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Abstract 

Quantum graph problems occur in many disciplines of science and engineering and they 

can be solved by viewing the problem as a structural engineering one.  The Sturm-

Liouville operator acting on a tree is an example of a quantum graph and the structural 

engineering analogy is the axial vibration of an assembly of bars connected together 

with a tree topology.  Using the Dynamic Stiffness Matrix method the natural 

frequencies of the system can be determined which are analogous to the eigenvalues of 

the quantum graph.  Theory is presented that yields exact solutions to the Sturm-

Liouville problem on homogeneous trees.  This is accompanied by an extremely 

efficient and compact computer program that implements the theory.  An understanding 

of the former is enhanced by recourse to a structural mechanics analogy, while the latter 

program is fully annotated and explained for those who might wish to extend its 

capability.  In addition, the use of the program as a ‘black box’ is fully described and a 

small parametric study is undertaken to confirm the accuracy of the approach and 

indicate its range of application including to the computation of negative eigenvalues. 
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1   Introduction 

Quantum graphs occur widely in many areas of science and engineering such as 

mathematics, chemistry, physics, nanotechnology and photonic crystals.  The subject is 

a substantial one and reference [1] is a good introduction to the subject.  A quantum 

graph is defined as a graph with a differential operator acting.  A graph is a set of 

connected edges with each edge having a pair of vertices.  The edges have a defined 

length, L, and the graph is then defined to be metric.  Quantum graphs are one 

dimensional structures.  Figure 1 shows a non-cyclic graph, namely a tree, and a cyclic 

graph. 

 

   

(a)           (b) 

Figure 1:  Graph (a) Non-cyclic graph (tree); (b) Cyclic graph. 
 

Consideration is given to the mathematical problem of calculating the eigenvalues of 

homogeneous trees, as shown in Figure 1(a), for which there is much current interest [2-



 3 

4].  The tree in question comprises a single trunk that divides into b branches at its tip, 

with each branch dividing into b sub-branches ad infinitum.  Examples of typical trees, 

showing their level and branching numbers, are given in Figure 2. The second order 

Sturm-Liouville equation, defined by Equation (1), is then used to describe each branch 

and these equations define a matrix that can be used to describe the tree. 

                                                 wyqy
dx
dyp

dx
d λ=+






−                                           (1) 

where ∞<∗<∗∗∗∈ babax ),,[ , when a* is a regular point and b* is either regular or 

singular, under separated self adjoint boundary conditions.  The parameters p, q and w 

are all real valued, positive constants.  λ is the eigenvalue parameter.  Assigning the 

values of p=w=1 and q=0 reduces the general 2nd order Sturm-Liouville equation to the 

LaPlace equation.  Equation 1 is exactly analogous to the axial vibration equation of a 

non-uniform bar on a non-uniform elastic foundation as follows 

                                                 myωky
dx
dyEA

dx
d 2=+






−                                           (2) 

where EA is the extensional rigidity of the bar, k is the stiffness per unit length of the 

elastic foundation and m is the mass per unit length. ω is natural frequency parameter. 

Initially Equation (1) is developed into an ‘edge’ matrix, which describes each 

branch of the tree in a way that enables the branches to be linked together at vertices to 

form the tree.  This linking is analogous to the way elements are joined together at 

nodes to form structures when using the stiffness technique.  The structural mechanics 

analogy is further enhanced by noting the correspondence between the ‘edge’ matrix 

and the exact dynamic stiffness matrix of the axially vibrating, uniform bar.  The 

relationship is fully explained later, but means that the eigenvalues of the mathematical 
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problem correspond precisely to natural frequencies when the branches are replaced by 

axially vibrating bars.  This gives considerable insight into the problem when 

associating a physical relevance to the results determined. 

An annotated listing of a FORTRAN 77 computer program that implements the 

theory and builds the required tree structure is presented and its use is fully explained.  

The exact approach adopted necessitates the solution of a transcendental eigenvalue 

problem.  This is achieved using the Wittrick-Williams algorithm, which guarantees that 

the required eigenvalues are converged upon to any desired accuracy with the certain 

knowledge that none have been missed.  However, the application of the Wittrick-

Williams algorithm in this case is somewhat unusual due to the presence of deeply 

nested sub-structures that are used to describe trees that can easily have in excess of 

1012 branches. 

A parametric study is finally undertaken that confirms those results that are 

available in the literature and extends them by considering the effects of changing the 

parameters L, p, q and w. 
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(a)  A five level, two branching tree i.e. n = 5, b = 2 with Dirichlet boundary conditions 

 
    (b)  n = 3, b = 3     (c)  n = 3,  b = 4  
 

Figure 2:  The topology of typical trees showing edge and vertex levels together with 
their branching number 

 
 

2   Previous Work 

There has been much interest within the mathematical community [2-8] for developing 

algorithms and numerical software to compute the eigenvalues and eigenvectors of the 

classical Sturm-Liouville problem.  Further algorithms and programs have been 

developed so that both periodic and linked boundary conditions can be accommodated 

y=0 
y=0 

Levels: 
 
Edge    0            1         2       3  4 
                (= n-1) 
Vertex      0    1          2        3      4          5 
                            (= n) 
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[9].  Furthermore, in both the regular and singular cases, precision can be given to these 

results by enclosing them in intervals whose bounds can be proven to be correct [10].  

There is also much current interest in the problem of homogeneous trees [2,3] with the 

recent work of Sobolev & Solomyak [4] being of particular relevance because they 

show that for an infinite tree, the eigenvalues of the free Laplacian in one dimension 

form bands of absolutely continuous spectra with eigenvalues of infinite multiplicity in 

the gaps.  For other operators on a homogeneous tree, having similar nature, the band-

gap structure of the spectrum was established earlier by Carlson [11] with the Hill 

operator.  Sobolev & Solomyak [4] also consider the effect on the complete spectrum of 

introducing a small perturbation in the form of a real-valued potential, q.  These issues 

were recently addressed by Williams et. al [12,13] in order to develop exact solutions 

for the distribution of eigenvalues on homogeneous trees defined by Equation (1).  The 

present paper provides; a non-dimensional formulation of the theory given in [12,13]; a 

compact computer program to implement it; and a simple way of modifying the 

eigenvalue to account for variations in L, p, q and w of Equation (1). 

 

3   Theory 

3.1   The edge matrix 

The theory presented in this section relates to the general form of the classical second-

order Sturm-Liouville equation shown in equation (1). A more rigorous definition of the 

problem is given in references [12,13].  Introducing the non-dimensional parameter 

                                                               
L
x

=ξ                                                          (3) 
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enables Equation (1) to be written as  

                                                              yα
dξ

yd 2
2

2

=−                                                (4) 

where 
p

Lqw 2
2 )( −
=

λα .  Equation (4) then is the problem reduced to the one 

dimensional LaPlacian operator acting on the tree.  The general solution of Equation (4) 

is well known to be  

                                            αξαξ sincos BAy +=                                                 (5) 

Substituting the boundary conditions 

                             1yy =    at    0=ξ     and    2yy =    at    1=ξ                        (6a,b) 

gives 

                               1yA =            and           αα cotcosec 12 yyB −=                 (7a,b) 

Substituting Eqs. (7) into Equation (5) gives 

                                 αξαααξ cos)cotcosec(cos 121 yyyy −+=                           (8) 

and hence 

                                  [ ])coseccot(sin 211 αααξα
ξ

yyy
d
dy

−+−=                          (9) 

Denoting 

                          1y
d
dy ′=
ξ

   at   0=ξ         and         2y
d
dy ′=
ξ

   at   1=ξ            (10a,b) 

gives 

                                       







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
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
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                                (11) 
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Equation (11) is the matrix relationship stemming from Equation (1) that defines 

each branch of the tree.  In the current mathematical context, and to align it with 

previous work [12,13], it will be referred to as the ‘edge’ equation that links any two 

vertices.  Vertices at the root of the tree and the tips of the top branches are then subject 

to any combination of Dirichlet )0( =y  or Neumann )0/( =ξddy  boundary conditions. 

Figure 2 typifies the tree topology, shows Dirichlet boundary conditions and 

defines the edge and vertex levels, together with n and b, the number of vertex levels 

and branching number, respectively.  All trees are classified as repetitive or non-

repetitive, depending upon whether or not the edge properties at all levels are identical, 

and such trees are sub-divided into uniform or non-uniform, depending upon whether or 

not L, p, q and w are all constant.  Hence, a repetitive uniform tree is a homogeneous 

one, whereas a repetitive non-uniform tree is not.  This paper deals only with 

homogeneous trees. 

The remainder of this paper deals with Equation (11) explicitly, although it is 

extremely helpful to note a structural mechanics analogy that aids interpretation of 

results and is crucially important when arguing fundamental properties of the system 

[12,13].  Let Equation (11) be multiplied throughout by Lp / .  It then becomes the 

equation for axial vibration of a uniform bar if the parameters have the following 

meanings attributed to them; 2ωλ = , EAp = , kq =  and mw = , where ω  is the 

angular frequency, EA is the axial rigidity, k is the stiffness/unit length of axial elastic 

support and m is the mass/unit length.  Hence α2 takes on the familiar form 

EALkm /)( 222 −= ωα .  The terms on the left-hand side of Equation (11) then become 

LyEA /1′−  and LyEA /2′ , which are the axial forces acting to the right, at the left and 
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right-hand ends of the bar and 1y  and 2y  are the corresponding axial displacements.  

When edges are interpreted as such bars, Figure 2 represents the free axial vibration 

problem of tree structures so long as it is understood that for this vibration problem 

Figure 2 is foreshortened vertically, such that all of the bars are horizontal and hence co-

linear.  Such a structure is not a practical one, because it would involve all the bars at 

any level occupying the same space, but is nevertheless valid for its current use as an 

analogy.  In this analogy the boundary conditions, 0=y  or 0=′y  at vertices, 

correspond to clamped and free ends of bars, respectively. 

 

3.2    The Wittrick-Williams algorithm 

The Wittrick-Williams algorithm for converging on the roots of transcendental 

eigenvalue problems is fully defined in references [12,13] and can be stated in a form 

that is appropriate for use with the sub-systems used herein as 

                                           }{s}{s AA ++= ∑∑ seJJ                                         (12) 

where J is the number of eigenvalues of the tree exceeded by some trial value of the 

eigenparameter, ∗α  ; Je is the number of eigenvalues of an edge, with Dirichlet 

boundary conditions, that would still be exceeded by ∗α , and the summation extends 

over all edges comprising the tree; }{s sA  is the sign count of a sub-tree matrix, As , 

where the summation is taken over all sub-trees; and }{s A is the sign count of the 

reduced tree matrix, see below.  The sign count of a matrix is defined as the number of 

negative elements on the leading diagonal of the upper triangular form of the matrix 

when  *αα =  by the standard form of Gauss elimination without row interchanges. 
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3.3   Application of the Wittrick-Williams algorithm 

Consider the three level, two branching (binary) tree shown in Figure 3.  The analysis 

begins by considering the two most deeply nested sub-trees, which are in edge level i = 

2, although only one needs to be analysed because they are identical. 

 

 
0 1 2 3

0 1 2

a

a

b

Levels:

Edge 

Vertex 0 1 2 3

0 1 2

a

a

b

Levels:

Edge 

Vertex  

Figure 3:  A three level, binary tree in which one of the two most deeply nested sub-
trees at edge level i = 2 is annotated and represents the start point for analysis. 

 

The necessary eigenvalue relationship for a single edge, evaluated at a trial 

eigenparameter, ∗α , is given by Equation (11) as  

                                                   

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

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
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                                              (13) 



 11 

where ∗= αcot1A  and ∗−= αcosec2A .  When Dirichlet boundary conditions are 

imposed, 021 == yy , and the required eigenvalues correspond to those values of  ∗α  

for which ∞== 21 AA .  i.e. when 0sin =∗α .  Hence, the number of eigenvalues 

passed is given by   

                                                        )/(int πα ∗                                                        (14) 

where )/(int πα ∗  is the highest integer πα /∗< .  Since there are ib  identical edges at 

edge level i in the tree, the contribution to eJ  is given by 

                                                   )/(int πα ∗×= i
ei bJ                                            (15) 

In similar fashion, a typical sub-tree matrix can be developed from Equation 

(13) and using the notation of Figure 3 as 

                                             































=

















a

b

a

y
y
y

bAAA
AA
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2

3

3

122

21

21

0
0

0
0
0

                                        (16) 

The analysis then proceeds to eliminate the vertices at vertex level three by performing 

Gauss elimination, but arresting the process after the first two rows have been pivotal.  

This leaves the reduced sub-tree parameter As, which corresponds to the displacement, 

y2a, at the next vertex level down. i.e. 

                                              

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
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
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






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3
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00
0

0

0
0
0

                                       (17) 

where  

                                                 1
2
2

2
1 /)( AAAbAs −=                                                (18) 
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The sign count }{s sA for the current sub-tree is either zero if 01 >A , or b if 01 ≤A .  

The contribution from all such sub-trees at current edge level i is therefore either zero or 

ib . 

The form of the matrix relationship corresponding to Equation (17) for level i-1, 

and all subsequent sub-tree levels for 3>n , is 
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                                      (19) 

where sAAA +=∗
11 , sA is the sub-tree parameter from the previous nesting level and 

                                                  ∗∗∗ −= 1
2
211 /)( AAAAbAs                                          (20) 

The tree is progressively reduced by the process described above until only the 

trunk is left.  The trunk matrix, or reduced tree matrix, can then be deduced as  

                                                    















=







 ∗

0

1

12

21

0
0

y
y

AA
AA

                                           (21) 

The process is terminated by imposing the boundary condition at the root, performing 

Gauss elimination and establishing the sign count, which in this case is equal to s{A}. 

An annotated listing of a FORTRAN 77 computer program to implement the 

above theory is given in Appendix A.  The program uses α  as the eigenparameter, 

although it could equally well have used λ , since they are related via  

                                                     
w
q

wL
p

+= 2
2 αλ                                                 (22) 
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4   Examples 

A general overview of the band-gap spectrum of eigenvalues on homogeneous trees has 

been given by Williams et al. [12].  Such results are typified by Figure 4, which shows 

the first five repeating portions of the infinite band-gap spectra for the family of trees 

shown in Figure 2.  All possible eigenvalues are contained within the bands (the bullet 

shaped envelopes) except for a high multiplicity eigenvalue that occurs at the midpoint 

of each gap.  As ∞→n , the bands become fully populated and their widths, established 

theoretically by Sobolev and Solomyak [4], approach the limits indicated by the dashed 

lines. 
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/

b=2,3,4

 
                                                        α/π  

Figure 4:  The first five repeating portions of the infinite band-gap spectra for the family 
of trees shown in Figure 2 when all edges are identical.  The Sobolev and Solomyak 

bounds are shown dashed [4]. 
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4.1 Trees with L = p = w = 1,  q = 0 and Dirichlet boundary conditions 

The spectrum of eigenvalues for a homogeneous tree comprising a finite number of 

levels is made up of discrete values i.e. the band is not fully populated.  Figure 5 shows 

the set of eigenvalues that populate the first band of the spectrum of Figure 4 for trees 

with b = 3 and n = 1 to 8.  Table 1 then gives their values (n = 2 to 8), together with 

their multiplicities. It can be seen from either source, that as the value of n increases, 

new eigenvalues appear and these new values continue to be present for higher values of 

n.  Sobolev and Solomyak [3] proved that the spectrum is fully populated, within the 

bounds shown, for a tree with an infinite number of levels.  For the b = 3 tree, the lower 

bound has a value of 0.166667 and the upper bound has a value of 0.833333.  The 

eigenvalues in the band corresponding to the n = 8 tree comprise the first twenty one 

eigenvalues, while the twenty second lies at the midpoint of the gap between bands one 

and two.  Both Figure 5 and Table 1 show that those trees with n < 8 have fewer 

eigenvalues in the first band. e.g. the first eigenvalue for the n = 4 tree is the fifth 

eigenvalue of the n = 8 tree. 

The multiplicities can also be seen to grow very quickly.  Equations have been 

derived that describe the growth of the multiplicities with increase in n [12].  The 

eigenvalue that exists in the middle of the gap grows especially fast and its multiplicity 

is given by M1, where 

                                                     1
1

−= nbM                                                            (23) 

When n = 8 the multiplicity for this eigenvalue has grown to 2187.  Although not 

shown, the growth of multiplicities is identical for eigenvalues in the higher bands.  The 
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structure of each band is also seen to be symmetric about its centre, which has a 

normalised abscissa value of 0.5 for the first band.  

The number of eigenvalues in the band is given by NB, where 

                                                     
1

11

−
−

=
−

b
bN

n

B                                                      (24) 

For the n = 8 tree, the number of eigenvalues in the band and the gap is 1093 and 2187, 

respectively, which together gives a total of 3280 eigenvalues. 

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0

N
o.

 o
f l

ev
el

s,
 n

α/π

SSL SSU

 

Figure 5:  Discrete eigenvalues for a tree with b = 3; L =  p = w = 1; q = 0  and Dirichlet 
(y = 0) boundary conditions at each end of the tree.  The two solid lines SSL and SSU 
are theoretical lower/upper bounds, respectively, obtained by Sobolev and Solomyak [4]  
 
 
4.2  Variation of L, p, w and q 

A parametric study has been conducted to investigate the effect of varying each 

parameter individually from their default values of L = p = w = 1 and q = 0.  Dirichlet (y 

= 0) boundary conditions are imposed at each end of the tree throughout. 
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Table 1:  Numerical values of the normalised eigenvalues described in Figure 5, 
together with their multiplicities 

n 
Eig. 
No. α/π 8 7 6 5 4 3 2 1 
1 0.204778 1        
2 0.215086 2 1       
3 0.230053 6 2 1      
4 0.252903 18 6 2 1     
5 0.290215 55 18 6 2 1    
6 0.318440 2 1       
7 0.357451 168 56 19 6 2 1   
8 0.392474 1        
9 0.413764 18 6 2 1     

10 0.438273 2 1       
11 0.500000 547 182 61 20 7 2 1  
12 0.561727 2 1       
13 0.586236 18 6 2 1     
14 0.607526 1        
15 0.642550 168 56 19 6 2 1   
16 0.681560 2 1       
17 0.709784 55 18 6 2 1    
18 0.747097 18 6 2 1     
19 0.769947 6 2 1      
20 0.784914 2 1       
21 0.795221 1        
22 1.000000 2187 729 243 81 27 9 3 1 

 

4.2.1 Variation of q 

The effect of introducing q causes a shift in the spectrum and this can be seen in Figure 

6.  It will be recalled from the end of Section 3.1, that according to the structural 

mechanics analogy, q is equal to the stiffness, k, of the elastic medium constraining the 

motion of an equivalent bar.  Hence an increase in k would cause the natural frequencies 

to increase. Furthermore the relationship 
p

Lqw 2
2 )( −
=

λα  shows that the lower 

eigenvalues will be shifted further than the higher ones.  This can be seen in Figure 6, 

where the first eigenvalue for q = 0 has a normalised value of approximately 0.2, while 
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the highest has a value of approximately 0.8.  Compare this with the q = 8 equivalents 

of approximately 0.9 and 1.2. 

In structural mechanics natural frequencies are typically positive values.  

However in quantum graph theory negative eigenvalues do occur [14-16] and their 

computation is not restricted by theory presented.  Watson and Howson [17] show that 

the parameter q of Equation (1) is not restricted to being negative and computation of 

negative eigenvalues is then possible as seen in Figure 6.  By using a negative value of 

q results in a shift in the spectrum to the left.  The structural mechanics analogy is that 

an elastic medium with a negative stiffness will cause the natural frequencies to shift to 

the left and become negative.  Note that the abscissa values of Figure 6 to the left of the 

origin are imaginary numbers and hence need to be multiplied by -√(-1).  The squaring 

of these values then leads to negative numbers. 

 

4.2.2 Variation of L, p and w  

The relationship 
p

Lqw 2
2 )( −
=

λα  reduces to the three following variants when the 

parameters are varied independently 

                           22 Lλα = ,       p/2 λα =      and     wλα =2                       (25a,b,c) 

From which it follows that the variations in L, p, and w are linked as follows 

                                               )(δ/1δ/1δ 2Lwp ==                                                 (26) 

leading to the variations shown in Figure 7.  By analogy p = EA and w = m, hence 

increasing p leads to an increase in the eigenvalue, while increasing L and m leads to a 

decrease. 
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Figure 6:  Effect of varying q on the eigenvalues of a tree with b = 3 with L = p = w =1 
and Dirichlet / Dirichlet boundary conditions [17].  The abscissa values to the left of the 

origin are imaginary numbers and hence need to be multiplied by -√(-1). 
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Figure 7:  Effect of L, p and w on the eigenvalues of a tree with b = 3 and q = 0 
 



 19 

4.3 Alternative boundary conditions 

The root of the tree and the tips of the top branches can have any combination of 

Dirichlet (y = 0) or Neumann (dy/dx = 0) boundary conditions imposed upon them.  The 

results for the Dirichlet / Dirichlet tree have been shown above.  The same tree is now 

investigated for the remaining boundary conditions, subject to: L = p = w = 1; q = 0; b = 

3 and n = 8.  Table 2 shows the eigenvalues for all possible boundary conditions.  It is 

partitioned into two sections to facilitate comparison of like results. 

On the left hand side of the table, the Dirichlet / Dirichlet results (presented 

earlier) are compared with the equivalent Neumann / Dirichlet results.  It can be seen 

that the spectrum of eigenvalues for these two trees are very similar, the only notable 

difference being that the trees do not share those eigenvalues with a multiplicity of 1.  It 

is interesting to note that the eigenvalues of both trees fall within the Sobolev and 

Solomyak bounds of 0.166666 and 0.833333 or at πα =  and that the total number in 

each case is 3280.  i.e. 1093 + 2187 for the Dirichlet / Dirichlet tree and 1094 + 2186 

for the Neumann / Dirichlet tree.  Such results suggest that when these trees are of 

infinite length they will share the same spectrum. 

The Dirichlet / Neumann and the Neumann / Neumann trees that are compared 

on the right hand side of the table also have similar eigenvalues and retain the  

characteristic that the eigenvalues of multiplicity 1 are not shared.  In addition, they 

clearly have eigenvalues that fall outside the Sobolev and Solomyak bounds, including a 

zero eigenvalue for the Neumann / Neumann tree, which corresponds to a rigid body 

mode in the structural mechanics analogy.  Furthermore, it can be seen from the table 

that the Sobolev and Solomyak bounds occur in rows 8 and 34 and correspond to high 
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multiplicity eigenvalues.  The complete set of eigenvalues therefore fall either within 

the same band as the trees on the left hand side of the table or in the gaps between such 

bands.  A band – gap spectra can therefore be postulated in which the eigenvalues that 

lie outside the band remain discrete and never form a continuous spectrum, while the 

remainder increasingly populate the band and form a continuous spectrum as the tree 

becomes infinitely long.  Once more the total number of eigenvalues in the range (0, π] 

is 3280 for both trees.  This is exactly the same as the total number of eigenvalues 

calculated for the trees on the left hand side of the table. 
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Table 2:  Eigenvalues for the tree with L = p = w = 1; q = 0; b = 3 and n = 8 

Eig. 
No. 

πα /  Boundary conditions 
Tips = Dirichlet (D) 

Eig. 
No. 

πα /  Boundary conditions 
Tips = Neumann (N) 

  Root = D Root = N   Root = D Root = N 
1 0.192764 − 1 1 0.000000 − 1 
2 0.204778 1 − 2 0.004544 1 − 
3 0.215086 2 2 3 0.007888 2 2 
4 0.230053 6 6 4 0.013739 6 6 
5 0.252903 18 18 5 0.024117 18 18 
6 0.260294 − 1 6 0.043118 54 54 
7 0.290215 55 54 7 0.080431 162 162 
8 0.318440 2 2 8 0.166667 486 486 
9 0.350019 − 1 9 0.204778 − 1 

10 0.357451 168 168 10 0.224337 1 − 
11 0.392474 1 − 11 0.242137 2 2 
12 0.413764 18 18 12 0.268468 6 6 
13 0.438273 2 2 13 0.290215 − 1 
14 0.449156 − 1 14 0.309216 18 18 
15 0.500000 547 546 15 0.328789 1 − 
16 0.550844 − 1 16 0.367531 2 2 
17 0.561727 2 2 17 0.376451 54 54 
18 0.586236 18 18 18 0.392474 − 1 
19 0.607526 1 − 19 0.421396 6 6 
20 0.642549 168 168 20 0.442329 1 − 
21 0.649981 − 1 21 0.500000 1640 1641 
22 0.681560 2 2 22 0.557671 1 − 
23 0.709785 55 54 23 0.578604 6 6 
24 0.739706 − 1 24 0.607526 − 1 
25 0.747097 18 18 25 0.623549 54 54 
26 0.769947 6 6 26 0.632469 2 2 
27 0.784914 2 2 27 0.671211 1 − 
28 0.795222 1 − 28 0.690784 18 18 
29 0.807236 − 1 29 0.709785 − 1 
30 1.000000 2187 2186 30 0.731532 6 6 

    31 0.757863 2 2 
    32 0.775663 1 − 
    33 0.795222 − 1 
    34 0.833333 486 486 
    35 0.919569 162 162 
    36 0.956882 54 54 
    37 0.975883 18 18 
    38 0.986262 6 6 
    39 0.992112 2 2 
    40 0.995456 1 − 
    41 1.000000 − 1 
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5  Conclusions 

The paper then shows how a structural mechanics approach can be used to solve a 

quantum graph problem.  Theory has been presented that yields exact solutions to the 

Sturm-Liouville problem on homogeneous trees, together with an extremely efficient 

and compact computer program to implement it.  The program is fully annotated and its 

use as a ‘black box’ is fully described.  The program has been used to perform a 

parametric study to confirm previous results available in the literature and also to 

investigate parameter variations and the effect of boundary conditions.  The former 

showed that the parameters associated with the Sturm-Liouville equation have 

considerable influence on the shape of the band, although the fundamental band-gap 

structure was unaffected for the boundary conditions considered.  On the other hand, the 

investigation into the effect of the boundary conditions revealed a more fundamental 

issue.  Initially it is shown that a tree with Dirichlet conditions at the tips of the 

branches had essentially the same band-gap spectrum regardless of the boundary 

condition at the root of the tree.  However, when the Neumann condition was imposed 

at the tips, the band gap structure of the spectrum was retained, but discrete eigenvalues 

were introduced into the gaps. In the limit, as the tree becomes infinitely long, the band 

becomes fully populated and that there are no gaps in the spectrum.  In addition it was 

shown that negative eigenvalues result from a sufficiently large value of the parameter 

q.  The corollary of this is that for any problem with negative eigenvalues the negative 

eigenvalues can all be computed by shifting the eigenvalues so that they are all positive 

and computing these values.  The value of the parameter q  can then be subtracted to 

reveal the true value of the eigenvalue. 



 23 

The code presented shows that a graph with a high degree of symmetry can be 

coded very easily and efficiently if the analysis methods presented are utilized.  Other 

quantum graphs with high degrees of symmetry include lattice structures.  Hence the 

study of photonic crystals could therefore be a useful area for future research by the 

authors or other researchers.  Finally the dynamic stiffness method is a very useful tool 

for solving quantum graph problems 
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Appendix A 

FORTRAN 77 computer program 

This program should always be run using double precision arithmetic or better. 

1.               PI=4.0*ATAN(1.0)    ! Set π 

2.               READ(5,*)N,NB,IBC1,IBC2,JL,JU,CF  ! Data input. See Table 1 

3.               WRITE(6,1000)N,NB,IBC1,IBC2,JL,JU,CF ! Echo print of data 

4.              JR=JL−1     ! Initiate eigenvalue required 

5.         10 JR=JR+1     ! Increment eigenvalue required  

6.              AU=1.E6     ! Set upperbound α 

7.              AL=0.0     ! Set lowerbound α  

8.              AC=1.0     ! Set current α  

9.         20 J=0      ! Set eigenvalue counter 

10.            AS=0.0      ! Set subsystem parameter     

11.            DO 40 L=1,N    ! Loop over vertices  I=N-L 

12.            NE=NB**(N-L)    ! No. of edges at current level 

13.            A1=COS(AC)/SIN(AC)   ! Components of edge matrix 

14.            A2=−1.0/SIN(AC)    ! See Eq.(11)  

15.            A1S=A1+AS    ! Augment subsystem parameter 

16.            J=J+NE*INT(AC/PI)   ! Jei  See Eq. (15) 

17.            IF(L.EQ.1.AND.IBC2.EQ.0)GOTO 30 ! Branch on boundary condition 

18.            IF(A1S.LT.0.0)J=J+NE   ! s{As} See Eqs.(12) and (17) 

19.            AS=NB*(A1*A1S−A2*A2)/A1S  ! See Eqs.(17) – (20) 

20.            GOTO 40     ! 

21.       30 AS=NB*A1    ! See Eq.(16) 

22.       40 CONTINUE    ! 

23.            IF(IBC1.EQ.0)GOTO 50   ! Branch on boundary condition 

24.            IF(AS.LT.0.0)J=J+1   ! s{A} See Eqs.(12) and (21) 

25.       50 IF(CF*(AC−AL).LE.AC)GOTO 100 ! Branch if converged 

26.            IF(J.LT.JR) GOTO 60   ! Set bounds on α  

27.            AU=AC     ! Upper bound 
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28.            GOTO 70     ! 

29.       60 AL=AC     ! Lower bound 

30.            IF(AU.LT.1.E5)GOTO 70   ! Set new trial α  

31.            AC=2.0*AC    ! Double if not bounded 

32.            GOTO 80     ! 

33.       70 AC=0.5*(AL+AU)    ! Interpolate if bounded 

34.       80 IF(AC.LT.1.E−3)GOTO 90  ! Catch a zero eigenvalue 

35.            GOTO 20     ! 

36.       90 AC=0.0     ! Set output parameter 

37.     100 WRITE(6,1010)JR,AC,AC/PI  ! Print solution 

38.            IF(JR.LT.JU)GOTO 10   ! Continue if in range 

39.   9999 STOP 

40.   1000 FORMAT(1X,6I4,1PE12.4/) 

41.   1010 FORMAT(1X,I8,1P2E16.6) 

42.            END 
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Appendix B 

Data preparation and interpretation of results 

The data input for the program is very straightforward and is presented in Table 3.  The 

output from the program comprises an echo print of the input data followed by a single 

line of results for each required eigenvalue, as described in Table 4. 

 

Table 3:  Data input scheme 

Line Variable Comment 

1 N Highest vertex level, n 

 NB Branching number, b 

 IBC1 Boundary conditions at the root of the tree. 

0 = Dirichlet (clamped),  1 =  Neumann (free) 

 IBC2 Boundary conditions at the top of the tree. 

0 = Dirichlet (clamped),  1 =  Neumann (free) 

 JL Lowest value of α required 

 JU Highest value of α required 

 CF Convergence factor.  α is found to 1 part in CF 

 

Table 4:  Output results 

Line(s) Variable Comment 

1  Echo print of the input data 

Subsequent JR Eigenparameter number 

 AC α 

 AC/PI α/π 
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In order to consolidate the input/output scheme, a data file that will determine the first 

ten values of α for the three level, binary tree of Figure 3 is given in Table 5.  The 

corresponding output file is given in Table 6. 

 

Table 5:  Data file for the three level, binary tree of Figure 3 

3  2  1  0  1  10  1.e7 

 

Table 6:  Results file for the three level, binary tree of Figure 3 

    3   2   1   0   1  10  1.0000E+07 

 

        1    7.297277E-01    2.322795E-01 

        2    1.570796E+00    5.000000E-01 

        3    1.570796E+00    5.000000E-01 

        4    2.411865E+00    7.677205E-01 

        5    3.141593E+00    1.000000E+00 

        6    3.141593E+00    1.000000E+00 

        7    3.141593E+00    1.000000E+00 

        8    3.871320E+00    1.232280E+00 

        9    4.712389E+00    1.500000E+00 

       10    4.712389E+00    1.500000E+00 
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Figure Captions 

Figure 1:  Graph (a) Non-cyclic graph (tree); (b) Cyclic graph. 
 
Figure 2:  The topology of typical trees showing edge and vertex levels together with 
their branching number 
 
Figure 3:  A three level, binary tree in which one of the two most deeply nested sub-
trees at edge level i = 2 is annotated and represents the start point for analysis. 
 
Figure 4:  The first five repeating portions of the infinite band-gap spectra for the family 
of trees shown in Figure 2 when all edges are identical.  The Sobolev and Solomyak 
bounds are shown dashed [3]. 
 
Figure 5:  Discrete eigenvalues for a tree with b = 3; L =  p = w = 1; q = 0  and Dirichlet 
(y = 0) boundary conditions at each end of the tree.  The two solid lines SSL and SSU 
are theoretical lower/upper bounds, respectively, obtained by Sobolev and Solomyak [4]  
 
Figure 6:  Effect of varying q on the eigenvalues of a tree with b = 3 with L = p = w =1 
and Dirichlet / Dirichlet boundary conditions [17].  The abscissa values to the left of the 
origin are imaginary numbers and hence need to be multiplied by -√(-1). 
 
Figure 7:  Effect of L, p and w on the eigenvalues of a tree with b = 3 and q = 0 
 

Table Captions 

Table 1:  Numerical values of the normalised eigenvalues described in Figure 5, 
together with their multiplicities 
 
Table 2:  Eigenvalues for the tree with L = p = w = 1; q = 0; b = 3 and n = 8 
 
Table 3:  Data input scheme 
 
Table 4:  Output results 
 
Table 5:  Data file for the three level, binary tree of Figure 3 

 
Table 6:  Results file for the three level, binary tree of Figure 3 
 


