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Abstract:  
Novel multi-junction thermocouple architecture was developed and simulated to in-situ monitor the 

temperature distribution over a Solid Oxide Fuel Cell (SOFC). This thermocouple architecture 

requires only {N+1} number of wires for N number of independent temperature measuring points. 

Therefore, N+1 architecture can independently measure temperature at multiple points simultaneously 

with much less number of wires than a set of thermocouples require for the same number of 

independent temperature measurements. Requiring less number of external wires is a distinct 

advantage, particularly, in constrained environments such as those within SOFC stacks. A 

thermocouple array having 4 independent temperature measuring points with 5 thermo-elements was 

simulated. Alumel (Ni:Al:Mn:Si – 95:2:2:1 wt) and Chromel (Ni:Cr – 90:10 wt) were chosen as 

thermo-element materials because of their wide applicability in the industry as K-type thermocouples. 

The junctions were considered to be spot welded. The multi-junction concept was computationally 

simulated and the effect of the heat affected zone created in spot welding to the temperature 

measurement was also investigated. The temperature gradient induced emf values for each sensing 

point were calculated from Seebeck coefficients. The calculated emf was then mapped back to 

temperature using ASTM approved inverse conversion function. These mapped temperatures were 

then compared with the set temperatures for each junction and they were in very good agreement.  

1 Introduction: 
Thermal cycling at high temperature (usually in the range from 6000C - 9000C) and uneven 

temperature distribution in SOFC leads to severe mechanical failures such as, delamination and 

cracking of cell components, promoting premature degradation. Attempts were made to model and 

predict such failures based on estimated temperature distribution over cell[1-4]. To mitigate such 

phenomena as well as to obtain better understandings of the stack performance, it is required to 

monitor the actual temperature distribution over the cell and stack while they are in operation at 

temperature. Further, the knowledge on actual temperature distribution enables to understand 

degradation mechanisms and the modelling based control of SOFC systems.   

Present efforts on understanding temperature distribution over cell and stack are mainly confined to 

simulations. In which, application of physical modelling [5-13] as well as Artificial Neural Network 

modelling (ANN)[14-17] could be noted. Physical models rely on various assumptions and 

simplification of conditions which do not necessarily exist in real operation. Further, changes in 

operating conditions such as current, flow rate, etc. induces detrimental evolutions in the temperature 

profile[18] , which may not be predictable with steady state physical models. Therefore, these models 

need validation with experimental results. On the other hand, the accuracy of training data is central to 

the accuracy of predicted data of ANN. Hence, it is essential to have experimental temperature 

measurements.  

Attempts made on measuring temperature distribution on SOFC are limited in literature compared to 

simulations.   Morel et al[19] used electrochemical impedance spectroscopy (EIS) to in-situ evaluate 

the temperature gradient along a cell. However, this method cannot measure localised temperature. In 

a study by Saunders and Davy[20] to investigate the steam-methane reforming process within direct 

                                                      
1 Corresponding Author 

Email: j.kim@lboro.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288376381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


   2 

 

internal reforming SOFC (DIR_SOFC), a commercial IR thermometer (Omega Vanzetti Model No. 

1562)  was used to measure point temperature at 10mm separation on the anode along the centre line 

of 100mm x 50mm cell. The cell was placed inside an oven having a transparent window to make the 

cell visible to thermometer. However, this approach is not feasible with multi-cell stacks. Contact 

thermometry appears more promising than non-contact thermometry in in-situ monitoring cell/ stack 

temperature. Razbani et al[15][21] inserted 5 K-type thermocouples (ϕ 0.5mm) inside the middle cell of 

a 5-cell (110mm x 86mm) short stack to measure the temperature at the four corners and one from the 

middle. Further, they state that researchers at Jülich GmbH were able to measure the temperature 

profile of a 5kW SOFC stack by inserting 36 thermocouples. Guan et al.[22] and Bedogni et al[23] have 

also used the method of inserting thermocouples to measure gas flow temperature at inlet and outlet of 

a stack. It is evident that thermocouples are much popular in the task. In fact, thermocouple is a robust 

sensor for harsh environment temperature measurements. However, inserting thermocouples inside a 

fuel cell stack via the previously applied methods, either simply put commercial thermocouples 

through gas channels or draw holes to put them, may significantly disturb the normal operation of the 

stack causing the output being deteriorated from its normal operation. Further, inserting a large 

number of sensors inside the stack to measure temperature with greater spatial resolution is 

problematic due to the difficulties in embedding a large number of wires within the assembled 

systems; in addition, this will worsen the level of disturbance. Moreover, thermocouple freely hanging 

in a stack does not measure the exact cell surface temperature. Due to these multifaceted reasons, 

necessity of a technology, which is capable of measuring the cell temperature with greater spatial 

resolution and causing only a minimum disturbance to normal stack operation is evident.  

This study is to develop a technology that can be applied to commercial SOFCs and used to help build 

an accurate, real-time three-dimensional temperature map of a SOFC stack while delivering minimum 

disturbance to its normal operation and output.  

2 Design and Methodology 
N+1 architecture with 4 independent sensing points and 5 thermo-elements (N = 4), shown in 

Figure 1, was virtually constructed and simulated in MATLAB. Four temperature measuring points 

are denoted by J1 to J4. Each of these points is formed by intersecting two dissimilar thermo-element 

materials. Thermo-element a-b is made of Chromel and each of thermo-elements c-d, e-f, g-h, and i-j 

are made of Alumel.  

The sensor array is considered to be made by spot welding of thermo-elements at each junction. 

The sections enclosed in dotted circle represent the heat affected zone (HAZ) of spot welding. The 

points of intersection between 

circle and individual thermo-

elements define the boundary of 

HAZ on corresponding thermo-

elements.   

Temperatures at junctions J1 

to J4 are denoted by Tc, Te, Tg, 

and Ti respectively. The 

temperatures denoted by a 

numbered subscripts represent 

the temperature at the boundary 

of HAZ on corresponding 

thermo-element; for example, 

Tc1, Tc3, Te3 are the temperatures 

at the HAZ boundary of thermo-

element a-c, c-d, and the e-f 

respectively. Each thermo-

element, c-e, e-g, and i-g, have 

two HAZ boundaries at their 
Figure 1: Sensor array layout 
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Figure 2:Comparison of emf generated under Seebeck coeffecients obtained from liner interpolation 

and liner regression with ITS-90 emf 

both ends. Since Seebeck coefficient of materials depend on the micro-structure, there is a possible 

influence from HAZ to the Seebeck coefficient. Hence, the HAZ is distinguished from the rest of the 

sections in this simulation to investigate the influence of HAZ to the performance. 

Thermo-electric emf, Vad, Vaf, Vah, and Vaj are a measure of the temperature at junction J1 to J4 

respectively. These values were calculated using following standard equations.  Scr and Sal represent 

the Seebeck coefficients of Chromel and Alumel respectively whereas S/
al and S/

cr represent the 

Seebeck coefficients in HAZ of Alumel and Chromel respectively.  
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The Seebeck coefficients shown in Error! Reference source not found. were taken as the 

boundary values and those at other temperatures were 

estimated by two methods: piecewise liner 

interpolation and liner regression. Figure 2 shows the 

emf estimated by using Seebeck coefficients obtained 

by above two methods and the ITS-90 standard emf 

value for the temperature range 00C to 10000C.  It can 

be seen that Seebeck coefficients generated by liner 

regression induces emf that is much closer to ITS-90 

emf values. Therefore, liner regression was used to 

estimate the Seebeck coefficients. 

Temperature at each junction can be set to vary 

randomly within a pre-defined range. The change of 

Table 1:Seebeck coefficients[24] 

Temperature 

(0C) 

Seebeck Coefficient 

(µV/0C) 

Alumel Chromel 

0 -17.7 21.8 

200 -16.2 23.7 

400 -20.0 22.2 

600 -24.0 18.5 

800 -27.2 13.8 

1000 -29.6 9.4 
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Seebeck coefficient in HAZ for each material can be set as a percentage variation of the 

corresponding un-affected material’s Seebeck coefficient. The temperature at the boundary of each 

HAZ can also be set to vary randomly within a pre-defined range. The range is defined as a 

percentage of the corresponding junction temperature. By using these features added to the 

simulation, the multi-junction thermocouple array design was evaluated and the influence of HAZ to 

the accuracy of temperature measurement was investigated.  

3 Results and Discussion 
There were 3 sets of simulations carried out. Number of iterations per each simulation was set to 

50 to ease the visual analysis of graphs: too large iterations makes the graphs unclear due to large 

number of data points and too less number of iterations makes the simulation less general. 

Temperature gradient induced emf values for junctions were estimated in all iterations. The 

temperature corresponding to this estimated emf was then calculated using the thermocouple inverse 

function given below where t90 is the temperature in ITS-90 scale and d0 to d9 are constants, and E is 

the emf. This calculated temperature and the randomly generated temperature were plotted against 

iteration number for all 4 junctions for comparison.   

t�� = � 	� ��

�!�
   

Simulation 1: Validation of the multi-junction array concept 

The junction temperature was set to randomly vary within the range from 9000C to 10000C. This 

range was chosen because, the expected maximum operating temperature of SOFC lies within this 

range. Any changes to Seebeck coefficient within the HAZ are neglected. Figure 3 shows the actual 

and estimated temperature for 50 iterations. Even without any influence from HAZ, a noticeable 

difference between actual and estimated temperature can be noted.  

The estimated temperature entirely depends on the estimated Seebeck coefficients at each 

temperature and Figure 2 shows that the estimated emf, hence the estimated Seebeck coefficient, is 

not very accurate in the temperature range from 9000C to 10000C.  The Seebeck coefficient estimation 

is relatively accurate in the range from 2000C to 3000C. Hence, the simulation as repeated for this 

range and the output is shown in Figure 4.  Within this range, the estimated temperatures very 

Figure 3: Range from 9000C to 10000C – no change of Seebeck Coefficient within HAZ 
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Figure 4: Range from 2000C to 3000C – no change of Seebeck Coefficient within HAZ 

satisfactorily agree with their corresponding actual temperatures.  Therefore, the multi-junction 

thermocouple array could measure the temperature independently at 4 points with just 5 thermo-

elements.  

 

Simulation 2: Influence of HAZ with no temperature gradient across it  

This simulation was focused on investigating the influence of changes in Seebeck coefficient in the 

HAZ to the accuracy of temperature measurements.  The Seebeck coefficients of Chromel were 

increased by 25% from its normal value at each temperature and that of Alumel was decrease by 25% 

from its normal values at each temperature. HAZ boundaries were set to be in the same temperature as 

their corresponding junctions. Therefore, no temperature gradient present across any HAZs. The 

output of the simulation is shown in Figure 5.  The estimated temperatures were in very satisfactory 

agreement with the corresponding actual temperatures. Further, level of accuracy in estimated 

temperatures was similar to that with the simulation in Figure 4. This suggests that even if the 

Seebeck coefficients are significantly changed in HAZ, it does not affect the temperature 

measurements as long as there is no temperature gradient across HAZ.   

Simulation 3: Influence of HAZ when there is a temperature gradient across it.  

The effect of the change of Seebeck coefficient was investigated when there is a temperature gradient 

present across the HAZ. The change of Seebeck coefficient in HAZ was set similar to those in 

simulation 2. The boundary temperature of HAZ was set to vary randomly within a range ±20% of 

their corresponding junction temperature. For example, the temperature Tc1, Tc2, and Tc3 is within a 

range ±20% of Tc. The output of this simulation is shown in Figure 6. It can be seen that the estimated 

temperature is shifted down. This shows that change in Seebeck coefficient influence the temperature 

measurements where there exist temperature gradients across the HAZ. Same simulation was repeated 

by reducing the boundary temperature variation to ±10% of corresponding junction temperature and 

the result is shown in Figure 7. Although still the estimated temperature is shifted down, its magnitude 

is much less than that with ±20% variation. The magnitude of offset was not halved when the 

temperature range was halved. This suggests that the measured temperature is affected by the HAZ 

when there exist a temperature gradient across it and this effect is non-liner in nature.    
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Figure 6: Range from 2000C to 3000C – Seebeck coefficient increases by 25% for Chromel and 

decreases by 25% for Alumel. Boundary temperature variation is ±20% of the junction  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Range from 2000C to 3000C – Seebeck coefficient increases by 25% for Chromel and 

decreases by 25% for Alumel 
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4 Conclusion 
The first simulation validated the concept of multi-junction thermocouple. The method of simulation 

was exactly similar in all temperature ranges. Hence, the inability to accurately estimate the 

temperature within 9000C to 10000C range is a not a failure of the concept. The inaccuracy of 

estimated Seebeck coefficients within that rage contributed to the significant deviation demonstrated. 

The HAZ does not influence temperature measurements as long as there is no temperature gradient 

across it. On the other hand, the influence that caused due to temperature gradient present across HAZ 

exponentially decreases when the temperature gradient decreases.  In real spot welding process, size 

of the HAZ is very small compared with other major welding processes. Further, temperature gradient 

that may present across a very short distance in an operating SOFC is also very small. Hence, multi-

junction thermocouple array concept cannot be expected to yield any significant problems, in terms of 

accuracy of measurements, when measuring the temperature of a working SOFC stack.   
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