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2. Abstract 

This paper reports on the analysis of fly ash and oxides on 15Mo3 after the co-firing of 

eucalyptus and a Russian coal at various temperatures and gas conditions for 50 hours. The 

loose deposits present have been characterised using X-Ray Diffraction (XRD), Scanning 

Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS).  Results show 

that under reducing conditions KCl deposition is increased and a variation in oxide scale 

composition is observed. Complex silicates, often present as spheres are imaged through 

SEM. 
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4. Introduction 

Low-alloy steels such as 15Mo3 are often used as structural materials in power plants due to 

their lower cost compared to other ferritic and heat-resistant steels1,2,3. 15Mo3 is typically 

used for boiler tubes for plants operating at temperatures up to 475°C. Oxidation can lead 

to serious problems including pipe failure and wall thinning at higher temperatures4. A 

review of high temperature oxidation of low alloy steels has previously been conducted by 

Chang and Wei5, and further research characterising the oxides formed from low alloy steels 

has been conducted by Higginson et al.6 where it was concluded that low alloy steels tend to 

form less complex oxides such as wustite, magnetite and hematite. Later work by Chang4 

also showed that long-term oxidation of metals could not be predicted as different alloys 

possess widely differing spalling characteristics.  

The co-firing of biomass and coal is an increasingly popular method to reduce CO2 emissions 

from energy generation7. Biomass unlike coal is considered to be carbon neutral. Power 

stations typically used for the combustion of coal are being adapted to also fire biomass. 

Ash composition from biomass can vary widely and deposits often form in different regions 

compared to 100% coal-fired systems8. These deposits affect heat transfer and can often 

lead to premature boiler tube failure9. Information on oxidation products and deposit 

formation on 15Mo3 during the combustion of biomass is essential to minimise plant down 



time. The change from firing coal to co-firing presents challenges for materials due to the 

chemical differences between coal and biomass.  

Biomass commonly has a higher chlorine and potassium content compared to coal, which 

can lead to increased corrosion compared to coal firing alone10. Silicates and their role in 

combustion have been widely investigated by Vassilev et al.11in which it was suggested that 

they prevent the formation of harmful KCl by means of potassium capture. Frandsen12 

found that the uptake of potassium through silicates prevented the formation of corrosive 

KCl. K2SO4 is present in the samples analysed by Frandsen and so, the harmful KCl may have 

been sulphated through the mechanism proposed by Kassman et al.13 in Equation 1. 

2𝐾𝐶𝑙 +  𝑆𝑂2 +  𝐻2𝑂 + 1
2⁄ 𝑂2 →  𝐾2𝑆𝑂4 + 2𝐻𝐶𝑙 

Along with the capture of potassium to form alkali silicates other metals often react with the 

SiO2 inherent in both the biomass and coal. Complex silicates such as feldspars form during 

combustion either through agglomeration of ash particles in the flue gas or via chemical 

reaction in the deposit itself8. 

A Cl containing atmosphere either through the presence of deposited KCl or HCl(g) can lead 

to active oxidation; a schematic illustration can be seen in Figure 1. Under reducing 

conditions an oxide barrier which is defective and far less protective than an oxide layer 

formed under conditions of high O2 is likely due to little O2 present to react and form a 

protective layer 14. A presence of CO at concentrations higher than 2% has previously been 

shown to increase the corrosive rate of HCl by 2.5 times15.   A high %O2 indicates oxidising 

conditions, under which protective oxide scales are more likely to form14. In the high p(O2) 

metal chlorides diffuse to the scale surface and upon encountering a higher p(O2) gradient 

solid metal oxides are formed in a loosely adherent non-protective, porous layer15. 

  

(1) 

a) b) 

Figure 1: Active oxidation mechanisms under a) oxidising and b) reducing conditions adapted from reference 12 



 

Deposit formation and ash phases are widely researched topics within the field of co-firing. 

Vassilev et al.11 conducted an extensive review into the phases found in fly ash and deposits, 

their roles in corrosion and in relation to their environmental concerns. Fly ash interactions 

and deposition mechanisms have been discussed in great detail in ‘The Handbook of 

Biomass Combustion and Co-firing’8 which gives information about inorganic phase 

interactions. This allows insight into possible deposition mechanisms to be gathered as 

information on both coarse fly ash particles and aerosols are given. Zbogar et al.9 discuss the 

six methods of particle deposition related to deposit growth: 

 Inertial Impaction 

 Thermophoresis  and Diffusion 

 Eddy Deposition (Flue Gas flow side) 

 Eddy Deposition (Non Flue-Gas flow side) 

 Chemical Reaction 

 Condensation 

Eucalyptus is a low ash, low chlorine fuel which decreases the likelihood of large harmful 

deposits16. Knowledge of the interaction between coal and biomass when co-fired can lead 

to insights into the corrosive effects along with possible areas of deposition. An 

investigation of the corrosive effect of a eucalyptus/coal blend on 15Mo3 at varying 

temperatures under oxidation/reducing conditions is reported in this paper.  

5. Materials and Experimental Procedure 

The composition of the alloy 15Mo3 is shown in Table 1. Probes containing coupons of the 

alloy were exposed for 50 hours in a 0.8MWth rig co-firing eucalyptus (82.8 % Thermal) and 

Russian coal (17.2% Thermal). The fuel was fired in pulverised form at feed rates of 183.50 

kg/h (eucalyptus) and 18.89 kg/h (coal). Corrosion coupons of 15Mo3 are a bare metal 

surface ground to a 0.4RA surface finish. These coupons are flush with the lining of the 

boiler so as to experience the same gas and temperature conditions as pipes as well as not 

creating any deviation of gas flow. The probes securing mechanisms were lubricated using 

Belzona 8211 (H.P. Anti-Seize) mineral based nickel grease.  A Eurotherm temperature 

controller with a continuously variable output was used to drive a proportional air throttle 

valve, enabling the flow of cooling air to the probe to be regulated. Insertion points of the 

probes are shown in Figure 2.  

Samples were taken at various positions on the boiler wall and were subjected to 

temperatures of 425-450°C under both oxidation and reducing conditions. Sample 

conditions are shown in Table 2. Probes were removed after 50h exposure and were 

allowed to cool and the ash debris was removed from the probes for analysis. The ash 

matrix composition was provided by the E.On New Build and Technology centre, elements 



present were determined by acid dissolution and emission spectroscopy according to ASTM 

D6349-09.  

Ash debris was analysed using a LEO 1530VP Field Emission Gun SEM (FEGSEM) with an 

EDAX Genesis Energy Dispersive X-Ray Spectroscopy (EDS) instrument. Samples were 

prepared on carbon pads, attached to aluminium stubs followed by coating with gold for 30s. 

Samples were prepared for X-Ray diffraction (XRD) analysis by placing between two layers of 

cello tape. Powder XRD data was collected using the Bruker D8 discover diffractometer (5-

65º 2θ, CoKα radiation, 16h). Inductively Coupled Plasma – Optical Emission Spectroscopy 

(ICP-OES) was conducted by E.On according to the ASTM D6349-09 standard17.  

Table 1: Measured Composition of the Alloy 15Mo3, provided by E.On 

Alloy Cr Mn Fe Ni Mo Cu 

15Mo3 0.22 0.48 98.59 0.24 0.29 0.18 

 

Table 2: Probe temperatures and atmospheres of samples analysed 

Probe Temperature (°C) Atmosphere 

A 450 Reducing 

B 450 Oxidising 

C 425 Oxidising 

 

  

Figure 2: Schematic of the boiler in the combustion rig showing the insertion points of probes a,b and c analysed in this 
study, provided by E.On 



6. Results and discussion 

6.1 (a) Fuel Characteristics 

Inherent biomass ash, those elements that are present as salts, bound in the carbon 

structure are often more readily available during combustion than those inorganic salts 

bound in coal8. Table 3 shows the ash matrix composition of both the biomass and coal 

blend, elements presented are assumed to be in the oxide form for analysis with ICP-OES, 

with the exception of Ca, potentially present as CaCO3, due to the aggressive nature of the 

acid dissolution.   A large percentage of the ash matrix is Si, which can also form a large 

percentage of coal, in the form of complex silicates such as Illite ((K,H2O)Al2(Si,Al)Si3O10(OH)2) 

and also as less complex silicates like quartz (SiO2)12. Si can also be present in large 

quantities in biomass giving skeletal system support in some plants8.  Information on these 

elements present often gives important insight into phases likely to be present in any 

deposits formed through the co-firing of eucalyptus and Russian coal. 

Table 3: Ash Matrix Composition according to ASTM D6349-09 

Phase  Composition 
Ash Matrix (%) 

SiO2 33.20 

Al2O3 8.66 

Fe2O3 5.89 

CaO 25.53 

MgO 6.41 

K2O 11.06 

Na2O 2.80 

TiO2 0.87 

BaO 0.25 

Mn3O4 1.85 

P2O5 2.67 

 

6.2  (b) Sample Atmospheres 

Figure 3 shows gas profiles of the probes. The gas sampled was dried through a silica gel 

column prior to analysis the remainder of the atmosphere contains N2/CO2/H2O along with 

low levels of various sulphur species and NOx.  Clear differences between O2 and CO 

concentrations are observed between probes under oxidising and reducing atmospheres; a 

higher %CO indicates the conditions are reducing. The coupons are exposed at 

temperatures below 500°C,  and therefore it is likely the corrosion will be parabolic15.  A 

high %O2 indicates oxidising conditions, under which protective oxide scales are more likely 

to form14. Samples analysed in the scope of this paper do not show the full oxidation of the 

metal coupons as only the loose debris removed from the probes was analysed.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 (c) XRD Analysis 

XRD analysis of the loose deposits from the samples shows the major component in all cases 

to be quartz (SiO2).  Si constitutes a large percentage of the ash residue and so it is 

unsurprising that SiO2 forms a considerable amount of the deposit. During combustion 

refractory oxides such as SiO2, CaO and MgO nucleate heterogeneously, the agglomeration 

of these compounds can lead to the formation of silicates such as sapphirine 

(Mg,Al)8(Al,Si)6O20
8

 and leucite (KAlSi2O6). The unassigned peaks in Figure 4 are thought to 

be due to complex interactions forming solid solutions of silicates. The low intensity of these 

peaks makes assignment to a specific phase/composition challenging. SEM-EDS analysis 

confirms the presence of silicate phases in these samples, which provides a strong basis for 

these tentative assignments (Section (f)) 

Figure 3: Gas profiles of the three probes during the 50 hour combustion run a) 450°C under a reducing atmosphere 
b)450°C Under an oxidising atmosphere c) 425°C under an oxidising atmosphere 



Hematite (Fe2O3) and magnetite (Fe3O4) are further phases identified in the XRD pattern, 

suggesting that the polished metal (Fe-alloy) coupons have undergone oxidation. Chang et 

al.5 in their review of low-alloy metal oxidation at high temperatures state that at below 

570°C only magnetite (Fe3O4) and hematite (Fe2O3) will be present as iron oxides, at higher 

temperatures wϋstite (FeO) will be formed. Previous work by Higginson et al.6 characterising 

the phases in low-alloy steels at high temperature, was consistent with these findings.  

Cr2O3 was also found to be present, even though the Cr content of the alloy is low. Reasons 

for this apparent enrichment will be discussed in section (d). 

In this study, KCl was found to be present in the sample collected under reducing conditions 

(Figure 4, S). Pettersson et al.18 showed that KCl deposits on the surface of a 304-type 

austenitic alloy lead to an increase in breakaway oxidation, particularly around grain 

boundaries.  As greater amounts of KCl are present in the reducing atmosphere it is likely 

more breakaway oxidation has occurred and therefore upon cooling the scales have become 

loose. This could also explain the greater variation in composition of the oxides in the scales 

formed under the reducing atmosphere.  

The Ni present as both NiO and elemental Ni is likely to come from the anti-seize grease 

used to allow coupon removal from the probe, rather than an oxidation product of the 

minimal amount of Ni contained in the alloy. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: XRD Pattern of Loose Debris Removed from Probes (Key in table 4) 



 

Table 4: XRD phases identified in the samples 

Symbol Phase 

M Magnetite (Fe3O4) 

Q Quartz (SiO2) 

H Hematite (Fe2O3) 

Ca CaSO4 

S  KCl 

C Cr2O3 

N NiO 

Ni Ni (metal) 

6.4 (d) Deposit Microscopy 

The phases present in the bulk deposit have been determined by XRD (section (c)). EDS 

analysis of the deposits, imaged using an SEM, are in agreement with the XRD analysis. 

However some phases are present in quantities too small to be detected using XRD. Figure 5 

shows an oxide scale in profile; clear deposit and metal oxide regions can be identified. The 

probable mechanism of formation of these loose oxide scale fragments is breakaway 

oxidation followed by loss of the scales upon cooling19.  These oxide scales have been 

separated from the alloy during the 50 hour combustion run and are loose enough to be 

removed by gentle shaking.   The fragments of oxide scales show significant variation in size 

with a range of 35 - 200μm in length and 3-20μm thickness suggesting variation in the 

oxidation of the metal. This thickness variation could also be due to deposit-oxide 

interaction. 

A linescan of the scale shows K and S to be closely associated in this deposit region. This is 

likely to be K2SO4 deposited homogenously under the diffusion mechanism presented by 

Zbogar et al9, or KCl that has then reacted with SO2 according to the reaction given in 

Equation 1. In comparison, silicate spheres and refractory oxides will deposit through 

inertial impaction possibly undergoing further complex reactions post-deposition9.  

  



 

 

 

 

 

 

 

 

 

 

Figure 6 contains an oxide flake with a large amount of KCl deposited on the surface, likely 

as the result of diffusion. These particles are fairly prominent suggesting a degree of 

homogeneous nucleation in the flue gas. Large KCl deposits were only imaged on scales 

found under reducing conditions.  

 

 

 

 

 

 

 

 

 

 

In Figure 7 EDS analysis of one of the scales formed in the reducing atmosphere shows the 

presence of different metal ions, these results fit well with the XRD analysis, showing high 

amounts of Cr present in the scale, unusual for such a low-alloyed steel. Uusitalo et al20 

report Cr enrichment in scales formed under reducing conditions on low-alloy steels; this 

research supports these findings. Park et al21 also found surface enrichment of Cr under 

Figure 5: SEM micrograph of an oxide scale formed under oxidising conditions in profile with linescan data 

Figure 6: SEM micrograph of KCl deposition onto the surface of an oxide scale under reducing conditions. 



electrochemically reducing conditions for a low alloy steel with a 0.5%Cr content. Wood19 

stated that the initial Cr oxidation rate in metals with a low Cr content (0.2%) is more rapid 

in comparison to Fe and that this can lead to a Cr content maximum at the inner/outer scale 

interface. This oxidation rate is shown to be faster under reducing conditions than oxidising 

conditions19.  An increased Cr content of the scale can apparently be explained by this 

preferential oxidation. Fe and Cr are present in close association with one another, possibly 

suggesting the presence of an Fe, Cr spinel phase. It should however be noted that the 

origin of the oxides may be difficult to ascertain in the present case and could be 

contaminants from the combustion rig, for example.  

Potassium and sulphur are once again shown to closely associate with one another (Figure 7) 

suggesting the presence of K2SO4, formed either through diffusion deposition or sulphation 

of KCl (Equation 1). The presence of Ni throughout the sampled region is likely due to the 

grease used in the lubrication of the probe.  

 

 

 

 

 

 

 

6.5 (e) Iron Oxidation Products 

6.5.1 Magnetite 

Magnetite and hematite are shown to be present from XRD analysis (section (c)), on certain 

oxide fragments octahedral crystals characteristic of magnetite are present (Figure 8).  EDS 

analyses of these octahedral crystals show that they contain a large amount of Fe and O, 

alongside minor portions of K, Cl and Ni, confirming the presence of magnetite. The K and Cl, 

likely to be present as KCl, is thought to have induced FeCl2 transport to the surface of the 

deposit where upon encountering the O2 will have formed the octahedral magnetite crystals, 

through an active oxidation mechanism14. 

  

Figure 7: EDS analysis of an oxide scale from reducing conditions at 450°C 



 

 

 

 

 

 

 

 

 

 

6.5.2 Hematite 

Cracks were often observed in the oxide scale either between the deposit and the oxide or 

two layers of the oxide itself. At higher magnification (Figure 9) whiskers can be seen 

growing in these gaps only under oxidising conditions.  Previous work by Higginson et al.22 

on whisker growth morphology of high temperature oxides showed these whiskers are 

highly likely to be hematite.  Yuan et al.23 found iron whisker growth often occurs on the 

grain boundaries of hematite/magnetite whereas Higginson et al.22 and Pettersson et al.18 

found that whiskers were most likely to form around areas of breakaway oxidation. It is 

beyond the scope of the current work to speculate on the formation mechanism of the 

whiskers.  

 

 

 

 

 

 

 

 

 

Figure 8: Magnetite Octahedral Crystals visible under both oxidising and reducing conditions, SEM-EDS analysis of the 
octahedral regions 

Figure 9: Whiskers, thought to be hematite present under oxidation conditions. 



 

6.6 (f) Spherical Debris 

Alongside oxide scales are other non-metallic particles formed as loosely adhering deposits. 

Amongst this loose fly ash there are multiple particles with different morphologies. Often 

during biomass combustion, complex silicates form spherical particles either classified as a 

cenosphere (a microsphere of aluminosilicate glass encapsulating gas11) or a plerosphere (a 

cenosphere encapsulating smaller pre-existing particles11).   

Figure 10 shows a plerosphere along with cenospheres present in the deposits of all three 

samples. Raask24 investigated the formation both cenospheres and plerospheres. 

Cenosphere formation comes from the expansion of a silicate droplet, often containing a 

catalytic amount of iron, some carbon must be present in the slag melt in order for gas 

evolution to occur and so the droplet swells to a hollow sphere. Plerospheres are formed 

through a similar mechanism however, mineral particles must be deposited through the 

droplet in order to be encapsulated in the sphere24. This spherical debris is thought to have 

deposited through the inertial impaction mechanism. However, it is thought that as the 

spheres have not formed large agglomerates, the reactions necessary to form these 

particles, took place in the flue gas prior to deposition.  

 

 

 

 

 

 

 

 

 

Figure 10: Spherical deposits formed under different conditions (a-c) Oxidising conditions 
450°C (d-e) Oxidising Conditions 425°C (f) Reducing Conditions 450°C 

Clear differences in the surfaces of the spherical particles can be seen in Figure 10 with 

some containing large pores (Figure 10e) and others showing signs of surface enrichment 

(Figure 10c). The composition of the spheres formed can often be highly complex. The 

spectra from EDS (Figure 11) shows the composition of the two spheres in Figure 10e, 

illustrating two different compositions of the spherical deposits. Varying amounts of Ca and 



K are present in both silicate spheres along with Mg and Na suggesting the presence of the 

complex solid solutions as discussed in section (c). S content varies between the spheres 

although a high content may suggest some surface enrichment commonly undergone by 

aerosols such as K2SO4
8. Also present in the spheres is Fe, which has been shown to be 

catalytically important for their formation24. 

  

 

 

 

 

 

 

 

7. Conclusions 

An investigation of fly ash deposition and loose oxide structure from a combustion run of 

co-fired eucalyptus and Russian coal under different temperatures and atmospheres has 

been conducted.  Metal oxide scales have been observed in the loose deposits from the 

15Mo3 probes and are visible under both reducing and oxidising conditions. Variation 

between the composition of these scales was found, this is thought to be due to the higher 

occurrence of KCl under a reducing atmosphere which in turn leads to greater rates of 

breakaway oxidation around the grain boundaries.  

Under oxidising conditions whiskers, which are thought to be hematite, have been observed, 

further work to establish their composition using FIB-TEM is required. Magnetite crystals 

with an octahedral morphology are present under all conditions, indicating that in part the 

15Mo3 alloy may have undergone active oxidation in order for the oxide scales to become 

loose.  

The variation of spherical debris present indicates complex reactions occurring both pre and 

post deposition. Further analysis is required to allow identification of these spheres as 

either plerospheres or cenospheres.   
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Figure 11: EDS spectrum of spheres in Figure 10e. 
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