
were considered to be linear and were assumed to be represented

by simple time lags,

The three control surfaces used were:
Ailerons (symmetrically deflected)

Inboard section of elevator

Outboard section of elevator
However, only the signals to the actuators associéted
with the ailerons and the inboard section of the eievator.were
used as control inputs: the outboard section of the elevator
was left free for receiving other commands such as would be
required for carrying out norﬁal inflight manoeuvres. Its

dynamics were however represented in the state vector of ARNE.
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The actuator dynamics associated with those control

surfaces used were represented by:

Alleront

}6A(S) e (2.21)

. i}
)
+.
©

5
o)

@

g

Inboard elevator:

é‘fi(s) = 53 @ic(s) «es(2.22)

From (2.21),

&
and from {2.22),

Es

The actuator dynamics associated with the outboard

-6.06p+ 6,06, - ...(2.23)

-7.56; *+ ?.56Eic ceo(2.20)

elevator was simply represented by the equation:

6E° = “7-56E0 s e (2| 25)
For ARNE. . .
6p = Xgy ere(2.26)
6Ei = x3’+ ' ) 000(2.27)
6.-E'g = x35 | | --¢(2|28)
and, : :
6Ac = U.i . on-(2.29)

uz . l‘00(2..30)

.

2.4.4 The Klssner Dynamics (.x36- X0 ?

The Kissner function, K(c) . (Klssner (1936), is
related to thé change in lift'on an aerofoil due to the inci-
dence of a shérp-edged'gust striking the aerofoil, The dimen-
tionless lift development, L(c), based upon the aerofoil

mean semichord, ©, is given as, (Bisplinghoff et al (1955 ):
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L (c) = Zﬁp U,b ggK(c) _ ' .ee(2.31)
where b 1is the aerofoil semispan and, Q{.,is the vertical
gust velocity. U, is the forward speed of f#e aiisraft and
P is the air density. The fqrm of g(c) makes{£t1difficult
to expresé in simple algebraic terms, and approximations
are qffen employed, (Fung (1955), Dowell (1978 ) . One

approximation is the Sear's function (1940) which, for aero-

foils with aspéct ratio >6% is given by,

'(kxc)= 1 - 0.5é"°'13070;5e'° - e (2.32)
where, u ' | o : |
) A Ot
lc = $5/" | E e (2.33)

and ¥ 1s a Mach number correction factor. (2.32) is the
expression for the output obtained when a step imput (such as

the edge of a gust) strikes. the aerofoil. The appropriate. ..

~

transfer function for the wing of the chsesen subject aircraft

is .
U 0 L TR 0.5 ,
Twls) =528 Y TS+ 21,98 we e (2.34)
and for the tail, is: |
Y3

__0. 0. ' :
Ip(s) —-S’ijl * ?@)/44{..--(2.35)

The corresponding numerical values of Uy, ¥ and T have
been substituted in (2.34) and (2.35). For the C-SA; these

numerical values are:

Uo = 143 m/s
= 1.38

Cyw = 9.429 m

Cqp = h,66 m

4

% Por the C-5A, the aspect ratio of the wing is 7.75.-
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In Harvey and Pope (1977), in the determination of

- (2.33), the value of the chord was uséd instead of that of the
semi-chord and this error was noted in McLean and Prasad (1980B).
However, the Hafvey and Pope representation was followed in

this work to permit valid comparison of results. Also some
approxihation was made to the transfér functions (2.34) and

(2.35), which, in Harvey and Pope, was given as:

.\ 10,983 |

. Jw(s)l.— S + 10.983 s e (2-36)
® v _ 22,185
Jp(s) = 532,183 oo (2.37)

The corresponding equations describing the Kussner

dynamics for the wing was:

iuo = -10.983xhd'+ 191983xu2 X (2-38)

and for the tail was:

n

X

36

1)

-22.185x36 + 22.185wg ( )-
ees (2.39
-22:185x36 + 22.185x42 }

Because the edge of the gust will strike the wing first
and then the tail some finite time after the aircraft pene-
trafés the gust field, pure delays were used to represent this
time delay. For the tail, a distance of 56.1m behind the nose,

the time delay was:

T, = 361 . 0.393s. Voo (2.40)
T Uo
This‘delay was represented by a 2nd order Padé approxi-

mation, (Richards (1979)), which was given as:

i38 x36 'R (?aul)
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{

6 4 -1k -
i ".".—._2:x 8 - e——X + Tx 6 . 100(2.“’2)
39 Ta 3 §  39 = 3

...- 5(38 = X39 - 5.096 x36 oco(ch"B)
'i39 = -38.953 xjé - 107192 X9 + 90,891 Xq¢
veo (2.004)

" (2.39), (2.43) and 2.44) are easily expressed in terms

~ of Laplace transformations, viz.,

sXg4(s) = —221185 X56(s) + 22,185 Xyp(s)es. (2.45)

5X,5(s) = Kagls) = 5:096 Xzgls) ..(2.46)
sX39(s) = -38.953 X35(5) _10.199 X39(s) + 90.891%54(s)

' ' oo (2.47)

. From (2.45)
| Xgels) _ 22,185
Xyp(s) s+ 22,185 vee(2.48)
— 1 :
1+ 0.0Lk5s

Multiplying (2.47)‘throughout by -s and substituting for

X38(s) using (2.46) yields:

2 N ol ' - (e
8“Xqq(s) = -38.953[X39(s) - 5.096x36(s)] ~10.199sX5g (s
+ 90.891sX;5.(s)... (2.49)
l'. - X (S) _ 198.5 ( 1 + 0.4588) (2 0)
'igsfs) s*+ 10.199s + 38.953 reel2e5

In block diagram form, the Kiissner dynamics associated

with the tail is shown in Figure 2,1
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Xyo(s) 1 Xjé(s) ‘] 198.5 ( 1 + 0.458s) ng(s)

1+ Louss | 5% + 10.1995 + 38.953

Figure 2.1 : Kigsner Dynamics applied to Tail

The appearance of the gust at the wing,a distance of

16.772m from the nose of the aircraft, was delayed by:

‘tw = 166222 =_ 0.11?80 : ’ .-.(2-51)
0

This delay was represented.by a simple time lag, viz.,

I 1 '
x37 - B 'E,qx37 * ’EWXL"O . ’ . 010(2052)
or, |
x37 = -8.5’49x3?
(2.38) together with (2.53) express the form of the

+ 8-5‘;”93(40 o'-(2053)

Kissner dynamics applied to the wing of the subject aircraft.

The equations, expressed in terms of Laplace transformations are:

SXL"O(S) = -10-983X40(S) + 10.983Xu2(5) .o.(2n5‘+)
sX3p(s) = - 8.549X5,(s) + 8.549340(s) eee(2.55)
L, Xpols) . 10.983 ] ”
X (S) s +1O-983 )
N SN '
~ 1+ 0.091s J
and, _ ‘ . '1
xaz(s) - 8. 549
Xpols) s + 8.549 . )
. s 1 ¢ ) 000(205?)

1+ 0.117s



3.

"In Figure 2.2 is shown the appropriate block diagram

representation of (2.56) and (2.57).

X, ,(8) 1 X
L2 . L4o(s) .1 « Xanls) -
T+ .09l I+ 1175 37

Figure 2.2 Kdssner Dynamics applied to Wing

2.4.5 Model of Atmospheric Turbulence (qu-xuz)

h number of suitable representationsof - continuous
atmospheric turbulence are.available (Taylor (1937), Von Kar-
man (1937)) Possibly the mdst faithful is that proposed by
Yon Kgpman since,.of all such representations available, the
~Von Karman model is in closest correspondence with the observed
: behaviour of turbulence. The powér spectral density (p.s.d)
associated with the Von Karman model. for vertical gust velo-
city, wg (which was the 6nly component of the gust

required for this research), is given as:

. 0..?. |
By (@) g r, [ 1+8/31. 33 /v, 4]

we e+ (2.58)
[ 1(1: 339 Lusy @) 4] "®

The Von Karman model cannot easily be programmed for
simulation in real time because of the non-integer exponent in
(2.58). A suitable alternative, the Dryden model (Chalk et al
(l969))provides.a p.s.d which closely matches that of the Von
Karman model. Some small differences occur at the higher fre-
quencies. but this is generally of small consequence in AFCS

design. The Dryden bv.s.d is:
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Fw= 02 L [L¥3@e)®]
w

‘g T, e (=P ver(2.59)

It is easily shown, (Truxal (1955)), thats:

ﬁ'wg'(w) ves(2.60)

.Iqwg(jaﬂl
Thus, the transfer function of the Dryden filter méy be

obtained, viz.,.

{ . B -

In figure 2.3 is shown the appropriate block diagranm
representation for the Dryden filter. The filter is excited

by zero mean, white noise,q, and its output is the vertical-

gust velocity.

7(s) LmFJ}, (L+/5ges) We(s)
T a+L=s 2 [

Figure 2.3 Block Diagram Representation of Dryden Filter

The transfer function (2.61) may be easily expressed

in gtate variable form. Let:
. | _
xq,z = Wg : 000(2.62)
Xy, & g - G i”o . At) ee(2.63)

* This definltlon of X),1 was employed in order to avoid
terms 1n Y(t from the final expressions.
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It can be shown, (see Appendix II), that:

0 R IS | IO R Y /'; )
X = | =2+= -} X + o (1-2/3 (t
41 Lw AR . 1 L {2.64)

: v : w -
ol i o (142 Oy F.li.q
- L - . r |.. o L LW -

For the C-5A, the following_parameters applied:

g = 576 .
_ U, = 143m/s . T wee{2.65)
The standard deviation of the vertical gust velozity, ¢

w

was chosen to b@gﬂ- IQ% C’7 %7[&-«( o-v-—-gu-..d’
© Using (2.65), te+64)Becomes: ' _ e Commn -

. 242 1 0 Xpo 0.263 e

It should be noted that (2.64) is of the form of (2.4),

where:

..z..g = x;"l ‘ ' .A cun(2o6?)
Xh2 D
. -
p = [-2% Y .o (2.68)
I L2
w .
1 0

| ese(2.69)

. 0
8]
T 3, -0

! wo ]
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2.4.6 The Wagner Dygamics (xu_3 - x?g)

. The Wagner'funct;on. W(c), (Wagner (1925)), represents
,fhe growth in 1ift on any of the 1ifting surfaces such as the
wing, the tail or any of .the control surfaces due to a step
change in their anglg of attack. The circulatory 1ift due to

this motion is given as (Bisplinghoff (1955 }):

where o, is the trim angle of attack and W(c) is the Wagner
function. As with the Kiissner function, the form of W(c) is
such that it cannot be'éXpressed in simple algebraic

térmé and often, approximations.have'to be made. One such
approximation suggested by Fung (1955), for an aerofoil section

of high aspect ratioc (AR>6), is:
. W(e) = 1-0.165e~0455¢ g, 335070+ 3¢ o (2.71)

where ¢ is defined in (2.33). The associated transfer function

of (2.71), in the case of the wing, is:

Ww(s) = 0.165 + 0.335 _
{(s+1.0) (s + 6.594) e {2.72)

and, in the_case.of the tail, is:

W (s) = 0,165 + _0.335 L (2.73)
(s+2.024) (s + 13.32)

The error made by Harvéy and Pope concerning the evaluation
of (2,38), (where the chord was used instead of the semichord),
was again carried through in the determination of the Wagner

function. Although this error was noted, the Harvey and Pope
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representation was followed to permit comparison with pre-
vious results obtained. In Harvey and Pope the transfer

functions (2.72) and (2.73) were taken as:

" Wing: ﬁﬁ(s) = s+ 10.49 ' .
 .gs + 10.99 . oo (2.704)
Tail: ‘ . _

The Wagner dynamics are not incbrporated into the air-
craft dynamics in a étraight-forward manner. Not only are
contributions to the gfthh of 1ift on the flying surfaces.
made.from the rigid body motion, but also .each of the fifteen
bending modes represented. In table 2.3, are shown those state

. variables in the model, ARNE, representing the Wagner dynamics.

w wing ' 13

4/

2 wing Xnl,

Mying "M wing | *4s5 = ¥s9

W tail %60

a
/hztail X61

Mpagy T >\15 tail Xgo"Xng

Sp wing Xp7
SE tajl x?g
SE tail Xng

: i
Table 2.3: State Variables of ARNE associated
with Wagner Dynamics.
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The subscript, (wing)., is used to indicate the Wagner dynamics
associated with that variable having an effect on the wing
and the subscript, (tail), indicates the corresponding effect

on the tail.

Inspection of (2.74) and (2.75) indicates that the trans-
fer functions associated with the representation of the Wagner
dynamics are approximately unity. From the Bode diagram re-

presentations of (2.74) and (2.75) presented in Figure 2.4,

it is clear that their contribution to the dynamic behaviour
of the aircraft is unlikely to be of any significance. Con-
sequently, it was decided to use a lower order model not in-

corporating the Wagner dynamics and this is further discussed
in Section 2.35.

* 2.“’.7 Output Variables.

Since levels of bending and torsional'momeﬁts experienced
in the wing of the aircraft were of particuiar significance
for the research study, it was neceséary to derive suitable
expressions from which these moments could be evaluated., Five
wing stations were chosen for the subject airéfaft: wing
station 1 (w.s.}) was at the wing root, w.s.3 was at the mid-
span énd w.s.5 was at the wing tip; w.s.2 was equidistant be-
tween w.s.1 and w.s-j,and,w-s.# was equidistant between w.s.3
,and W.S.5. _

. The bending moment (yk) at wing station (k) is given as:

yp = -EI a%%
' dy? y=0 ee (2.76)
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where, (EI), is the flexural rigidity term and, %, is the gen-
eralised displacement at w,s(k). §w according to normal mode

theory. is given as:

' n ’ m ) ‘
_’?'R' = ¢R1h + ¢|M.B +‘1Z,=5¢u'i)\i-z +J§“\|l ¢|’bj CSJ .. (2.7?))
where, Mrepresents the displacements associated with the

bending modes, (% = 3,..18 in the case of ARNE). Also,

h = U@ - w " .. (2.78)
2 ' n o 2
" —-dzg’h. - djh‘h “+ d ¢h_zg e Z CI__?_‘RJ\" ?\;_L
dy> dy* e © =3 d Yy
.M Clzéh:l d_ .
C e I L(2079)

By substituting,(2.79), into (2.70), the general ex-
pression for the bending moment at any wing station, (k), is

obtained, viz.,

‘ (% 2 s 8 bp; ,\-_T
= EI|Pmh , d%nae 4 7, FR Aw
5h, 3'5‘ + a-:—’i =3 dyl.
4 | "
m T A
. ’ . dgf:a‘gj
{ Jenst €Y } ..(2.80)

By differentiating yk,(2.80) with respect to time, it
is possible to determine the expression for the bending rate
associated with wing station, k. Also .included in the output
description were expressions for the torsional moments together
with their associated rates of change. at the five wing stations.

" In the case of the mathematical model, ARNE, the displacement
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and rates of change of displacement associated with the first

fifteen bending modes were‘also included in the output vector

as well as the motion variables of the rigid body and both

the deflections and rates of change of deflection of the con-

trol surfaces commanded. Thus the output vector, v (Equation

(2.11)), of ARNE, had dimension, 56.
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2.5. Reduced Order Models.

The other models used, viz., BACH, CLEMENTI, FAURE,
GERSHWIN and HANDEL were all derived from the model,ARNE.
In Table 2.4. is shown a comparison of the dimensions of the

models considered.

MODEL . VECTOR DIMENSIONS
state control output
‘n m p
ARNE 79 2 56
BACH 42 2 56
CLEMENTI 24 2 38
FAURE 17 2 38
GERSHWIN 14 2 38 -
HANDEL 5 2 38

Table 2.4 :Dimensions of Mathematical Models Used.

The model, ARNE, proved td be too difficult for computation,
although, it represented the most complete model by containing
equations relating to both structural flexibility effects and

unsteady aerodynamics,

The model, BACH, was represented by :the same equafions
" as the model, ARNE, but omitt%pg the equations representing
the Wagner dynamics, Its output vector was identical to that
defined for ARNE, The reasom for neglecting ihe Wagner
dynamics was that the 1lift growth dynamics were being repre-
sented by the approximate transfer functions given as (2.74)

and (2.75) and these were nearly unity.

The model, CLEMENTI, included in its description only thre -



Ly

first six structural bending modes but was otherwise identical
40 BACH. Quite early in the research program, it was found
from the associated digital simulation studies that the res-
ponses obtained from BACH, did not differ gignificantly from
those obtained when the nine upper bending modes were omitted
Consequently, most of the reseérch effort was directed tfo

CLEMENTT.

The model FAURE included equations representing the same
dynamics as the model CLEMENTI, but it excluded both the vert-
ical gust and the Kiissner dynamics. The model GERSHWIN, how-
ever reintroduced both the gust and the Kussner dynamics,
bﬁt included in its description only the first bending mode
and its rate, the higher bending modes being neglectéd. -This
model was used principally to test the hypothesis that much
\of the bending energy ( 60% or more)is:contained in the first

bending mode (Schwanz (1972))

The model, HANDEL, ohly contained in its description,
the rigid body'motion variables and the variables associated

with the actuator dynamics.
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CHAPTER 3: THEORY FOR THE DESIGN OF A SLACS _ '

3.1 Lgirodggtion

D ——]

In this chapter, the major theoretical aspects re-
lating to the design of a feedwmback controller to provide,
for the subject aircfaft,a certain amount of structural load
alleviation are presentea. a _

The analysis of the mathematical models described in-
Chapter 2 indicated that if was desired to use two of the
control surfaces of the subject aircraft to affect up to
56 output.variables. Such a control problem may not easily
bé solved by conventional methods, which are in the main
more suitable to single-input, single-output syétems,orieven
multi-input single-output systems. Such methods depend .
.upon interpretation of " time responses in order to determine '
settling time, time-to-peak overshoot, frequency of
oscillation, time-of—half.am@iitude, and so on; inevitably
thé design procedure is slow and needless to say expensive
since fof.the size of mathematical models studied, éigital

computation has to be employed*.

¥ Analogwcomputation would require an extremely large amount

- of integrators to be employed; for CLEMENTI at least 24
integrators would be required in addition to a substantial
amount of summing amplifiers and potentiometers.The analogue
computer available to the author, a TR-48,did not have the
capacity for handling models of such complexity. However,
the model HANDEL was patched on the TR 48 in relation to

work to be reported in Chapter 7.
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Optimal control methods are particularly suitable for
designing automatic flight control éystems to provide ACT*
functions like Strucfural Load.Alleviation. By suqh methods,
it is possible to specify a desired performance which may be
met exactly. When a particular performance criterion is
employed subject to the constraints imposed by the chosen
state equation formulation, the resulting design is unique,
The control problem is most adequately represented as a regula-
tor problem. A regu}ator ié designed to keep a system within
an acceptable deviatiop.from a reference condition using
acceptable amounts of control (Bryson and Ho (1969)). For

dynamic systems, adequately represented by linear models, it is

]
relatively easy to determine very satisfactory feedback control-
lers. However, a particular disadvantage of synthesising any
feedback léws obtained as solutions df the optimal regulator
problem is that full state feedback is required. In the research
discussed here, tests were often made on tﬁe aircraft employing
‘reduced state feedback., It was foﬁnd that there was a limit to
the number of variables which could be eliminated in the feed-
back loop and this limit is dictated by controllability and
stabilisability criteria. These criteria are discussed in a

subsequent section with particular reference to the models

used.,

#* There are other active control technology (ACT) functions
such as Fatigue Reduction, Flutter Mode Control, Ride Control

and Augmented Stability.



47

3.2 OPTIMAL CONTROL

The basic principles presented in this section are

due in great measure to Pontryasin (1962).

.3.2.1, General Pfobiem Fdfmulation

It is usual . practice to employ as a measure of

the quality of performance of an optimal system, an integral

of the form T ’
’ ¥*
J = I_toL(E.g,t)dt - ' _ savw (3.1)
subject to the constraint. | : .
5_(_ = g()_(.g.t) ] 010(3.2)

where xe rR?, QeRm and t is 't.;rxe independent variable,time.
The scalar, J, is referred to as the performance index (p.i. )
of the system; the functional L(x,u,t) can be considered to
be the cost of being at some specific point in the state
space of the problem, with a particular vglue of control,at
some particular tinme (Fulier (1959)) . The problem is to find
a control,u®, which minimises® the p.i over the interval

t, to T. A form of the p.i which is convenient to use in

flight control work iss

J = %I?XQ; + JGu)dt _ : ees(3.3)

By taking the limits of the integral over the semi-infinite

~¥Here the problem is assumed to be purely deterministic
See 3.3.1.,2

+In some cases the maximum of the p;L is found in which
. case the sign of the integrand is simply the opposite to
that used in (3.1).
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interval, it turns out thaf the parameters of the resulting

control law are constant. The % is used simply for analytical
convenience, The ﬁropertiés of the weighting matrices Q and G
will be discussed in Section 3.2.1,1. When the system is des-

cribed by a linear vector differential equation of the form:
_i_ =.Ax + Bu ' (30“’)

and the associated performance index to be minimised is of the
form of (3.3), the problem is referred to as the Linear
Quadratic Problem (LQP). It has been shown (Kalman (1960),

that the optimal control which minimises (3.3) is
0 — "1 s
u = -G "B K_)_(_ see (305)

where K is the positive definite solution of the algebraic
matrix Riccati equation given as (3.6), viz.,
KA + A'K - KBG™IB'K +# Q = 0 .. (3.6)

3.2.,1.1, Solution of the 1QP

For a system described by the linear vector dif-
ferential equation (3.#) with performance index given as (3;3),
the procedure for determining the optimal control is quite
straightforward, and, for sﬁall problems, computing requirements

~are not excessive.

The associated Hamiltonian (H) of the system (Athans

and Falb (1966 )) is expressed as:
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H = %(Z'Q)—{ + Q'Gg) + g_p' (AE + _é-l_‘,_l) ves (3'?)

where g 1is the co-state vector of dimension, n, and,
. _ H 7
E 2 % ‘ ' ) 0-0(308)
Therefore,
oH . ¢ . ’ -
-3 C ¥ = - - Aps glow) =0 ...(3.9)
and
9 - gy + B (3.10)
ag —_— L LI BN B L

For H to be minimised with respect to u, (hence J)}, then:

2H -
é"‘z -~ 0 --n'u(B-ll)

P BO = -G‘“]-B'g) -100(3012)

1

For G ~ to exist, the weighting matrix G must be positive

definite (p.d).

Fof5(3.10) and hence (3.12) to be true, (i.e; for the
system +to be at least locally optimal), the associated

Jacobian matrix must be p.d., viz:,

P A ]
a"x2 3x.o : 7
| > 0 , eea(3.13)

(3.9) and (3.10) are differentiated appropriately to form
the elements of the Jacobian matrix of (3.13) i.e.,

Q | 0
> ' 0 ) ..lo(3all”)
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To ensure that the Jacobian matrix is p.d., it is egsential
that Q be made at least non-negative definite (n.n.d), (since
G is positive definite).

Substituting for u in (3.4) using (3.12) yields

= Ax - BG By | oo (3.15)

Combining (3.15) and (3.9), gives:

. e T .
[E] = [ A -BG' Bi]{é] . ves {3.16)
¥ -Q -A ¢

Since the problem must satisfy the transversality conditions

'i-e. 5(55’) = 03 (=)

= 0,v¢ is relatéd to x by (3.17}, viz.,

Kx ' o (301?)

¥

where K is the p.d. solution of the algebraic Riccati equation
(3.6). Substituting (3.17) into (3.12) yields (3.5). Also,

it can be shown that the minimum value of J is given as
J = $x"(0)Kx(0) vee (3.18)

where x(0) is the initial state vector.

3.2.1.2. The Linear Quadratic Gaussian (LQG) Problem
' Explicit account may be taken of the effects of atmos-
pheric turbulence and measufement.noiSe by determining the feed-
back controller as a solution of the Linear Quadratic Gaussian
(LQG) problem, |
For the completely controllable and-observable*. linear,

time~invariant system described by:

I¥e

= A_JS + B_l! + G7 o (3019)
C*x + € eee (3.20)

x*

* Complete controllability and observability are properties of
the system normally required for obtaining a linear feedback

law, These properties are normally required re ardless of
whether the vroblem is TOP or TQC.yfqag Qan+1nngﬂ PRI
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where bothm and e are Gaussian, white, zero mean, mutually

independent, stationary noise signals, i.e.,

cov&(t) ()] = Zw(t-2); T=220 ... (3.21)
cov [e(t); &(z)) = @8(t-2); @=@%0 ... (3.22)
and y* is an output vector coﬁprising elements which have a
linear relationship with the elements of the state vector;
the 1QG problem is to find Q(t). for all t, such that the cost

funectional,
1 T

g = lim j (x7Qx + u'G u)dt ... (3.23)
-7 '

0 Tow 2T

is minimised, where the weighting matrices Q, and G, are such
that*, |

Q, = Q20 ves (3.2L)

G = G '>0 ces (3.25)

) Mo
It can be shown, (Athans (1971)), that the optimal control is

given by:

o 1

W = -Gg B'K,x = Fx cee (3.26)

LY

where Ko is the solution of an algebraic Riccati equation, viz.,

Kok + A'K, - K B 131{ ¥ Q, cer (3.27)

It is seen that the control law (3.26) will be the same as

that ébtained for the LQP (see Equation 3.5), provided that. the
-associated weighting matrices are chosen to be the same. How-
ever, in this case it is aésumed that the state vector x, which

_ available
from (3.19) can be seen to be affected by 9, is not[for feed-

* The matrices Q, and G_ are usually assumed to be diagonal.
Since weighting values are chosen empirically, such an
‘assumption facilitates the assessment of each partlcular
choice of weighting values.
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back; rather, a Kalman-Buecy filteridriven by the output,
G .

xf,and the control, u,is used to form an estimate, X, on-

line and this estimate is then used to implement the feedback

‘control. The expression for the Kalman-Bucy filter is

%

Az + Bu + H[y-c%] e (3.28)
where, _

H = Kc' @t - L eee(3.29)
and where} K satisfies an algebraic Riccati equation

associated with the filter, viz..,

RA + A'R - RC'H R + & =0 L een(3430)
If a filter can be designed so that the estimate, %, is

~always very close to thé actual” state, Xx, then (3.26) is the
same as (3.31), viz,

o

. -o-(3-31)

u = FX
Substituting (3.27) into (3.28), yields
'3 =:[A + BF = Hc];c‘: + Hy* L eee(3432)

In block diagram form, +the controlled aircraft with K alman-Bucy

filter incorporated is _as shown inyfigurs.ﬁ.It

A Kalman filter is in practice difficult to synthe-
sisé because of its dimensionality. However, if no aécount
is to be taken of noise, a Luenberger observer of reduced
dimension (which may also be regarded ags a form.of filter),
may be used in place bfthé Kalman filter. The principal advan-
tage of these filters is that they may be designed %o be

driven only by those gignals which can be easily measuredr

¥ The equations associated with such a filter have been derived
by Kalman and Bucy (1961).

* The control, u, has been taken into account implicitly in
(3.32) by means of (3.31).
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A
r--—"| - - - - -~ = 7= |
| | o ) I
; Fle—}—2 I(-)dt ¥ H g
| ) ¥ |
{ | |
| : | |
| o ol A+BF-HC |
| ‘
| OPTIMAL | |
CONTROLLER | KALMAN-BUCY FILTER i

- e ———

Incorporated.

i

.and will have as their output an estimate of the full state
of the system. It is considered that since the optimal
feedback control obtained will be the same whatever the
apprdach,if full stafe feedback were to be employed and a
Kalman filtef ﬁgﬁnot implemented, +the worst that would.be
likely to occur is that some decrease in fhe performance
cost will result.With strong feedback éontrol, the perfor-
mance degradation is not likely to be great. However, because
it was realised from the dﬁset in this research investiga-

tion that it would not be possible practically to implement



. 54

full state variable feedback (FSVF), +two approaches to the
problem have been considered: |
(a) use of reduced-order control
and {b) use of'observers: ‘in particula?; reduced-order
observers, to see whether it is possible to récoup
some of the advantages of full staie feedback

control.,

The assessment of (a) and (b) are reported upon in

" detail in subsequent chapters.
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3.2.2 Specific Problem Statement - Optimal Output Regulator

Since the primary aim of the research was to determine

some means of alleviating the structural loads on the wing

of the subject aircraft by the use of ‘active control, it

was decided +to include those variables associated with bend-

ing and torsional moments into the performance index (p.iJ

. as
Thus the problem was cast gn an optimal output regulator and

and the chosen performance index, J, was
m ) rﬂ.
J = &j (Yay + u'du) dt ve i (3.33)
(o} ‘

The Hamiltonian, H, is expressed as:
H = 3(y'Qy + u' Gu) + ¢f{Ax + Bu) |
= 3[(cx + BufxCxrEw+utcu J+¢ (Ax + Bu)..(3.34)

For H to be minimised w.r.t u, (hence J), theni

gg - EFQCE. + (G + E"QE)u® + ﬁg = 0 ..+(3.35)
Fovte @ = e+ E.qE)YCEvQC x + B vee(3436)
AlSOs

%g f.0 =  ¢'QCx + CQEu + Ay eee(3.37)

Substituting for u in (3.%4) and 3.37) using (3.36), yields

the canonhical equation of the optimal system, viz.,

z] _[ A-B(G+EQE) TE"qC ;-B( E'Q E)‘lg‘; - _ __'Hg]
- - - '-‘—- b - _
14 ~¢'LQ-QE(G+E'QE) “1F' @lc!- (a-B(G+E"QE) ~1F" Qc)'d L¢
oo (3.38)

61‘:

z = Mgz (339
where .

z & [ﬁ L. .(340)
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and M is the system matrix of (3.38) of érder 2n X 2n.

The optimal solﬁtion is obtained from the solution of
(3.38) with the knoﬁn boundary conditions zjto)'zo and

" ¢{e ) = 0, An explicit solution of (3.3?) may be-obtained
in the form of two single-point boundary-~value problems
using eigen-analysis. As in (3.17), % 1is found to be

related to x by the egquation:
g = Rx | | L L(3.aD

where R is the p.d. solution of an algebraic Riceati

equation, viz.,

kKA + 'R - RB0"YB'R + § = o e (3.42)
and where, |
L e a-pelevac vee(3.03)
¢ = ¢+ E'QE vee(3.h4)
4@ = c'la- qee"lEqlc vea(3.45)

3.2.3 Numerical Solution of the Optimal Control Laws

The time résponse associated with (3.383) may be
defined in terms of the eigenvalues and the eigenvector
components of the matrix M,viz.; (Marshall and Nicholson
(1970): If U is the modal matrix made up of columns of eigen-

" vectors and if A is a diagonal matrix made up of the

elemeitl‘ts,* Al,’\Z-}jgnsaooooooﬁn,

*Assuming that the eigenvalues, X‘.' of the system are
distinct. :
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then, ' |
. z(t) = vetulz(t,) ver (3.46)
where, '
_. T=tp - t, - e (3.47)
AlSOr .
MU = UA ' L lt.(3.1+8)

M consists of convergent and divergent mode pairs
with eigenvalues,equal in magnitude but opposite in sign.
fartitioning AN into two sets of -eigenvalues, with '
f{=[*i], is= 1.2.....;..n consisting of negatives real
parts and A, = [>ﬁ] . jJ =1,2,0004..n consisting of posi-

tive real parts.a«&‘%imilarly partitioning (3.46) yields:

[“5(”] =1V Va2 & o Vit Vg [E(%)
gO] ugy Ugp] [0 &M {vy v, [t)

$ee (3-:'24’9}

@®

where, .
VU = I | vee{3.50)

From (3.49)

x(t) = Uj3e ‘[Vll,_(t }rvlzsv(t Y1+ Uy 8"V g X (£ )4V ()]

eee(3.51)
The divergent modes corresponding to the unstable roots must
o . asymptotic
be eliminated in order to satisfy conditions of [stability, viz.,

W(‘l‘o) = "Vzg 21 % (1) eee(3.52)
or, using (3.50), |

#to) = Uy U5L x(t9) cer(3.53)

. - oMt A 4

_ 1
= UlleA‘TUj.i‘}E(to) 0-0(3'51")
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Similarly from (3.49),

y(t) A‘TUH

Uppe™ U 1% (%o)

= Up)U77 x(t) c+2(3.55)

'By substijﬁting for ¢ in (3.36), using (3.55)s the
required control law applying for all time, t, was obtained.
The method outlined is by far the fastest* and was used 1in

the program, OUTREG (Appendix IV). For inversion of the Uy,

-sub-matrix of the modal matrix, U, the method of Ianczos

(1957) was used, Although simple to prograﬁ, the method of
Lanczos required that the real and imaginary n x n matrices
agssociated with Ull to be uged to.form a 2n x 2n matrix for
inversion., The approach did pose some computational difficulty
- when the program OUTREG was run for the model, BACH, Conse-
quently it was decided to break the program into a two-pass

one and these programs were then run on a CDC 7600 computer

at the Regional Computing Centre of the University of Manchester
All the computations of the feedback law associated with the low
order models were completed on an ICL 1904S computer and sub-

sequently a PRIME 400 at Loughborough University of Technology.

- As regards the choice of suitable weights for the matrices
. ' ' in the

Q and G, {(which were chosen to be diagonal)z{performance index

(3.33), no specific technique other than 2 method of trial and

- error was employed. A number of methods to assist in the

* Golub ‘et al (1979) have published an algorithm which is re-
puted to be faster (30%-70% is claimed by the authors);
however. the .approach still requires eigenvector methods
(involving the Schur vector),and transformation techniques.
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choice of Q@ and G have been proposed (Bryson and Ho (1969 )
Harvey and Stein (1979)). The method proposed by Bryson and
Ho suggests that the matrices Q and G be diagonal. Each

W5 »
diagonal element of Q and G ave determined from the expressions:

"

<L _1; 1

qi = nr[;—é_ s e (3.56)
i .
maJE

g —m.[u.z cve (3.57)
Jmai. '

where, _
n is the dimension of the state vector

m is the dimension of the control vector

T is the interval over which the time response is
to be obtained

X4 is the maximum possible value attained by
max the ith state variable
U is the maximum possible value attained by

Imax the jth control vector.

ol
The method allows s%ﬁ?%rng values of q; and g to be

easily determined and is helpful in situations where par-
ticular difficulty is experienced in selecting a set of |
weighting values. However, in the research study, it was

found that weighting values selected in this way did not have
any special relatioﬁéhip with the performarice of any feedback
law derived. In addition, the method proposed by Harvéy and
Stein was not conéidered since it appears that a restriction

. must be placed on.the dimension of the output vector to that
of the control vector. It was found that in all cases studied,
empiricél selection of the weighting values for the Q and G

matrices proved to be adequate.
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3.2.4 Controllability and Stabilisability Requirements.

Often in this research, the closed-loop behaviour of the
alrcraft was asseséed using reduced order feedback control.
The concepts of complete state controllability and stabil-

' isabiiity of the aircraft were found to be important con-
siderations whenever a new feedback law was to be evalﬁated

and tested.

It was shown‘by Larson and Dressler, (1968), that complete
state controllabilify is only a‘sufficient but not a necessary
condition for closed~loop system stability. If the original
state description of the aircraft was itself stable, then
this alone was a necessary and .sufficient condition for ob—-
taining a feedback law which would guérantee the stability of
.the closed-loop system. In a number of cases in this study,
3t was found that some of the mathematical models of the air-
craff which were used, were not completely state controllable.
This fact then required that additional tests be made to de-
termine whether the airc;aft was at least stabilisable. The
dynamic stability of the uncontrolled aircraft is moét easily
checked by observing the signs of the eigenvalueg of the co-

efficient matrix of the state equation, i.e. matrix A of,
% =Ax *+ Bu o (3.4)

The concept of compléte controllability is due mainly
to Kalman (1960)s By complete controllability is meant,
that property of a system which will allow the system to be

transferred from any given state to another state in a



finite time, (3.4) is completely controllable if the con-

trollability matrix, X, given as}
X = (B, AB. A%B ....AR"1p) i {3.8)
spans the nndimensignal space, i.e.
rank (X) = n o ' o (3.%)

A simple check for controllability may be achieved by
means of a state -transformation (De Russo et al (1966)),
of (3.4) into.a canonical form. The most convenient trans-
formation is the matrix of eigenvectorseelumrs of A. Thus

using the transformation:
T)_(’ = _JE 00(3060)

(3.4) is_then written in the form:

1

ox + vt By Ve (3.61)

I -
¥ =1

Provided that the eigenvalues of A are diétinct. (T'lAT) is
a diagonal matrix. Thus (3.61) represents a decoupled form
of (3.4). It can be easily shown that for (3;4) to be com-
pletely controllable, the rows of (T7'B) of (3.61) must all
‘contain non-zero elements. This check was used in the com-

ruter program CONOBS (see Appendix IV).

61
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.3.3 A SCHEME TO EVALUATE THE MODEL'S PERFORMANCE
IN SIMUIATED ATNOSPHERIC TURBULENCE

In this section, a method for assessing a particular
SLACS scheme when the aircraft is subjected to atmospheric _
turbulenée. is outlihed. In particular, a method for evaluating
the r.m.s. values of bending and'torsional moments experienced
at each wing station of the aireraft, for light turbulence* is
described., The méthod is due.to Swaim et al (1977), and is

presented below.

The state equation given as (3.19) is repeated here for

convenience, i.e.,
%¥ = Ax + Bu + G1 e (3.19)
A linear control law may be derived by the method |
dutlined in seétion 3.2.3 and given as (3.26), i.e.,

u® = Fx | vee (3.26)

Substituting for u in (3.19) using (3.26), the equation

representing the controlled aircraft results, viz.,

% = (A+BF)x + G - oo (3.62)
or, .. . | ‘ ) |

% =Ax + Gy o (3.63)
where,

A& (apF) | ee (3.60)

*¥ To allow comparison with dynamic response tests, described
in Section 4.1, a vertical gust having an r.m.s. intensity
of about 1.0m/s, was assumed throughout the research. This
was considered adequate for the purposes of tests since only
percentage reductions in bending and torsional loads were of
interest, ' ‘
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The output equation given as (2.9), is:

y = Cx + Eu cov (3.65)

= —

Again substituting for u in (3.65) using (3.26), yields:

| x = (C+EF)?_C_ ’ “se (3-66)
or,
y = Cx s (3.67)
where, _
¢ & (C+EF) eer (3.68)

The mean squared value of¢ y, which is the expected value of

y_z. iSS

kARG

1]

E[(Ex) (Cx) ] ver (3.69)

or..

AV

where, ¥(+) is the expectation operator. E[x.x']is the

CE[x.x']C" eee (3.70)

covariance matrix and can be obtained in the following way:

Post-multiplying (3.63) by x' and taking the expected value,
yields:
Elx.x] = R&x.x'] + cglv.x eee (3.71)
Transposing (3.63) throughout, pre-multiplying by, x, and
then taking the expected value, yields:
o Exext] = Elxex]Ar +E[x.q])ce eee (3.72)
For a linear system of state vector, x, driven by zero mean,

unit Gaussian white noise, the correlation between x and %

is,{Swaim et al (19?7). Bryson and Ho (1969 )):
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Zlxeq) = 3 o oo (3.73)
Substituting (3.73) into (3.71) and (3.72) and adding the
resulting equation yields:
;[g.x_'p;[x..ig]: Aglx.x]+E[x.xT R + Ga° coo (3.70)

For the covariance matrix?ﬁgu&ﬂ to be time-varying requires
that the statistical properties of the state vector, x, vary
with time. But since the noise source is, 7 ,(white noise) and

of zero mean, then:
%_dé[}i._}g']} =O =a[:x_.}£‘]+;[l{.s{_‘] "en (30?5)
Thus, (3.74) becomes:
Refxox)+3x.x'JR" + 6a* = o e (3.76)
By solving for the covariance matrix in (3.76), and then |

substituting the result into (3.70), the r.m.s. values of the

‘variables which constitute the output vector, y, was obtained.

(3.76). is of ‘the form,

X + X .= @ eee (3.77)
where,

Xegx.x] eee (3.78)

Q2 cc o vee (3.79)
Let, B

A = A+ . eee (3.80)

Substituting for X in (3.77) using (3.80), yields:



K.g + Xﬁk =‘ ‘Q acc. (3-81)

(3.81) is in the form of a Lyap¥nuv equation an@fa degenerate
case of an algebraic matrix Riccati equation. The equation
may be solved using the method of Golub et al (1979), or of
Marshall and Nicholson (1970). The latter méthod is éimple
to program and was used in the computer program COVRNC

(Appendix IV). The results of the tests carried out are presen-

ted in section 4.5,
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CHAPTER 41 ASSESSMENT OF VARTOUS SLACS SCHEMES.

4,1, Introduction.

The computer programs OUTREG and RESPON {Appendix IV)
were used eXtensivel& in order to carry out tests on the
mathematical models discussed in Chapter 2. The control laws
obtained'uéing OUTREG were tested using both simulated deter-
ministic and simulated turbulentesituations. In this research
study, a number of artificial test situations were used for
assessing-and comparing various SLACS schemes. Table #;1
}shows the test situations employed for the deterministic cases
studied, while in Table4.2 are shown those test situations em-
rloyed for simulation in atmospheric turbulence. For the sin-
ulation of vertical gust, which was the oniy component of the
gust required in the tests, a Dryden filter was used with zero
mean white noise as its input. The simulated gust signal which
was the output of the Dryden filter also had the property of
zero mean and was of an intensity which depended upon the am-
plitude of the noise input.* Test cases D and E allowed a
qualitative assessment to be made of a number of SLACS schemes.
A quantitaﬁive assessment was also made using the computer pro-
gram -‘COVRNC, (Appendix IV) to évaiuate the r,m.s bending and
_ torsional levels achieved in the wing of the subject aircraft.

These results are discussed in Section 4.6.

The amplitude of the noise input was adjusted until the
evaluated r.m.s intensity of the gust field was
approximately 1.0m/s.
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CASE SITUATION
Initial State Commanded Control Surface
Deflection (rad) ' ,
Aileron ch Inboard Elevator 6E.
. ’ . C
A W=t e mA -2 n 8 0.0 0.0
All other
states set
to zero.
B All states set 0.025 0.0
to zero. |
C All states set 0.01 0.01
to zero.
Table 4.1 ¢ Test situations employved for de i .
CASE SITUATION
~Initial state Forcing Terms* | Standard Deviatio
of vertical Gust
Velocity
w_ (m/s)
D All states set
to zero None
S
E w o= b mte None
All other
states set to
Zero.
Table 4.2 :+ Test Situations employed for atmospherig/turbulence.

-
-

¥ No commanded control surface deflections were used.

+ These values correspond to .light turbulence.
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4,2 Derivation of Optimal Control Laws.

- The model, ARNE, proved too large to be handled by any
computer available to the author, even when the computer pro-
gram, OUTREG, (Appendix 1Vv) was broken into a two-pass one.
The main difficulty always arose when it was necessary to
invert the n-/xn matrix partitign of eigenvector columns (which
often had complex elements) of the modal matrix associated

with the optimal canonical matrix (see Eqn 3.49 ). Complex

inversion by the method of Lanczos (1957), was used which in-
volved the formation and inversion of a 2n x 2n matrix. This
matrix in the case of ARNE was of dimension 158 x 158,

Feedback laws associated with the model BACH were found

by using the 'two-pass' version of the OUTREG program on a

CDC 7600 computer at the University of Manchester Regional
Computer Centre (UMRCC). For the lower order models, no fur-
ther difficulty was experienced and it was possible to ‘make
all the required runs on an ICL 1904S computer at Loughborough
University of Technology Coﬁputer Centre (LUTCC). It is pos-
sible that the recent report by Laub (1979) using the Shur .
method for solving fhe A RE may remove most of the numerical

difficulties previousiy experienced,

4 ,2,1 Selection of Weighting Matrices.

A number of trial runs of the program, OUTREG, were made
for the model CLEMENTI in order to establish a suitable weight-

ing scheme for the output vector weighting matrix, Q, and the
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Although a number of

could be relied upon to give adequate results.

given as (4.1) and (4.2), viz.,

are available to assist in the choice of Q and G

and Ho (1969), Harvey and Stein (1979)), none of these

A

set of weighting values found to be suitable for the

diag. (107 107 107* 107% 107% 107 107% 107* 107* 107Y]
10°5 1075 1077 1072 1072 1072 1072 1075 1075 1075
R TS R ST ST S SR T BT VOB
S R TR R R S IR S N SR |
l1 '1 ' '1 .'1 .1 .1 ‘1 .1 .1 '.1
11 1 10 10 10 .5
diag. ( .01 .01 ) ven . (B.2)
The resulting optimal control gain matrix, F, (Equation (3.26)),
was determined to be:
" -3.07E-2 -6.582E-2 5.178E-2  5,035E-3 1.472E-1 -9.786E-2
-6.111E-2> 1.867E-1 2.007E-2 -1.948E-3  3.370E-2 1.463E-3
8.2U8E-3 -3.506E-2 2.855E-3 L,161E-3 -1.172F+0 -1.898E-1
9.101E-2 0.646E-1 -1.317E+0 <3.263E-2 7.996E-1 B8.725E-1
«6.218E-1 -2.142E-1 -1.252E-3  1.960E-1 -2.316E-1 -5.585E-1
“1.974E+0 -4, 48LE+0 -2,9878+1 -1.370E+1 -1,827E+0 2.872E-2
~1.874E~1 7.729E-2 1.579E-2 -1,604E-1 -2.857E-3 -1,949E-1
~7.001E-2 4.250E-2 7.523E-2 2.213E-2  5.773E-2 3.019E-1
-1.823E-1 2.239E-1 3.239E-2 6.729E-1 2.790E-1 1.022E-1
1.460E-1 8.010E-2 -k4,846E-1 =B8.017E-1 -5.637E+0 9.564E-1
-8,617E-1 3,152E-1 <4,300E+0  3,470E+0 -6,0L6E+0 -1,270E+1
~2,4598+1 -2,604E+1 1.0558+1 1.053E+1  1.5438+1 -2.849E+1
~4,637E+1 -3.957E+1 ~1.080E+2 -3.907E+2 -2.909E+1 1.7998-1
-9.764E-1 ~1,2B4E+0 ~5.769E-3 ~1.895E~-1 2.971E-1 6.700E-1

s (4.3) .
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Since the model CLEMENTI had an output vector similar to

that of BACH except only that the upper nine bending mode

variables were omitted, the weighting scheme adopted for

CLEMENTI was similar to that given as (4.1) and (4.2). Thus

for CLEMENTI:

Q

G

= aiag [107%, 107%, 10"
10=2, 1079, 1-'5. 10°2, 10™2, 10~2, 10‘5.10'5,10"5.10

)

¥ 107%, 107, 107%, 107%,107%,107%,1

S L. SR TECRRE RS R R | 10 .1 L1
| 1, 1, 1o, 10, 10, .5
oo (8. 4)
= diag {.01, {01} eee (B.5)

The resglting optimal control was determined to be:

[-.015 -,0066 .026 .021 ,141 -,196 -,019 .12 ,019 -.078
.005 9714 -1-0?9 31?2“’ —1901"34 "12.8“’6 -2.904 0022 "".1
-,063 .003 -.032 ,0072 -.032

1-.037 .158 -.434 ,109 1.289 =-.877 -.512 1.312 -.473
202 ,306 -3.864 425 .602 -97.373 -378.7 -67.869 .347
.058 -1.789 -,0011 .114 .239 .162

LR (l}.é)

o1
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The effectiveness of control laws such as (4.6) were carried
out initially by inspection of the eigenvalues of the closed ioop
system and then by making appropriate response checks under
the test conditions specified in Tables 4.1 and 4.2, If it was
found that a particular control law derived did not produce a
desired effect on the controlled aireraft then the.appropriate
elements of the weighting matrices Q and G were made heavier .
(or 'lighter', as the case may be) and the program, OUTREG re-

run to produce a new law.
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4,3. Eigenvalue Analysis.

Eigehvalue'analysis.was carried out primérily to determine
- the extent to whiqh damping of the structural bending modesg had
been augmented by the use of a particular SLACS scheme. The
agsessment was made by comparing with the eigenvalues of the

controlled aircraft.

From Table 4.3., it may be seen that, for the uncontrolled
aircraft, all bending modes were only very ligﬁtly damped
where in every case, < 0.1, Also, it shouid be noted that the
frequency of the short period mode was only separated from the
frequency of the first bending mode by a factor of four. For
the controlled aircraft however, this frequency separation has
ﬁeen increased by a factor of  .eight. 'Such frequency separation
has the desirable effect of reducing the possibility ofifrequency
coupling between the rigid body motion and any of the flexural
modes. With close coupling at these frequencies, it may not
be possible to generate sufficient controlling action to reduce

the amplitude of the attending motion.

It can also be seen that the short period frequency of the
rigid body motion has been slightly reduced in the case of |
the cbntfolled aircraft although the damping ratio has re-~
mained unchanged. Thus, there has been little change to the

handling qualities of the basic uncontrolled aircraft.

For the controlled aircraft, the damping ratios of bending

modes 1,3.5 and 6 were increased as were the frequencies of



UNCONTROLLED AIRCRAFT

CONTROLLED AIRCRAFT

Short Period Mode
Bending Mode 1
" L] 2

3
" "oy
" "5

" "6
‘Inboard Elevator Servo
Outboard Elevator Servé
Aileron Servo

Kiissner Dynamics

L1 . "
" I-l
" (1]
" L)

-.877 + §
-5l + ]
-.23 +
__58- +
-6 4]
43+ 3
.62+ ]
-7+5
-7.5
~6.0
=0.2
-0.3
-8.55
-10.98
-22.19

"5-1.4' j

b

1.27

5.46
11.12
13.79
15.59
17.48

18.78

3.6

.73+ § 1.07
-3.93 + § 8.49
-.23 4+ j 11.15
-2.1 + j 15.1
~.36 + j 17.62
-2,25+ § 18.94
3543 + § 23.99
-2869.0
-7.5
-6.68
-0.2
-0.3
-8.55
-10.98
-22.19
-5.1 4+ j 3.6

Table 4.3; EIGENVALUES OF MODEL CLEMENTI WITHOUT AND WITH °

FEEDBA

CK _CONTROL.

€
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modes 1.3.4.5_agd 6. The damping ratio of mode 4 was halved
from 0.04 to 0.02. However the frequencies associated with all
bending modes are relatively well spaced. It should also be
noticed that the dynamic characteristics associated with mode 2
ﬂgg%}emained unchanged by the use of feedback control. It was
pointed out by Harvey and Pope (1977), that mode 2 was uncon-
trollable and this gave cause for some concern in the research
study. Also, it may be seen from Table 4.3. that the Kiussner
dynamics also have remained unaffected under the action of
feedback control. A check for state controllability using the
program CONOBS (Appendix IV). showed that mode 2 was controllable
although those stétes associated with the Kissner dynamics and
the servo-actuator dynamics connected with the outboard sections
of the elevator were not controllable. These phenomena are
discussed further in Section &43%a under the heéding of con-

trollability and stabilisability.
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h.4, Responses.

4.,4.1 Response of the Uncontrolléd Aircraft to

Deterministic Commands

A‘number of evaluations warre first carried out on the
mathematical models of the uncontrolled'aircrgft. In Figure
h.lé. is shown the response of one of the rigid body motion
variables (vertical velocity. w) when the models BACH . and
CLEMENTI were subjected to a case A test situation. It is-
seen that there is little significant difference between the
responses of theée two models,. There also appears to be little
noticeable difference in the plots of wing-root bending moﬁent

(WRBM) as can be seen from Figufe.h;ib.

Figures 4.2 and 4.3 show the corresponding responses for
the case B and case C test situations regpectively. All the
responses indicate +that there is little .significant difference
between the models BACH and CLEMENTI. However,in the case C
test situation, although fhe transient responses are identical,
it is seen that there is a small but finite steady-state error
in the responses produced by the two models. Since this re- l
search was aimed at obtaining substantial reducfions in bending
and torsional loads in the wing of the aircraft, it was con-
sidered that theée small steady-state differences would not
greatly influence the accuracy of thé end result . In the
later stages of the research, a method was devised whereby the
value of the steady-state bending and torsional moments could
be easily evaluated provided that the magnitude of the command

© vector and the aircraft dynamics were known. The method used
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is described in Section 4.4.3. The results discussed above in-
dicated that the model CLEMENTI was suitable for all

work connected with the design of a structural load alleviation
control system‘ﬁor'the subject aircraft and these results also
éuggested that most of the aeroelastic energy of concern is ‘

contained in the first six bending modes.

b.4,1a. Forcing the Controlled Aircraft.

The artificial test situations B and C given in Table.
h.i were only used for forcing the uncontrolled aircraft. The
chief reason for this 1is that when the same controi surface
demands were’ﬁadern the controlled aircraft, the latter did
not experience the same rigid body motion as the uncontraelled
aifcraft:fin particular the steady-state levels of vertical

velocity, w, and pitch rate, q, experienced in the uncontrolled

and controlled situations.were different.-

In order to validly compare the performance of the con-
trolled with the uncontrolled aircraft, and to assess any SLACS
‘scheme, a method of forcing the controlled aircraft to the
same state-state levels of rigid body motion, as experienced

by the uncontrolled aircraft, was devised.

[2)

The equation representing the uncontrolled aircraft is:

gr-A__}s‘f' B_g _k- s (h‘o?)

The optimal contfol law ig:»
. Eo = F— .- ..(L}.B)
e ab g | Lidotins
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By substituting (4.8) into (%.7) the equation representing the co:

trolled aircraft is obtained, viz.,

-

X

= (A+BF) _)S'c ) (4-9)

(4,9) was forced by addihg to the .‘right hand side, an additional

~ vector, r. acting through a driving matrix, H, i.e.

-

X =
where,

r A

H

n

(A + BF) x, + Hr oo (4,10)
WS'

v

| P2 g8, o (.11)
L o

0o 1

0 o0

. e (B.12)
0 0

Figure ‘4.4. shows a block diagram representation of the

uncontrolled aircraft while in Pigure 4.5 is shown the block

diagram of the controlled aircraft with forecing vector, r,

included. Figure 44 shows plots of rigid body heave motion

(i.e. vertical velocity, w) for test situations A,B and C.

Similar graphs were obtained for pitch rate,q and the steady-

state values attained for the uncontrolled aircraft were used

~ to form table 4.3.

These values then formed the elements of

vector,r, (4.11) and were used to force the controlled air-

craft. From Figure 4.6 it is seen that the method was very
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effective in producing the same steady level of vertical

CASE w__ in/s (m/s) q/h2 in/s (rad/s)
88 ss
A 0.0 ' 0.0
B -18.75 (0.48) -25 (1.52 x1073)
C -39.5 (1.00) ~6.9 (4.19%10"2)

Table 4., : Steady State Valuess Rigid Body Motion.

velocity within about 5 seconds., Table huQ was used extensively

in all tests relating to an assessment of each SLACS scheme.

L,4,2 Responses of the Controlled Aircraft Employing Full
state Feedback.

The feedback law (4.6) derived on the basis of the
model CLEMENTI wasrtested using the program RESPON (Appendix
IV). Figures 4.7 and 4.8 show the bending responses at the
wing root and at wing station 3 (w.s.3) for the case B and case
C*¥ test situations respectively. It can be seen how effective
the presence of feedback was in causing reductions of 50% or wi:}
more at_these wing stations. All the plots associated with 2;)@
"the other wing stations studied indicated a similar pattern.
An additiohal welcome feature of the feedback control was the

reduction in oscillatory motion in the bending response at

each wing station. Such reductions were achieved by augment-

The responses associated with the case A test are not indie-
ated in this case because they were all small deviations
about the abscissa which tended to obscure portions of the
other responses. '
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ing the damping of the elastic modes and will contribute to
a reduction in the accumulation of the fatigue of the wing
structure, i.e. if it is accepted that fatigue accumulates

according to Minor's Hypothesis (Burris and Bender ( 196@)).

Although substantial reductions in bending moments were
obtained. it was not possible, with the same control law, for
all the test situations studied to simultaneously achieve a
reduction in torsional moments. If Figure 4.9 is shown a com-
parison plot, of'torsional moments at the wing root, between
the uncontrolled and controlled aircraft. If is seen that for
the Case B situation, a reduction of about 50% in torsional
moment was possible. However, for the case C situation,.
there was a 15% increase in torsional moment. As a result, a
number of tests were made which involved only different choices
of Q and G weighting matrices from which it was shown that it
would be feasible to produce a feedback law which would effect
a reductioh of both bending and torsional moments. A typical

set of weighting matrices used are:

Q = diag [10°7 521077 1079 5%1078 1077 sx10~7 1079 5«10'Eﬂ

1079 5x107% 1078 1079 1078 1079 1079 1078 109
1079 1078 1079 1072 1072 1072 1072 1072 1072

2,.-2

(10710

1072 1072 1072 1072 1 1 10 10 10 0.3
v (l4.13)
and,

G = diag ( .01 .,01) eoe (Bo1h)
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The corresponding control law was calculated to be:

W = [-,0605 -.0022 Q15 0098 364 ~.356 -.151 .739 .0212]
151 2,38 -3.44 -4,26 12,7 -35.4 -37.8 -10.4 0567
"l"I'L"B "016u’ 00009 --189 0090 -.0505

]

-.1670 ,0102 -.0778 .11 1.970 -1.510 -.951 3,08
. "‘00822 0289 5.22 -9|06 -11.1 33!9 "151.0 -438l0
{:sv.u 464 -1,08 -2.03 .0022 ~.307 .515 .237

e (4015)

The responses associated with control law (4,15) are
shown in Figures 4.10 - 4,12, From the plots, it is evident
+that the magnitude of reductions achieved was not the same
as was possible with control law (U;é). However, in the case
where control law (4.15) was employed, it was possible to cen-
tain the torsional moments experienced by the wing of the air-
cfaft to within an acceptable level, i.e. even in an acute
manoeuvre situation such as case C, it was still possible to
effect a small reduction ih torsional moments. In none of the
control laws applied so far w&gg the basic handling qualities
of the aircraft found to be impaired. The reduction in bend-
ing moment at the wing root were in the case of control law
{4.15), in the region of 40% while)with control law (4.6), a
‘reduction of 55% was obtained. Thus, if it is necessary to
maintain torsional moments at their original level, or even
to effect some small reduqtions. it would still be possible
to achieve substantial reductions in wing root bending moments.
Similar reductions were recorded at all other wing statioﬁs

although only the results for wing station 3 have been pre-
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sented in Figure 4.11.

4,4,3, Controlled Aircraft Employing Reduced State Feedbackil

The feédback laws derived so far, based upon the model
CLEMENTI, employed full state variable feedback (FSVF), which,
in practice, would be extremely difficult to synthesise. Not
only are thoée state variables involving the displacements and
tﬁe rates of each of the six bending modes required, but also
the six variables associated with the.Kﬁssner dynamics¥* in add-
ition to the gust velocity, which, is an exfremely difficult
quantity to measure. A number of further tests were therefore
cérried out to determine the robustness properties of the feed-
back laws used previously (see section 4.452.). A robust flight
controller ié considered to be one.which, without replication
of equipmegt. or switch-over. to standsby_eqqipment.does not
lead to a loss of control‘br to systeﬁ instability when some
mOtiéh sensor or contpoller.failure¢ occurs (Steinhauser,(1978)).
These tests involved the derivation of new feedback laws using
less complete models such as FAURﬁ. GERSHWIN and HANDEL, but
| applying these laws to the model CLEMENTI. By this means, it
was possible to determine the effect which the absence of one
or even an entire group of feedbhack variables had upon the
overall stability of the aircraft. Since robustness must take
into account the controllability and stabilisability properties

#* _
These variables have no explicit physical existence.
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of the system, these properties were investigated and re-

ported upon in the following section.

4.4.3a Controllability and St&bilisabllity.'

Inspection of the eigenvalues of the uncontrolled air-
cfaft. considered to be adequately represented by the mathe-
matical model CLEMENTI, shoved that the aircraft was stable,
However, further checks using the program CONOBS (Appendix 1V)
indicated that CLEMENTI was not completely state controllable.
In Section 3.2.4,, %ﬁégagnl§d§€§§1llsablllty was necessary
and sufficient for evaluating a feedback law which would
gdarantee the stability of thé controlled aircraft. The

closed loop stability of the aircraft can be judged from

an inspection of the eigenvalues given in Table h,3,

A more detailed comparison of the eigenvalues given in
Table 4.3 will show that thqse eigenvalues associated with
the Kussner states and the outboard-elevator servo have re-
mained unchanged. It is these which account for thé result
that CLEMENTI was not completely state controllable. Similar
results were obtained when the models FAURE, GERSHWIN and
HANDEL were tested. In all cases either the presence of the
Kugsner dynamics or the outboard elevator dynamics, or both,
resulted in the models being not completely state controllable.
However, because the Kissner dynamics and the outboard-elevator
dynamics are themselves stable, the closed-loop model was al-

ways found to have stable roots. In Table 4.5 is shown the
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feedback gains obtained when the output regulator problem

was solved for each model., Each set of feedback gains was then
applied to the moéel CLEMENTIs and the eigenvalues of the new
‘closed-loop' system found (Table 4.6).

for instance,
In Table 4.6, 17-SVF[is wused to indicate that feedback

law evaluated on the basis of using the model FAURE .but applied
to the model CLEMENTI. Where some of the gain values are missing,
these were replaced by zero, and assumed unavailable for feed-
back. The eigenvalues for the uncontrolled aircraft and for
CLEMENTI with FSVF listed in Table 4.3 have been reincluded in
Table 4.6 for convenience. It can be seen from Table 4.6 that, -
even with what appears to bé a sevefe loss of feedbac%bas is
the case with 5-SVF, there appeérs to be no significant effect
on the stability of the aircraft. The results obtained with
5«SVFg “were of parﬁicular significance gince as it turnsléut
all five state variables are relatively easy to measure. It
was however necessary to investigate the effects of any further‘
loss of feedback. A systematic scheme of testing was made on
the model CLEMENTI with various combinations of the gains
-associated with 5-SVF in the feedback loop. By means of eigen-
analysis, it was possible to establish the condition that

both pitch rate, q, (i.e. q/hz) and aileron deflection, &,

must always be avéilable as feedback signals to guarantee the
stability of the closed-loop SLACS. However, in all subsequent
tests.in this research, it was aésumed that all five variébles
would be available for feedback and consequently 5-SVF is N

referred to as the 'safety law'.



Table 4.5:+ COMPARISON OF FEEDBACK GAINS OBTAINED USING DIFFERENT MODELS

woloa/nl N MM R A K N % | ™ , A5 | %
cLEMENTT |-+ 0605 |-+ 0022 .150 | .0098 .364} -.356|-.151] .739| .0212} .151| 2.38 | -3.44 | 4,26 [12.7
_ ..1670| .0102| -.0778] .1100 1.970|-1.510|-.951|3.080|-.0822| .289| 5.22 | -9.06 |=11.10 [33.9
FAURE -.019 [-,0052] .031 |.0ot0 .126]| -.161|-.030| .154] 012 | .039| .298|-.250 -.8971 3,124
-.0hlt 1-,0033|-.433 |.118 1.296| -.943|-.480{1.188|-.121 |-.089|-1.734| -.975 .600| 1.220
.0138] .0225] .0s24 . 847
GERSHWIN| '5311| .0538|-.388 1.64
L0003 054
HANDEL | 4029 187
5h %, | %, | P1| P2f P3| Py | Ps| Pg| ¥
CLENENTI| —33+% |-37.8 |~10.k |.0567|-.043 |-, 164 |.0009|-.189 |.090 |-.0305
-151,0 |-L438.0|-87.4 |.4840|-1.08d 2.030|:0022(-.307 |.515 | .237
- —17.44 113,80 -3.068
FAURE -101.3|-377.7|-67.6
cersuwin] -28:2 |-38.7 -6.77 |.0432},0246| .181 {.0002| .0486|.0798] ,169
~134,0|-L&0.0| 77.5 |. 463 |.0105{-2.070|.0006| .255 |.482 | .798
-31.3 |-40.4 |-5.85
HANDEL | 907 0 l-146.0]-76.0

S6



UNCONTROLLED CONTROLLED  ATIRCRAFT
AIRCRAFT, FSVF = CLEMENTI 17-SVF 14-SVF 5-SVF
Snort Period 1. . 877431.27 -1.14 4 §0.849 | -.985 + 30.785| ~1.0 + §0.973 |~1.13 + 31.12
Bending Mode 1|-.51 + 15,46 [-3.35 + 17.96 ~3.37 + J8.60 | -11.9+ j10.4 |-0.53 + j5.47
" moo21-.23 4 §11.12 [ -.23 4 311012 ~0.22 + 311.12| -0.24+ j11.12 ]-0.24 + §11.12
" "o 3|-.58 + §13.79 [-1.92 + 315.6 -2.12 + 314.7 | =0.74+ 313.5 |[-0.64 + j13.8
" P 41-.6 + §15.59 1-0.37 + j17.6 -0.37 + §17.6 | -0.79+ 315.1 |-0.58 + j15.6
" "o 51,43 + §17.48 [-1.68 + j27.6 -2.31 + 318.8 | -0.43 + j17.5 |-0.43 + 317.5
" " 6|-.62 + 318.78 |-58.0 + }51.4 -35.2 + §23.7 | -0.62 + j18,7 |-0.61 + j18.8
snboard Elev. -7.5 -3380.0 -2860.0 -3380.0 -3430.0
Qutboard Elev. -7.5 ~7.5 -7.5 ~7.5 ~7.5
Alleron Servo. -6.0 -5.71 ~5,98 -79,9 -~113.0
Kissner Dynam. -0.2 ~0.2 -0.2 ~0.2 ~0.2
" " -0.3 ~0.3 -0.3 -0.3 -0.3
" " -8.55 -8.55 -8.55 -8.55 ~8.55
" " -10.98 -10.98 -10.98 -10.98 ~10.98
" " ~22.19 -22.19 -22.19 -22.19 -22.19
" " .51 + j3.6 -5.1 + }3.6 -5.1 + J3.6 -5.1 + 33.6

Tabls

‘—5.1 .i'. j306

Comparison of Eigenvalues of the Controlled Model CLEMENTI Using Reduced Order Feedback




97

L.,4,3b., Responses.

The feedback laws evaluated using the models FAURE,
GERSHWIN and HANDEL were tested using the model CLEMENTI. A
typical set of dynamid responées are shown for the wing root
and w,s.,3 in Figures 4#.13-4,15, It can be seen from these ploté
how effective reduced-order feedback was in still securing sub-
stantial levels of bending moment reductions both at the wing
root and at w.s. 3; Although no significant reduction in tor-
sional moments was possible, in no circumstance did these moments
turn out to be greater than those experienced by the uncon-.
trolled aircraft. Although not included in this set, the res-
ponses obtained for wing stations Z;b and 5 followed a similar
pattern. Alco because the responses obtained from using the
feedback law based on the model FAURE did nd differ significantly
from the.résponses of CLEMENTI with FSVF, these responses were
not included in the plots. The result is however not unexpected
since FAURE only differs from CLEMENTI in fhe absence of the
Kiissner and gust dynamics. Since the tests made solfar are all

deterministic, the gust dynamics were not excited.

The response obtained using fhe law derived from the model
GERSHWIN présents an intgresting result since it confirms the
géneral belief in Aeronatutical Engineering that much of the
aeroelastic energy is contained in the first bending mode. The
results of Figure 4.13 indicate that it is possible to achieve
the same level of reductions in WRBM even when only those state

variables associated with the first bending mode are fed back.
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With 5-SVF it was not possible to achieve the same level
of bending moment reductions as was possible with either 14-
SVF, 17-SVF or full state-variable feedback. At the wing root
bending moment reductions were in the region of 20% when
_ 5-SVF was used, compared with 40% for the FSVF case. Alsq)
with 5-SVF, it was not possible to augment the damping of the
bending modes .to the extent achievable with higher orders of
feedback. Asa result there is some oscillation associated
with the bending responses when the 'safety law' was employed.
From these results, it may be inferred_that the use of 5-SVF)
although an attractive proposition from the point of view of
~ being easy to synthesise, has associated with it a number of
limitations. Reduced state‘feedback)which may result, bec— |
ause enough sensors cannot be provided, or, when present,
cannot provide accurate measurements, or may have failed in
their opefation,may be expressed in terms of the increased
level of bending moments which will result together with the

presence of some oscillation in the bending responses.

h.h.3c Sfeady-State Checks.

Since this research was primarily concerned with the
reduction of structural loads on the wing of the subject air-
craft and sinceyin all tests carried out so far, each SLACS
was judged principally by the steady-state level of load re--
duction it provided, a method was developed for quickly eval-
uating the steady-state loads from a khowledge of the aircraft

dynamics and the command vector being applied.



Books may be borrowed for the Easter vacation from Monday March 16th.
However all hooks are still_suhiect to recsh and must be retumed if
required by another reader.
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Consider the aircraft equations given as:

Ax + Bu oo (B07)

X

(¢

X C§ + EH 01(4116)

In the steady-state,

1

X =0 ‘ oo (B.17)

Therefore from (4.7},

- -1 : :
ESS = - A BH - 00(4018)

and from (4.16)
4., = (-CA"'B'+ E)u oo (4,19 )

(4#.19) was used to determine the steady-state level of any of
the variables constituting the vector,y, (chiefly the bending
and torsional moments), which was achieved by the uncontrolled
aireraft .when subjected to' a case B or a case C test situation.
In order to compare these load levels with those ach:eved when
feedback waslpresent. it was first necessary to take into
account, in (4. 7);the change in the basic aircraft dynamics,

i.e., for an optimal control law given as:

u’ =Fx o (b.8)

the equations representing the controlled aircraft are:

n

% (A + BF)x, oo (4.20)

C

1l

and, Y. (C + EF)x, o (B.21)
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where X is a vector identical to x, but only . used to dis-

c
tinguish between the controlled and the uncontrolled situations.

Tn order to force the controlled aircraft, an extra vector,r,
was introduced into (4.20) acting through a driving matrix,

H, (see section 4.4.2) i.e.
_}_{_c = (A +BF)§C + H__I_‘ to(u’a22)

"Again, in the steady -state,

X, & 0 o o (B,23)
e x, ==(a+ B Hr S e (Ba24)
886 . .
From (4.21)
¥, = -(C+EF)(a+BF)7T Hr .o (8.25)
ss - _ |

(4.25) was used for determihinglthe steady state levels of
bending and torsional loads induced in the wing of the controlled
aircraft and these were‘then compared for the equivalent test
situation with those levels induced in the wing of the un-
controlled aircraft., Both full and reduced state feedback was
studied i.e. I took a range of values (from Table 4.5) dependent
upon the order of feedback studied. The vector, r, took the
values appropriate to a case B or a case C test situation (see
Table 4.3). For a salution of (4.25) to exist, (A+EF)must be
non-singular, The feedback matrix, F,is the solution.of a
linear quadratic problem (LQP) and that solution guaranteed that
(A+BF)‘must be at least positive semi definite (p.s.d); that is

to sayythat the eigenvalues of (A+BF) have negative real parts
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and (A+BF) is therefore a sfability matrix and is invertible.
Some results obtained for the wing root and wing station 3
are presented in table 4.7. The table allows steady-sfate
bending levels of the uncontrolled aircraft to be compared with
those achieved by.the controlled aircraft for the Case B and
Case C test situations. Results for the controlled aircraft
with reduced feedback down to 5-state variables are shown. It
is seen that in almost every case where feedback was implemented,
it was poséible to achieve some reduction in bending and tor-
sional loads. All the results were confirmed independently
through response tests. Since,from prefious response tests,
it was evident that the transient response of the aircraft with
SLACS incorporated, did not alter isignificantly,even with a
severe logs of feedback‘down to five motion variables, the method
provides a fast and accurate way of prédicting the effect that .
different types of reduced order control would have on the air-
craft. Also the results of table 4.7 lends support to the
suggestion made earlier in Sectioh 4.k3b that the cost of pro -
viding more sensors, or alternatively, the cost of a failure,
to provide measurements, can be expreseed in terms of the re-
sultant increase in the load levels experienced in the wing of
the aircraft. Evén when only 5-SVF is employedg(a much simpler
and hence cheaper enginéering task), the reduction in Bending
moment that was pdssible at the wing root was 1in the region of
18%. However, in practice it will be necessary that the wing
of the aircraft be designed to withstand loads incurred with

the mipimum of SLACS action.



Alircraft

WRBM WRTM W.S.3 BM
ggﬁé?i%on B ' C B ,C B c
Uncontrolled| -.535 | 3.54 | .784 843 |-1.01 .932
FSVF 976 | 2.17 | .362 ) .155 | .352
17-SVF 871 | 2.17 | 490 -.019 | .352
14 .SVF 1.01 2.25 | .348 L184 | 418
5-SVF 1.00 2.30 | .351 179 | 464

AlY Moments

2

quoted in 10/Nm.

Table %.71 COMPARISON OF STEADY-STATE BENDING AND TORSIONAT MOMENTS
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From the response tests -carried out on the uncontrolled
aircraft represented by the mathematical models_BACH and
CLEMENTI, it was evident that the transient and steady-state
behaviour of these models were identical (see Figures 4,1 -
4.3). (4.25) waé used to confirﬁ these results. Furthermore,
when the feedback law evaluated on the basis of the model
CLEMENTI was used with BACH, the steady-state loads predicted
were identical to those_predicted for CLEMENTI with FSVF. Thus
CLEMENTI was regarded as being of the highest dimension re-
quired for any work connected with the design of a. suitable
SLACS for the subject aircraft. The results also qiearly in-
dicate that the upper nine bending modes, represented only in
BACH.,ﬁzg‘not contributing significantly to the total aero- .

elastic energy involved.

4,4,38 Servo-Actuator Reguirements.

In all cases involving full and reduced-order controls it
was noticed from the eigenvalues obtained (see for in§tance
table 4,6), that the root associated . with the inboard section
of the elevator shifted over a very wide ranges from -7.5 to
about -3000.0. This sugéested that the response time of the
inboard elevator was required to be reduced by some 400 times
in order to achieve the required stfuctural load alleviation.
Sucﬁ a requirement.implied almost instantaneous action from
the servo-actuator associated with the inboard elevator, a re-

quirement which cannot be met in practice. In an

éttempf to more fully appreciate the need for



107

such a fast response, a number of tests were carried out which
enabled the dynamic response of each actuator used in the study
to be plotted. The tests were made using'thé model CLEMENTI and
employing both full- and reduced-order coritrol. ' In Figures

4,16 and 4,17 are shown the results of the teéts made for the
case C situation in which the control surfaces were found to

be the most active. In none of the ploté,a;é the requirements
for control surface deflectionsor its rateyso high as to be
beyond the capability of currently available servo-actuators.
However, it is evident from Figure 4.17, that the use of 17-SVF
and 14-SVF may require sudden demands for control surface rate
and thié is certainly likely tétcause'practical difficulties
with the duty-cycle ratings of curfently available servo-

actuators.



Lo

All responses for

Ca

w2

108

30 /v--__l__v_—v-——v
Chj
(x10”rad)
| e
20 f:?_.__._..o—‘—i——o-—r'—-.
10 e e e e e e
Figure U4.16a
0 2 5 2
) TIME(SECS)
............... 1 UNCONTROLLED AIRCRAFT
—+—eo—e——e 2 FULL STATE FEEDBACK
—4—4—4—e+—+ 3 17 - STATE FEEDBACK
9 14 - STATE FEEDBACK
—y—g—e— 5 '"SAFETY LAW' FEEDBACK
10
6g ’." ' © Pigure 4.16b
i "f : .
3 '
(x10 raga,' 1 2 3 L. 5
el [ 1 bl 1 i

-—
v"‘-},( ‘\"!-_\*_ e o o m— d— —— g — g ek
-

e
— e & e P . i
g L — W —— 9 === 9_,—-_—_-3_‘37_7-.’ -—.—!g— .v_ ——a ‘_.'-:—._
. W g e gy
—’ . -

~-10

- CONTROL SURFACE DEFLECTIONS NEEDED FOR T.OAD ALLEVIATION



109

N
}
3_{\ All responses for Case C
TN '
by
A ST
. e
% |
(x10°rad/s) |y
1% Figure 4.17a
*
AN
[ - \
& AN
I \Q\ ‘-0--.9\
OEL i . S N |
i 1 2 3 4
+ , .TIME (SECS)
+ weecevemso--== 1 UNCONTROLLED AIRCRAFT
-1k —o-omsmp—o—omome 2 FULL STATE FEEDBACK
PR R "SR p— 3 1? - STATE FEEDBACK
3 L 14 - STATE FEEDBACK
i — e—¢—< 5 'SAFETY LAW' FEEDBACK
i
)
1
1
1
2|}
3
\
\
|
)
\
b, - 1F
” i ! é’k ‘
\
{ - - .
] /&.(;,3 2 .3 K 5
@ T - TIME{SECS)
\ o
&
-1 A

CONTROL SURFACE RATES NEEDED FOR LOAD ALLEVIATION.




110

b,5 Aircraft Response in Atmospheric Turbulence.

Only a limi£ed numher of tests were carried with theaircraft
model (again considéréd to be adequatelyirepresented by CLEMENTI)
in simulated atmospheric turbulence since each response required
a large amount of computing -time for its generation. For the
input noise to the Dryden Filter, random number generation was
used aﬁd these were Erovided by standard NAG* library routines .
The sequence of numbers approximated to the white noise input
required for the Drjden filter aﬁd had the property of zero
mean and of standard deviation which wag adjusted to give an
~r.m.s. value of vertical gust velocity, (the Dryden filter out-
put). of about 1.0‘m/é. In Figure 4.18a is shown the input to
the Dryden filter while its output has been plotted in Figure
4,18b., Some of the responses of the uncontrolled and controlled
aircraft for tegt situations D and E are shown in Figures 4..19
and 4, 20 respectively. In the case D test situation, no initial
conditions on the state vériables were used and no commanded
control surface deflections were emﬁloyed. Thus the case D sit-
uation appfoximated to the aircraft travelling in steady level
flight and suddenly encguﬁ%ering atmospheric turbulence. From
the graphs it is seen that this type af turbulence resulted in
the highest peak levels of bendihg moment at the wing root,
greater than any of those experienced in the deterministic
command'situations.- In the case E situation, the aircraft was

assumed to have an initial vertical velocity of 7.15 m/s.

NAG = Numerical Algorithms Group, University of Oxford.

P
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Overall, little difference was noticed between the case D and
the case E situations. However, the initial state values
of bending moment induced at the wing root in the case E

situation was quite high,approaching -3 X106 Nm.

For the tests on-'t}'-le égntrolled aircraft, the full-state
feedback law,which ‘secured in the deterministic situations
 wing-root bending moment reductions of up to 40% wi. thout causing
“an increase in the corresponding torsional moments,was used,
i.e. control law 4.;%) 'In none of the tests with simulated
atmbsphefic turbulence'was-reduced-order control used. The
regson for this was pfimarily'becauSe the tests were expensive
to carry out in terms of CPU tihe and the heavy computational
burden did not permit further tests to be made. However, for
those teéts reported upon, the responses were obtained for
30 seconds, {(only 5 seconds were used in the deterministic tests)
chiefly to ensure that any tendency of the.SLACS to cause either
sudden changes of stress or excessgsive levels of peak loads

would be detected.

Figures 4.19 and‘h,ao show that even in turbulence, the
SLACS was very effective in securing for the aircrafty sub-
stantial reductions in bending moment at the wing root. Although
not shown here, similar levels of reductions were obtained at
the other wing stations. "It is also seen from the responses of
the controlled aircraft that vertical velocity is also reduced
by the action of the SLACS énd this implies lower rigid body

accelergtions which will contribute towards improving the ride
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quality of the aircraft.

4.5.1 Predicting r.m.s. rédﬁdtioné in Wing Ioads.

The method of.predigting the levels of bending and tor-
sional moment reductions achieved fdr an aircraft fitted with
a SLACS, which was'outlined in Section 3.3, was employed here
for the full state feedback case. In table 4.8 is shown the
percentage reductions, predicted .to be possible with full state
feedback control. Results for each wing station are presented ir

the table.

Percentage Reductions.

Wing ws2 WS 3 WS 4 WS 5
Root

Bending Moments 95.5 | 98.3 | 99.1 95.3 83.9

!Rates of Change
of Bending . ~99.5 | 99.0 [97.1 93.0 85.3
Moments

Table 4.8 Percentage reductions of r.m.s wvalues of

Bending and Torsional moments in the
Presence of Turbulence using full state
feedback control. .

"It is seen that the greatest reductions are possible at
the ﬁid-span although the reductions overall are quite sub-
stantial. At the wing tip, the reductiong possible was some-
what less than those achievable at the other wing stationsybeing

only 87 sk, at the wing root, up to 95% was possible.
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CHAPTER 5 : OBSERVERS FOR THE SLACS: FULL ORDER

5.1. Introduction.

A serious impediﬁent to any practical implementation

of the SLACS considered is a requirement that the number of
gtate variables fed back is large. Most of these variables
either cannot be measured or are not physically realisable,
having arisen only as a fesult of mathematical manipulation.
Previous work reported upon in Chapter 4 showéd that substan-
‘tial reductiéns in bending mement, (%= L40% at the wing root)
can Be.achieved, for the aircraft gnder congideration, by
implementing full state-variable feedback (FSVF). However,
because of the practicél ‘difficulties of implementing FSVF,
a number of digital simulation studies were carried out using
reduced-order feedback control. It was demonstrated, (see
Section.h.4.3.), that even with  5-SVF, some reductions in
bending moment, (aiﬁg% af the wing root), were still achiev-
able)although further loss of-state variable feedback could
lead to the aircraft becoming unstable. Thus, the control
law associated with 5-SVF was referred.to as the 'safety law’,
While the ‘*safety law® has the advantage of being relatively
easy to synthesise,when compared with the problem of pro-
viding FSVF;_the principal disadvantage associated ﬁith its
use is that.the same level of bending moment reductions could
not be achieved as with FSVF. Another disadvantage,observed
- from time responses of the aircraft in deterministic situationg}

was that the transients associated with bending moments were
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much more prolonged when compared with the transients of

those responses obtained as a result of applying higher.
orders-of feedback. A typical exgmple of the-effect dif-
ferent orders of feedback had upon the wing-root,bendiné
response of the aircraft was plotted in Fig 4.13..It was
considered that the oscillétory nature of the bending res-~
ponse, caused as a result of the safety law being operational,
may affect the fatigue life of the structure, if it is accept-
ed that fatigue accumulates according to Minor's hypothesis

(Burris & Bender (1969)).

In an attempt to recover some of the advantages associated
with implementing FSVF, further invéstigations were made af.
this stage in the research study to determine whether FSVF
may be effectively implemented by obtaining a reconstruction
of the missing state variables. There are several methods
available for determining, on-line, an estimate of the state
vector. One such method is due to Kalman and Buecy, (1961 )
where, the state vector is formed on-line by means .of a

Kalman -Bucy filter using available measurements of the output
vector, y, and of contrel inputs, u. The filter design takes
explicit account of the bresencg of noise due to both atmos-
rheric turbulence effects and sensor signal measurements and
is derived as a solution of a Linear Quadratic Gaussian (LQG)
problem. It is-well—known,(Athans (1971)),

that the control iaﬁ'obtained from the solution of the LQG
problem is identical to that oﬁtained from the solution of

~the LQP (considered in this study ) provided +that the
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same weightings on the appropriételQ and G matrices are

used (see Sec. 3.2.4.). Thusyin tﬁe cage where the two
solutions matched, the worst that is likely to occur if the
Kalman-Bucy filter was ignored, is that an increase in the
performance cost, (given as Equation 3.18), would'result.

In practice, if strong feedback control were to be used, the

resulting performance degradation is not likely to be great.

An alternative,and somewhat simpler, design approach is
to use a sub—system(}n a strictly deterministic settin%)often
referred to as a Luenberger observer (Luenberger (1966, 1971)).
Like the Kalman filter, the observer has,as its inputs, the
inputs and available outputs of the system whose state is fo
be approximated; however, the characteristics of the obser-
ver system are,to some extent frée- to be determined Aggizggr.
This chapter is concerned with the theory, and test,by digital
simulation,of an observer designed to réconstruct the full.
state vector based upon one or more of the measurements of
-the five state variables of the "safety law". The;e:ror be-
-tween the actual state and the observed state was used to
form part of a performance index (p.i.) to be minimised.
Minimisation of this performance index reéulted in the sol-
ution of the "gain matrix" of the observer and ensured that
the error in the estimate of the state vector decayed ex-
poﬁentially to zero. To the knowledge of the author, neither
the apprﬁach used nor the algorithm developed for the full-
orﬁer observer studies has been reported in the literature,

although some suggestions as to how a suitable p.i. may be set

up has been sketched in Kuo (1975)}.
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5.2, Theory.

For convenience, some of the equations used for the’
derivation of the full-state feedback law are repeated in
this section. The flexible aircraft, subject only to comman-

ded manoeuvres,éan be described by the differential equation:

¥ = Ax + Bu ‘ «(5.1)

where X & rR" ue R™ and A and B are of appropriate
order,

.Assuming that only a few oufput'variaﬁles (defined as
the constituents of a new vector, z*). are avaiiable for

measurement, a suitable output equation is:

x* =C*x N 00(502)

where JY:* € RP. The matrix ¢+ depends ‘ﬁpon which variables
of the state vector were available for measurement., If, for
example, only the first two variables xl'and-x2 were avail-

able then C* +takes the form,

c* = [1 0 0 ¢« 8 88 8N 000
- 0 1 O-ooo-co'in i 11(5031)
In section 3.2.. it was shown that the optimal feedback

control was of the forﬁ*:

W = Dx | - eo(5.4.)

—

Since normally only the estimated state vector, Xg
and not the actual state, x, will be available for feedback,

and since the system will be designed so that, x_, approaches

e!

T In this Chapter. the matrix. D, is used to denote the feed-
back gain matrix instead of the matrix, F, which was used
in previous chapters,
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& >os

x: with~time, (5.4.), is written as, (5.5.), where:

ul = Dx, s o ..(5.5.’j

Miller (1973) has shown that a separation*type theorem
holds for the design of observers where the matrix, D, is
solved assuming that the full state is available for feed-
back; the observer design may then be considered quite
separately regardléss bf the ﬁarameters chosen for the sol-

ution of the full state feedback problem.

Let the equation of the Full-order observer for (5.1.)

and (5.2.) be given by:

%, = Fx, + Gy"+ Hu es(5.6)

Subtracting (5.1.) from(5.6.) and substituting for y* from

(5.2.) results in 1
(k- %) = (A-06chx - Fx_+ (B-Hu  ..(5.7)

if, |
H = B .o (5.8)

and, if a stable observer can be designed, then, in the

steady-state, for any control input, u,

X = x, C(5.9)

=-e
F.= A - GC* <. (5.10)

Let an error vector e be defined by:

e = X -X . (5.11)

—e
Co_ .. .. (5.12)
oo &= k- ‘
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Using (5.8), (5.10), (5.11) and (5.12), {(5.7) may be

‘written as,

é = (A - Gc*)g_ e (5.13)

Thus, a stable observer will result if (A-GC*) is a stability
matrix and the problem reduces to the determination of an
observer ‘'gain matrix', G, which will ensure that the error

vector, e, decays to zero with time.

"Consider the deterministic optimal control problem.given by

J:%/(_e_'@g+¥’ﬁ\_f') dt ..(5.15)1'
A .

(5.14) and (5.15) defines the well-known state regulator
problem. and sufficient conditions for the existence of an':
optimal control law for (5.14) and (5.15), are, that the
pair, [A,¢#] , be completely controllable and that, R,
be'positive definite and,Q, be at least non-negative definite
(Kalman (1960), Athans and Falb (1966)). The optimal con-

trol law is then given by:

i

vo = _R°'C* Pe - ve{5.16)

. where P is the positive definite solution of an algebraic
- matrix Riccati equation given bys

1

PA + AP - PC¥R™C*P + § = 0 e {5.17)

Let, .
¢ & g-lop .. (5.18)

To avold confusion with the use of G as the observer 'gain
matrix', R is used in this chapter and in Chapter 6, as the
weighting matrix on the control vector, u.
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then, substituting (5.18) into (5.16) gives:

v° = -Ge . (5:19)

Thus the optimally controlled system is found by substit-

uting !o of (5.,19) for v in (5.14) giving:

fe
i

(M- 6*d) e  ee(5.20)

Let,
I

S

g

-’y e (5.21)

Since the eigenvalues of any square matrix, s’, are the
same ags those of S, the stability of the closed-loop system

iﬁplies that the eigenvalues of,
S.-': (A - GC%) ) 10(5022)
have negative real parts.

Equations (5.14) - {(5.19) gfovided a design algorithm for.
ensuring that (5.13) was a stability matrix and that the
decay of the error in the estimated state vector is, in a
sense optimal depending upon the choice of weightings used
for the matrices Q and R of (5.15). The design is seen to
be én exact dual of that employed for the linear, time in-
variant, optimal state regulafor problem. The controllability
requirement was met by ensuring beforehand tﬁat the pair,
[Aﬂc#j , was completely controllable or alternatively that
[A,c*. was completely observable (Kuo, (1975)). It was also
easy to select a matrix, R, that was positive definite, and
a matrix, Q, +that was at least non-negative definite in
forming the performance index given by (5.15)}. Several sol-

ution methods of the algebraic matrix Riccati equation of the
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form given by (5.17) were available although the eigenvector
solution with asymtotic stability proposed by Marshall. and

Nicholson (1970), proved the easiest to program. '
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5.3, Modelling the Obgerved Sygtem,

Let the estimated output vector, xg. be given bys -

¥ =3 #* ' . v

xe c 'J-{e B 50(5.23)
C* was defined in (5.2).

Substituting for F and H in (5.6 ) using (5.10) and

(5.8) respectively, gives,

.
X

e (A - GC*)x, + Gy*- + Bu co(5.24)

Using (5.2) and (5.23), (5.24) may be written as,

X, = Ax, + Bu + G(y* - y¥) e (5.25)

(5.25) shows that the observer model is very similar in
structure to the original model of the aircraft, (Equation 5.1},
except only that the error between‘fhe available outputs and
the estimated outputsrforms an additional forcing term in the
observer equation.

Substituting for y* in (5.24), using (5.2);yields (5.26)
viz., -

:{e = (A- GC*)Ee + GC*_)_C_ + Bl_l. -.(5.26)

For the purposes of assessing the performance of the con-
trolled aircraft incorporatéd with an observer, an output

vector, y, similar to that used in (2.25) is defined,i.e.

Y, = Cx,+ Eu .. (5.27)

For the optimally controlled aircraft, :the control u, of

" (5.26) is substituted by u® and, using (5.5), (5.26) becomes,
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X, = (A -GC* + BD)Xe + GC*x ee(5.28)

In the controlled situation, it should be still possible to
manoeuvre the aircrgft to some desired flight sfate; for example
in response to a demand for a certain value of vertical velocitys
Such demands were considered by using an additional forcing
vector, r, acting through a matrix H* as had been used in

earlier studies. (See Section 4.4)

(5.1) was therefore augmented after substituting for u using

(5.“) «.Thus,

% = (A+ BD)x + H*r . .. (5.29)

The output equations were also written in the form,
y = (C + ED)x o ' v+ (5.30)

Yo = (C+ ED)x, | | e (5.31)

(5.28) and (5.29) and also (5.30) and (5.31) were combined to
allow comparison, by digital simulation, of the controlled

aireraft without and with the observer incorporated, vigz.,
3

[A +ﬂ9~6 ';— .—GCJ [K]-‘-[H

GC* A + BD X 0
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5.4, Selection of Observer Weighting Matrices.

Equations (5.32) and (5:33) wére used to assess the
performance of the observer design. Only deterministic test
situations were considefed. Once all the observer parametéfs
had been solved, it was decided that the relevant matrices
~of (5.32) and (5.33) be formed directly.to allow simultaneous
comparison of full state~variable feedback (FSVF) with full
reconstructed state-variable feedbéck (FRSVF). Simultaneous
comparison implied that the order of a particular model stu-
died was effectively doubled, For CLEMENTI, this would have
meant computations on a system with a state vector of dimen-
sion, 48, and an output vecfor of dimension} 76. Since the
model, FAURE differed from CLEMENTI only in the absence of
Kussner dynamics and since in all deterministic fests made,
the bending responses associated with FAURE did not differ
significantly from those obtained with CLEMENTI (see.Figs.
4,13 - 4.16) it was considered that FAURE was adequate enough
for the purposes of testing the observer design. In the case
where the controlled aircréft with FRSVF is to‘be further
tested, in response to simulated atmospheric turbulence, the
Kﬁssngr dynamics would have to be reincluded. i.e. the model

CLEMENTI will have to be used.

Thus the chosen system, based upon FAURE, had a state
vector of dimention, 3%, and an output vector of dimension, 76.
Previous tests (see Sec., 4.4.3) had shown that the model,

FAURE was not completely controllable, This was found to be
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due to the presence of the state associated with the out-
board elevator servo in the state description of FAURE. The
lack of complete state controllability did not however pre;
vent a feedback law from being determinéd._ Also the result-
ing closed-loop system was stable as will be evident from

the eigenvalue tables to be presented later in this section.

The weighting matrices associated with the determination

of the optimal control law for the model FAURE were chosen to

.01,01 ,01 .01 .01

bet
(0.1E-6 0.5BE-6 0.1E-8 0.5E-7 0.1E-6
i 0.5E-6 0.1E-8. 0.5E-7 0.1E-8 0,5E-7
Q = diag 4 1.0E—8 1.0E"9 1. OE"8 1- OE"9 1.0E-8
' 1.0E-9 1.0E-8 1.0E-9 1,0E-8 1.0E-9
.01
0

.01 .01 .01 .0l,01 .01

"1 1 10 10 10 0.5
| (5.34)
R = aiag {,01 .01}
The corresponding cqntrol'law was found to be:
W= [-.019 -.0052 .031 ,010 .126. ~,161 -.030 . .154 '

.012 .039 .298 -.250 -.897 3.142 -17.44 -13.80 -3.068

-.044 -,003 ~.433 ,118 1.296 -0.943 -.480 1.188
-+121 -,089 -1.734 -.975 .600 1.220 =-101.30 =377.7 -67.6

.+ (5.36)

The computer program, RAPEST, (AppendixIV ), was used to
" evaluate the observer matrices together with the relevant
matrices of (5.32) and (5.33) in order to allow assessment
by digital simulation to be ﬁade. RAPEST was used to evaluate

the matrix, P, of (5.17) by the eigenvector solution method

[t
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proposed by Marshall and Nicholson (1966). Once the matrix,
P, had been obtained, the 'observer gain matfix', G, was
easily evaluated using (5.183 The solution of, P, required
that suitable weighting values e assigned fo the matrices
G and R of (5,15). The dimensions of, Q, ﬁhich was_équare,
were the same as‘the dimension of the-stéte véctor while ‘the
dimension of, R, depended upon the number of state variables
assumed available for measurement. As an examplg’a typical
welghting scheme chosen for solution of the observer matrices
for the model FAURﬁ,assuming only the‘measurement of the ver-
tical velocity,w , was to.be.used)is:
Q = aiag [5.0 5.0

.01 ,01 ,01 .01 .01 .01

.01 .01 ,01 .01 .01 .01 «¢(3.37)
10 10 10

R = {2.0} ' e (5.38)
The corresponding observer gain matrix was evaluafed ast

G = 32,2 229,0 -291.0 24.0 170,0 171.0 ,
h""’¢5 —41.8 “"2.21” 0.486 2.64 8.32 l.(5.39)
1-99 "jlu'u‘ "0.88 -2-26 "00318

In Table 5.1, is shown the eigenvalues of the observer matrix,

S, of (5.22) when compared with the eigenvalues of the con-

trolled aircraft with FSVF. It is seen that the real parts of the

elgenvalues of the observer should at least have been greater
than those of the eigehvalues of the controlled aircraft
(considered in this case to be adequately represented by the

model FAURE), This observer design was nevertheless tested



with the controlled aircraft by means.of digital simulation

and using the same deterministic test situations employed

previously (Table 4.1).
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e
FAURE

OBSERVER
Short Period Mode| -.985 % j0.785 -.517 ¥ j5.45
Bending Mode 1 -3-37-; j8.60 -.225 © jit.10
" "2 ~0.22 T j11.12 -2t 513,30
" "3 2,12 ¥ j14.7 -.908 ¥ 315,50
v b | =037 T 317.6 | -.395 % 517,50
" "5 -2.31 T j18.8 | -.s29 % j18.70
" "6 -35.2 £ j23.7 ~12,50 ¥ 32,4
gggzird Elevator -2860,0 -23.3
g:ﬁsgard Elevator -?.5 -7+5
lAileron Servo e5.93 -6.06

Table 5.1

Comparison of Eigenvalues:

_FAURE (FVSP). with OBSERVER
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5.5 Tihé Response Tests.

The séme tést situations that were used earlier, (see
Table 4.4) were used again here to evaluate the performance
of the 'observed' system. All comparisﬁns were made uéipg the
model FAURE. The particular type of feedback used was distin-
guished by FSVF, (assuming all the variables of the state
vector could be measured directly), and by FRSVF, assuming
that the variables of the state vector were reconstructed by
an observer of the type reported-upon in this éhapter. In
Figs. 54 - 5.% are shown comparative responses* using FSVF
and FRSVF for test situations A - C.. In order to produce a re-
construction of the state veétor. only a measurement of verQ
tical velocity,w was required by this'farticular observer
“designi also all initial conditions were set to zero. It iz~
remarkable how effective was the‘observer in predicting the

state and as a consequence, the output of the original system.

In a number of reports, (Newmann(1970),Arimoto and Hino
(1974)), it,ﬁgg“%een suggested that the performance of an
observer will deteriorate substantially if the initial con-
ditions on its states are nof matched with those of the sys—‘
tem béing obgserved. In an attempt to confirm the validity of

thisproposition, a number of tests were made for the situation

* Only the wing root bending moment together with either pitch
ratel@or vertical velocity (w) are plotted although the
other responses were found to be just as closely matched.
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where the initial conditions of the observer did not agree
exactly with those of the model being observed. Figure 5.5
shows the case where all the initial states of the observer
were set to zero and the aircraft was considered to have an
initial pitch rate of about 0,06 rad.s'l, The plots indicate
that the observer dynamics.are notlfast enough to cope with
the mismatch in initial conditions, a result which was evident
when the eigenvalues were compared in Table 5.1. The obser-
ver design was however found to be less sensitive to‘a mis-
match of initial conditions on inboard elevator'deflection.
Such a result is evident from Figure 5.6, where,the initial
states of the observer were again set to zero and the in-
board elevator wag considered td have an initial deflection
of about 0.1 rad. When there was a mismatch of initial con-
ditions on vertical velocity, (Wi; substantial variations on
‘wing root bending moment occurred (Figure 5.7 } before the ob-
server transients decayed. These large variations may in
gsome mahner be related to the original specification of the
particular obéerver design being tested. i.e. reconstruction
of the system state was achieved by using measurements of
_vertical velocity, (w) . A number of tests made using observer
desigﬁs based upon the availability of other measﬁrements Viz.,

qQ, 6, and @Ef are reported upon later in this section.

In an attempt to reduce the sensitivity of the observer
‘to mismatching of initial conditions, further tests were made

using only different choices of the weighting matrices assoc-
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jated with the design. It was found that in general, it was
possible to obtain a desired set of dynamics associated with
each observer design although it was not possible to establish
any fixed pattern for a suitable choice of weighting matrices.
A,wdrkable design can therefore result from carrying out a
large number of test computer runs, during which; both the
locations of the observer's eigénvalues and its response need

to be checked,

A representative set of tests is shown in Figures 5.8 -
5:10, where, the same disparities in initial conditions,
used earlier for tests shoWn,in'Figures 5.5 - 5.7,have been
implemented. 1In general, it is seen that the settling time
of the observer design has been reduced to within three sec-
onds although the transient excursions experienced-are much
higher when compared with those obtained in the previous de-
sign. To achieve this reduced settling time, the error
"welghtings on vertical velocity, w, and pitch rate, q, had
to be increésed. However, there was a limit as to how much
these weightings éould be increased as it was not then pos-

sible to obtain a solution to the Riceati equation (5.17).

'Most of the tests used until now wére repeated for the
condition where only the pitch rate, q, was available for
meaSureme?t. The tests however did not record any significant
change in the observer performance when compared with that of
the former design based upon the availability of veftical

velocity, w, for measurement.



X19~2

2.
~
%

LY -
< S g Bttty by
¢ o A L i
}l‘:ﬁ @ - -+ +1.|;]r/' %2 3 4 5
< d s .
o *- / ‘ . TIMEC SECS )
- .
O
}... .
H -
o Figure 5.8a
-2.
4+ FSVF
0 RSVF

¥ia€

5.
(J:'
=
-
E
-
>
z P
L ke £ P =t T gty e by e g o Oy e (At
= - Myl gl n, by . D : :
g < 3 4 3
) TIMUe SECS D
-’
0
z
o
LY Figure 5.8b
-5

EFFECT OF MISMATCH IN INITTIAL CONDITICNS ON PITCH RATE

140



141

yi@~1
).
~ '-:.‘i"‘
"
\
0
P
s e
g
-
é TIMECSCED
I
J -
= Figure 5.9a
~ .
- | .

+ FSVF
o RSVF

~
Ly
)]

N

W,

TIMECSECS )

BENDIMG MONMENTOMM D

Figure 5.9b

-5

EFFECT OF MISMATCH IN INITIAL CONDITIONS ON INBOARD ELEVATOR
DEFLECTION, ' '



142

Xx19—1

P

e - - 1 2 3 4 5
TIME¢ SECS )

PITCH RATE(RAD-5.>

Figure 5.10a

+ FSVF
o RSVF

1

d ] 2 3 4 5
TIMECSECS)

BENDING MOMENTCNMY: W.S.

Figure 5,10b

.-5_ .

EFFECT OF MISMATCH IN INITIAL CONDITIONS ON VERTICAL VELOCITY



143

A number of checks were made to determine the effect df
making more sensor signals available for measurement. Two such

checks are presented here, where it 1is assumed thats

(i) both w and q were available simultaneously
for measurement, and,

(i) the signals w,q,6 'éEi’ were all being measured.

A set of example results are presented below. For test

(i), the weighting matrices were chosen.to bes

Q

1.0E-2 t1,0E-2 1,0E-2 1,0E-2 1,0E-2 1.0E-2

1.0E"2 1|0E'2 25!0 . 1000 10.0

| - ee{5.40)
R = giag {2 10} ) | | oo (5.41)

The observer 'gain matrix' was found to be:

6=[77.6 17.% 59,1 17.4 155.0 .280 1,01 24.4 -82,7]
958 3.64 9.15 .657 -.089 -1.48 -.587 =,096

3.51 999.0 -7.76 2,40 7.71 6.30 2.79 -2.59
-.282 .173 0.40 0.76. 0.135 =.20% -.0503
[-0.127 -,022 J

..(5.4 )

For test (ii), the weighting matrices were chosen to bes

Q = diag [1.0B+4 1,0E46 1.0E-2 1.0E-2 1.0E-2 1.,0E-2
1.0E-2 1.0E-2 1.0E-2 1.0E-2 1,0E-2 1.0E-2
1,0E-2 1,0E-2 5,0E+1 1,0E+2 1.0E+1

: ' e {5.84)
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R = aiag {1.0E-1 1,0E-1 1.0E-3 1.0E-3} e (5000)

The corresponding observer 'gain matrix' was calculated to bet

¢ = [1000.0 %.35 -24.6 11,3 139.0 68.4 -3,97 2.04
“2"”.6 -7-’4’0 3.?“’ 16.5 0615 "1761 "‘400? -4.42
-2.23

4,35 10000.0 -53,3 10.4 74,3 69.3 26,6 -42.3
-6.08 724 2.32 1.91 0.667 -.95% -1.21 -7.43 | (s.4.
“‘2052 s )

-40.8 -12,1 -3300.0 -16.5 -1280.0 808.0 23.3
-386.0 -3.03 14,7 20.7 2.1i5 -1.95 1.66 217.0
-.503 -.534 -

G2 74,3 1380.0 -69.6 <-2450.,0 -2370.0 -228.0
1110.0 ‘1.25 2.80 6073 12.1"' -16.3 "9-1"‘2 "'¢501
 308.0 -0.884 .

Thé comparative time responses corresponding to tests
(i) and (ii) are shown in Pigures 5.11 and 5.12 respectively.
It appears that, as would be expected, the availability of
more heasurements had a beneficial effect upon the aireraft
response, With'only w and q available as measurements,
(Figure 5.11). the Bending moments experienced in the wing of
the aircraft are initially quite severe although fhe transients
oscillations decay rather faster than those associated with
measurements ofxall four signals, (Figure 5.12). However it
will be noticed that some of the elements of the observer gain
matrix for test (ii), (5.45), are very large, (>107), when |
compared with those of test (i), (Equation 5.42). It would in
practice be inappropriate to use gains >102 because not only

the pure signal will be amplified but so is any noise present
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in the feedback path.. Thus the resulfs of Figure 5.12, al-.
though the best so far, even in situations where there are
great disparities between initial conditions, cannot be
guaranteed with the observer design considered for tesf (i1).
However, it is possible that further experimentation with
different weightings on the § and R matrices may produce a
workable design with the type of performance demonstrated in

Figure 5.12,
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CHAPTER é: OBSERVERS FOR THE SIACS: REDUCED ORDER.

6.1 Introduction.

The full-order observer designs considered in the
previous chapter were all extremely sensitive to mismatch-
ing of initial conditions between the state vector of the
aircraft and those of the observer model. Unless the initial
conditions wére perfectly matched, the observer could not -
be relied upon to accuratély estimate the system state with
the result that the peak structural loads experienced in the
wing of the aircraft tended to be high. Alfhough it was pos-
sible to design by numerical experimentation an observer with
a fast or slow settling time, it was not always possible
to, in addition,réduce the peak levels of bending and tor-

sional oscillations induced at every wing station.,

In this chapter; studies made on an optimal reduced -
order observer design are reported. It.was considered that
" if an observer were to be used to provide some measure of
reliability, (in software), to the SIACS in reconstructing
any missing feedback éignals} then it would be wasteful of
computer storage and time to reconstruct signals which were
inlany case already being measurea. Such was the case of
the full-order -observer designs considered earlier, (see
Chapter 5), where those signals associated with the 'safety
law® were being reconstructed within the observer system.
For the implementation of a SLACS it is expected that the

presencé of those motion variables connected with the
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'safety law; will always be guaranteed by using a suitable
hardware redundancy scheme. Thus it will not be necessary

to re-construct these signals using an observers; fufthermore.
a reduced-order observer will.pose a much simplified synthe-
sis problem. Since it was important that the aircraft with
observer system should perform comparably with the FSVF de-
signs considered earlier, (see Chapter 4), only réduced-order
observer designs using optimal control techniques were in-

vestigated.

The problem of the decrease in performance of the op-
timal regulator when an observer is incorporated to estimate
some or all of the state vafiables of'a linear system occup-
ied the interest of many authors* for over a decade. How-
ever, it was the paper of Sarma and Deekshatulu (1968} which
encouraged further interest 1in performance deterioration due
to the use of observers. 'A_number of errors in this paper .
led to an incorrect expression for the decrease in performance of
the observed systeﬁ; ‘Porter and Woodhead (1968) have published
as part of their paper, a corrected version of the problem con-
sidered by Sarma and Deekshatulu, but it was Newmann(1969)
who further suggested that the result of Sarme and Deekshatulu
was incorrect due to a misunderstaqding of the way in which

errors arise when using an observer.

In a second paper, Newmann (1970) considered two separate

opfimal control.approachés to the design of observers for

# See Eisenberg and Sage (1966). Sims and #elsa (1968),
Burns and Kumar (1967), Bongiorno and Youla (1968).
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linear - systems using quadratic performance measures. One
approach constrained the feedback gain to be the gain matrix .
which solves the quadratic optimal control problem assuming
that complete stéte méasurements were available. The second
approach left the feedback matrix as a design variable in the
specific optimal control problem., Miller {1973) showed that
due to an error in Newmann's paper, {Newmann (1970)), the two
approaches considered led to different results and further
showed that the optimal feedback gain matrix was the same
whatever the approach. Arimoto and Hino (1974) have shown
that the amount of performance deterioration, AJ, can only

be made arbitrarily small if n-p = 1, where n is the order
of the system whose state is to be observed and p is the
order of the observer., FOI‘. the case where n-p2> 2, the per-

formance deterioration, AJ, is finite and may be large.

An assumption made for analytical convenience in the
design of a full-order observer, (reported in Chapter 5), was
that the initial stafe. %x{(o), was always known. Newmann
(1969), showed that setting the initial state, x,(0), of the
observer equal to the initial state of the system satisfied
the optimal performance criterion used for the observer de-
gign. 1In practice,-it is unlikely that the initial state
of the system would be known and Newmann(1970), and more im-
portantly Miller (1973), have proposed a theory for design of
optimal minimal order observers where only the mean values

and the covariance of the initial state of the system needed
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to be known. Maeda and Hino (1974) have also proposed a de-
sign algorithm for optimal minimal-order observers but pre-
ferrad to use as a basis for their derivations, a frequency

domain approach of the Luenberger observer (Luenberger, (1966)}).

In Section 6.2 of this chapter, the theory for optimal
minimal-order observer design, proposed by Miller (1973), is
briefly outlined. Since the work reported has been conducted
entirely in the time domain it was decided that the design
method proposed by Miller was the ﬁost appropriate for in-
vestigating the feasibility of using minimai-order observers.
A small addition was however made in the specification of the
optimal performance criterion proposed by Miller: the per-
formance index was chosen to take the same form as that used
for obtaining previous results, (see Chapter 3) i.e. the out-
put vector was weighted instead of the state vector as pfo-
posed by Miller. This addition was necessary in order that
weightings may be placed directly upon those variables approp-
riate to the Bending and torsional moments at each wing station

considered. The changeghowever, did not affect the final de-

7
sign specification of the reduced-order observer.

In Section 6.3., the method used for modelling the observed
system is described and in Section 6.4., is included some of
the results -obtained which illustrate the effectiweness of the

performance of the observer design.
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6.2, THEORY. L

:The theory outlined in this section is, with the ex-
ception of a small addition in Section 6.2.2., principally
due to Miller (1973). To avoid duplication, detailed proofs

have been omitted and only the main results presented.

6.2.1, Specifications of the Minimal-Grder Observer Design.

For convenience, some of the equations derived pre-
viously are re-included in this section. The system under con-
sideration is described by,

X = Ax + Bu o e (6.1)
y = Cx + Eu | e (6.2)

where gc_e.Rn, gé.Rm. x'eRp and matrices A,B,C and E are of

appropriate dimensions. (6.1) is the state equation which was
given as (3.4); (6.2) ié the output equation given earlier as
(2.11). It is required td design a reduced-order Luenberger

observer represented by the equations:

Fz + Gx* + Hu ' e (6.3)

X = Ly* + Mz - ca (6.4)
as tvew. Xox - _
. -— — N ..(6.5)
n.u D.x:-’DK &-Zc go }

where zeR', y*c Rn-r' and where P is (rxr), G is (r=(n - r)),
His (r=m); Lis (nx(n - r)), Mis (nxr) and D is (m= n).
(6.5) is the control law defined earlier as (5.4)}. Since the
veétor, ée, was used previously to indicate a vector composed
entirely of reconstructed states, here, X is used to indi-

cate that vector which is composed of some measured state var-



153

iables with its remainder consisting of reconstructed state
variables. The measured state variables are represented as

in (5.2) by the equation:

X* = C*E . 3 l ] ’ oc(6o6.)
C* is the p x n, (in this case(n>r)x n), matrix defined in (5.2).

For (6.3) to be an observer, the following must hold,
4 = Fe . ee(6.7)
e = z - TX ' . ea(6.8)
where ¢ is defined as an error vector, (ee R') and T is

defined as an (rxn) transformation matrix and where,

TA - FT = GC* . <. (6.9)
. H = TB - 00(6-10). )

If matrices T, M and L can be found which satisfy (6.11), by

making use of the relation,

(L myfcs\ = 1 - . (6.12)
- AT |
the substitutions:
F = TAM B | e (6.13)
G. = TAL ' ) e (6.14)

are necessary and sufficient for the satisfaction of (6.9).

By_postmultiplying (6.12) byC{j;and premultiplying the resulting

equation by (%“) it . is easy to show that:

/

™ =T | - +.(6.15)
C*L = I | v+ (6.16)

owd, . -
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TL = 0 . .. {6.17)
C*¥M = 0 . | ..(6.18)

Subétituting for z in (6.%4),using (6.8) and making use of

(6.11),gives:

£ = x + Me | .. (6.19)

The optimal control, go, of (6.5) may then be given bys

u® =(Dx + DMe)sv3 t-— o0 ~ee(6.20)

It is seen that when the observer transients have decayed,
the error vector, e, is zero and (6.20) reduces to the op-

timal control law determined earlier as (3.26).

Substituting (6.20) into (6.1) and (6.13) into (6.7) and com-

LA |

bining the resulting equations yields:

[5] .[A-+ BD  BDM ][ x ]
] = 0 PAM e e+ (6.21)

—

- (6.21) can be used to model the closed-loop response of the

observed systeﬁt where, from (6.8),
‘efo) = z(o) - Tx(o) . (6.22)

Thus the observer matrices may be solved by determining

T, M. L, D AND #%(c) and the . problem constraints are
equations (6.4),(6.21) and (6.22).

T It was proposed to carry out these tests in a slightly dif-
ferent way fromthose reported upon in Chapter 5., In Chapter 5,
the responses of the FSVF system and the observed system were
obtained by combining the equations associated with each system
i.e.(5.32) and (5.33) were used. Although this required only
a single computer run, it repeated some results already obtained
in the FSVF tests (reported upon in Chapter 4). Thus for the
tests reported upon in this Chapter, it was only necessary to
make response checks on the observed system (by using (6.21)).
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I6.2.2 The Optimal Control Problem, "

The performance index (p.i.) was chosen to take the
same form' as that used for obtaining previous results (see
Section 3.3.,2):the output vector was weighted instead of

the state vector as used by Miller, (1973). Thus:
) = ./E( x'.ﬁ. Yy + u.R.u)dt e (6.23)
) o
where £(.) denotes the expectation. operator.

It is easily shown that by substituting for y and u using
(6.2) and 6.20), (6.23) may be rewritten as:

E(J) =/°¢° (xtet)f Q@+ (YD)* + YD + D'RD YDM + DRDM\ [x
| J7L" 7 "\ mr(¥p)* + M'D'RD M*D* RDM e /|4t
s — oo (6420)
where, _
=VC'§C ) ) ' ) 10(6.25)
R = B'QE + R .o (6.26)
Y = c'8E | o (6.27)

Assume that P is an (n + .r)x (n + r) constant positive def-

inite matrix, which in partitioned form, satisfies:

(Pn P12) (A+BD BDM) . ((A+BD)' 0 )(P11 ?12>
Pyy Ppo/ \ O TAM (BDM)* (TAM)Y\ P,y Py,
Q + (YD)' + YD+ D'RD ~  YDM + D'RDM

* \mr(yp)* + u'D'RD . Mm'p'roM = ©

e (6.28)

TTo retain consistency with Miller's derivations, the, 3,
previously used for analytical convenience is omitted from the

r. i (Equation 6.23).
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Then as long as E(t) and é(t) approach zero with time,

&3 =zl (0)e (o))P11 PL2 x(o)
Py e{o}/| +.(6.29)

Since for any vector_é and matrix P, the f_ollowing equality

holds (Brockett,1970}:

p'Pp = tr (Ppp') : .. (6.30)
(6.29) may be written as:
&(J) = tr [(Pll Pio G(x(0).x'(0) §(x(o) e'(o))]
Pyt Poo/\Eelo).x' (o)) §lelo) e'(o)/i.(6.31)
It is assumed that the initial conditions x(o) are unknown,
but that the mean and covariance of. the initial state are
known and given byt

Tx(0)) = m | . (6.32)
gl (x(0) - m).(x(0) - 3] =Z .+ (6.33)

By using (6.32) and (6.33), (6.31) may be shown to be given by:

G(I) = tr (Pll'PlZ)x

Py1 P2

S Cm — chmn ewwr e m omm— w—— — _—.—_-——-—_.—.-——-—_—-——

+ @3" ‘ l-%‘[" + m(z(o)-Tm)"*
- ( =12, +(z(o)-—Tm)m' l'I'.?;)T'+(z(o)--‘li‘m)(z(o) Tm)

..(6 34)

T s s .
*tr' is in this case used to denote the trace of a matrix.

)
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Thus the optimal control problem is to determine the matrices

M)T,L,Plig Pyos P21, P,s and the vector z(o) subject to the

constraints (6.11) and (6.28).

The constrained optimization problem is converted to an un-

constrained problem by adjoining the constraints (6.11) and

{6.28) to the performance measure (6.34) via Lagrange multi-

pliel“s .

£ o= + mm’

The resulting Lagrangian, &, is:

1-Z,0" + m(z(o) - Tm)

—

/P11 Py2
\Po1 Poo/\ -1, (z{o)-Tajn" (22T + (2(o)-Tn) (z{o)-Tn/

. (Pn Plz)(A+BD BDM +) (A+BD)' 0 )(Pn Piz)
.P21 Pon /\ O TAM (BDM)'  (TAM)Y \P,y P,
Q + (YD)* + (YD)+D'RD “YDM + D'RDM [1'1 1"2'1
*\Me(YD)* + M'D'RD M'D*RDM G, Do
\ + 2 (LC* + MT - T)OY
«e(6.35)

[’ and Q) are matrices of Lagrange Multipliers and the number

2, in the expression is used for analytical convenience. Nec-

essary conditions for optimality are, (Athans and Schweppe,

(1965)),

28 _ o8 ., o8 _ . 8%
Sp-0% au 9 3 =% St
The gradieﬁt matrix notation is

the Matrix Minimum Principle of

(6.35) with respect to P, M, T,

g

=0 3D =0 and

3¢ = 0
azlo)

described in some detail in
Athans, (1968). Differentiating

L, D and z(o) in turn gives:

IS
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é@ (20 * mo' -Z," + m.(z(0) ~ Tm)" )

-1Z2,+ (z(o)-Tm)m’ TZ%T' + (z(o) - ™Tm)(z{0)-Tm)

(11 2\ fwmpyr 0\, [mBp - BOM\[f1 L2
21 B22/\ (ow)r (ram)y *\o  ram/\B1 f22/= ©

ve (6.36)
I = OT' +|D'.(B'Pyy + RD + Y') + A'T'P [
5= [ 11 | )+ 21 1z
+ [D*(3'Py, + ROM) + A'T'P,, 6, = O
oo (6.37)
al = MY + P O .M'AY "zo - '
37 21[ 12 m]
4+ P,y [[;2 M*'A' + T2, - (2(0) ~ Tg)@'] =0
S e (6.38)
HB= oot = 0 e (6.39)
aL
+ (B'me RDM),([‘21 + [?azm') = 0 . ++ (6.00)
LT Pam t Py (z(0) -mm) = 0 EERRCREY

@g-f)@ AQ"‘”) U-’l“ LL Lanen dayade 11 (e {UHMW‘? R o TN
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6.2.3; The Optimai Observer.

The Bemmas used by Miller to develop the design pro-
cedure for the optimal observer are statéd in this section.
In particular, it was shown that the design pafameters for
the optimal observer can be found by essentially solving two

algebraic Riccati equations.

Let the feedback matrix, D, of (6.5) be defined as:

D

11>

(R+ 28 5) [ 28§ c+ k] co (6.42)

It is seen that provided the weighting matrices are
the same, (6.42) is exactly the same as (3.36) which was de-

rived earlier.

§§ateﬁeh£ of Lemma 1.

Let T, L and M be matrices of appropriate dimension -
such that (6.11) is satisfied. Assume that (TAM) is a sta-
bility matrix and let:s

. _ -~ A~ ..1 A
b, = (R+EdE)'[EQc +8'P,] . (643)
where, P11 is the solution of:
P, (A - BR™IE'qc) + (A - BR"! E'qC)'p P, BR™1B'P
11 _ 11 - P11 11
+c'(Q - QR IE'Q)c = o v (6.04)

Then (6.28) has a unique solution with:

Piz ‘= Pyt = 0 ee (6.45)
D, = D C ea(6.46)
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Stateméﬁf of'Lemma 2

Assuming that Lemmal holds, (6.37) and (6.39) may be

satisfied simultaneocusly, ifs

r

O = - (DROM+ A'EUP,,) L D 00 e (6.47)

Statement of Lemma 3.

Assume that Lemma? hoids; assume that P22 is the pos-
itive definite solution of the equation obtained by taking

ko st .
the lower rightr§;¥$i%§€%—of (6.28), 1.e..,
P22(TAM) + (TAM)'P22 + M'D'RDM = O ..(6-4?)
and-set,
z{o) = Im : e {6.49)

then the matrix of Lagrange multipliers III exists and the
necessary conditions for optimality are satisfied if and only
ifs

12, + [ M'A* + TAMEG, M' = 0 o« (6450)

and,

1 = - Cowe " ee(6e51)

Statement of Lemma 4.

Let S, V and M be any (rxn), (n#p) and (n =xr) matrices

which satisfy,

1
c* —
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then there exists matrices L, T and [52 of appropriate dimen-
gions such that (6.11) and (6.50) are Satisfied simultaneously

if and‘only ifs

L

1

(MI}zM'A’ + %).C*:(C* zoc*")-l : 00(6.53)

T

i

S - SLC* . | | es (6.54)

and [, satisfies the algebraic Riccati equation

DAt + KD, LBt B1BL,+a = 0 ..(6.55)
where: .

K 2 s [1 - ge*(cx 5 .cr)ler] am . (6.56)

B £ Cw AN | : | v e (6.57)

R & c*g C* = .+ (6.58)

'Q € s3 (I - c*'(c*.z%_c*')‘itc*,zo)s'. e (6.59)

The optimal observer is virtually solved by Lemmas 1-4., Fur-
" thermore, (6.#4) has already been solved. (see Section 3.3.3.)
It only remains to show that a solution can be obtained for

(6.55) and that the resulting observer is stable.
Consider the deterministic. optimal control problem given by:
w=A'Ww + B'vy v+ (6.60)
o - -
J=f(w'Q w + vRv) dt e (6.61)

(6.60) and (6.61) defineg the well-known state regulator pro-

blem, and sufficient conditions for the existence of an op-



162

timal control law for (6.60) are that, R, be positive def-
inite, @, be at least non-negative definite and that the pair
: ﬁ'.ﬁﬂ be completely controllable. (Kalman (1960), Athans and

Falb, (1966)). The optimal control law is then given by:
v* = RIBCw - (6.62)
o 22__ L I L
where [52 is the positive definite solution of (6.55)

From definition (6.58), R is clearly positive definite if it

is ensured that.zb , 1s positive-definite.

To show that Q is positive definite, consider the change of

variables,
v v = g+ Rlcgsnw .+ (6.63)

=-1

v'Ry = (s + Rloxz s'w)t Ris + Rle*zstw) .o (6.64)

‘Substituting for R using (6.58) and expanding the r.h.s. of
(6.64) yields. ' '

V'R Y = g'(C*5C*')g + s'(C*5 S )w + W' (SZ,C*")s
+ w(szeer) (crg )l (crs s w
ve (6.65)

W =W (SESIN - wiszern)(crges) ergs
.+ (6.66)

%
ot
=

The integrand of (6.61) is therefore the sum of (6.65) and
(6.66) which is:
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_s-' (C*ZDC*' )§ + El (S%C*')g

%
ol
1=

+
i<

v |
i<

t

+ §-O (C*EOS')H + E.(S%C*' ))!

(i) | » 0 (6.67)

it

(s'w") [C*Zbc*" c*;_:osa]

SZ%C*' S.Z%S'

(g )

By definition, (6.52),({C*} is nonsingular; thus the integrand
S .
of (6.61) is zero, if and only if s and w are both zero and

i
K
£
|Z|w

this implies that § must be at least non-negative definite.

Controllability requirement.

It is shown indirectly below that thé controllability of

[K':ﬁilis guaranteed if the system defined by:
x = Ax .. (6.68)

y* = C*x . .t (6.69)
is completely ocbservable.

Substituting (6.63) into (6.60) and making the relevant sub-
stitution for A, B and R using (6.65) - (6.58) respectively
yieldé:

W = (SAM)'w + (C*AM)'s - e (6.70)
If w can be controlled through s in (6.70), w can be controlled

through v in (6.60) because of the linear relationship (6.63).For
-[SAM’},CAMq to be completely controllable,
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Rank /Ay = . Rank

{C#=AM)

(C*AM
(C*AM

)} (SAM)

) (SAM)Z

L (o*AM) (sam) T4

Consider the similarity transformation,

()
T ()

{(6.52) may be rewritten

(v M) (c
S

.0 (CHAV C*AM)(

and,
(SAV SAM) ( C
. S
x
and, Y = X

as,

)

Ci) X
S

C*AV
SAV

)
()

i

1
{on |

C*Ax

= SAX

C*AM) X
SAM (_:_c_

)
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oo (6.71)

. (6.72)

ee(6.73)

| '_"_ (6l ?l"’)

«e(6.75)

e+ (6.76)

e (6.77)

(6.78)

Luenberger, (1971), has shown that complete.observability of

the system (6.77), (6.78

) 1implies complete observability of

the partitions BC*AM).(SAMH .Thus matrix A will have rank

¥, since transposing a matrix does not change its rank. °

(Kuo. (1975))
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It only remains to show that the rESuiting observer will be
stable. The closed loop system of (6.60) with control law

(6.62) will have a system matrix, X', defined by
k' = K -8RB[, . . (6.79)

since, the eigenvalues of the square matrix;K', will be the
same as those of its transpose, K; where,

K = X - Qzﬁ_-ﬁ'lﬁ ‘ .+ (6.80)
Substituting for &, B and R using (6.56) - (6.58) respectively
and using (6.52), the r.h.s. of (6.80) becomes,

K = SAM - S(MOM'A" + 5)C* (C*5C**) " toxan .. (6.81)

Substituting (6.58) and (6.54) into the above expression

results in:

-~
i

(5 ~ SHC*)AM
= TAM ’ ’ : . ) .1(6082)

The r.h.s. of (6.82) is seen to be identical to the observer

partition of (6.21)
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6.3. Modelling the Observed System,

To test the design of the reduced -order observer using
the model, CLEMENTI, it was assuméd that the mean value. of

the initial state vector was zero, l.e.
G(x(0)) =m=0 | ‘ .. (6.83)

The covariance matrix, Z,» was the solution of the de-
generate algebraic Riccati equation given as (3.75)t because

the state equation was linear, this covariance matrix is con-

stant:
v o xiw] = Exo)xte)] L. (6.sk)

Also,from (6.83),

Elx(0) - m(x(0) - m)*]= % =&[x(0).x" (o)
| ee(6.85)
There was no need to solve the Riccati equation, (6.44)
since the feedback law thus ob&ained was identical to that
dérivéd previously (see Equation‘Bgﬂﬂ. provided only that the
weighting matrices § and R were chosen to be identical to the
corresponding matrices defined in (4.3) and (4.@4 respectively.
The feedback law (4.15) was used ih every test associated with
the reduced -order observer. To obtain the observer parameters,
it is-necessary to form the matrices defined in (6.56) - (6.59).
Since it was found from previous tests, (reported in Chapter 5),
that the presence of four measurements, viz., w.q.éh and éEi
gave the best results in terms of the transient behaviour of

a proposed observer design, the permanent and sssured avail-



ability of these measurements was again assumed in subsequent
studies on the reduced observer. The matrix- C¥* -was arranged

to be of the forms
c*® = EEEEEEE

+e (6.86)

o O O
= =~
. o O O
o O O O
o O O O

LN BN BN B A

In practice;, this ﬁas'achieved simply by redéfining the
state vector of the model CLEMENTI so that the states w, q,
&, and éhi formed +the first four elements of the state
vector, X. Since the matrix, S, of (6.52) could be selected

arbitrarily, a convenient definition of S was,

- -

S = 0 0 0 0:1 0 0 sssessssssansl

0 0 0 0 0 1 0 secsososnnessD

0O 0 0 0 0 0 1 0
oo e

L0, 0 0 0 0 0 0 ieveienrenenil]

(6.87) thus ensured that the matrix (g*)of (6.52) was an

identity matrix and thus avoiding the need for inversion to

golve for the matrices V and M.

Thé computer.program MILEST was used both to determine V and M ,
and to solve the equations (6.56) -~ (6.59). The algebraic
Riccati equation (6.55) was next solved which then permitted
matrices, L of (6.53) and, T of (6.54) to be obtained, It only

remained to obtain the matrix of (6.21) to test the closed~loop
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responée of the observed system. The observer matrices were
fixed as a result of the choice of, m, and.z%.. and they were
used in all subsequent tests. (6.22) was solved to determine
the appropriate initial conditions to be used for the error

vector, e, Substituting (6.83) into (6.49) for m results in:

.

From (6.22), _ ‘
e(06) = =z(0) - Tx(0)
= - T_}E(O) 01(6089)

(6.21) was forced by including into the equation, a vector, r,
acting through a driving matrix*. H. Thus for the purposes of
making response tests, (6.21) was of the forms

[g] = [A+BD BDM] [5] + [H]g © e (6.90)

& 0.. “TAMY | e 0 , |

For comparison with previous fesults._vectér. r, was set to
the values specified in Table 4.4, , i.e. the aireraft with
_its observer system was forced to the same values of vertical
velocity, wi and pitch rate, q, as used in the test sitﬁations
A,B and C. 1In tﬁe'case of the test situation A, the initial

state.vedtof. x(0)} was defined by:
x'(0) & [7.15 0 0 0 .iieeiienen 0] L.(6.91)

Hence for test situation A, the vector e(0) was finite., For

cases B and C, x(o), hence g{o) were zero.

* See Section 4.4 of Chapter 4.
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The time.responses obtained by assuming that only measurements
of w, q, Ch' and Cbi were available, with the observer being
used to reconstruct the remaining states are presented in
Figures (6.1) - (6.3). Time responses which were obtained
earlier by employing FSVF* have been included in the blots for

comparison.

Figure (6.1) showsa representative set of time respoﬁses+ for
fegt situation A. The plots indicate that in flight situations
such as case A, the observer would be very effective in acc-
.urately estimating the unmeasured states of the aircraft. This
close matching with FSVF designs considered earlier (Chapter 4)
was however not possible in all test situations: a demand for
a finite value of vertical velocity, (Figures 6.2 and 6.3),
indicated that the observer dyﬁamics could be pronounced enough
to affect the wing bending and torsional moments. These fluctu-
ations in bending and torsiona; moments were however not sub-

stantial and certainly not as great as those when full recon-

# In the description of the time responses the following
abbreviations are used:

FSVF - Full State Variable Feedback.
RSVF -~ Reconstructed State Variable Feedback.

+ Only the wing root bending moment together with either
piteh rate (q) or vertical velocity (w) are included in
time-responses presented in this Chaptef. The other res-
ponses did not show any unusual features which were not
already evident from those responses presented.
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structed state feedback was used,(described in the previous
chapter). In all cases, the observer transients settled within

two seconds.

It appears that the reduced-order observer besides.being
simpler to synthesize than the full-order observer, has an-

. other advantage: it produces closer matching to the aircraft
responses expected if full state variable feédback were to

be used. Use of the mean and covériance of the initial state
vector has served the purpose of making the résulting observer
design less sensitive to imperfect matching of initial condit-

ions,
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CHAPTER 7+ USE OF A MICROPROCESSOR AS A SELF-REPAIRING

CONTROLLER (SRC).

7.1, Introduction.

A consequence of either reducing the strength of the
wing of the aircraft or increasing its span*, as a result of
employing an active load alleviation scheme)is that a con-
siderable degree of reliability of the control system, higher
than that of both the basic airframe and its propulsive system,
will be required. For provision of a SLACS, such reliability

cannot be accomplished solely by hardware redundancy techniques

because of the large increase in cost that this would incurs:

not only triplex (and often quadruplex) systems have to be pro-
vided, but the attendant increase in weight would inevitably
result in a reduction of payload capability, Some enhancement
of the system reliability is possible by ﬁsing gsoftware re-
dundancy techniques, where, with the "safety law" operational,
one of the observers of the type reported ﬁpon in Chapters 5
and 6 may be .used to reconstruct any missing feedback signals.
With an effective full-state feedback scheme implemented, the
bending and torsional moments at various wing stations‘will be

reduced and it may then be possible to reduce the weight of the

wing by as much as 3% of the aircraft gross weight. (The net

% Por commercial aircraft.prineipally, it is, in view of the
mounting costs of fuel, an economically attractive scheme to
take advantage of the reductions in bending and torsional
moments by increasing the span of the wing. The increased

span reduces the induced drag and improves the fuel efficiency

of the aircraft. Such a scheme has been implemented on the
Lockheed'L—1011‘1;istar (Fink, 1980).
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weight saving may be slightly lower when aécount is taken of
the need to provide extra hydraulic systems and actuators énd,
perhaps,providiné extra strengthening of the areas around the
active surfaces). 2% of gross weight can, in some aircraft,
represent 7-10% of the payload. A hardware redundancy scheme
will still berrequired for the servo-actuators and those motion
sensors required for measuring®* the variables of the safety
lawr viz,, w, 94£ X 6Ei' and Cth ' ' .

In recent years, with the advent of small dedicated micro-
processor units (MPU'sj. it has become possible to synthesise
complex control systems such as those which will be required
for providing structural load alleviation. Such systems may
for instance be used to enhance the safety gnd reliapility of
operation of the SLACS considered, by:

(a) Flight controller monitoring, i.e., ensuring that

the 5-SVF feedback control law is available at all
times during flight.

(b} State-estimation, i.e., employing a suitable observer
algorithm to recreate any missing states from what-
ever feedback signals are available, in addition to
those five states always available for the 'safety
law' '

(¢} Sensor signal monitoring; i.e.,. use of a suitable
Yvoter” routine to provide "majority rule” output
from monitoring three identical signals associated

¥ An accelerometer may be used to measure vertical acceler-
ation and the signal integrated to obtain vertical vel-
ocitys; fdr pitch rate, a rate gyro will be required,and
for the control surface deflections, position transducers
could be employed.
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with each state variable of the 'safety law. Such a
system would replace the mechanical voter used with
the triplex motion sensor. '

(d) sSelf-checking, i.e., use of-computer routines to
check the logic outputs of one or more of the MPU's
required for synthesising the SLACS.

The final exercise of this research investigation was
concerned with a demonstration of how (a) may be achieved. The
microcomputer system (MCS) available for use was a Bell and
Howell PMS-500 Polynomialised Miqrocomputer.'discuésed in
gsection 7.2. of this cﬁapter. The MCS was used to detect a
simulated failure of a linear feedback controller; onece the
failure in the feedback signal was detected by the MCS, a
surrogate gain was employed which restored the feedback signal
{0 its proper value. When used in this way, the MCS was re-
ferred to as a self-repairing controller (SRC) which is dis-
cussed in detail in Section 7.3. The available MCS did not
have sufficient core space to allow any of {(v), (e¢), or (4),
to be adequately demonstrated, and, in the course of the de-
velopment work on the SRC, it was established that the need
to: use floéting—point software techniques was a serious per-
formance limitation in respect of the sampling rate which could
be acﬁieved. A.number of suggestions)based upon the exper-
ience gained in this work, about necessary performance features
needed in any MCS employed for similar burpoSes in future are

given in the Gonclusions.
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7.2, The Microcomputer System.

The Bell and Howell, PMS-500, is a dedicated micro-
compﬁter system (MCS) which can be éééiﬁgieéiia;a particular
application by means of PROM programming. All the arithmethic
processing is carried out using word léngths of 20-bit* while
16-bit word working is used for system processingﬂ The MCS
has a set of 256 instructions: each instruction is an 8-bit
binary word. Figure 7.1 shows the neceasary hardware com-

posing the MCS.

ANALOG/ DIGITAL EVENT KEYBOARD &
cONVERTER | | MUITIPLEXSR| [WULTIPLSXER| {DATA ENTRY
L . 1 Y1 PROM
B3 % 16) | MICROPROCESSOR b« STORAGE
UNIT (256 x 8)

_| DIGITAL/ ' .| DISPLAY &

ANALOG ' PRINTER

CONVERTER

Figure 7.13 B & H Microcomputer Systenm

The basic systém was siow when compared with other avail-
able systems' having a cycle time of 1.3us. for 20~-bit word-
working. Timing also affecfed A-D conversion rates:

the Analog - Digital converter provided with the basic

¥*
To maintain a degree of accuracy to about 5 significant places,
20-bit arithmetic is used.

+ For instance systems based upon the M6800 and 8086 with typ-
ical cycle times of 500ns., and 200ns. respectively.
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system could not be used because the total time® required for

a conversion was in excess of 55h0ﬂs. "As a result, an éXternal
system (an Analogic MP6812) was used in place of the A-D con-
verter in the PMS-500. With the MP-6812 in operation the

total conversion time achieved was in the region of 60as.

The MP-6812 also contained a sample-and-hold amplifier which
enabled any particular signal to be held af its current value
until sampléd again., In the case of Digital-to~Analog con-
vérsion. the D-A conversion unit on the PMS-500 was retaiped
since it was possible to achieve a total conversion time of at
least 40xs. In the PMS-500 MCS, all arithmetic was carried out
using floating-point software. This inevitably affected the 'cycl

time' of any prograh used. o

¥ the expressions 'total time' or 'total conversion time'
are used in this section to indicate the sum of the
‘software’ and 'hardware' times required to achieve a single
conversion. '
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7.3. Self-Repairing Controller (SRC)

Figure 7.2, shoﬁs the way in which a self-fepairing con-
troller may be implemented in practice. MPU #1 represents the

flight controller, while MPU #2 represents the self-repairing

controller.
Vi - VO
=== PU #1
W
9 —» ——3> O
& A/D ig%tgol Vo D/A Ao
A —| CON- IL_.] con-
GE VERTE VERTER——%%»}éE
i FT : ie
O | |
v, ' - 2
L MPU #2 2

Figqfe ?;2. Sélf—Repairing Controller,

An input signal Vi is re}ated to the corresponding output

signal V. by the equations

o

--Vo = ki.vi ' . - | . 00(701)

where ki is the feedback gain. MPU #2 samples the inputs \f]
and output v, of the flight coﬂtroller (MPU #1). MPU #2 would
have its own voter program to select the correct sensor signal
based upon a ‘majority rule' output®* and would also have surro- '
gate gain values ﬁi stored in ROM. An estimate (Vb) of the out-

put sighal is made by MPU #2 using the relationship:

VO = ki.vi .c(?c?)

* See note (c), Section 7.1



180

The two output'signals_vo_and GO aré compared to within a
prescribed tolerance (see Figure 7.3) by using some logic con-
trol (to be discusséd later) between MPU #1 and MPU #2; it can
be arranged that ohly the correct signal (i.e. v,, Fig.?.j)

is chosen. The appropriate signals are then summed to obtain

the actuator signals 6, and 6. .
Ag Eig

Figure 7.3: Selection of Correct Output.

The failure of signals in the flight controller, i.e.
MPU #1, was simulated. MPU #2 together with A-D and D-A con-
versioh hardware were representéd by the PMS—SOO microcomputer
system. For simulation of failures, a test unit, referred to
as a Self-Repairing Controller Test Unit (SRCTU) was designed.
FPigure 7.4, shows a functional diagram of the SRCTU, while in
Figure 7.5. is shown a photograph of the SRCTU in its case.

In Figure 7.6, is shown a photograph of the hardware* used for

simulating the self-repairing controller.

* - . '
The TR-48 Analog Computer.was not used in these tests but for
subsequent tests on self-repairing control for the SIACS
{reported in Section 7.4.)
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The -triggering signals were used to activate the

analog switches,

FIGURE‘?.Q. ~ FUNCTIONAL DIAGRAM OF SRCTU.

Y

SPDT switches were uséd with one ter-
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minal connected to the input (sensor) signal, and the other

connected to signal ground.

The triggering signals were

pseudo-random TTL signals, which, when the frequencies were

properly selected, resulted in a high degree of distortion
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to the input signals. A tybical get of input and output
signals associated with one of the analog switcﬁes is shown

in Figure.?.?. The gains, ki' were set up on the SRCTU by

the use of linear 10-turn potentiometers, the end termihals_

of which were'conﬁected to positive>and negative supply rails.
A selector switch was used to connect each potentiometer wiper
to a digital volt meter (DVM) in order to set up the gain
values accurately. The potentiometer wipers were also con-
nected to the input terminals of multiplexer #2 (MUX2)., The
distorted signals from the analog switches were connected to
MUX1. The signals were multiplexed to ensure that each signal
was scaled by its corresponding gain value in the multiplier
unit before being routed.to the PMS-500 MGS for checking. The
multiplexing was controlled by the PMS-500 to ensure an ordered
and repetitive éequence of sampling. Thus ;i(l) and vo(l) were

sampled, followed by vi(z) and VO(Z) and so on.

In the‘PMS~500 MCS, a program was written to sample the

signals v. using (7.2),

; and v, to determine the estimate ¥

0
(where the gain ﬁi was stored in ROM) to compare the signals
v,and Vo using the logic arrangement shown in Figure 7.3 and

to output the reconstructed signal, Vee In Table 7.1, is
shown a segment of the program used to compare and select the

appropriate signal according to Figure 7.3.

In Figure 7.8 is shown a typical result where the recon-
structed signal vc.'obtained by sampling the input signal Vi
and the distorted output signal v {Figure 7.7)., has been

plotted.‘The géin ki has been assumed to be unity. To determine

o+
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the maximum rate of processing each signal, a pure sine wave

was used as an input signal. - Figure 7.9 shows some results

for a pure_20HZf

sine wave.

By counting the number of sam-

pling steps clearly evident from the plot of the reconstructed

signal, it was found that with the PMS-500 MCS programmed to

process 4 independent sensor signals in sequence, a sampling

rate of 100 samples/é.

could be achieved., As the frequency

of the sine wave increased, the quality of reconstruction of

in the

the signal /PMS-500 MCS deteriorated. 1In Figure 7.10, are

shown some plots associated with a signal frequency of 50Hz.

50Hz...was regarded as the limiting frequency above which the

—

ADDRESS - 8~BIT CODE INSTRUCTION
0 10100000 Complement Multiplex Toggle
1 10010000 Input from Digital Source 0
2 10100000 Complement Multiplex Toggle
3 00101001 Write Reg 'A' to RAM Location 9
L 10010000 Staticise Multiplexer Address Ot
5 10100010 Complement Output Control Line :
6 10100000 Complement Multiplex Toggle
7 10010000 Input from Digital Source 0
8 - 10100000 Complement Multiplex Toggle
9 00101000 Write Reg 'A' to RAM Location 8
10 01000010 Subtract A from B
11 10110001 Absolute Value of A
12 00001010 Read RAM Location 10
13 01001000 Compare
14 00001000 - Read RAM Location 8
is5 10101010 Skip if 1 in P Flag
0 00001001 Read Ram Location 9
; ete.

Table 7.1 : PROGRAM SEGMENT USED ‘TO COMPARE v,.and ¥ _

0

3

complemented in Instruction 2.

although having the same 8-bit code as Instruction 0, this
instruction is different because the Multiplex Togegle was
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PMS-500 could not be reliqd upon to give an adequate.recon-
%truction of the input signals for this application. However,
from the results dbtained;in-previous chapters, when the

rigid body variables and the control surface deflectiohs

were plotted out, it was considered that a proceésing rate

of 50Hz. would be adequate if a micro-computer system such as

the'PMS~500 was used to act as a self-repairing controller.
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7.4  SRC for the SLACS

| As mentioned in Section 7.1, MPU's may be used to
enhance the safety of operation of a SLACS in a variety of
ways; these were described briefly in the same section.
A possible scheme employing such MPU's to' provide flight
contfoller monitoring, state-estimation and sensor signal
monitoring is shown in Figure 7.11. It is assumed that only
thosg state variables connected with the safety law'are being
measured and in addition, using a triple redundant scheme
for the associated motion sensors. A 'voter' routine to
provide 'majorify rule' output may be incorporated into MPU(C1)
and MPU(C2). MPU(C1) can be used to check each of three iden-
tical signals associated with each variable of the 'Safety law’,
MPU's Bi.- B4 will contain reduced-order observer* algorithms,
which can be used to reconstruct missing state variébles re-
quired, for instancé. for implementing a 17-SVF law. MPU(B1)
will reconstruct those missing state variables based upon a
measurement 6f vertical velocity, w. MPU(B2) will provide an
independent reconsfruction of the state vector based upon a
measure of pitch rate, q. The reconstructions provided by
MPU's B3 apd B4 will be based ﬁpon'the presence of w and q
and of W.Q, & and éﬁi reﬁpectively. The presence of 4 éeparate
estimates of the state vector'will again require a 'voter' and

this function can be fulfilled by MPU(C2).

* Such observers will reguire less storage and CPU time
than full-order observers for their implementation.
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The 'measured’' state v&riables together with the
'‘egtimated' state variables musf then be scaled using the
appropriate gain values connected with the optimal feedback
law and summed to provide the actuator signals. Scaling and
summing forms'parf'of the function of the flight controller
of the aircraft. Because the presence of those signals as-
sociated with the 'safety law' must be continually assured, it
is proposed that an additional microprocessor unit (MPU(A)),
be incorporated to monitof the signal path through the flight
controller., It is this function which dictated the form of

the study reported upon in this chapter.

.In order to assess the performance of the SRC in a more
realistic situation having typical aircraft sensor signals*,
the mathematical model HANDEL, was patched on an EAI TR-48 -~
Analogue computer. It was not possible to consider models of
higher order for this test because of the limited amount ofr
integrators available on the TR-48, 1In Figure 7.12 is shown
a functional diagram of the way in which the test was carried
out, The signa1é+w.q.éh and dEi weré connected to the SRCTU

where they were multiplexed with their appropriate feedback

* A vertical 'gust' signal was used to drive the model. The
gust signal was produced as the output from a Butterworth
filter which was one of the components of the gust generator
shown in Figuré 7.6, The gust generator was designed in
an earlier study, (McLean,1976).

+ Since the PMS-500 MCS was limited to 4 output channels on
the D-A converter, and since for all tests, the outboard
elevator deflection & was zero, this signal was not used
as part of the SRC tesis.
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gains®* using logic control from the PMS-500 MCS. Each signal,
together with its appropriate gain, was then scaled and the
resulting signal sampled by the PMS-500 MCS, (at point A,

" Pigure 7.12). The SRCTU was also used to simulate a serious
flight controller failure by providing as its output the ap-
propriate scaled signals with a high degree of distortion

associated with each of them.

. A program was thep written (Appendix V), for ihe PMS-500
MCS which sampled the pure and distofted signals. These signals
were compared according to Figure 7.3 and as .described in
Section 7.3. The correct signal ‘'sample' was then stored
in an 8-level daté stack, A second pair of signals was then
compared and stored in the 8-level stack and so on. After all
L 'sets of signals had been sampled, the first four locations
of the 8-level stack were ocutput to the D-A converter and the

whole program cycle repeated.

In Figure 7.13 are shown the pure signals (point A,
Figure 7,12’ plotted together with the corresponding recon-
structed outbut (point B,Figure 7.12). It is seen that as
predicted from the results reported upon in Section 7.3, the
sampling rate of the system used was quite adequate in pro-
viding a reasonable amount of self-repair to distorted feed-

back signals.

¥ These gains were in this instance not stored in the
PMS-500 MCS but were set up independently as analogue
voltages using the gain potentiometers on the SRCTU. This
approach was used to minimise the need for data transfers
through the A-D and D-A converters.



194

SO FU VS S DUSM U SN DUV SR S SN PG ST GRS YUy SO [ S S S

—— = — g = —=

R it e et P et g .i‘i:i: e

SENSITIVITY:
0.254m/s/div,

PAPER SPEED: e
25mn/s. .
Figure 7.13a: SIGNALS v_ AND v  ASSOCIATEL
WITH VERTICAL VELOCITY(w).,

SENSITIVITY: .
0.012rad/s/div.

§ B I T I R aante st SO P YRR BPIRY TR IO [ | L . et IEE B

Figure 7.13bs SIGNALS Yo AND Vo ASSOCIATED
' WITH PITCH RATE (a/n,).




195

SENSITIVITY:
0.02rad/div.

e Bl e e e o e . oy Dot Bt ikl o Pl S o T

PAPER SPEED: USSR YRV [N VOGO [ JUURT (DU FUNyHY Rpiyy SO SN QNS A IOVSY NG PR P |
25mm/s. '

Figure ?7.13c: SIGNALS v_ AND v ASSOCIATED
WITH AILERON DEFLECTION(S,).

SENSITIVITY: REEEE RN ENREE
0.02rad/div. |

R
- ) 0 N s Oy o —
4= __'ﬁ ;Jij'"“_ T I
NS S o I I

Figure 7.13d: SIGNALS v _ AND v, ASSOCTATED
WITH INBOARD ELEVATOR
DEFLECTION (&),




S 196

CHAPTER 8: CONCLUSIONS : .

8.1 Concluding Summary

This research investigation was concerned with.a study
of the application of optimal control theory, in conjunction
with advanced electronic technqlogy. to provide for current and
futufe operational aircraft a means of alleviating structural
loads (on such aircraft) when subjected either to deterministic
manoeuvre demands or to flying throuéh atmosphefic turbulence,

or both, by the use of continuously actife control surfaces.

The aircraft type chosen for the study was the Lockheed

C-54 and the specific aim was to design an active control system
which would reducerthe bending and torsional moments acting on
the wing of the aircraft. This choice of aircraft was ﬁade be-
cause all the data required were available in Stone (1972) and
Harvey and Pope (1977), although only information about the
lqngitudingl motion, and then only for a single flight condition,
was provided.. A body-fixed axis system waé employed principally
Secause the criteria for aircraft handling and performance are
normally expressed in this set {(Schwanz (1972)), and because
pilot<résponse appears to be mostly based upon body-fixed motion

cues (Gundry (1977)).

The most complete mathematical model employed for the
sub ject airéraft was referred to as ARNE and was discussed: in
detail in Chapter 2 of this report. The model, ARNE, was of
order, 79, and contained representations of rigid body motion,
str@ctural flexibility effects, actuator dynamics, gust dynamics

and unsteady aerodynamics.
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The rigid body motion of theraircraft was represented by
the linearised, small perturbation equations associated with
the short period modes the long-period,variation of the for-
ward speed, known as the phugoid mode, was not believed to be
significant. The chief reason for this is that it was consi-
dered that the variations ineand q (the variables associated
with the short period motion)}, are unlikely to affect u and ©
(the variables normally affecting the phugoid mode), in any
significant way., Thus only vertical velocity, w, and pitch

rate, q, were included in the state vector of ARNE.

For the representation of structural flexibility effects,
up to fifteen bending modes associafed with the wing of the air-
craft were included, with frequencies ranging from 0.8Hz (for
mode 1) to 8Hz (for mode 15). However, it was observed that the
frequency associated with the short-period motion was only sep-
arated from the frequency of the first bending mode by a‘factor
of 4 and this gave cause for some concern since it was known |
tﬁat if any frequency coupling occurred, it might not be possible
with any AFCS design, to sufficiéntly augment the damping of
coupled modes, Itwas found in all tests carried out that it was
poss;ble to obtain a feedback law which resulted in a separation

of a factor of 8 or more between the two frequencies.

Three control surfaces were employed and these weres sym-
metrically deflected ailerons, and separately driven inboard and
outboard sectionsof the elevafcr..However..only signals to the
actuators associated with the ailerons and the inboard sections
of the elevator were used as control inputs for the SLACS: the
outboard section of the elevator was left free to respond to
other commands such as may be required for carrying out normal

in-flight manoeuvres.
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A Dryden filter was employed for the éimulation of
atmospheric turbulence. Although a Yon Karman model is in
closest correspondence with the observed behaviour of turbu-
lence, this model cannot easily be programmed because of a non-
integer exponent in its p.s.d.,(See Eq.2.58). However, the
Dryden model provides a p.s.d.,(See Eq.2.59), which closely
matches that of the Von Karman model, although somelsmall dif-
ferences do occur between these models at the higher frequencies.
It was considered that any.AFCS designed to providé'load allevia-
tion will cause the damping of the bending modes to be so aug-
mented that most of the energy will then be contained in the
rigid body motion. As a result, the differences at high frequen-

cies between these models will be of little consequence.

Unsteady aerodynamids were represented'in the model, ARNE.
by Kiissner and Wagner 1ift groﬁth functions. Although these func-
tions are more accurately represented graphically, such represen-
tgtions are extremely difficult 1o incorporate into the model
equations, énd. therefore, well-established approximatidns (for
instance,Bisplinghoff et al (1966)), were employed. In Harvey and
Pope (1977). in the evaluation of the Kﬁséner and Wagner function:
an error was noted (McLean and Prasad (1980B)), where the value
of the chord of any aerofoil sections consideréd. was used insteac
of the semi-chord. However, the Harvey and Pope representation

was followed in this work to permit valid comparison of results.

Since the chief aim of the research was to achieve some
reduction of bending and torsional loads on the wing of the air-
craft, it was necessary to form an output equation, Eq.2.11%,
from which such loads could be determined at any time. Normal

mode theory was used to derive such equations.
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Quite early in the research study it became evident that
in terms of computational requirements, ARNE would be toco large
4o handle on the computing facilities available at LUT. As a
result a number of lower order models were considered, viz.,
BACH, of order 42; CLEMENTI, of order ZN:IFAURﬁ, of order 17;
GERSHWIN, of order 1i4; and HANDEL, of order 5. However, because
all the lower order models were derived from the model, ARNE,

‘only this model was described in detail in Chapter 2.

In Chapter 3, those aspects of the theory relating to the
design of a feedback controller to-provide.for the subject air-
craft a certain amount of structural loagd alleviation were pre-
sented., Because of the nature of the problem}‘i.é.. the re-
quirement that two of the control shrfgces'of the subject air-
craft be used to affect up to 56 output variables, application
of optimal control methods were considered to be the most ap-
ﬁropriate. Specifically, the problem was cast as the optimal
output regulator. A particular disadvantage, however, of synthe-
sising any feedback laws obtained as solutions of the oﬁtimal
regulator problem is that full-state variable feedback (FSVF),
is required and it was therefore proposed to make some tests
employing reduced-order control. However, it was firgt decided
that. some consideration be given to establishing the controlla-

bility and stabilisability of each model employed.

In Chapter 3, it was stated that complete gtate control-
lability is a sufficient, but not a necessary, condition for
closed -loop sfstem stability (Larson and Dressler (1968))., If
the original state description of the aircraft was itself stable,

then this alone was a necessary and sufficient condition for
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obtaining a feedback law which woﬁld guarantee the stability
of the closed-lodp system. The dynamic stability of the un-
controlled aircraft was most easily checked by observing the
signs of the eigenvalues of the coefficient matrix of the state

equation (i.e,, matrix A of Eq.(3.4)).

All the questions raised so far, and reported upcn
in Chapter 34were considered in the following Chapter. However,
some aspects of the theory still.remained to be considered, in
fespect of the type of problem formulation to be pursued, i.e.,
whether a solution of the Linear Quadratic Problem (LQP), as
opposed to the Linear Quadratic Gauséian (IQG) Problem, was to
be attempted. Solution of the LQP'involves a purely determi-
nistic approach,while solution of the.LQG attempts to take ac-
count of the effects of atmospheric turbulence and of any mea-
surement noise presént. It is usual to employ a quadratic'per-
formance index (p.i) as a.means'of assessing the quality of
performance achieved by the use of any feedback law derived.
Such a performance index was characterised by the use of
welgnilng matrices (typically Q-and G matfices, see Eq.{(3.3)),
on the state and control vectors in its integrand. It is very
difficult to determine the most appropriate values which must
be used in the selection of.Q and G matrices ana,although a few
methods have been proposed (Bryson and Ho (1969b), Harvey and
Stein (1978)), none of these wﬁgg found to be suitable and cnerefo

. empirical methods were employed.

In the solution of the LQP, or the LQG, provided that the
weighting matrices are in each case chosen to be identical, the

resulting control law will be the same. However, in the case
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of the LQG, it is assumed that the state %ector. X, is not
available for feedback: instead, an estimate of X has to be
formed for which a Kalman-Bucy filter driven by the output, Y
and the control, u, can be employed. However a kalman—Bucy
filter is in practice difficult to synthesise because of its
dimensionality. It was considered that since the feedback law
obtained will be the same, whatever the approach, if full state
feedback were to be employed.and a Kalman-Bucy filter not im-l
plemented, the worst that would be likely to occur is that
some decrease in the performance costlwill result.With strong
feedback cohtrol, the atténdant perfgrmanée degradation is not
likely to be great. Thus the solution of fhe LQP was adopted
in all further tests. However, since it was realised from the
onsef ih the research study thaflit:will not be possible to
implement FSVF, two separate approaches to the problem were

proposed,; viz.,

(a) use of reduced-order control,

and (b) ﬁse of Luenberger observers, in particular reduced-
order observers, (which would be simpler to synthe-
sise,although they do nof take.explicit account of
the presence of ndisé). to see whether it will be
possible to recoup some of the'advantages of full

state feedback contrql.

(a) formed the basis of Chapter 4, while work on observers, (b),

wag reported in Chapters 5 and J.

From a closer study of the model, ARNE, it became evident

that the transfer functions representing the Wagner dynamics
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in this model were almost identically unify (see Figure 2.4).
Since BACH only differed from ARNE by the omission of the
Wagner dynamics, BACH was used in subsequent tests to represent.
the aircraff. However, further tests made by comparing the
time responses to identical inputs obtained for the models

BACH and CLEMENTI (in Chapter 4), indjcated that a further re-
duction in_model complexity was_possible, for these time res-
ponses did not differ greatly even when what appearsd to be
severe manoeuvre demands were made on either model, (See Figures
h,1-4,3). CLEMENTI only differed from BACH in the omission

of the upper nine bending modes, and, from considering the res-
ponses, it appeared that thesenhighér bending modes were not
contributing significantly to the total aerocelastic energy ton-
tained in the wing of the aircraft. Thus the model CLEMENTI
ﬁas regarded as being of the highest order needed for any

work associated with the design of a gsuitable SLACS for the

subject aircraft.

The remaining models were used principally in those in-
vestigations employing reduced-order feedback control., By the
use of these models, it was possible to determine the effect
which the absence of one, or an enfire group.of, feedback variables
had upon thé performance of a SLACS. All reduced-order feed-
back laws were however tested in conjunction with the model,
CLEMENTI. FAURE included equafions representing the same dy-
namics as the model CLEMENTI, but excluded both the vertical
gust and the Kﬁsspér‘dynamics. The model GERSHWIN, however,
reintroduced both the gust and the Kussner dynamics, but in-

cluded in its description only the first bending mode and its
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rate, the higher modes being‘neglécted. This.model was used
primarily to test the hypothesis that much of the bending ener-'
gy (60% or more), is contained in the first bending mode
(Schwanz, (1972)). The model, HANDEL, only contained in its
description +the rigid body motion variables and the variables

associated with the actuator dynamics.

In the study, all the.confrol_laws derived, and the air-
craft dynamics, were tested by means of digital simulation. A
numbef of artificial test situations, (see Tables 4.1 and 4.2},
involving both manoeuvre command inputs and disturbing the air-
- craft with simulated atmospheric turbulence were employed for

assegsing and comparing various SLACS schemes.

The effectiveness of any control law derived was carried
out initially by inspection of the eigenvalues of the closed-
loop system and then by making appropfiate response checks

using the artificial test situations.

Eigenvalue analysis was carried out primarily;to deter-
mine the extent to which the damping of the sfrﬁctural bending
modes had been augmented by the use of a particular SLACS scheme.
From a comparison of eigenvalues 6f the uncontrolled aircraft |
~with the controlled aircraft (Table 4.3), it was found that the
frequency separation between the first bending mode and the
short period mode had been increaged from a factor of ﬁ to a
factor of 8 although the basic handling qualities of the aircraft
had remained essenfially unaltered. The damping ratios of modes
1,3,5 and 6 were increased as were the frequencies of modes

1,3,4,5 and 6. The damping ratio of mode 4 was halved from 0.04
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to 0.02. The dynamiclcharacteristics of mode 2 remained un-
changed. It was also noticed that the roots associated with

the outboard elevator servo and the Kissner dynamics remained
unchanged, a result which was not unexpected, since previous tests
showed that although these dynamics were stable their cdrrespon;
ding states were not controllable. Thus, any model inporporat-
ing either the outboard elevator dynamics or the Kilissner dy-

namics, or both,were‘found to be not completely state controllable.

With full state variable feedback, (control law,Eq.%.6), sut
stantial reductions of the wing bending moments, of the order
of 50% or more were easily achieved (Figure 4.7), although at
a cost of a small increase, (of about 12%), in torsidnal momentsl
- sustained at the wing root (Figure 4.8), However by adjusting
the weighting matrices in the ﬁerférmaﬁce index of the dptimal_
control problem, it was always possible to effect simultaneous
reductions in the bending and torsional moments sustained by
the wing in response to some command or disturbance. Figures
4.10-4.12 show one such- set of results for control léw.of Eq.k4.15,
where, for t@e wing root, for example, when a redﬁction in bend-
ing moment of 40% was achieved, a reduction in torsional moment
of about 5% could be achieved simultaneously usiﬁg this control

1aw .

Because of the obvious practical difficulty of implement-
ing FSVF. a‘number of simulation tests on the aircraft was car-
ried out employing reduced-order control. Tests made on reduced=-
order feedback contirol demonstrated how it was possible to re-
duce the number of variables being fed back from 24 to 5, while

still maintaiﬁing an acceptable level of alleviation of the
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‘effects of the airloads.

' It turned out that the five variables were relétively

easy to measure beihg vertical velocity, Q, pitch rate, q,
aileron deflection, §,, inboard elevator deflection..éEi and
outboard elevator deflection, QEO. It was however necessary to.
investigate the effects of any further loss Qf feedback and
this led to a systematic scheme of tests made on the model
CLEMENTI with various combinations of the gains associated with
5-SVF in the feedback ioop.' By means of eigenvalue analysis,

it was possible fo establish the condition that both pitch rate,
q, and aileron deflection, QA; must'always'be available as feed-
back signals to guarantee the stability of the closed-loop SLACS,
However, in all shbsequent éests in the research, it was assumed

that all Tive variables would be available for feedback and

consequently 5»SVF was referred to as the 'safety law'.

It was found that tﬁe handling qualities of the aircraft
were essentially unimpaired by the use of different control laws,
although, with the 'safety law' operational, oscillations in the
bending moments on the wing_of the aireraft occurred (Figure 4.13)
which, it was considered,éould result in the accumulation of

fatigue of the wing structure.

Since the research was primarily concerned with the re-
duction of étrugtural loads on.the wing of the aircraft, and .
since in all tests carried out, each SLACS was judged princi-
rally by the steady-state level of load reduction it provided,
a method was developed, (reported in Section 4.4.3c), for‘

quickly evaluating the steady-state load levels from a knowledgew
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of the airecraft dynamics and the command vector being applied.
The results of tests using the method showed (Table 4,7),
that in almost every case ﬁhere reduced-order control (down to
five motion variablésl was employed, some reduction in bending
and torsional loads on the wing was possible. However, with
the 'safety law' operational,it was only possible to achieve a
bending momenﬁ reduction -of about 25% at the wing root. From
this result it was concluded that reduced state feedback, which
may result Dbecause enough sensors cannot be provided, or, when
present, cannot provide accurate measurement, or may have failed
in their operation,may be expressed in terms of the increased
level of bending moments whicﬁ will resul?: In addition,
'.there cén'be some_dscillationrin the bending reéponses. With
higher orders of feedback. the reduction was in the region of
ho%. Such a result also served to confirm the previous remark
that much of the aercelastic energy appears to be contained in

the first bending mode.

Eigenvalue analysis indicated that the response time of
.the.inboard elevator servo was reguired to be reduced by some
400 times (a requirement which cannot be met in practice: see
Wood and Lewis (1978)), in order to achieve the required structu-
ral load alleviation, waever, in none of the artificial test
situations used in the research were the observed actuator
rates so ﬁigh as to be unachievable by currently available
servo-actuators., It was concluded that such a high rate will only
be required for a step chgnge. for example in angle of attack. In
normal in-flight manoeuvres or even in atmospheric turbulence, th
corresponding rate required may be well within the capability

of present-day servoactuators.
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Simulation tests involving atmospheric turbulence confirmed
" the result obtained from the deterministic tests, namely that
the FSVF law, derived on the basis of the model CLEMENTI, was most
effective in causing substantial reductions in bending moments-
at 211 five different wing stations, including the wing root,

(see Figures 4.19 and 4.20).

A separéte method was employed (due to Swaim et al (1977)),
for predicting the r.m.s levels of bending moment at each wing
station when the aircréft was 'flying' in simulated atmospheric
turbulence. The tests showed that reductions in bending moment
of between 80%-95% were achievable (Table 4.8). Even at the
ﬁing tip, where the ailerons are located, the reductién waé
greater than 80%.when using‘FSVF control. With only the 'safety
law' operational, a 25% reductionrwas still achievable at the

wing tip, and better than 25% at the other wing stations.

' The synthesis of anj SLACS ought to employ the highest
order of feedback feasible, consistent with economic and practi-
cal hardware constraints such as weight, cost and volume. Al-
thoﬁgh FSVF resulted in the greatesf‘reductions in bending and
torsional moments on the Qing of the aireraft, it was evident
that it would not be possible to synthesise such control laws

for two principal reasons, viz.,

(a) a.few of the state vériables. such as’those associated
with the Kissner dynamics, were only used for analy-
~ tical convenience and do not in themselves have any
explieit physical significance;

and (b) even if it were possible to provide such a large
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number of sensors, this would be very costly,
especially when it is considered that triplex or

even quadruplex systems will be required.

It is also important that not too great a dependence
should be placed upon the availability of a large number of’
measurements, since, as demonstrated earlier in this report,
sudden loss of such measurements results in an increased level
of bending and torsional loads sustained in the wing, a situa-

tion which, if unaccounted for, could cause disastrous results.

For the reasons mentioned above, a number of stﬁdies were
made to improve possible flight intégrity. while at the same
time attemptiﬁg to secure maximﬁm load reducticns, by the use
of state estimétors. or Luenberger observers, to reconstruct
any migssing signals. Both full and reduced-order observers;
driven by the availlable outputs and controls of the sjstem.

were investigated.

In Chapter 5, a simple algorithm based upon optimal
control methods waé developed and used to derive all the para-
meters required for implementing a full-order observer. The
performance criterion employed in this case was a weighting
of the error between the actual state and the estimated state.
Minimisation of the associated performance index resulted in the
solution of the 'gain matrix' of the observer. All wofk with
the full-order observer was carried out using the model FAURE
because this-model differed from CLEMENTI only in the absence
of the Kussner dynamics and gust dynamics, and it was not

"proposed to excite these dynamics in the tests.
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Initially, the observer perfdrmance was assesgsed by-in-'
spectidglthe eigenvalues of each new desién'and comparing these
eigenvalues with those of the controlled aircraft. One such
result (assuming that only vertical velocity, w,-waé avéilable),
was given in‘Tablé 5.1 which was produced by a simple choice
of observer weighting matrices, i.e Eq.5.37 and Eq.5.38, Some
difficulty was experienced regarding the placement of observer
poles since the only means.by which such placement could be
achieved was by empirical selection of Q and R wgighting matrices.
According to Luenbergér (1966), there is little reason to
chooge observer poles much faster than the.poles of the closed-
lon system. However, for the observer design, indicated in
Table 5.1, the real parts of the eigenvalues of the observer
should at least have been greater than those of the eigenvalues
of the controlled aircraft (considered in this case to be ade-
quately represented by the model FAURE). This observer design
- was nevertheless tested with the controlled aircraft by means
of Qigital simulation.and using the same deterministic test si-

tuations employed previously (Table 4.1).

With the initial conditions of the aircraft and the obser-
ver perfectly matched, it was possible to achieve the same res-
ponsé as originally determined for the aircraft employing FSVF
(see Figures 5.1-5.5). ’Iﬁ a number of reports (Newmamn (1970),
Arimoto and Hino (197{)).'it had been suggested that the per—r
formance of an observer will deteriorate substantially if the
initial conditions'on its states are not_métched with those of
the system being ‘observed*'. In an attempt to confirm the vali-

dity of this proposition, a number of tests were made for the
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situation where the initial conditions of the observer did not
agree wi%h those of the dynamic model of the aircraft. It was
shown that for the particular design studieq. the observer was
most sensitive to a mismatch of initial conditions on vertical
velocity, w;‘sbmeﬁhat less sensitive to a mismatch on pitch rate,
q; and least sensitive to a mismatch of inboard elevator def-
lection, 6E The strong sensmt1v1ty to a mismatch of initial
conditions on vertical V91001ty was believed to.be a result of
the original specification of the particular o?server design
studied, viz., reconsfruction of the system'state was to be
achieved by providing an accurate measurement of vertical velo-
city.  In addition, these results were not wholly unexpected
because of the questions raised earlier, about the suitability

of this particular observer in respect of the poor placement

of itg poles.

Further tests(ihvolving only different choices of weighting
matrices; showed that it was possible to obtain a desired set of
dynamics associated with each obéerver design élthodgh it was
not possible to establish any fixed pattern for a suitable choice
of weighting matrices. .A workable design would therefore only
result from carrying out a large nuhber of test computér runs,
duriﬁg which, both thé locations of the observer's eigenvalues
and the respénse of the aircraft. with observer iﬁ%orporated.

need to be checked.

A number of further tests were proposed for new observer
designs.based ﬁpon the availability of other measurements, viz.,
q, QA and dE.' With only pitch rate, q, assumed to be available,

N

no significant change in the observer performance was recorded
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when compared with that of earlier designs based upon the avail-
ability of vertical velocity, w. However, further tests showed
that, as would be expected, the availability of more measurements
had a beneficial effect upon the aircréft's response. With w

and q available simultaneously, the bending moments experienced
in the wing of the aircraft were initially quite severe although
the transients decayed quickly (<is.,see Figure 5.11). With the
presence of all four signals, viz., w, q, S+ & the transient
excursions in bending moments were much less tha; in the pre-
vious design but the decay of such transients were not as fast,
in some cases lasting up to hlseconds.(Figure 5;12). Also the
ébserﬁer '‘gain matrix’' associated with the measurement of four
variables contéinéd some elements which were large'(irloj). It
was considered that in practice it will be inappropfiate to use
gains 5102 because not only the ?ure signal will be amplified but
also any noise signal present in the‘feedbgck path. Conseguently‘
the results associated wifh this test may not bé arhievable in rra
tice. However, it is possible that further numericual experiment
with different weighting values in the § andlﬁ matrices may pro-
duce a workable design with the type of performancé indicated

in Figure 5.12,

The full-order obéervers feported upon in Chapter 5 weré
regarded as being sub«optimal. The chief reason fér this was
that an attempt was made to minimise the error between the re-
constructed state and the actual state of the system without
taking account -@#- what amount of controlling action will be re-
quifed. Secondly, these observers were used to reconstruct those

signals associated with the 'safety law': for the implementa-
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tion of a SLACS, it is expected that'the presence of thoée mo-
tion variables connected with the 'safety law', i.e.. w, 4, QA.
-6Ei and dEo will always be guaranteed by using a suitable hard-
ware redundancy scheme. Thus it was considered that if an ob-
server were to be used to provide some measure of reliability,
{(in software) to the SLACS by reconstructing any missing feed-
back signals, then it would be wasteful of computer storage and
time to reconstruct signals which were, in any case, already being
measured. Thirdly, the full-order observers considered were all
extremely sensitive té mismatching of initial conditions bet-

ween the state vector of the aircraft and those of the observer

mode;.

For these reasons; an optimal minimal~ofder obsérver de-
sigh,propoéed by Miller {1973), was considered and reported

upon in Chapter 6; In this éase.'thg design parameters were-
chosen to minimise the expectation of the regulator cost functio-
nal,an& not the state estimation error. Further, the initial stad

‘ , cut only

of the aireraft was not required to be known, [the medn values

and the covariances of the initial conditions were required. In
the study the mean value of the initial state vector, m, was
taken to be zero and the covariance ﬁatrix. Z%. was taken as thé
solution of the degenérate'Riccafi equation given as (3.76),

(see previous work reported in Section 3.3 on the solution of

the covariance matrix). The observer matrices, when solved,

were fixed as a result of the choice of m and X and these mat-
rices were used in éll tests reported upon in Chapter 6. Also,
regafdléss of the initial conditions of the aircraft, the ini-

tial conditions required to be set on the observer states were
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also fixed and had to be evaluated for eagh new fest situation
by means of Eq;6.8§. The test situat&ons employed previousiy
were again used to.allow comparison of results obtained. Since
it was found from previous tests (in Chapter 5), that the pre-
sence of four measurements , viz., w; q, 6A and éE_ gave the
‘best results in terms of the transient behaviour o; a proposed

_ observer design,-the permanent and assured availabiiity of these

measurements was again assumed in all studies using the reduced-

“order observer.

Dynamic response tests indicated that the observer design
considered'wés,in pafticular, less sensitive to imperfect match-
ing éf initial conditioné.' In the case A test situation, the
response of the aircraft (with the observer incorporated)was iden-
tical to those responses obtained when FSVF design-wére consi-
dered (Figure 6.1). However, when more severe manoeuvre demands
wére made on the system; it was noticed that the observer dy-
ngmics'could be sufficiently pronounced to affect the wing bending
and torsional moments (Figures 6.2 and 6.3). These fluctuations
in bending and torsional moﬁents were nevertheless insubstantial
and certainly were not as great as those obtained when full-order
observers were employed. In all caées. the observer transients

séttled within 2 seconds.

In general thén.the obéerver tests showeﬁ that,even with only
a few measurements, it waé possible to reconstruct fairly ac-
curate estimates of the state vector which, in turn, allowed
full state feedback,qontrol,together with its attendant advan-
tages, to be made possible. The tests have also served to demon-

strate that part of the flight integrity reguirements for imple-
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menting the SLACS may be met by emplpyinglsoftware reliability.
In general a hardware redundancy scheme will still be required
for ‘the servo-actuators and particularly those motion sensors

from which the ‘'safety law' is derived.

With the advent of small dediéated microprocessor units
(MPU's), it has become possible to consider the practical prob-
lem of synthesising complex control systems such as those which
wili'be required for providing structural load alleviation.
Such systems may, for iﬁstance,be used to enhance the safety and

reliabilityiof operation of the SLACS considered by providing:

(a) Flight controller ﬁonitbring
(b) State-estimation
(¢) Sensor signal monitoring

and (d) Self-checking.

The final exercise of the research investigation {(reported
upon in Chapter 7), was concerned with how (a) may be achieved.
A Bell and Howell PMS-500 Micro-computer System (MCS) was used
to detect a simulated failure of a linear feedback controller.
Once the failure in the feedback signal was detected by the MCS,
a surrogate gain (stored in ROM) was employed, which restored the
feedback signal to ité proper value. When used in this way, the
MCS was referred to as a self-repaifing controller (SRC). The
. available MCS did not have sufficient core space to allow any
of (b). (¢) or (d) to be adequately demonstrated, although, a
possible scheme was described in Section 7.4. Also, in the
course of the development work on the SRC, it was established

that the need to use floating-point software techniques was a
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serious performance limitation in respect of the samplihg rate

which could be achieved.

For the simulation of failures, a test unit, referréd to
as a seifurepaifing controller test unit (SRCTU) was designed.
' Because the .D-A converter on the PMS-500 MCS was limited to 4
output channelé, the SRCTU was designed to continuously process
| a maximum Qf 4 signals at a time. A failed signal was produced,
in fhe SRCTU. by periodically grounding the pure signal (vi),‘
in a pseudo-random fasﬁion.(Figure 7.7). In addition, this sig-
nal was scaled by means of an analogue multiplier unit, by using
an appropriate gain value (ki). Thus, one of-fhe output signals

of the SRCTU was related to its corresponding input signal, by,

v .='k.v. | ' _ ees (8.1)

The signals v_ and v; were then sampled by the PMS-500 MCS.

o}
Using a surrogate gain (Ei). the PMS-500 MCS was programmed to
produce an estimate of the output signal, i.e.,ﬁo, based upon

the sample of the pure signal, vi,'i.e.,

~ a
= k.v,
.VO lvl

[ (8-2)
In the MCS. the two signals v, and Go were compared to within
a prescribed tolerance and by this means it was possible to

arrange that only the correct signal level was output through

~the D-A converter (Figure.7.8),

All the tests reported upon in Chapter 7 were based upon
simultaneous processing of 4 sets of signals. To determine the
maximum rate of processing, it was arranged that one of these

signals was a pure sine wave whose frequency could be varied,
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The results Showedithat with the PIiS-500 MCS programmed to pro-
cess 4 independent signals in sequehce. a sampling rate of

100 samples/s. could be achieved. However it was found that
50Hz should be regafded as a limiting frequency above which the
PMS-500 MCS could not be relied upon to give an adequafe recon-

struction of the input signals (Figure 7.10).

In order to agsess the performance of the SRC in a more
reaiistic situation having typical aircraft sénsor signals, the .
. mathematical model,HANDEL.-wassimulated on an EAI TR-48 analozue
computer; The model was continuously driven by means of a 'gust'
signal derived as the output from a Butterworth filter. The
signals w, q, QA and QEi were connected to the SRCTU where they
were failed before being sampled by the PMS-500 MCS (Figure 7.12).
From the resulté obtained, (Figure 7.13), it was evident that
fhe system used was adequate in providing a reasonable amount
of self-repair to distorted feedback signals. A number of areas
of study however remained to be considered and these are treated

in the remaining section of this'Chapter.
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There remains a clear need for further investigation of
the suitability of the mathematical models employed in
this research for the design of sfructural load allevia-
tion control systems. Because of computational problems,
the most complete model of the aircraft (model,ARNE), |
was not employed for the assessment of SLACS schemes.
Those less complete models used were a result of a number
of strﬁctural dynamic approximations and, in particular,
the model CLEMENTI was a result of a residualisatioﬁ car-
ried out on ARNE. Schwanz (1972) warns against the a
priori selection of an inappropriate formulatioh since
such selection can iead to large errors in the design of
the flight control system. Any such investigation Shbuld
also include a study of more accurate representations of
the Kiissner and Wagner functions and of the actuator

dynamics.

The . assessment of the SLACS échemes'may be enhanced by

incorporating the effects of changes in flight conditions,

 of aircraft mass changes, and of any coupling effects,

whether structural or aerodynamic, produced as a result

of lateral motion.

There remains a need for a continued investigation re-

garding the selection of suitable weighting matrices.

- The method proposed by Harvey and Stein (1978), should

5e extended to include application of weighting values

on an output vector of any dimension. In addition,
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there still exists a need for determining some possible
‘explicit relationship between the selected weighting ;

matrices and the desired output response of the aircraft.

i, An attempt should be made to test the validity of the
proposition made in Section 3.2,1.2 that the incorpora-
tion of aIKalman—Bucy fiiter into the feedback loop will
not substantially improve the performance of the SLACS.
However, particular note should be made of the fact that
such a filter will only be required‘to be driven by those
measurements which are easily available such as the signals
associated with the ‘safety law'. Thus,with such a filter,
it may be possible to recoup some of the bending moment

reductions lost as a result of using only the 'safety law'.

5. Because reduced-order Luenberger observers are simplef .
to synthesise, when compared with ei?her‘a Kalman-Bucy‘
filter,or a full-order Luenberger observer, further checks
should be made on the design considéred to investigate
the degradation in performance of the observer, in the
présence of noise such aé a{mospheric furbulence or

_measurement noise, Some degradation in performance is
expected since the observer design did not take explicit

account of the presence of noise.

6. The practicability of synthesising the SLACS designs
considered éhould be further investigated by the use of
microprocessor oriented computer systems (MCS's). Sﬁch

. systems will be required to be fast with cycle times of

bens.,or less, since they will be required to work in
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real time. The storage_requirementé of such systems

must also be high: for the reduced-order observer deéign
studied, about 10k of ROM will be required to implement
17-SVF., An MCS must also be capable of at least 16-bit
word wofking in order to maintain the numerical accuracy
required, (for example when an observer algorithm is

being implemented), in the manipulafion of iarge matrices.

An attempt should be made to confirm some of the findings
of thig reéearch investigation by carrying out tests on
the C-5A airéraft. The variables associated with the |
'safety law' will be easy to derive from appropriately

positioned measurement sensors. Bending moments in the

'wing structure could be evaluated from computations on

readings taken from a number of strain gggées. Such tests
may however require modifications to be made to the
actuation system incorporating the aileronsland inboard
sections of the elevatori. since these surfaces will be
continuously active, some strengthening of the areas
surrounding the surfaces may be required; also, it may

not be possible with:-the hydraulic actuators employed

"on the aircraft, to derive the actuation rates required

for load alleviation especially in atmospheric turbulence.
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APPENDIX 1

COMPOSITION OF THE STATE AND OUTPUT VECTORS OF EACH _

MATHEMATICAL MODEL CONSIDERED.

1. ARNE

a, State Vector

Variable Symbol Vector Element
Vertical Velocity W ' X4
Normalised Pitch Rate qK %

> 2
Rate of Change of Bending e
Displacement Ai X -x
3717
Bending Digplacement
(i.= 1;2 cuuis) Ai X18~X32
Aileron Deflection 8, X34
Inboard Elevator Deflection éei Xq),
Outboard Elevator Deflection ée %
0 35
' Ktlssner Dynamics : - X36=%)q
Vertical Gust Velocity Wo X5 !

Wagner Dynamics - x43«x79




oy B,

L

b. Output Vector
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Variable Symbol Vector i
_ Element
Bending moments at Wing Y3
Stations 1-5 - . i=1,3,5,7,9
‘Torsional Moments at Wing y; -
tati 1- -
Stations 5 22,4, 6,8,10
Rates of change of B.M. at y
- - v.k
WS 1-5 .
k=11,13,15,
Rates of change of T.M. at _ 17,19
WS 1-5 yi. .
. 1=12,14,16,
Rates of change of Bending i 18,20
Digplacement 3 ¥21'Y35
Bending Displacement
(i=1.2 ..15) Ai Y36-Yip
Aileron ' ”Rate 5 ;
A y51
Inboard Elewator ) .
Rate ®i Ys2
Aileron Deflection &
A y53
Inboard Elevator Deflection S
i Y5y
Vertical Velocity w Yss
Normalised Pitch Rate q/
n, y56

-t

2 BAC

—

a. State Vector

Xq = Xpo identical to Xy - Xpo of ARNE

No Wagner Dynamics included,



OGutput Vector

Identical to that of ARNE,

CLEKENTI

a. State Vector.
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Yariable ; Symbol Vector Element.
Vertical Velocity } w X4
Normalised Pitch Rate q/ %
no 2
Bending "~ Rate j& X3 - Xg
Bending Displacement
(1=1'2$3'l+5‘6|) Ai X9 - xlu
Aileron Deflection 6A Xqe
Inboard Elevator Deflection Fo)
e. X
i 16
Outboard " " Py
7 €o xi?
XUssner Dynamics - X8 = Xp3
Vertical Gust Velocity wg Xoy




b QOutput Vector.
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Variable Symbol| Vector Element
Bending Moments (BM) at WS 1-5 | - Yi; §=1,3,5,7.9
Torsion Moments (TM) at WS 1-5 | - Y, j=2,4,6,8,10
. BM Rates at WS 1-5 - Vit k=11,13,15,17,19
TM Rates at WS 1-5 - AL 1=12,14,16,18,20
Rending Muote- Rates . -
at-WS—1-5 » 1,1, C0 A Y21 = Y26
(L, o
Ban&ing Displacement _ > _
at~WS—1—5 Ry =431 B4y G Yau = ¥32
Aileron Rate 6&
Inboard Elevator Rat 733
nboar evator Rate i
% Y34
Aileron Deflection & y :
Inboard Elevator Deflection B, 33
| i Y36
Vertical Velocity w y
‘Normalised Pitch Rate.’ qy 37
| N Y38

FAURE

a. State Vector

x1 - xl? identical to x1 - xi? of CLEMENTI

No Kiissner Dynamics.
No vertical gust.

b, Output Vector.

Identical to that of CLEMENTI.




5.

GERSHWIN

-~ a, State fectog
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, . . _ L . Vector
Variables Symbols Elements
Vertical Velocity v X4
Normalised Pitch Rate %ﬁz X,
First Bending Mode o "~ Rate 3
Coacement | 3
First Bending Mode Displacement’. A x
'’
Aileron Deflection QA
*s
Inboard Elevator Deflection 5%
%6
Qutboard Elevator Deflection be x
. o 0
Kiissner Dynamics -
Xg~X13
Vertical Gust Velocity '% Xqp
b. Output Vector
Identical to that of CLEMENTI.
6. HANDEL
a., State Vector
- ~ Vector
Variable Symbols _Elements
Vertical Velocity w Xy
Normalised Pitch Rate q/h X2
2 ,
Aileron Deflection & 23
Inboard Elevator Deflection Cey Xy
Outboard Elevator Defléctiom | 6e0 15
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b. 'Oﬁtput Vector.

Identical to that of CLEMENTI.
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APPENDIX T1I

Expregsing the Transfer Function of the Dryden Filter

in Terms of a $tate Variable Representation

Equation (2.29) gives:

L .
»L- [1 + /3(ﬁ§)s ]
G (S) = @, w 'y (II.]-)
Yo w UR [1 + F’.‘le ]

U
o

The vertical gust velocity is the given by:

wg(s) = 0, |5 [1'“/—[ ] 1113) cvo (IT.2)
3
e (5e]
3

- Lw w_ o+ 2 Ey w_ + wg-= ghjgy q(t) + gw/i[gw]jﬁt) oo (II.3)
o] o}

2 .
S . o o P
- Wg = -2p° Wg - TP Wo + O 73 71 (L) + L, 7(t) . (II.4)
w w w
Let, :
xp = Wg [ (II.B)

U
xp_1 2 - U VF]; "Z(t) R (11-6)

(II.6) was so defined in order that terms in 7(t). such as

is found in (II.4) be avoided from the final expressions.

X

f]

=

]

I
o
£ O

N3

t

p-1 g W

U 3
T2y - 32 w, + G, ig 2t) oo (I1.7)
w

4
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U U
= 50 0 -
xp_1 - "2Lw xp__l - Z-L—w Uw Lw "Z(t) “re
u 2 y 3
SR x_+ 0 [F9 )
L, P w(L> g
U, 222 T
R LI R fﬁ fi—&fi)T(t)
eeo (II.8)
Also, U o
ky o= xp g 4 G0 Ut) vor (I1.9)
w .

(II.2) has now been rendered into state variable form given

by (II.8) and (II.9).

-‘Thus ’

f; [ b1 WS
koo = szv 'ff Xnoq | ¥ 5;{1?“"(1—-2/3‘) (t)

_ e (IT1.10)
Yo
% 1 0 X o
Ep L i Lp J- L w Lw 4'9
(II.10) is of the form of (2.4.), where:
o Xp-1
gg = X} (IIoll)
*p
- 2
e %)
: L L
D‘.‘\ = w w' [ (II-12)
h L1 0o -

C o 1
Gy [ (1-2/3)
§. = v = oo (I1.13)
. L w -
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APPENDIX ITI

IZII.1 Solution of the State Eguation with Stochastic
Inputs by the Transition Matrix Method

The state equation given in (2.4) is:
_}.g = A.x_"’ BE"' G? ) s o8 (III.].)
Let a solution of x be given by
x(t) = §(t~t6).‘cl(t) p #(t )=I ... (III.2)
where, ' : k

df(t-to) 2 Ag(t-t,) ees (ITI.3)

Differentiating (III.2) and using (III.3) gives:

k(t) = Ax(t) + (t-t).Cq(t) ... (III.4)
Comparing (III.1) and (III.4),
#(t-t).C (t) = Bu+ Gq oo (III.5)

T gt

Cq(t) =ft (7 (-t,)(Bu + G7JaT + C, ... (III.6)
(o]

Using (ITI.2) and (III.6), at ti= ty

(111.7)

Cy(t,) = %(t,) = C, e

Substituting for C2 of equation {III.7) into (III1.6) and then

substituting for €, in equation (III.2) givest

_ -1 |
x(v) = é“t—to)x(to)'+jz{é(t~to)@ (2-t,)[Bu(2)+B (=) }ar
o]

eee (III.8)

Using two well known properties of the transition matrix

(Brockett (1970)). given by:
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é (2 &(-T) | ees (III.9)

E(ty~t,) = Pt,-ty)B(t -t ) vos (III.10)

eqdﬁtion (III.8) can be rewritten in the form:

t
x(t) = St )x(t)) +f £(t-T)Bu(z)dl +jt F(t-2)G7(T)dze
: t t '

. [¢] : —_— o
Deterministic Solution

ees (ITII.11)

The terms on the right hand side of (III.11) correspond with
those on the r.h.s of (III.1), Since the system is linear, the
superposition theorem applies. Thus it turns out that the
inclusion of atmospheric turbulence (represented by G, in
(III.1)), simply results in an extra additive term to the

deterministic solution.

I1I.2 Computer Algorithm for Solution of the State Equation

For numerical solution of (III.11), it isg usual to
assume the control u and the input noise,7, to be piecewise
constant over the interval T. The interval, T, can be made

as small as desired.

Let.
AZ(T) é jT é.(T-z).z.d‘K s e (III|12)
0 .
where., 2. is a general driving matrix. If the system is

regarded as being discrete, (III.11) may be re-expressed ast

x (re)r) = AT ox[eT) + A [T . u[rT) +4, [Hlrr]
) ees (IIT.13)
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In this research, the Dryden filter®*, driven by white noise,
N, was used to introduce simulated atmospheric turbulence into
the model., If the model was to be subjected to disturbances,
then the matrix G, in (III.1), was set to the appropriate
coefficient values specified according to equation (II.10) of
Appendix II, using the relationship given by (2.8). In a

deterministic study, G would be set to zero.

The trangition matrix,#, may be expressed as a series
expansion which converges if A is a2 stability matrix. To ensure
convergence of that series in a limited number of terms, it is

usual to defermine,?]- over a very small step size 8T, where:

2 2
F(6T) = I + ABT + A éé'T) + A3§§?23+

LI (III.].L")
The series is truncated by using a stopping criterion based
upon the magnitude of the relative difference between elements

of the i*? term and the i+1%h term, (Nicholson (1966)). Re-
peated squaring of &(ST) results in &(T) using a property of

the transition matrix thats

&(25T) = F(ST)

¢ (4s1) = £(26T)
I . . (III.15)
! |
I [}

gnet) = (L) = (1)

Thus for a discrete interval (T) of 0.1 seconds, &T may be chosen

to be 0.78125E-3 and &(T) may then be obtained in 7 iterations.

* See Appendix II.
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From (III.12), if A is non-singular,

A (T) = A~ fEmy-1 .z oo, (ITI.16)
or, 2
' 8,(T) = {IT + A_'gl + 4—3—T~ oo JeZ el (II1.17)
_ A(ST)Z | A (5T)3
A (6T) —{IGT + AT } z

veo (III1.18)

From (III.16),

a,6m) = ATl[ger)-1).2
A (287) = A Ng(2sm)-1 )2
ees {III.1
= [T+ 26m)]. 4,(51) &
o (n6m) = (1 +(55) 1A (FF) = A (1)

In the computer program RESPON, (Appendix IV), the
stopping criterion used was to truncate (II1X.18), if the

th term and

error between all corresponding elements of the i
the i+1th term was less than 0,001i. Thus for a prespecified
value of &T, £(8T) and AE(GT) were evaluated using (III.14)

and (III.18) respectively. These calculations then allowed

#(T) and &T) to be determined using (IITI.15) and (III.19)
respectively. The appropriate matrices weré tﬁen substituted in
(III.13) and a recursive routine used to determine the state

vector at each interval of time, typically every 0.1 seconds,

The output vector was determined using the relationship:

yO(r+r1)1] = cxl(+ )7} + Eulim)d ... (311.20)
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APPENDIX IV

COMPUTER PROGRAMS

Digital programming was used extensively throughout the
period of this research. The bulk of the initial work relating
to determination of the feedback control laws and the obtaining
of time responses of the aircraft was carried out using an.

ICL 1904S computer at Loughborough University of Technology
(LUT), In the particular case of determining feedback control
laws for the model BACH, the computer program, OUTREG, had to
be split into a two-pass one and program runs.carried out on

a CDC ?600 computer at the University of Manchester. This
computer has a greater storage capacity and is somewhat faster
than the ICL 1904S machine at LUT. All the programs run on
these computers were written in ALGOL 60*. During the latter
stages of this research study, Loughborough University Computer
Centre acquired a PRIME 400 computer which became available on
a semi-interactive basis. All the studies relating to the ap-
plication of observers were accomplished on the PRIME facility.
As an ALGOL 60 compiler is not available on this machine, some

of the computer programs+

written in ALGOL 60 were rewritten in
FORTRAN primarily to facilitate speedier testing of the observer
performance on a single computer, but alsc to improve the
efficiency in terms of core and run-time requirements of the
original programs. All the computer programs used are available

in the Department of Transport Technology at Loughborough

_University and are described briefly in Table IV.1.

* Originally written by Dr. D.McLean, Department of Transport
Technology, Loughborough University, Loughborough, Leics.,LE11 3

See Table IV.1.



Table TV.1 Description of Computer Programs used.

PRIME 400 ALGOL 60 :

COMPUTER EQUIVALENT DESCRIPTION.

PROGRAM i

CONOBS OBSERVTROL Determination of Con-

' trollability and/or
Observability

RESPON STAXTRAN Transition Matrix
Solution of the state
Equations.

OUTREG OUTREG Solution of the Feed-
back Gain Matrix

COVRNC COVAR Determines r.m.s. values

: of the output vector of
the aircraft in response
to simulated Atmospheric
Turbulence.

MILEST Uges Miller's Algorithm
to determine all the rel-
evant matrices of an op-

. timal reduced-order ob-
server.,

RAPEST Determines all relevant
matrices for a Full-Or-
der Observer design.
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APPENDIX V

MICRO-COMPUTER PROGRAM

g;;g iggg'Iﬁgfr’ Instruction PROM 8-bit code
0 217 Load 1/10 11011001
1 07k Divide by 2 01001010
2 192 Square A 11000000
3 042 Load A to RAM 10 00101010
4 147 Stat. MXA 0011 10010011
5 162 Comp OCL 1 10100010
6 113 Jmp. to PPG.1 01110001

017

8
9

10

11

12

13

14

15
0 114 Jmp. to PPG,.2 01110010
1 130 Jmp. to IN.,2 10000010
2 114 Jmp. to PPG.2 01110010
3

I
5 .
6 128 Jmp. to LN.O 10000000

1 7

8

9

10 :

11

12

13

14
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g;gg 19dr INSErs | Instruction PROM 8-bit code
0 160 Comp. MT 10100000
1 168 Comp. SDT 10101000
2 147 Stat. MXA 0011 10010011
3 162 Comp. OCL 1 10100010
L 162 Comp. OCL 1 10100010
5 159 Stat. MXA 1111 10011111
6 162 Comp. OCL 1 10100010
2 7 156 - Stat. MXA 1100 10011100
8 160 Comp, MT 10100000
9 160 Comp. MT 10100000
10 145 Stat. MXA 0001 10010001
11 162 Comp. OCL 1 10100010
12 144 Stat. MXA 0000 10010000
13 162 Comp. OCL 1 10100010
14 145 Stat. MXA 0001 10010001
1s 162 Comp. OCL 1 10100010
0 160 Comp. MT 10100000
1 144 Inp, via Ch.0 100100C00
2 160 Comp, MT 10100000
3 049 Load A to RAM 9 00101001
L 144 Stat. MXA 0000 10010000
5 162 Comp. OCL 1 10100010
6 160 Comp. MT 10100000
3 7 144 Inp. via Ch.0 10010000
8 160 Comp. MT 10100000
9 040 Load A to RAM 8 00101000
10 066 B - A 01000010
11 177 Abs A 10110001
12 010 Input to A (RAM 10) 00001010
13 072 Compare . 01001000
14 008 Input to A (RAM 8 ) 00001000
15 170 Skp., if 1 in P Flag 10101010
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gzgg'i?gg Igifr. Instruction PROM 8-bit code
0 009 Load A to RAM ¢ 00001001
1 208 A to 8 Level Stack 11010000
2 088 Ext State to P Flag 01011000
3 171 Skp if 0 in P Flag 10101011
I 117 Jmp to PPG 5 01110101
5 146 Stat MXA 0010 10010010
6 162 Comp. OCL 1 10100010
b 7 162 comp, OCL 1 10100010
8 160 Comp., MT 10100000
9 163 Comp. OCL 2 10100011
10 160 Comp.MT 10100000
11 142 Jmp. to LN 14 10001110
12 :
13
14 144 Stat MXA 0000 10010000
b 15 114 Jmp. to FPG 2 01110010
0
1
2
3
4 158 Stat. MXA 1110 10011110
5 162 Comp OCL 1 10100010
6 027 Input to A (RAM 27) 00011011
5 ? 077 | Multiply by 2 01001101
8 070 Comp MSD 01000110
9 208 A to 8 Level Stack 11010000
10 156 Stat. MXA 1100 10011100
i1 103 A to Data Output 01100111
12 163 Comp. OCL 2 10100011
13 027 Read RAM 27 00011011
14 077 Multiply by 2 01001101
15 070 Comp. MSD ‘ 01000110
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gggi'%ggg Igg?r. Instruction PROM 8-bit code
0 208 A to 8 Level Stack 11010000
1 157 Stat MXA 1101 10011101
2 103 A to Data Qutput 01100111
3 163 Comp. OCL 2 10100011
L 027 Input to A (RAM 27) 00011011
5 077 Multiply by 2 01001101
6 070 Comp., MSD 01000110
6 7 208 A to 8 Level Stack 11010000
8 158 Stat MXA 1110 10011110
9 103 A to Data Output 01100111
10 163 Comp. OCL 2 10100011
11 027 Input to A (RAM 27) 00011011
12 077 Multiply by 2 01001101
13 070 Comp. MSD 01000110
14 208 | A to 8 Level Stack 11010000
15 159 Stat., MXA1i1l1 10011111
103 A to Data Output 01100111
163 Comp. OCL 2 10100011
114 Jmp. to PPG 2 01110010

e Y
\J\-F'\.&)NHO‘OCD'\]O\U\-{Z'\JJND—\O
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APPENDIX VI

COEFFICIENT MATRIX DATA : MODEL CLEMENTI

The state eguation representing the dynamics of the subject
aircraft is given in (2.6) as

X = Ax + Bu +“Gr? (VI.1)

The appropriate output equation is given in (2.11) as

l - Cﬁ + EH (VI.2)

For the majority of cases studied, the aircraft was

considered to be adequately represented by the model CLEMENTI
and only data relating to this model is included in this

Appendix., A more extensive data set can be obtained in Harvey
and Pope (1975).

In Section 3 of Appendix I is shown a table of the composition
of the state and output vectors of CLEMENTI. These vectors can

be conveniently divided into subvectors by partitioning matrices

A, B, G, C and E of (VI.1) and (VI.2) thus separating the rigid
body dynamics, structural flexibility effects, actuator-
dynamics, Kussner dynamics and gust dynamics, viz.,

o el . OFWT 3T " )
b, A’ A2 A3, AL 0 {lale jO|]%] + |00
4] 1l
> -, 2‘- - e o am = em P ww mm e= am | - - -._Z_‘ -— - 6‘21 = ]
b i A <
. | i . - L)
x‘o | v j\, —~
X A5, A6 1 A7 A8 | O A 0 0
S I UV DR S | U B _
& po , &
b o 0 AS, O 0 a B1 0
- ?ﬁo- ——————— '- —'—u Ll -'— - : ,..6.55- j— - s —
b | . nl| !
: 0 0 0 A10' A11{| ¢ | 0 0
» _PG- ——————— fom o= e o - = = =11t r"'. -_ - b -
i )
i |
" 0 0 "o o0 a2 (|| o G1
| B L . ' 1 _ L A 1 _.h L ”l

(VI.3)



A1l
rigid

A1l

A3

A2 =|

T
|
c1, c2
|
i
i
c5 cé
I
]
I |
0 c10
]
]
0 | 0
o, 0
c13’ 0
1

w
]
I c3' ca 0 X
. ;
[ | i X
———————— A‘
] | '
| ]
o
c7 c8 | c9 2‘
| 2
I | %b
| b,
R :
; ‘
o | P
0 0. 0
| W
' )
| I |— -
B - -
[ C11 | o 'o
______ - -
ic12. 0 0
—mms -
0 0O 'o
} | }

E1

(vI.4)

and A3 are the coefficient submatrices describing the
body dynamics, viz.,

ey

- 0.68BEO
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A5 contains the coupling terms due to the effects of the
rigid body dynamics upon the structural flexibility effects,

viz.,
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of the structural
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A7 is the sub-matrix representing the effects of control
surface deflections upon structural flexibility, viz.,
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A8 is the sub-matrix representing the effects of the
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A9 and B1 are the sub-matrices assoc1ated with the model

of the actuator dynamics, viz.,
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A10 is the
viz.,

Al10 =

~-0.222E
0.000E
-0.510E
0.909E

L_?.OOOE

02
00
01
02
00

-0.8

0.0

sub—matrix

0.000E

SS5E

0.000E
0.0C0E

00E

00
01
00
Co
00

0.000E
0.000E
0.000E
-0.390E
0.000E

00 0.000E 00
00 0.000E 0O
00 0.1700E 01
02 -0.102E 02

0.000E
0.855E
0.000E
0.000E

00 OQOOOE 00 “OoiiOE

representing the Kussner dynamics,

-

00
01
00
00
02

(VI.15)

A1l is the sub-matrix representing the effects of vertical?
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