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Wavelet Thresholding Technique for 
sEMG Denoising by Baseline Estimation 

Abstract. The surface Electromyography (sEMG) signal is affected by different 
sources of noises: current technology is considerably robust to the interferences of 
the power line or cable motion artifacts, but still there are many limitations in 
denoising the baseline. In this paper we introduce a new technique, named 
Baseline Adaptive Denoising Algorithm (BADA), for denoising the sEMG signal 
by wavelet thresholding procedure. In particular, the thresholds are estimated 
using the same baseline signal with fixed and adaptive techniques. Eventually, we 
verify that the proposed adaptive method performs better than the standard 
Donoho technique and different variations, in term of noise cancellation and 
distortion of the signal, quantified by a new suggested indicator of the denoising 
quality. 

Keywords: Wavelet Denoising, Surface Electromyography. 

 
Introduction 

Surface Electromyography (sEMG) provides a safe, easy and non-
invasive method to qualitatively and quantitatively analyze the activity of 
the muscles (Cram et al. 1998; Merletti and Parker 2004): unlike needle 
EMG, where the procedure is performed invasively by inserting needles 
through the skin into the muscle, the sEMG examination evaluates muscle 
function by recording activity from the surface above the muscle on the 
skin. Currently, sEMG is widely applied for the assessment in sport 
(Knudson and Blackwell 2000; Hernandez et al. 2010), rehabilitation 
(Lange et al. 1996; Kibler et al. 2008), ergonomic design (Gazzoni 2010; 
Troiano et al. 2008), and medical robotics (Zecca et al. 2002). 

However, the sEMG is affected by various sources of noises, including 
the power line interference, the noise generated by the cable motion, the 
baseline and the movement artifact noise. In particular, the baseline is the 
combination of the two noise sources originated in the electronics of the 
amplification system (thermal noise) and at the skin-electrode interface 
(electrochemical noise), respectively (De Luca et al. 2010; Huigen et al. 
2002). 

While the power line interference and the cable motion artifact can be 
removed using standard filtering procedures (Cram et al. 1998; Basmajian 
and De Luca 1985), the baseline and the movement artifact have spectra 
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that include also the low frequency spectrum of the EMG signal: a 
standard filtering risks to alter important information of the signal. The 
solution is to filter the maximum quantity of noise while keeping as much 
of the effective signal frequency spectrum as possible.  

Wavelet denoising algorithms have been received extensive 
consideration in the processing of white Gaussian noise in biological 
signals, especially for the Electrocardiogram (Rosas-Orea et al. 2005; 
Blancovelasco et al. 2008). Most wavelet based denoising literatures 
suggest the use of the Donoho’s method (Donoho and Johnstone 1994; 
Donoho 1995), that estimates the thresholds by maximizing a risk function 
in terms of quadratic loss at the sample points. Though, considering that 
the baseline is not a white Gaussian noise, this method has limitations in 
the denoising of EMG signal, because it removes also significant part of 
signal with a consequent loss of geometrical characteristics of the signal. 
Different studies (Phinyomark et al. 2009; Jiang and Kuo 2007) have 
proposed to change the thresholds using different statistical techniques, 
with some improvements in the denoising, but still the results have not 
been completely confirmed and the hypothesis is white Gaussian noise. 

This paper presents the development of a new method to denoise the 
sEMG signal using the baseline to estimate the thresholds of the Wavelet 
denoising algorithm, named Baseline Adaptive Denoising Algorithm 
(BADA). This is an extension of preliminary results shown in 
(Bartolomeo et al. 2011). In this work we apply the algorithm for a more 
complex exercise, the peg-board, used in the training of young surgeons to 
improve the manual skill (Derossis et al. 1998).  

The organization of the paper is as follows: at first we introduce the 
theory of the Wavelet denoising algorithm and we list the different 
thresholds used to benchmark the proposed algorithm, referred in (Donoho 
1995; Donoho 1993; Guoxiang and Ruizhen 2001; Zhong and Cherkassky 
2000). After, we describe our experimental setup and explain the 
evaluation method to compare the different methods and the proposed 
algorithm. Finally, comparing the results with other algorithms, we prove 
that our method achieves better noise rejection during the noisy interval 
and higher likelihood with the original signal during the exercise interval. 
 

Wavelet denoising algorithm 

A. Overview 
Given a general model of a noisy signal s(n)=f(n)+e(n), the objective of 
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the Wavelet denoising algorithm is to discard the noise part e(n) of a 
signal s(n) and to recover f(n). The term e(n) is usually considered a white 
Gaussian noise.  

The procedure of wavelet denoising is composed of three steps. 
1. Decomposition. The original signal is decomposed by using the 

Stationary discrete Wavelet Transform (SWT). The SWT is preferred 
to the simple Discrete Wavelet Transform (DWT) because it has the 
property to be invariant to translations, eliminating visual artifacts like 
Gibbs phenomena in the neighborhood of discontinuities (Coifman and 
Donoho 1995). This first step requires the choice of the mother 
wavelet and the level of decomposition J. The details cDj and 
approximation cAj coefficients for each level j are obtained by the 
multi-resolution analysis (Shensa 1992). 

2. Thresholding. For each level of decomposition the detail coefficients 
are compared with a level of threshold, then the signal is suppressed or 
transformed if it is smaller than the threshold. This second step 
requires the choice of the thresholds and the transformation function 
for the different levels of decomposition. 

3. Reconstruction. The denoised signal is reconstructed by applying the 
Inverse Stationary Wavelet Transform (ISWT) to the approximation 
coefficient at level J and modified detail coefficients from level 1 to J.  

 
Figure 1 Flow chart of the Wavelet denoising algorithm. 

 

Figure 2 Wavelet function Daubechies db2 
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The summarized denoising algorithm is shown in Figure 1. 
For this work we have considered the Daubechies db2 mother wavelet, 

shown in Figure 2, and the forth decomposition level, as they have been 
proved, in case of myoelectric signals, to have the lowest mean square 
error (Phinyomark et al. 2009; Bartolomeo et al. 2011). This paper focuses 
on the determination of the appropriate threshold. 

B. Thresholding 

The selection of the threshold is of paramount importance in the Wavelet 
denoising algorithm. Usually the universal threshold (UNI) proposed by 
Donoho and Johnstone (Donoho and Johnstone 1994) is used as 
comparison to evaluate new techniques of denoising, due to its 
conservative nature (Johnstone and Silverman 1997). Universal threshold 
estimation method uses a fixed value,  
 

THRUNI =! 2 log(N )  (1) 
where N is the length of the samples of the time-domain signal and σ is 
estimated as the median of the absolute value of the detailed coefficients at 
the decomposition level j, divided by 0.6745, a normalization factor used to 
rescale the numerator to make the estimate unbiased for the normal 
distribution (Donoho and Johnstone 1994). 

In this work we have compared the proposed denoising technique also 
with other thresholds using different criteria such as:  
1. SURE (Stain’s Unbiased Risk Estimate), in which the threshold is 

calculated minimizing the Stein Unbiased Estimate of Risk (Donoho 
and Johnstone 1995; Stein 1981). 

2. Modification of the universal threshold for soft thresholding (Donoho 
1995), in which the universal threshold is scaled by the length of the 
samples in time domain. In (Phinyomark et al. 2009) this modification 
is defined as Length Modified Universal Method (LMU): 

THRLMU =!
2log( N )
N  

(2) 

3. Scale Modified Universal Method (SMU) (Donoho 1993), in which the 
universal threshold is modified as: 

THRSMU =! 2
j!J
2 2log( N )  

(3) 

where the J is the total number of decomposition levels and j is the current 
scale level. 
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4. Scale Length Modified Universal Method (SLMU) (Donoho 1993), 
where LMU and SMU are combined as:  

THRSLMU =! 2
j!J
2 2log( N )

N
 

(4) 

5. Log Scale Modified Universal Method (LSMU), proposed by (Guoxiang 
and Ruizhen 2001)  

THRLSMU =!
2log( N )
log( j +1)

 (5) 

6. Global Scale Modified Universal Method (GSMU), proposed by 
(Zhong and Cherkassky 2000). This method in (Phinyomark et al. 
2009) has shown the better denoising performance for six motions of 
hand, compared with the other in the list: 

THRGSMU =! 2
!
J
2 2log( N )  

(6) 

The way to apply the threshold is standard: for each level of 
decomposition the detail coefficients are compared with the threshold, and 
then the signal is suppressed or transformed if it is smaller than the 
threshold. Common ways to modify the signal after the level comparisons 
are the Hard and Soft Thresholding. In the Hard Thresholding (HT) the 
detail coefficient is completely suppressed if its absolute value is smaller 
than the threshold: 

 

cDj =
cDj       if cDj !THRj

0          otherwise 

"
#
$

%$
 

 
 (7) 

where the THRj is the selected threshold at level j.  
Differently, in the Soft Thresholding (ST) the signal is linearly shrunk 

as follows: 
 

! 

cDj =

cDj "THR j     if cDj #THR j

0                     if cDj < THR j

cDj +THR j     if cDj $ "THRj  

% 

& 
' 

( 
' 

 (8) 

The ST modifies the original signal, introducing a bias, but on the other 
hand it reduces the non-linearities, which instead are introduced by the HT. 
The choice of one or another really depends on the applications and 
expected results. For the general aim of this study, we have decided to 
compare the various thresholds with both of the modifications. The 
proposed threshold is calculated by using the adaptive algorithm presented 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

later in the paragraph Baseline Adaptive Denoising Algorithm (BADA). 
 

Experimental setup 

A. Hardware 
The sEMG signals have been recorded on the Extensor Carpi Ulnaris 

(R-ECU and L-ECU for the right and left arm), the Flexor Carpi Radialis 
(R-FCR and L-FCR), the Biceps Brachii (R-BB and L-BB), the Triceps 
Brachii (R-TB and L-TB), the Left Trapezius (LT), the Right Trapezius 
(RT), in addition to two electrodes on the left Corrugator Supercilii (CS) 
and Zygomaticus Major (ZM) for the facial EMG analysis. The location of 
the sensors is shown in Figure 3 .We used surface DE-2.1 sensors (Delsys 
Inc.) and the signal were amplified by a BagnoliTM 16-channel system 
(Delsys Inc.) with a Gain K=100. The skin was cleaned by mildly 
scrubbing it with 70% isopropyl alcohol. The sensors were attached to the 
skin with a double-sided adhesive interface. The sEMG sensor was located 
in the midline of the muscle belly between the nearest innervation zone 
and the myotendinous (De Luca 1997). A Dermatrodes HE-R (American 
Imex) electrode (5.08 cm dia.) was placed on the iliac crest to provide a 
reference. Sampling rate was set at 1000 samples per second using a 16-bit 
A/D converter board (National Instruments, USA, PCI-6034E). The 
acquisition software has been developed in C++ and data have been 
processed using MATLAB 7.7 (R2008b).  

 
Figure 3 sEMG sensor location: a. R-FCR, b. R-BB, c. R-ECU, d. R-TB, e. L-FCR,            
   f. L-BB, g. L-ECU, h. L-TB, i. LT, j. RT, k. CS, l. ZM. 
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B. Task and protocol 
Fifteen subjects participated to this experiment, with an average age of 

24 years old. The measurements have been taken during 20 trials of a peg-
board practice, for each subject, in which they used laparoscopes to move 
sequentially a set of rubber O rings positioned inside pegs. This 
laparoscopic task is widely recognized to train surgeons in manual skill 
(Derossis et al. 1998). The peg-board practice is a technique in which the 
trainee is using forearms, arms, and shoulders; additionally it is an 
exercise that we can easily perform in our laboratory because we have a 
dry box with all the equipment for the laparoscopic training (Lin et al. 
2010).  

After a brief explanation session, all the subjects signed an informed 
consent. Before the practice, each trainee was prepared following this 
procedure:  
1. Explanation session: the experimenter explained the details of the 

practice, showing the training box and how to use the laparoscopes. In 
this way the subject could ask some questions also during the 
hardware setup. 

2. EMG sensors positioning: after placing the reference on the iliac 
crest, each sensor was placed on the relative muscle; by monitoring 
the real time data on the PC, the best position was selected; finally, an 
elastic band, in addition to the double-faced adhesive interface, was 
placed around the sensor. 

3. MVC recording: Maximum Voluntary Contraction (MVC) was 
recorded for each muscle under measurement, in order to normalize 
the signals during the post-processing: the procedure has been done 
with a muscle positioned within its midrange length, against manual 
resistance. Following the indications in (Cram et al. 1998) the central 
2 seconds of a 6 to 8 seconds MVC period have been recorded and 
averaged over three trials.  

4. Baseline Recording: the trainee was asked to stay 10s completely 
relaxed standing in front of the training box. A visual check from the 
experimenter was done during this phase, especially for the facial 
expression. 

After the preparation the subject was asked to perform a not recorded 
trial, during which the system was tested. 

 
Evaluation method 

By using the information coming from the Baseline Recording, an only-
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noise portion of the signal is separated from a task portion. Indicating 
no(n) the noise portion of the signal, and nd(n) the noise portion after the 
denoising, they are compared with a Noise Ratio (NR): 

! 

NR =
RMS nd T( )( )
RMS no T( )( )

,  T "  Baseline Portion (9) 

where the RMS indicates the root mean square and T is the interval of the 
baseline portion. With this approach it is possible to have a number related 
only to the baseline segment of the signal. The smaller this value, the 
higher the quality of the noise rejection will be. 

Additionally, denoting to(n) the waveform of the task portion of the 
original signal and td(n) the one after the denoising procedure, they are 
compared by using an error function that measures the misfit, point by 
point, of the two functions, given by the sum of the squares of the 
differences, divide by the RMS of to(n): 
 

! 

Et =
1
2

to j( ) " td j( )
RMS to( )

# 

$ 
% % 

& 

' 
( ( 

j=1

N

)
2

 (10) 

where N is the number of the samples in the exercise portion. To facilitate 
the analysis, we consider the RMS value of Et: 
 

! 

ER =
2Et

N
 (11) 

where N is the number of samples in the exercise portion and it is used to 
normalize the error to compare different sizes of signal in equal way. 
 
Figure 4 The ER is calculated on the portions to(n) of the rectified signal over a threshold 
  defined by the RMS of the entire signal. 
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The smaller the ER is, the smaller the distortion due to the denoising 
algorithm will be. The to(n) is defined by the portions of signal over a 
threshold defined by the total RMS value, as shown in Figure 4. 

We propose the combination of these two parameters to give an 
estimation of the denoising quality and to compare different methods. 

 

! 

DQ% =1" #NRNR +#ERER( ) 

! 

"NR +"ER =1 
(12) 

where DQ% indicates the quality of the denoising in percentage, αNR is the 
weight of the noise ratio and αER is the weight of the distortion. For our 
evaluation we have chosen αNR=0.7 and αER=0.3, giving more importance 
to the noise reduction than distortion. In our results we are going to show 
the DQ% for different values of the weights. 
 

Baseline Adaptive Denoising Algorithm (BADA) 
The Donoho method and its derivatives have been considered suitable 

for the denoising of sEMG, because the baseline has been approximated as 
a white Gaussian noise, distributed equally on the entire spectra of the 
signal. In case of the sEMG Baseline, however, this approach is not valid, 
because the spectrum of the Baseline is not a white Gaussian noise (Figure 
5).  

 
Figure 5 Spectrum of the Baseline. It is not a white Gaussian noise. 
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Baseline Adaptive Denoising Algorithm (BADA): the thresholds are 
calculated in order to reduce, for each level of decomposition, the noise 
level down to 1%. As shown in Figure 6, the algorithm keeps in memory 
the original RMS value of the detail coefficient, which is also the first 
Threshold applied to it. After, the RMS of the modified detailed is 
calculated, and, if the new RMS is bigger than 1% of the original one, the 
threshold is updated by increasing of 10% respect to the previous value.  

 
Figure 6 BADA algorithm. The thresholds are chosen in order to reduce the noise, for 
   each level of decomposition, down to 1%. 

 

Results and discussion 
The averaged results of the DQ%, together with the standard deviations, 

for the fifteen subjects for all the muscles are summarized in Tables 1-6. 
Each table is divided in two parts: the first presents αNR=0.7 and αER=0.3, 
the noise reduction is considered more important that the distortion of the 
signal; the second has αNR=0.3 and αER=0.7, the distortion is considered 
more important than the noise reduction of the signal.  

Table 1 and 4 are related to the right arm for HT and ST, respectively; 
Table 2 and 5 are related to the shoulders and the facial sEMG for HT and 
ST, respectively; finally, the Table 3 and 6 represent the summary for the 
left arm with HT and ST, respectively. The LMU is present only for the 
soft thresholding (D. L Donoho 1995).  

The first column indicates the algorithm. In each table the gray cell 
indicates the maximum value for the selected muscle, thresholding 
modification and αNR. 
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Table 1 DQ% Hard Thresholding – Right Arm 
Algorithm DQ% R-ECU DQ% R-FCR DQ%  R-BB DQ%  R-TB αNR 
BADA 90.3 ± 2.9 82.6 ± 3.4 82.6 ± 3.9 80.7 ± 1.9 0.7 
UT 76.5 ± 2.2 68.0 ± 2.5 68.0 ± 2.0 73.0 ± 2.7 
SURE 85.6 ± 4.2 74.6 ± 1.3 74.6 ± 3.3 75.4 ± 0.8 
SMU 74.2 ± 3.5 68.8 ± 2.1 68.8 ± 1.6 50.1 ± 5.5  
SLMU 36.8 ± 0.4 45.0 ± 0.4 45.0 ± 0.4 42.0 ± 0.7 
LSMU 75.9 ± 3.7 70.1 ± 2.9 70.1 ± 1.6 51.7 ± 6.5 
GSMU 47.5 ± 1.4 60.1 ± 0.7 60.1 ± 0.6 44.0 ± 4.1 
BADA 94.5 ± 3.8 89.8 ± 8.0 93.7 ± 9.2 88.9 ± 4.5 0.3 
UT 69.5 ± 5.2 65.4 ± 5.8 69.6 ± 4.6 82.8 ± 6.3 
SURE 91.7 ± 5.8 87.9 ± 3.0 90.4 ± 7.7 88.7 ± 2.0 
SMU 86.8 ± 8.2 83.6 ± 5.0 93.4 ± 3.7 68.8 ± 12.9 
SLMU 72.6 ± 1.0 76.0 ± 0.9 74.4 ± 0.9 74.2 ± 1.6 
LSMU 87.6 ± 8.5 82.3 ± 6.7 91.4 ± 3.8 65.5 ± 15.1  
GSMU 76.9 ± 3.3 82.4 ± 1.5 79.9 ± 1.3 71.5 ± 9.7 

 
Table 2 DQ% Hard Thresholding – Shoulders and Face 
Algorithm DQ% RT DQ% LT DQ% CS DQ% ZM αNR 
BADA 73.2 ± 2.6 77.3 ± 2.9 69.8 ± 4.5 79.4 ± 6.8 0.7 
UT 57.2 ± 1.2 58.0 ± 1.1 63.2 ± 4.0 66.8 ± 9.0 
SURE 50.7 ± 0.9 64.6 ± 1.4 56.0 ± 3.7 62.7 ± 8.0 
SMU 52.8 ± 4.3 59.0 ± 2.4 59.6 ± 4.3 67.0 ± 9.4  
SLMU 34.0 ± 0.4 37.4 ± 0.3 42.8 ± 0.5 41.0 ± 0.7 
LSMU 50.7 ± 4.0 52.2 ± 1.9 69.7 ± 4.5 69.7 ± 10.0  
GSMU 33.2 ± 3.5 38.4 ± 0.3 53.0 ± 3.5 40.6 ± 8.0 
BADA 83.4 ± 6.2 88.9 ± 6.8 71.1 ± 10.4 84.3 ± 15.8 0.3 
UT 59.3 ± 2.9 56.7 ± 2.5 61.6 ± 9.4 68.1 ± 20.9 
SURE 77.3 ± 2.2 83.3 ± 3.3 65.0 ± 8.6 74.1 ± 18.6 
SMU 71.3 ± 10.0 80.7 ± 5.7 67.1 ± 10.0 60.5 ± 21.8 
SLMU 71.3 ± 0.9 73.0 ± 0.7 74.1 ± 1.2 73.5 ± 1.6 
LSMU 71.3 ± 9.3 77.9 ± 4.3 68.7 ± 10.4 63.9 ± 23.3 
GSMU 69.1 ± 8.1 73.4 ± 0.8 70.8 ± 8.1 62.0 ± 18.7  
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Table 3 DQ% Hard Thresholding – Left Arm 
Algorithm DQ% L-ECU DQ% L-FCR DQ% L-BB DQ% L-TB αNR 
BADA 85.4 ± 4.2 86.1 ± 4.0 91.9 ± 3.8 77.4 ± 3.7 0.7 
UT 79.2 ± 3.5 76.1 ± 2.8 82.3 ± 3.0 70.6 ± 2.9 
SURE 76.8 ± 3.4 68.5 ± 1.8 86.5 ± 3.6 71.8 ± 3.2 
SMU 53.2 ± 3.8 49.3 ± 1.9 91.8 ± 1.5 76.8 ± 3.4 
SLMU 39.6 ± 0.8 39.6 ± 0.4 41.5 ± 0.3 51.5 ± 0.8  
LSMU 59.7 ± 4.2 56.2 ± 2.4 91.8 ± 1.4 77.4 ± 3.1 
GSMU 47.0 ± 1.6 39.1 ± 0.6 58.9 ± 0.4 68.8 ± 1.8  
BADA 91.9 ± 9.9 91.4 ± 9.2 92.3 ± 8.9 79.4 ± 8.7 0.3 
UT 86.4 ± 8.2 74.9 ± 6.6 82.0 ± 7.0 67.9 ± 6.9  
SURE 88.6 ± 8.0 85.4 ± 4.1 92.1 ± 8.5 83.5 ± 7.4 
SMU 78.2 ± 8.8 75.7 ± 4.4 94.1 ± 3.4 76.5 ± 8.0 
SLMU 73.7 ± 1.8 73.8 ± 0.9 74.6 ± 0.6 78.4 ± 1.8 
LSMU 80.7 ± 9.8 77.3 ± 5.7 93.7 ± 3.2 77.5 ± 7.2 
GSMU 76.6 ± 3.8 73.5 ± 1.3 82.1 ± 0.9 83.1 ± 4.1  

 
Table 4 DQ% Soft Thresholding – Right Arm 
Algorithm DQ% R-ECU DQ% R-FCR DQ%R-BB DQ%R-TB αNR 
BADA 87.6 ± 3.8 77.6 ± 2.5 84.3 ± 3.1 75.4 ± 1.6 0.7 
UT 68.1 ± 0.7 62.1 ± 1.4 67.5 ± 0.7 65.5 ± 2.4 
SURE 80.5 ± 3.1 68.7 ± 1.9 77.0 ± 2.5 71.8 ± 1.7 
SMU 71.2 ± 4.0 64.1 ± 3.3 84.2 ± 2.3 44.7 ± 5.4 
LMU 32.8 ± 0.2 35.1 ± 0.1 34.1 ± 0.1 34.5 ± 0.2  
SLMU 72.2 ± 4.1 65.1 ± 3.8 79.7 ± 2.0 45.6 ± 5.4 
LSMU 45.8 ± 3.3 57.3 ± 2.1 51.9 ± 1.4 39.5 ± 5.2  
GSMU 20.1 ± 1.0 30.0 ± 1.6 26.0 ± 0.8 34.1 ± 2.2 
BADA 88.2 ± 8.8 77.9 ± 5.9 83.6 ± 7.2 80.5 ± 3.8 0.3 
UT 49.8 ± 1.6 51.7 ± 3.3 54.0 ± 1.6 65.3 ± 5.7 
SURE 79.8 ± 7.2 74.0 ± 4.4 78.2 ± 5.9 80.1 ± 4.0 
SMU 71.1 ± 0.5 72.1 ± 0.3 71.7 ± 0.3 71.6 ± 0.5 
LMU 33.7 ± 2.2 41.1 ± 3.8 39.6 ± 1.9 55.7 ± 5.2  
SLMU 78.9 ± 9.6 70.7 ± 8.8 81.1 ± 4.6 51.3 ± 12.6 
LSMU 72.9 ± 7.8 76.0 ± 4.8 75.5 ± 3.2 61.2 ± 12.0  
GSMU 80.0 ± 9.3 72.5 ± 7.7 83.8 ± 5.3 56.3 ± 12.6 
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Table 5 DQ%  Soft Thresholding – Shoulders and Face 
Algorithm DQ% RT DQ% LT DQ% CS DQ% ZM αNR 
BADA 66.9 ± 1.6 75.0 ± 2.5 67.5 ± 3.6 78.6 ± 6.9 0.7 
UT 54.3 ± 0.8 54.4 ± 1.3 62.4 ± 2.9 64.7 ± 9.4 
SURE 44.3 ± 1.1 58.1 ± 1.2 52.7 ± 3.7 60.9 ± 7.7 
SMU 47.6 ± 4.1 55.9 ± 3.8 56.4 ± 3.7 63.8 ± 8.4  
LMU 31.8 ± 0.2 32.6 ± 0.1 35.5 ± 0.2 33.8 ± 0.3 
SLMU 45.6 ± 4.1 49.2 ± 3.5 67.4 ± 3.6 65.8 ± 8.5  
LSMU 29.8 ± 3.5 37.0 ± 1.9 48.9 ± 3.9 35.3 ± 8.7 
GSMU 20.5 ± 0.8 21.7 ± 1.1 31.1 ± 3.2 30.8 ± 9.1 
BADA 68.8 ± 3.8 83.5 ± 5.8 69.6 ± 8.5 82.4 ± 16.2 0.3 
UT 52.5 ± 1.8 48.3 ± 3.0 59.8 ± 6.8 63.2 ± 22.0  
SURE 62.4 ± 2.5 68.2 ± 2.8 57.3 ± 8.7 69.9 ± 17.9 
SMU 70.6 ± 0.4 71.1 ± 0.2 72.0 ± 0.4 71.2 ± 0.6 
LMU 39.6 ± 1.8 36.2 ± 2.5 46.8 ± 7.5 49.9 ± 21.2 
SLMU 59.7 ± 9.5 70.8 ± 8.2 63.4 ± 8.5 54.9 ± 19.9 
LSMU 61.1 ± 8.2 69.9 ± 4.4 61.4 ± 9.1 49.6 ± 20.4 
GSMU 59.0 ± 9.6 73.4 ± 8.8 59.6 ± 8.7 53.0 ± 19.6  

 
Table 6 DQ% Soft Thresholding – Left Arm 
Algorithm DQ% L-ECU DQ% L-FCR DQ% L-BB DQ% L-TB αNR 
BADA 84.0 ± 3.9 81.5 ± 3.1 89.2 ± 2.7 73.5 ± 2.7 0.7 
UT 70.5 ± 2.1 68.0 ± 1.6 74.3 ± 1.5 67.6 ± 1.6  
SURE 75.1 ± 3.4 63.9 ± 2.6 83.0 ± 3.0 65.7 ± 2.5  
SMU 51.8 ± 3.9 44.6 ± 2.7 87.6 ± 1.7 72.6 ± 3.1 
LMU 33.6 ± 0.2 33.3 ± 0.1 34.5 ± 0.1 37.9 ± 0.2  
SLMU 57.8 ± 3.9 50.7 ± 3.2 86.4 ± 2.1 72.7 ± 2.8 
LSMU 45.9 ± 3.5 36.4 ± 1.8 56.5 ± 1.1 64.2 ± 2.7  
GSMU 30.9 ± 2.4 26.0 ± 1.8 30.2 ± 1.8 39.7 ± 1.9 
BADA 88.7 ± 9.1 80.8 ± 7.2 80.7 ± 6.3 76.0 ± 6.2 0.3 
UT 66.2 ± 4.9 56.0 ± 3.7 63.4 ± 3.4 60.9 ± 3.8  
SURE 84.5 ± 8.0 74.8 ± 6.1 83.9 ± 7.0 69.3 ± 5.9 
SMU 71.4 ± 0.6 71.3 ± 0.3 71.9 ± 0.2 73.1 ± 0.5 
LMU 53.6 ± 5.5 42.1 ± 4.2 48.5 ± 4.1 50.7 ± 4.4 
SLMU 76.3 ± 9.0 64.4 ± 7.5 81.2 ± 4.9 66.5 ± 6.5 
LSMU 74.2 ± 8.2 67.3 ± 4.1 76.6 ± 2.5 72.4 ± 6.2 
GSMU 74.8 ± 9.2 64.8 ± 6.3 83.9 ± 4.0 66.7 ± 7.3 

 
The results show that the proposed BADA performs better in term of 

DQ% both in case of αNR=0.7 and αNR=0.3 for almost all the muscles under 
observation. In particular, when the algorithm did not perform as the best, 
the value is very near to the maximum one. In case of the forearm muscles 
(R-ECU, R-FCR, L-ECU and L-FCR), that are the one more stressed for 
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this kind of exercise, the BADA algorithm always performs better than the 
others and only the SURE can be considered comparable (Table 1 and 4, 
second and third columns). 

The muscles, for which the BADA underperforms, are the CS, L-BB 
and R-BB. These muscles are used very few times with low activation 
during the peg-board exercise and the noise component is the main factor; 
in this case the ER component is negligible. Based on this consideration 
we tried the case of αNR=1 and αER=0 for R-BB, L-BB and CS (Table 7): 
the BADA clearly outperforms the other algorithms, especially for the L-
BB and R-BB. The table shows the thresholding modification (HT or ST) 
on the last column. 

 
Table 7 Hard and Soft Thresholding with αNR=1 and αER=0 

Algorithm DQ% R-BB DQ% L-BB DQ% CS Thresholding 
BADA 74.6 ± 0.0 75.8 ± 0.0 76.4 ± 0.0 HT 
UT 65.7 ± 0.0 65.8 ± 0.0 71.7 ± 0.0 
SURE 65.5 ± 0.0 54.1 ± 0.0 65.3 ± 0.0  
SMU 56.7 ± 0.0 55.8 ± 0.0 74.4 ± 0.0 
SLMU 36.0 ± 0.0 71.9 ± 0.0 51.4 ± 0.0  
LSMU 17.9 ± 0.0 16.6 ± 0.0 71.4 ± 0.0 
GSMU 41.4 ± 0.0 74.1 ± 0.0 58.5 ± 0.0 
BADA 75.6 ± 0.0 74.8 ± 0.0 77.5 ± 0.0 ST 
UT 66.6 ± 0.0 67.3 ± 0.0 72.7 ± 0.0 
SURE 63.7 ± 0.0 42.3 ± 0.0 63.1 ± 0.0 
SMU 56.7 ± 0.0 48.1 ± 0.0 61.4 ± 0.0 
LMU 66.0 ± 0.0 54.0 ± 0.0 77.1 ± 0.0 
SLMU 47.9 ± 0.0 59.8 ± 0.0 31.4 ± 0.0 
LSMU 46.4 ± 0.0 70.4 ± 0.0 77.4 ± 0.0 
GSMU 53.3 ± 0.0 39.6 ± 0.0 58.1 ± 0.0  
 
Additionally, the BADA shows consistency in term of values with the 

different values of αNR, HT and ST. In Figure 7 the R-ECU averaged 
results for the cases of αNR=0.3 and αER=0.7, αNR=0.7 and αER=0.3 for both 
HT and ST are plotted.  

Figure 8 shows a portion of the original sEMG signal (R-ECU) during 
one activation, together with the differences with the signals denoised by 
UT HT, BADA HT, SURE HT, SLMU HT and GSMU HT. It is evident 
that while the UT HT (c) denoises the baseline, it also considerably 
distorts the signal. The SLMU HT and GSMU HT cannot eliminate 
completely the baseline, in fact the difference in the first portion of the 
signal is very small. The SLMU HT, in particular, is very similar to the 
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original signal. The SURE HT and BADA show similar visual 
performance: the baseline is well denoised while the shape of the signal 
during the activation is not distorted. The BADA, however, is more stable 
than the SURE, especially in the transition between the Baseline and the 
exercise, where the SURE distorts the signal. 
 
Figure 7  Comparison of the algorithms for the R-ECU. 

 
 
Figure 8  Original signal (a); difference between the original signal and the signal 

denoised by BADA HT (b), UT HT (c), SURE HT (d), SLMU HT (e) and 
GSMU HT (f). The last chart indicate the time axis. 
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Conclusions 

In this paper we have introduced a new technique to denoise a sEMG 
signal by using its baseline to estimate the thresholds to apply to the 
wavelet thresholding algorithm. The proposed adaptive technique, namely 
Baseline Adaptive Denoising Algorithm (BADA), has shown better 
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performances than standard Donoho method (universal threshold) and 
different its variations, in term of noise cancellation and signal distortion, 
quantified by a new proposed indicator of denoising quality, considering 
the linear weighted combination of Noise Ratio and Normalized Signal 
Distortion. Among the variations of the Donoho method, we have noticed 
that the SURE-based thresholding estimation was the one that showed 
similar coherence to the proposed technique for hard and soft 
thresholding. We have extensively used our algorithm for the denoising of 
sEMG signal in various experiments, in particular for the biomechanical 
analysis of the arms and forearms in the training of young surgeons. The 
final goal is the detection of activations of the muscles of arms, their 
connection with the movements of the hands, together with the shoulders 
muscles (mainly the trapezius) to estimate the fatigue during the various 
training. We suggest readers to try the proposed algorithm for the 
denoising of images: in that case the baseline could be considered as 
portion of image with noise, previously identified. 
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