
 
 

Chemical Kinetics Modelling Study 
of Naturally Aspirated and Boosted 

SI Engine Flame Propagation 
and Knock 

 
by 

 

Jiayi Gu 

 

A Doctoral Thesis 

submitted in partial fulfillment of the requirements for the award of 

Degree of Doctor of Philosophy of Loughborough University 

 

April 2014 

© by Jiayi Gu 2014 



Abstract 
 

  I 
 

Abstract 

Modern spark ignition engines are downsized and boosted to meet stringent emission 

standards and growing customer demands on performance and fuel economy. They 

operate under high intake pressures and close to their limits to engine knock. As the 

intake pressure is increased knock becomes the major barrier that prevents further 

improvement on downsized boosted spark ignition engines. It is generally accepted 

that knock is caused by end gas autoignition ahead of the propagating flame. The 

propagating flame front has been identified as one of the most influential factors that 

promote the occurrence of autoignition.  

Systematic understanding and numerical relation between the propagating flame front 

and the occurrence of knock are still lacking. Additionally, knock mitigation strategy 

that minimises compromise on engine performance needs further researching. 

Therefore the objectives of the current research consist of two steps: 1). study of 

turbulent flame propagation in both naturally aspirated SI engine. 2) study of the 

relationship between flame propagation and the occurrence of engine knock for 

downsized and boosted SI engine. The aim of the current research is, firstly, to find 

out how turbulent flames propagate in naturally aspirated and boosted S.I. engines, 

and their interaction with the occurrence of knock; secondly, to develop a mitigation 

method that depresses knock intensity at higher intake pressure.  

Autoignition of hydrocarbon fuels as used in spark ignition engines is a complex 

chemical process involving large numbers of intermediate species and elementary 

reactions. Chemical kinetics models have been widely used to study combustion and 

autoignition of hydrocarbon fuels. Zero-dimensional multi-zone models provide an 

optimal compromise between computational accuracy and costs for engine simulation. 

Integration of reduced chemical kinetics model and zero-dimensional three-zone 

engine model is potentially a effective and efficient method to investigate the physical, 
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chemical, thermodynamic and fluid dynamic processes involved in in-cylinder 

turbulence flame propagation and knock. 

The major contributions of the current work are made to new knowledge of 

quantitative relations between intake pressure, turbulent flame speed, and knock 

onset timing and intensity. Additionally, contributions have also been made to the 

development of a knock mitigation strategy that effectively depresses knock intensity 

under higher intake pressure while minimises the compromise on cylinder pressure, 

which can be directive to future engine design. 
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Chapter One: Introduction 

 

1.1 Background 

In the past a few decades, the development of spark ignition (SI) internal combustion 

engines (ICEs) has been vastly driven by the emission standards which have become 

more and more stringent year on year and the increasing customers’ environmental 

awareness. Although a number of emission-reduction technologies have been put into 

practice, some new strategies must be deployed to meet the upcoming tighter EURO 

VI standard. New powertrain technologies, such as fuel-electric hybrid, electric with 

range extender engine, fully electric, fuel cell, have been proposed and some are 

already commercialised. However the popularisation of these new technologies are 

restricted by a series of handles including costs, practicality, infrastructure and 

reliability issues (Walzer 2001).  

In recent years car manufacturers have turned back to ICE to look for a more practical 

and cost-effective solutions in responding to the imperative for improved fuel economy 

and reduced emissions. Among all solutions, engine downsizing has been the most 

established one and almost all manufacturers are offering engines that are downsized 

to some degree or preparing to deliver them (Hancock et al. 2008), (Hadler 2009), 

(Friedfeldt et al. 2012). 

1.1.1 Engine Downsizing 

The term ‘Engine Downsizing’ refers to the concept of using a engine with smaller 

displacement to meet the performance targets while giving improved fuel economy 
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and reduced emissions. The most common approach to achieve this is through 

turbocharging and/or supercharging the engine. Both techniques force more air to be 

inducted into the engine, allowing more fuel to be burnt and generate more power. 

The engine behaves as a normal small engine when not worked hard, delivering 

improved fuel economy and reduced emissions (Taylor 2008).  

The engine load is controlled by a throttle which controls the amount of air that flows 

into the engine to vary the power output. Thus, the power output of an engine can only 

be increased by the increase of the engine’s displacement. However, delivering this 

power using a large displacement means that for the majority of time the engine only 

works at a fraction of its maximum designed power and is therefore very inefficient. 

Engines with smaller displacement is less throttled at the same loading conditions 

than engines with larger displacement, thus featuring less pumping loss and, 

consequently, a higher real compression ratio which leads to more efficient operation, 

as shown in Fig.1-1. Additionally, smaller engines are more mechanically efficient as 

the power loss due to internal friction is reduced as the engine displacement becomes 

smaller (LAKE et al. 2004; Fraser et al. 2009), (Miller et al. 2013). 

Fig. 1-1 The reduction in displacement pushes the engine to work at higher load 

(B.M.E.P.) and improves the fuel consumption (B.S.F.C.) (Miller et al. 2013). 
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1.1.2 Examples of downsized engines 

Volkswagen 1.2 TFSI engine  

The VW 1.2 TSI engine is the latest product under the manufacturer’s Downsizing 

design philosophy. This four-cylinder unit, which has been designed to replace the old 

1.6 and 2.0 litre naturally aspirated M.P.I. engines, is equipped with direct injection, 

fuel stratified injection and turbocharging technologies. The combination provides 

high specific torque from much lower revs and it is maintained over a wide range of 

engine speed. This makes cars equipped with these engines more lively at lower 

engine speeds, which in turn makes them more economical and cleaner.  

 

Fig. 1-2 Performance comparison of Volkswagen 1.6 M.P.I. engine and the 
downsized 1.2 TFSI engine on two generations of the Golf (Hadler 2009). 

Ford 1.0 Ecoboost engine 

This 1.0 litre turbocharged engine from the Ford’s Ecoboost family is a three-cylinder 

unit with direct injection, turbocharging and Ti-VCT technologies. The three-cylinder 

design significantly reduces the volume of the engine block which is of only the size of 

a A4 paper. Unbalanced flywheel has been employed to smooth out the natural 

vibration due to the three-cylinder design. The 1.0 litre Ecoboost unit has been 

designed to replace a series of small naturally aspirated M.P.I. engines. 
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Fig. 1-3 Performance comparison of the Ford 1.6 M.P.I. engine and the 
downsized 1.0 Ecoboost engine on two generations of the Focus (Friedfeldt et 
al. 2012). 

1.2 Motivation of the Current Research 

To recover the power loss due to the displacement reduction, turbochargers and/or 

superchargers with boost pressures that are much higher than these on traditional 

turbocharged/supercharged engines are fitted to the downsized engines (Hancock et 

al. 2008). The increase in the boost pressures leads to significantly increased intake 

temperature and pressure. As a result, the propensity for unburnt mixture autoignition 

is higher than ever before (Attard et al. 2007).  

The autoignition phenomenon in spark ignition engines was first recognized as early 

as in 1900’s and identified as the major cause of the engine knock. Until the present 

time, the understanding of autoignition is still limited to its negative effect on spark 

ignition engine development (Liu 2010). 

The undesirable contribution of the engine knock forces compromises to be made to 

the engines’ operation strategies to deviate from operating at the optimal conditions, 

such as the compression ratio, EGR fraction and ignition timing (Zhen et al. 2013; 

Zhen et al. 2012). These compromises severely restrict the benefit of engine 

downsizing to be fully realized. 
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During the process of autoignition, the combustible mixture of fuel and oxidizer react 

in a self-accelerating manner and, eventually, ignite spontaneously leading to 

combustion. The autoignition process is kinetically-controlled by the chemical chain 

reactions between the fuel and the oxidizer molecules rather than any external ignition 

sources. The temperature of the mixture will gradually increase and accelerate when 

the energy released from chemical reactions exceeds the energy loss to the 

surroundings. At a temperature that is high enough to supply the activation energy, 

the reaction becomes a thermal explosion with large amount of energy being released 

in a very short period of time (Liu 2010). 

In spark ignition engines, autoignition occurs within the unburnt mixture ahead of the 

propagating spherical flame front as a result of the piston motion and the propagating 

flame front. The compression work exerted by the piston and the flame front and the 

heat flux from the flame front act as external ignition sources that further raise the 

unburnt mixture temperature that accelerates the unburnt mixture autoignition 

process (Liu 2010). Thus it can be concluded that the temperature-sensitive 

autoignition phenomenon in spark ignition engines is significantly influenced by the 

flame speed and the thermal-chemical properties of the combustible mixture. 

The combustion mode within spark ignition engines is turbulent premixed combustion 

with a wide range of temperature and pressure variations within one cycle and from 

one cycle to another (Heywood 1994). The key parameter for an accurate prediction 

of the unburnt mixture temperature and pressure (and therefore the autoignition of the 

unburnt mixture) is the knowledge of the turbulent flame speed throughout the 

combustion process. Though a lot of efforts have been dedicated into the studies of 

turbulent flame propagation in spark ignition engines, the understanding is still limited 

by its transient and unsteady nature. It has been a challenge to numerically simulate 

the turbulent flame speed in spark ignition engines due to the fact that it is the 

outcome of the interactions between the laminar flame speed and the turbulent 
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quantities, the physicochemical quantities and the external disturbances (Byun 2011). 

Thus, successful calculation of the laminar flame speed is the first and the most 

important step in turbulent flame speed simulations. 

Laminar flame speeds of spherical flames of a fuel or fuel blends are usually acquired 

experimentally using constant volume combustion bombs with sophisticated control 

system and temperature and pressure measurement devices. The bomb pressure 

history is used to obtained the laminar flame speed through thermodynamic analysis 

(Rahim et al. 2002; Metghalchi & Keck 1982; Bradley et al. 1996; Gu et al. 2000; 

Metghalchi & Keck 1980; Rozenchan et al. 2002; Kelley & Law 2009; Hu et al. 2009; 

Gülder 1982; Dowdy et al. 1991; Liu et al. 2013; Verhelst et al. 2005; Iijima & Takeno 

1986; Saeed & Stone 2004; Milton & Keck 1984; Lewis & von Elbe 1934; Verhelst et 

al. 2011; Tang et al. 2008). The laminar flame speeds obtained in this way contain 

effects of ignition and flame stretch in the initial stage of flame propagation, where the 

flame radius is small. Also it includes effects of combustion bomb geometrical 

confinement (if the combustion bomb is non-spherical or the flame is not ignited 

centrally in a spherical combustion bomb) and flame instabilities in the later stages of 

its propagation, where the flame radius is large (Burke et al. 2009). Additionally, it is 

subject to relative thermal expansion all the way through the flame propagation 

process (Tang et al. 2008). Due to these effects, such laminar flame speed is not as 

simple as one of the fundamental properties of a specific fuel. Therefore, the 

propagation mechanism of a laminar flame and its interactions with these 

above-mentioned effects still need to be systematically described and numerically 

characterized. Therefore the modelling of laminar flame speed should be split into two 

parts. Firstly, the chemical part that deals with the combustion occurs within the 

reacting flame front which is closely linked with the thermo-chemical and transport 

properties of the mixture. Secondly, the part that describes the effects of flame stretch 

and instabilities.  



Chapter One: Introduction 
 

 

  7 
 
 

The chemical part of laminar flame speed simulations is often ignored in available 

spark ignition engine models (Heywood 1994)(Liu & Chen 2009)(Stone 1987)(Ball et 

al. 1998)(Shayler et al. 1990)(Rakopoulos & Michos 2008). Instead, the combustion 

and flame propagation processes are replaced by mass fraction burnt functions such 

as the Wiebe functions. These models’ capabilities of combustion chemistry 

simulation is limited or restricted to the use of chemical equilibrium calculations (Liu & 

Chen 2009). Thus, modelling laminar flame speed in relation with chemical kinetics 

provides a convenient tool for spark ignition engine simulation in terms of better 

understanding of the mechanism of turbulent flame propagation and the abnormal 

engine operations. Additionally, it provides the potentials of predicting the post-flame 

reactions and engine-out emissions. 

Chemical kinetics of fuels used in spark ignition engines has been widely studied and 

can be generally interpreted as an oxidation process of fuel molecules involving a 

series of complex degenerate chain branching, carrying and terminating reactions 

with stable and intermediate radical species. Chemical kinetics mechanisms have 

been investigated and acknowledged as an important tool in the analysis of the rates 

of chemical processes and the factors that affect these rates. A chemical kinetics 

mechanism contains important elementary reactions and individual species and uses 

the best available rate parameters and thermo-chemical data. The size of such a 

model is decided by the numbers of reactions and species included in the model, 

which ranges from reduced models with only a few species and reaction steps to 

detailed models consisting of hundreds of chemical species and thousands of 

reactions. 

The challenge arisen from using chemical kinetics in flame and engine simulations 

comes from the expansive computation cost. The computational power of modern 

computers has greatly advanced but is still not powerful enough to efficiently handle 

chemical kinetics calculation in cooperation with multidimensional modelling. In the 
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simulation of combustion in spark ignition engine simulation, the integration of 

computational fluid dynamics (CFD) model with detailed chemical kinetics models, 

theoretically, provides unparalleled simulation accuracy and details in presenting 

combustion chamber geometries and combustion behaviour. However, numerical 

modelling of this scale requires substantial computer resources. The latest 

commercial IC engine simulation package that combines CFD and kinetics, the 

Chemkin Fort �́�  (Anon 2013), solves a complete HCCI cycle using a detailed 

mechanism and 10000 mesh cells in the magnitude of 10 hours. 

1.3 Aim and Objectives 

The aim of the current research is, firstly, to find out how turbulent flames propagate in 

naturally aspirated and boosted S.I. engines, and their interaction with the occurrence 

of knock; secondly, to develop a mitigation method that depresses knock intensity at 

higher intake pressure. The current study will fulfil the knowledge gap in existing SI 

engine combustion models and demonstrably predicts the flame propagation process 

and its relation to unburnt gas auto-ignition. 

The major objectives of the current research are as follows: 

1. To establish an understanding of the existing theories and modelling 

philosophies of SI engine combustion and the knock phenomenon. 

2. To establish an understanding of chemical kinetics and the 

currently-available hydrogen- and gasoline-oxidation chemical kinetics 

mechanisms. 

3. To formulate a transient laminar flame speed model in a constant volume 

combustion vessel to validate the philosophy of modelling transient laminar 

flame speed using chemical kinetics. 
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4. To establish a linkage between laminar and turbulent flame speeds using 

existing theories and numerically formulate and validate a model for turbulent 

flame speed a naturally aspirated SI engine. 

5. Based on (4), to manipulate the input conditions and study the relation 

between turbulent flame speed and the knock phenomenon. Additionally, to 

develop a knock mitigation method that depresses knock while minimises 

compromises on engine performance. 

1.4 Outline of the Thesis 

Chapter 1: Introduction 

The first chapter of the thesis provides background knowledge of modern downsized 

turbocharged spark ignition engines and discusses the aim, objectives and the outline 

of the thesis. 

Chapter 2: Literature Review 

The second chapter reviews the existing modelling philosophies of spark ignition 

engine combustion and the knocking phenomenon. Also included in this chapter are a 

brief introduction of chemical kinetics and review and discussion of available 

hydrogen- and gasoline-oxidation kinetics mechanisms. 

Chapter 3: Instabilities of Spherical Hydrogen-air Flames 

The third chapter introduces fundamental theories for cellular instabilities of outwardly 

propagating spherical flame. Based on experimental results, discuss the effects of 

temperature, pressure and equivalence ratio on the onset of cellular instabilities of 

spherical hydrogen-air flames 

Chapter 4: Calculation of Transient Laminar Flame Speed 

The forth chapter reports a transient laminar flame speed model which consists of a 
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one-dimensional three-zone thermodynamics model and an in-house chemical 

kinetics solver which solves a reduced hydrogen-oxidation kinetics mechanism for the 

in-flame combustion simulation. The results obtained will be validated against 

experimental data. 

Chapter 5: SI Engine Flame Propagation Simulation 

This chapter will report the integration of the transient laminar flame speed, turbulent 

flame correlation and the engine geometry model developed in previous chapters. 

This integration will enable the study of flame propagation in a naturally aspirated SI 

engine. Detailed descriptions of the major components and the functionality of the 

numerical model will be presented. The results obtained will be validated against 

available data from open literature. 

Chapter 6: Downsized Boosted SI Engine Knock Simulation 

This chapter will describe and discuss the effects of downsizing and turbocharging on 

the flame propagation and its relation to the unburnt gas auto-ignition and, potentially, 

the knocking phenomenon. 

Chapter 7: SI Engine Knock Mitigation 

This chapter discuss a SI engine knock mitigation strategy that supress the knock 

while minimises the compromises on engine performance.  

Chapter 8: Conclusions and Future Work 

The final chapter of the thesis will discuss and conclude the achievements and the 

deficiencies of the current research work. Future work that can be done to improve the 

current work will be suggested. 
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Chapter Two: Literature Review 

 

2.1 SI Engine Combustion 

In S.I. engines with a conventional pan-shaped combustion chamber, the turbulence 

is mostly generated by the high shear flows during the induction process and modified 

during the compression. It is well established that the turbulence intensity as well as 

the mean flow increases almost in a linear fashion with increasing engine speed 

(Daneshyar & Hill 1987). The turbulence decays rapidly towards the end of the 

induction process and the characteristic dissipation time for the turbulent kinetic 

energy is smaller than the engine time scales. The turbulence during the induction 

exhibits a strong anisotropy, and the turbulence intensity as well as the mean velocity 

shows significant spatial variations. For disc shaped chambers, the turbulence when 

averaged over several cycles, displays a homogeneous and more isotropic structure 

towards the end of the compression stroke for both swirling and non-swirling flows 

(Gülder & Smallwood 2001).  

As shown in Fig. 2-1, it is widely accepted that the combustion regime in premixed SI 

engines falls into the wrinkled flame regime (Gülder & Smallwood 2001) and such 

conclusion is supported by extensive experimental results. By using molecular 

Rayleigh scattering, one researcher (Keck 1982) found that the flame front in spark 

ignition engines is made up of wrinkled laminar flames and islands of unburnt mixture 

may appear occasionally. For low-intensity large-scale turbulence, Damkohler (1947) 

proposed that ST/SL, the ratio of the turbulent burning velocity (ST) to the laminar 

burning velocity (SL), is proportional to Aw/Ao, the ratio of the wrinkled flame surface 

area (Aw) to the flow cross section area (Ao). For high-intensity, small- scale 
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turbulence, combustion takes place in a distributed manner rather than a front 

propagation. Williams (1985) further claimed that, under the wrinkled turbulent 

combustion regimes, the process can be separated from the turbulence. Therefore, it 

is feasible to study the turbulent combustion process as a combination of two distinct 

phenomena: laminar flame propagation and turbulent flow field. 

2.1.1 Regimes of SI Engine Combustion 

In Fig. 2-1 premixed turbulent combustion is classified into several regimes according 

to velocities, length scale and a number of dimensionless parameters (Peters 2000).  

Several scales can be defined in the study of turbulence. The integral time scale, 𝝉𝒕, 

associated with energy dissipation of large eddies is defined as: 

                                𝝉𝒕 = 𝒍𝒕
𝒖𝒕′

                              (2-1) 

                                  𝒍𝒕 = 𝑪𝑫
𝒖𝒕′

𝟑

∈
                            (2-2) 

where 𝒍𝒕 is the integral length scale of the large energy-containing eddies, 𝒖𝒕′  is the 

r.m.s turbulent velocity and 𝑪𝑫 is the turbulent length scale constant. The chemical 

time scale, 𝝉𝒄, is defined as: 

                            𝝉𝒄 = 𝜶
𝑺𝑳

𝟐 ;  𝜶 = 𝒌
𝝆𝑪𝒑

                         (2-3) 

where 𝜶 is the thermal diffusivity and 𝒌 is the thermal conductivity. The smallest 

eddies in a turbulent flow are characterized by the Kolmogorov time, velocity, and 

length scales: 

                      𝝉𝜼 =  (𝝊
𝝐
)𝟏/𝟐;  𝝂𝜼 = (𝝊𝝐)𝟏/𝟒;  𝜼 = (𝝂

𝟑

𝝐
)𝟏/𝟒                (2-4) 

Some dimensionless parameters can be defined from above-mentioned time and 

length scales. These parameters are used to distinguish different combustion 
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regimes. 

Turbulence Reynolds Number (𝑹𝑹𝒕): 

                                   𝑹𝑹𝒕 = 𝐮𝐭′𝐥𝐭
𝛎

                            (2-5) 

The turbulence Reynolds number characterises a turbulent flow in terms of the 

turbulence RMS velocity, 𝐮𝐭′. It represents the ratio between the inertia force and the 

viscous force of the flow.  

Damkohler Number (𝑫𝑫): 

                                   𝑫𝑫 = 𝝉𝒕
𝝉𝒄

                             (2-6) 

The Damkohler number represents the ratio between the turbulence time scale and 

the chemical time scale. It indicates which one of these two effects is more dominant.  

Karlovitz Number (Ka): 

                                   𝑲𝑫 = 𝝉𝒄
𝝉𝜼

                             (2-7) 

It defines the ratio of the chemical time scale and the Kolmogorov scale. When 

𝑲 ≪ 𝟏  the chemical reactions occur much faster than all turbulent scales.  

Turbulence does not alter the flame structure and the chemical region is laminar. 

Prandlt Number (Pr): 

                                   𝑷𝑷 = 𝝂
𝜶
                              (2-8) 

The Prandlt number represents the ratio between the viscous force and the thermal 

diffusivity. It can related to the thickness of the thermal and velocity boundary layers. 

Lewis Number (Le): 

                                   𝑳𝑹 = 𝜶
𝑫
                              (2-9) 

The Lewis number is the ratio between the thermal and molecular diffusivity of a 

species. 
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Fig. 2-1 Illustration of regimes of turbulent premixed combustion. The rectangle 

identifies the regimes of SI engines (Heywood 1988). 
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2.1.2 SI Engine Modelling 

Multi-dimensional CFD models 

Multidimensional modelling has been adopted as a powerful tool to investigate and 

analyse phenomena occurring in internal combustion engines, particularly with the 

rapid increase of computer power in recent years. Theoretically, a full-scale 

integration of CFD model of fine grid design with detailed chemical kinetics model 

provides unrivalled simulation accuracy and details of in-cylinder flow and combustion 

behaviours. However, a model at this numeric scale requires substantial CPU 

computing speed, large-scale storage and robust and fast numerical algorithm. Even 

with today’s advanced high performance computers, the simulation time of such 

models is still measured in weeks or months. 

Several solutions have been proposed trying to find the balance between the 

computational costs and the simulation accuracy. Reitz et al. (2006) adopted a 

7-species chemical equilibrium model into his multi-dimensional engine model. The 

turbulent flame location, local temperature and pressure and the heat release rate are 

computed using KIVA-3V CFD codes with a mesh size in the range of 2-5mm. Burnt 

products are assumed to reach thermodynamic and chemical equilibrium states 

immediately behind the flame brush. 

Other researchers proposed cost-reduction solution methods that either adopted a 

global or reduced chemical kinetics mechanism (Li et al. 2003; Kong & Reitz 1993; Ali 

et al. 2003) or a reduced CFD mesh to one- or two-dimensional (Iida et al. 2003; 

Iwashiro et al. 2002). These methods suffer from either degraded simulation accuracy 

or computational costs that are still relatively high. 

Aceves et al. (2000) was among the first researchers who presented hybrid approach 

that formed a segregated sequential CFD multi-zone thermo-kinetic model. In the 
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model, a detailed chemical kinetics model is implemented into a KIVA-2.1 CFD solver 

and a multi-zone thermodynamics model. The CFD model is responsible for solving 

the temperature and mixture formation process in the compression stroke until the 

ignition timing. The multi-zone model takes over from the ignition and simulates the 

combustion and expansion processes. These zones are defined by mass distribution 

and mixing between adjacent zones is disallowed. The model was validated against 

experimental results and showed good capability of predicting cylinder pressure and 

burn rate. The model also successfully reduced the computation time scale from 

weeks or months to hours or days. However, the model failed on the prediction of HC 

and CO emissions which are critical in modern engine design. 

Quasi-dimensional multi-zone models 

Quasi-dimensional models are used to simulate the ‘closed’ part of the S.I. engine 

cycle as they cannot properly predict the intake and exhaust strokes due to their 

dimensionless nature (Verhelst & Sheppard 2009). Quasi-dimensional models are 

distinguished from zero-dimensional models by the inclusion of certain geometrical 

parameters in the basic thermodynamic approach. This usually includes the radius of 

a thin flame front that separates the burnt and unburnt zones, creating a two-zone 

formation. 

One advantage of these zero-dimensional models is the avoidance of the modelling of 

the in-cylinder process. Instead of considering the intake, mixture preparation, 

combustion and exhaust processes, a zero-dimensional model uses a pre-defined 

mass burning rate, also known as the Wiebe function (Liu & Chen 2009), to describe 

the combustion process. When the engine operating point stays the same Wiebe 

functions provide unrivalled simulation accuracy as it, in fact, works back from known 

experimental results. However as each Wiebe function is empirically defined as a 

specific engine operating point, extrapolation to other operating points is problematic. 
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Most quasi-dimensional S.I. engine models adopt a two-zone formation, assuming 

that the flame is a ultimately thin transition layer that transport mass and energy 

between the burnt and unburnt zones (Liu & Chen 2009). Additionally, the flame is 

assumed to be adiabatic and in chemical and thermodynamic equilibrium. The 

unburnt mass entrained into the flame is assumed to be consumed and transferred 

into burnt mass instantaneously. The burnt mixture composition is calculated using 

chemical equilibrium at a pre-defined combustion temperature and pressure. Typically, 

up to 12 species are considered in the equilibrium calculation: H2O, H2, OH, H, N2, 

NO, N, CO2, CO, O2, O and Ar (Verhelst & Sheppard 2009). The actual number of 

species considered varies when the interests of the simulation shifts from just the 

combustion process. Reitz et al. (2006) used a 7-species chemical equilibrium system 

to determine the burnt mixture composition but an additional 10-species and 

9-reaction kinetics model was adopted to predict the formation of NO and NO2. Liu et 

al. (2009) proposed an zero-dimensional two-zone model to study the knock in S.I. 

engine. A chemical equilibrium containing 32 species was used in Liu’s model. The 

larger equilibrium system was chosen in order to keep accordance to the number of 

species included in the reduced chemical kinetics mechanism used to predict end gas 

autoignition. 

In additional to the two-zone layout, some researchers developed a thermal boundary 

layer between the unburnt zone and the cylinder wall (Fiveland & Assanis 2001; 

Puzinauskas & Borgnakke 1991; Borgnakke et al. 1980), as shown in Fig. 2-2. The 

addition of the boundary layer aids the fundamental understanding of the heat transfer 

process inside the cylinder. 
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Fig. 2-2 Illustration of the interactions between the adiabatic core and the 

thermal boundary layer in a two-zone HCCI engine combustion model (Fiveland 

& Assanis 2001). 

2.2 Engine Knock 

Ideally, the spark-ignited flame should propagate steadily across the combustion 

chamber and consume the fresh charge. However abnormal combustion phenomena, 

such as the knock, are the major obstacles that prevent the improvements on engine 

thermal efficiency and specific power output. The causes of the engine knock include: 

engine design, operating parameters and combustion chamber deposits. The major 

causes of engine knock specifically occur in S.I. engines are categorised into two 

types: autoignition and surface ignition. 
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2.2.1 Autoignition 

The combustion process in modern S.I. engines is precisely controlled by the spark 

ignition timing towards the end of the compression stroke. A flame kernel is formed a 

few milliseconds after the spark is fired. The flame kernel continues to grow outwardly 

and becomes a self-sustainable turbulent flame. The turbulent flame propagate 

across the combustion chamber to gradually consume the combustible fresh charge. 

As the flame propagates across combustion chamber the end gas is compressed by 

the flame front and the upward motion of the piston, causing pressure, temperature 

and density to increase. Some of the end gas fuel-air mixture may undergo slower 

pre-flame chemical reactions and start to release heat energy. This phenomenon is 

generally termed as ‘Autoignition’ (Heywood 1988). The autoignited end gases then 

burn very rapidly releasing energy at a rate 5 to 25 times higher in comparison to 

normal combustion. The occurrence of end gas autoignition depends on the 

competition between the consumption rate of the turbulent flame and the pre-flame 

chemical reactions ahead of the flame. If the end gas that has already autoignited is 

not consumed by the flame before the chemical reactions proceed to a critical level, 

sharp local temperature and pressure increase will occur (Liu 2010). 

A sonic pressure wave is then created by the autoignition and it spreads across and 

resonates in the combustion chamber. This causes high frequency pressure 

oscillations inside the cylinder that produce sharp metallic noise and excessive 

vibration to the engine block. Such manifestations are termed as the knock. Knock is 

undesirable as high pressure and local temperature can cause severe engine 

damage and is unpleasant to the driver and the passengers of the car. Fig. 2-3 

illustrates normal combustion and knocking combustion processes of S.I. engines. It 

has been acknowledged that knock is most likely to occur under high engine load at 

low engine speed. High engine load generates high cylinder temperature and 

pressure which triggers the end gas autoignition. Low engine speed allows the 
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autoignition longer resident time to grow into a knocking combustion (Liu 2010). 

 

Fig. 2-3 Illustration of a normal combustion process and a knocking 

combustion process is S.I. engines (Zheng 2005). 

The chemical kinetic reaction rates of the end gas are dependent on the local 

temperature, pressure and mixture strength. The following thermodynamic expression 

describes the P-T relationship for an adiabatic compression process: 

                             𝑻 =  𝑻𝒊 ∙  (𝑷 𝑷𝒊� )
𝜸−𝟏

𝜸�                        (2-10) 

where 𝜸  is the specific ratio of heat capacity. 𝑻𝒊  and 𝑷𝒊  represent the initial 

temperature and pressure at the start of the compression stroke, respectively. Eq. 

2-10 shows that the both temperature and pressure will increase if one of them is 

increased intentionally. Therefore, any factor that affects the mixture temperature and 

pressure will influence the occurrence of autoignition. There are several engine 

operating parameters that are considered to be important in the triggering of 

autoignition: 

Spark Timing : Change of the ignition timings affects combustion phasing. 

Retarded ignition timings cause lower overall in-cylinder pressure because the 
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combustion phasing is shifted away from the TDC position, which leads to the main 

combustion with major heat release occurs within a larger and faster expanding 

volume as the piston is moving downward. As a contrast, advanced spark timings 

causes earlier combustion that results in higher cylinder pressures. Knock 

occurrence is more subject to earlier spark timings because of the maximum end-gas 

temperature is increased. 

Compression Ratio: With increased compression ratios, the volume swept by the 

piston during the compression and combustion phases becomes smaller. This leads 

to more intense compression on the end-gas and higher heat release from the mixture. 

As a result, a higher compression ratio increases the cylinder pressure and end gas 

temperatures. 

Air-Fuel Ratio: At different AFRs, the in-cylinder mixture shows different combustion 

strength. Change of the mixture composition and thermodynamic properties affects 

combustion rates and the energy release, which in turn affects the cylinder pressure 

and the end-gas temperatures. 

Intake Pressure: A higher intake pressure forces a larger amount of air-fuel mixture 

into the cylinder with higher initial pressure and volumetric efficiency cylinder, which 

consequently leads to higher overall in-cylinder pressure and combustion 

temperature. 

Intake Temperature: It can be deduced from Eq. 2-1 that mixture temperature in the 

compression process scales closely with initial temperature. Higher initial 

temperatures lead to higher overall mixture temperatures throughout the compression 

and combustion processes, which promote the rates of autoignition reactions. 

EGR: Using EGR increases the total heat capacity of the end-gas and consequently 

reduces the temperature rise of the gas, which thermally diminishes knock tendency. 

However, the large number of reactive species present in the exhaust gas can also 
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promote autoignition by chemical means. 

Engine Speed: The chemical reactions of the end-gas takes time to proceed. At lower 

engine speeds, flame propagating speed become equivalent to or slower than the 

reaction characteristic time, so autoignition reactions is more likely to build up and 

advance. 

Charge Preparation: The flow dynamic motion (turbulence, swirl, and tumble) affects 

the homogeneity of the mixture, which has a significant effect on combustion process. 

Local inhomogeneity of the mixture could lead to incomplete combustion or regionally 

high combustion temperature. 

Combustion Chamber Geometry: The general shape of the combustion chamber, 

as well as spark plug location, affects the flame front area and the distance the flame 

front travels. Longer flame travel distance results in longer combustion duration and 

more time for autoignition chemistry to proceed. 

2.2.2 Surface Ignition 

Surface ignition describes the phenomena when the unburnt mixture is ignited by the 

overheated components in the cylinder or by glowing deposits. Those overheated 

components are typically the exhaust valves and the spark plug. Typical examples of 

glowing deposits can be carbon deposits and hot engine oil droplets (Dahnz et al. 

2010). Surface ignition can occur before the spark ignition (pre-ignition) or after the 

spark ignition (post-ignition). Surface ignition creates one or multiple propagating 

flame fronts which interact with the main flame front to generate knocking combustion. 

The knock induced by surface ignition may be more intense than that induced by end 

gas autoignition. The reason being that multiple flame fronts can be ignited by the 

glowing deposits very early in the compression stroke and lead to more rapid heat 

release and rises of cylinder temperature and pressure (Heywood 1988). The knock 
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originated from surface ignition cannot be controlled or mitigated effectively by the 

methods mentioned above.  

2.2.3 The knock models  

The modelling of end gas autoignition consists of two major categories: empirical 

correlations and chemical kinetics modelling (Heywood 1988). The experimental 

methods and empirical correlations are used to study end gas autoignition when the 

fundamental understanding of the chemistry involved were incomplete. Over the 

years, chemical kinetics modelling attracts more and more attention in the study of 

end gas autoignition, thanks to both improved understanding of autoignition chemistry 

and greatly advanced computational power. Numerical modelling provides a simple 

and cost-effective way of study end gas autoignition, compared to experimental 

methods. 

Empirical correlations 

The empirical expression for autoignition is derived by matching an Arrhenius function 

to measured data obtained from ignition delay time experiments. For a given 

fuel-oxidizer mixture under the conditions of P and T, the ignition delay time is 

expressed as: 

                             𝝉 = 𝑨 ∙  𝑷−𝒏 ∙ 𝑬𝑬𝑷(𝑩 𝑻⁄ )                    (2-11) 

where A and B are fitting parameters dependent on fuel types and are obtained based 

on experimental results. A reaction progress coefficient, c, is integrated to predict the 

occurrence of knock with temporal histories of temperature and pressure (Bray et al. 

1994).  Autoignition is deemed to occur when 𝝉 exceeds a threshold value. Douaud 

and Eyzat (1978) proposed a correlation that has been extensively tested and widely 

accepted: 
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                    𝒄 = 𝟏𝟏.𝟔𝟔 ∙ (𝑶𝑶
𝟏𝟏𝟏

)𝟑.𝟒𝟏𝟐  ∙  𝑷−𝒏 ∙ 𝑬𝑬𝑷(𝟑𝟔𝟏𝟏 𝑻⁄ )            (2-12) 

where 𝝉 is the induction time in milliseconds and ON is the octane number of the fuel. 

Empirical autoignition correlations in this form can be used in S.I. engine models. 

Although the correlations, by their own, are extensively tested, their ability of 

accurately predicting knock is still unclear in practice. Additionally, these correlations 

are too simple to prove any information on the reaction process.  

Chemical kinetics modelling 

The autoignition is a complex chemical process that involves hundreds of species and 

thousands of elementary reactions. Autoignition of simpler fuels, e.g. hydrogen, may 

include around 10 species and 20 reactions (O Conaire et al. 2004), while that of 

heavy hydrocarbon fuels, e.g. n-heptane, can contain more than 500 species and 

3000 reactions (Curran et al. 1998). 

In order to obtain complete predictions of any autoignition process, one should have 

all the reaction rate constants and elementary reaction steps in hand and powerful 

computational resource at acceptable cost. At the present time none of the above two 

requirement is fulfilled: the understanding of the elementary steps and rate constants 

is still lacking, the high performance computers are too costly to be widely used. 

However, chemical kinetics modelling has still been greatly advanced in the past a 

few decades and is becoming an essential tool in the design and research of 

combustion systems. Westbrook and Dryer (1984) attributed the advancement of 

chemical kinetics modelling to the following factors: 

1. Larger amount of elementary kinetic data becomes available. 

2. Improvement in reaction rates estimation. 



Chapter Two: Literature Review 
 

  25 

 

3. Development of faster and more reliable numeric algorithms. 

4. Continuous advancement of computers 

More information with regards to chemical kinetics and its applications in hydrogen 

and hydrocarbon oxidation studies is available in later chapters. 

2.3 Laminar flames 

Laminar flames are of great importance in the study of IC engine combustion. 

Premixed laminar flames can be adequately described by precise definitions of the 

following aspects: inner flame structures; flame thickness; dynamics of flame and 

flame stretch (Groot 2003). 

2.3.1 Laminar flame structure 

According to the temperature and species concentration gradients, a premixed flame 

can be considered to consist of three distinctive layers: the pre-heat layer, the inner 

layer and the oxidation layer, as shown in Fig. 2-4. During combustion the flame acts 

as a conversion layer that lies between the unburnt zone, where a large amount of 

fuel and oxidiser present, and the burnt zone, whereas the amount is significantly 

reduced. In the detailed structure of a flame, the temperature increases smoothly from 

the initial in the pre-heat zone to its final state inside the oxidation layer. The 

concentrations of the intermediates and products will change in a similar manner, 

whereas the concentrations of fuel and oxidiser show a significant decrease.  

The pre-flame layer refers to the unburnt mixtures that are immediately upstream of 

the inner layer. Chemical reactions within this layer proceed with very slow reaction 

rates and can be considered as chemically inert. The unburnt mixture is heated up by 

the heat flux from the reaction layer. In general, the pre-flame zone can be seen as a 

mixture preparation zone for the reaction layer. 
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The reaction zone is further divided into two sub-layers: the inner layer and the 

oxidation layer. In the inner layer, or often referred as fuel-consumption layer, fuel is 

consumed and converted into hydrogen and carbon monoxide, and active radicals are 

depleted by chain-breaking reactions. The inner layer makes most of the visible part 

of the flame and the visibility is due to those electronically-excited light-emitting 

species, such as CH, CN, C2, and CHO, returning to their ground state. The inner 

layer is the thinnest compared to pre-flame layer and oxidation layer, typically by the 

order of one fifth to one tenth (Peters 1991). Majority of the energy is released within 

the inner layer and therefore the temperature gradient within the inner layer is the 

sharpest amongst the three layers. The combustion intermediates hydrogen and 

carbon monoxide reach their maximum concentrations within the inner layer. 

The oxidation layer is located downstream of the reaction layer. Within the oxidation 

layer carbon monoxide and hydrogen are further oxidised into carbon dioxide and 

water. Thermodynamic equilibrium of all species is established in the oxidation layer 

rather than the inner layer as the residual time is not sufficient. Chemical reactions 

occur in the oxidation layer are often referred to as post-flame reactions and they play 

an important role in the products formation and the overall heat release of the 

combustion. 

2.3.2 Laminar flame thickness 

Flame thickness is an important scale parameter of any premixed laminar flames that 

it represents the depth of the reaction zone in which the fuel is consumed and bulk of 

heat is released. A classical definition of flame thickness δf is based on a geometrical 

approach, as shown in Fig. 2-5. In this case, the thickness is defined as the interval of 

the steepest tangent to the temperature profile between the unburnt temperature and 

the adiabatic flame temperature (Heywood 1988): 

                                 𝜹𝒇 = 𝑻𝑫𝒂−𝑻𝒖
(𝒂𝑻/𝒂𝒅)𝑻𝒊𝒍

                        (2-13) 
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Fig. 2-4 Schematic illustration of a premixed flame structure with s represents 

the coordinate perpendicular to the flame surface (Gottgens J, Mauss F 1992).  

 

Fig. 2-5 Geometrical definition of premixed laminar flame thickness with s 

represents the coordinate perpendicular to the flame surface (Gottgens J, 

Mauss F 1992). 
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Flame thickness is crucial for the propagation and stability of the flame. The 

temperature and species concentration gradient are shaper across the flame 

front when the flame is thin. These shaper gradients provide stronger driving 

forces that enable the flame to be self-sustaining, i.e., fast and stable diffusion 

of heat and radical species from the reaction zone to preheat zone (Gottgens J, 

Mauss F 1992). The flame thickness itself in turn is a function of several other 

parameters. One of the most influential parameters is the equivalence ratio. 

Andrews and Bradley (1972b) found that the thickness of methane-air flames 

is at its thinnest when the mixture is slightly rich, which matches the 

observation that the laminar burning velocity is at its maximum in slightly rich 

mixtures. 

 

Fig. 2-6 Variation of flame thickness of premixed laminar methane-air flames at 

different fuel-air equivalence ratios (Andrews & Bradley 1972b). 
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2.3.3 Laminar burning velocity 

The laminar burning velocity, denoted as 𝒖𝑳, is one of the most fundamental and 

important properties of premixed flames. It can be defined as the velocity at which a 

flame front moves in the normal direction to its surface into the adjacent unburnt 

mixture due to chemical reactions and the diffusion of heat and mass (Groot 2003). 

Previous research on laminar burning velocities of various fuels revealed that there 

are a few dominating parameters that strongly influence the laminar burning velocity 

(Iijima & Takeno 1986; Liu et al. 2013; Metghalchi & Keck 1982; Bradley et al. 1996; 

Dowdy et al. 1991; Gu et al. 2000; Gülder 1982; Hu et al. 2009a; Metghalchi & Keck 

1980; Milton & Keck 1984; Rahim et al. 2002): 

Fuel-air equivalence ratio: the fuel-air equivalence ratio, denoted as Ф, determines 

the chemical composition the thermo-physical properties of the mixtures, and thus 

strongly affects the chemical reaction rates and combustion efficiency. Experimental 

studies show that laminar burning velocity reaches its maximum value under 

stoichiometric or slightly rich mixtures for hydrocarbon fuels and decreases rapidly if 

the mixtures are further diluted or enriched, as shown in Fig. 2-7: 

Fig. 2-7 Variations of laminar burning velocities of different hydrocarbon fuels 

(LPG, i-butane, n-butane and propane) (Akram et al. 2013). 



Chapter Two: Literature Review 
 

  30 

 

Similar trends are found for other hydrocarbon fuels by Warnatz (1992) and the rapid 

decrease of laminar burning velocity in either side of stoichiometry has been attributed 

to the fact that it becomes more difficult for the flame to maintain its deflagrative wave 

and propagate forward. 

Fig. 2-8 Variations of laminar burning velocities of different hydrocarbon fuels 

(n-C7H18, C4H10, C3H8, C2H6, C2H2 and CH4) against fuel-air equivalence ratio 

(Warnatz 1992). 

However, research on non-hydrocarbon fuels showed a completely different trend of 

the laminar burning velocity. Fig. 2-9 plots the laminar burning velocities of 

hydrogen-air flames obtained by different researchers against air-fuel equivalence 

ratio (λ<1 for rich mixtures). It’s clearly shown that rich hydrogen-air flames attain 

maximum laminar burning velocity at approximately λ = 0.6, i.e., Ф = 1.7. The 

noticeable scatter in laminar burning velocities, particularly for very lean mixtures, is 

attributed to the effects of flame stretching and cellular instabilities on the flames, as 

some results shown (filled symbols) are stretch-free velocities that have been 

corrected for flame stretch while others (open symbols) are based on measurements 
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that did not account for the flame stretching effect. The effects of both flame stretch 

and cellular instabilities will be reviewed and discussed in detail later in this chapter. 

 
Fig. 2-9 Variations of laminar burning velocities of premixed hydrogen-air 

flames against air-fuel equivalence ratio (λ<1 for rich mixtures) at NTP (Verhelst 

et al. 2011). 

Unburnt temperature: the unburnt temperature has great influence on the 

laminar burning velocity. Chemical reactions involved in oxidation of typical 

hydrocarbon fuels are extremely temperature sensitive as they are naturally 

kinetically-driven. Higher unburnt mixture will cause pre-heating effect on the mixture 

and results in higher chemical reactivity and therefore fast laminar burning velocity. 

Kuo (2005a) suggested a relationship between laminar burning velocity and unburnt 

temperature: 

                           𝒖𝑳 ∝  𝑻𝒖𝒎                    (2-14) 

where the exponent m ranges between 1.5 to 2 for different types of fuels. 

Sensitivity analysis of key elementary reactions of methane oxidation mechanism 
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performed by others (Hu et al. 2009a)(Hu et al. 2009b), as shown in Fig. 2-10, reveal 

that the combustion of hydrocarbon and hydrogen is dominated by the competition of 

the key chain branching reaction which contributes to the production of highly active 

radicals:  

H + O2 ↔ O + OH 

and the key chain termination reactions which are responsible of the reduction of 

these highly active radicals: 

H + O2 + H2O ↔ HO2 + H2O 

H + CH3 + M ↔ CH4 + H2O 

The chain branching and termination reactions show high sensitivities to initial 

temperature changes but the sensitivities are reduced as the initial temperature is 

further increased, and such behaviour indicates that the reaction rates of these 

dominating reactions are more influential on the overall reaction under lower initial 

temperatures. Fig. 2-11 and 2-12 illustrate the reaction rates and their change rates of 

the chain branching and termination reactions. Both reaction rates plotted in Fig. 2-11 

increase with the increment of initial temperature so it is difficult to conclude whether 

it’s the chain branching or the chain termination reaction that is more dominating in 

the scenario of increasing temperature. Therefore, it is necessary to investigate the 

change rates of the reaction rates of these two key reactions. In Fig. 2-9 it can be 

clearly seen that the change rate of the chain branching reaction rate is higher than 

that of the chain termination reaction, such phenomenon results in concentration 

increases of highly reactive radicals in the mixture and enhance the laminar burning 

velocity. 
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Fig. 2-10 Sensitivity factors of some key elementary reactions in methane 

oxidation mechanism under different initial temperatures (Hu et al. 2009b). 
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Fig. 2-11 Profiles of reaction rates of dominating chain branching (upper) and 

terminating (lower) reactions of methane oxidation mechanism under 

increasing initial temperature (Hu et al. 2009b). 
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Fig. 2-12 Increase rates of reaction rates of dominating chain branching (R38) 

and terminating (R35) reactions of methane oxidation mechanism under 

increasing initial temperature (Hu et al. 2009b). 

Unburnt pressure: the unburnt pressure is less influential than the unburnt 

temperature does but still has noticeable effect on the laminar burning velocity. 

Theoretically, increasing pressure will increase the collision rates of reacting 

molecules and thus increase the overall reaction rate (House. 2007), which should 

results in enhanced laminar burning velocities. However, previous research showed 

that laminar burning velocities of both non-diluted and diluted mixtures decrease 

exponentially with increasing pressure (Andrews & Bradley 1972b)(Verhelst et al. 

2011)(Hu et al. 2009b)(Tang et al. 2008). Sensitivity analysis of key elementary 

reactions of methane oxidation mechanism performed by Hu et al., (2009a)(2009b), 
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as shown in Fig. 2-14, revealed that the combustion of hydrocarbon and hydrogen is 

dominated by the competition of the key chain branching reaction which contributes to 

the production of highly active radicals:  

H + O2 ↔ O + OH 

and the key chain termination reactions which are responsible of the reduction of 

these highly active radicals: 

H + O2 + H2O ↔ HO2 + H2O 

H + CH3 + M ↔ CH4 + H2O 

As the pressure is increased both reactions show significant sensitivity to the pressure 

change, indicating that both reactions have great influence on the laminar burning 

velocity. Further investigation on the sensitivity of reaction rates on pressure change 

of reactions H + O2 ↔ O + OH and H + O2 + H2O ↔ HO2 + H2O reveal that the 

reaction rates of both chain branching and termination reactions are increased as the 

initial pressure is increased, as shown in Fig. 2-15. However, Fig. 2-16 shows that the 

increase rates of these two reaction rates are not identical. It can be clearly seen that 

with the increasing initial pressure the reaction rate of the chain termination reaction 

increases much faster than that of the chain branching reaction does. Such 

behaviours result in a rapid reduction in the concentrations of highly reactive radicals 

in the mixture. This reduction has been closely related to the retardation of the laminar 

burning velocity by other researchers (C.K. & F.L. 1981; Westbrook & Dryer 1980). 

Above discussions on the effects of temperature and pressure on the laminar burning 

velocity show that the laminar burning velocity is predominantly controlled by the 

concentration variations of the highly reactive radicals, which is vastly influenced by 

the highly temperature- and pressure-sensitive chain branching and termination 

reactions. The chain branching and termination reactions can be enhanced relative to 

each other by the variations of temperature and pressure, respectively, to increase 
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and decrease the laminar burning velocity. 

 

Fig. 2-13 Illustrations of experimental and numerical results of laminar burning 

velocities of methane-air mixtures at different temperatures, pressures and 

levels of hydrogen dilution (Hu et al. 2009b). 

Residual gas fraction: in practical internal combustion engine usage, exhaust gas is 

often re-introduced into the combustion chamber in order to reduce emissions 

(Heywood 1988). The water vapour and CO2 constituent within the exhaust gas are of 

high heat capacity and therefore can absorb larger amount of heat during the 

combustion and effectively reduce the peak cylinder temperature. Lowering the 

combustion temperature slows down the kinetically-driven chemical reactions and 

therefore reduces the laminar burning velocity. Ponnusamy et al. (2005) 

experimentally observed significant reduction in laminar burning velocity with 

increasing EGR fraction, as shown in Fig. 2-17. The ‘simulated’ exhaust gas used by 
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Ponnusamy et al. consists of 81.5% N2 and 18.5% CO2 as it is impractical to 

introduce liquid water or water vapour into the combustion chamber during the intake 

procedure. 

Fig. 2-14 Sensitivity factors of some key elementary reactions in methane 

oxidation mechanism under different initial pressures (Hu et al. 2009b). 



Chapter Two: Literature Review 
 

  39 

 

 

Fig. 2-15 Profiles of reaction rates of dominating chain branching (upper) and 

terminating (lower) reactions of methane oxidation mechanism under 

increasing initial pressure (Hu et al. 2009b).  
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Fig. 2-16 Increase rates of reaction rates of dominating chain branching (R38) 

and terminating (R35) reactions of methane oxidation mechanism under 

increasing initial pressure (Hu et al. 2009b). 

However the specific het capacity, denoted as 𝒄𝒑, of these ‘simulated’ exhaust gases 

is kept within 1% of that for realistic methane-air combustion products (Ponnusamy et 

al. 2005) and therefore reproduces the cooling effect of the EGR well. 

A linear fit yields a reduction of 1.9m/s of laminar burning velocity for every additional 

percentage of EGR for stoichiometric methane-air flame. The reduction of laminar 

burning velocity is attributed to the increased 𝒄𝒑, resulted from the presence of the 

exhaust gases, that brings down the flame temperature. 
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Fig. 2-17 Variation of the laminar burning velocity of stoichiometric methane-air 

flame against different volume fraction of EGR (Ponnusamy et al. 2005). 
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2.3.4 Flame stretch effect 

Stretching of a flame can lead to variations of the fame behaviour compared to a flat 

flame with a purely one-dimensional flow and transport. Systematically understanding 

and numerically quantifying the effect of flame stretch are not only important for 

laminar flames but also for the study of turbulent flames. Karlovitz et al. (1953) was 

the first to introduce and develop the concept of flame stretch: ‘if the flame surface is 

curved or it is non-stationary, as is commonly as a result of non-uniform flow and 

flame expansion, the flame surface suffers the effect of stretch’. The concept was 

originally developed to qualitatively account for the response of flames to the velocity 

gradients in the gas flow and to the curvature of the laminar flame surface. The 

generally accepted definition of the flame stretch rate, 𝑲, is as follows: 

                               𝑲 = 𝟏
𝑨
𝒂𝑨
𝒂𝒕

= 𝟐
𝑷𝒇

𝒂𝑷𝒇
𝒂𝒕

                         (2-15) 

It is a measure of the fractional rate of change of infinitesimal element of the flame 

surface area 𝑨 that moves in the flame propagation speed. Matalon (1983) and 

subsequently Chung and Law (1984) derived a more manageable and concise 

expression for the flame stretch rate using the invariant formulation: 

                         𝑲 =  𝜵 ∙  𝒗𝒕  + �𝒗𝒇  ∙  𝒏𝒇� 𝜵 ∙  𝒏𝒇                  (2-16) 

where 𝒗𝒕 is the flow velocity in the tangential direction of the flame surface and  𝒏𝒇 

represents the unit normal to the flame surface. The first term on the LHS of Eq. 2-16 

represents the contribution to flame stretch due to a non-uniform flow along the flame 

surface. A stagnation flame surface would be a typical example of a flame that 

experiences only the straining effect, 𝜵 ∙  𝒗𝒕. The second term on the RHS represents 

the contribution due to the change in time of curvature of a flame surface. An example 

of a flame that only experiences the curvature effect, �𝒗𝒇  ∙  𝒏𝒇� 𝜵 ∙  𝒏𝒇, is a perfect 

spherical outwardly expanding flame. That is to say the flame is not stretched if the 
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flame front is stationary, i.e., 𝒗𝒇 = 𝟏, and meanwhile a gas flow in the perpendicular 

direction to the flame front, as in the case of a steady spherical flame or a flat flame 

with a uniform gas flow along the flame surface. Graphic illustration of 

above-mentioned cases are shown in Fig. 2-18. 

 
Fig. 2-18 An overview of different flame stretch effects on different types of 

flames. The continuous solid lines represent the flame surface. The continuous 

and the dashed arrows represent the velocity of the gas flow field and the flame 

front, respectively (Groot 2003). 

Practically, the flame stretch rate of a spherical flame can be calculated using the 

instantaneous flame radius, 𝑷𝒇, and its rate of change, as shown in the RHS of Eq. 

2-17. Markstein (1964) further extended the flame stretch concept and claimed that 

the experimentally measured flame speeds are stretched flame speeds, 𝑺𝒏, and in 

order to calculate the unstretched flame speed, 𝑺𝒖, extrapolation procedures have to 

be conducted: 
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                                  𝑺𝒖 − 𝑺𝒏 = 𝑳𝒃𝑲                       (2-17)                    

where 𝑳𝒃 is the Markstein Length of the unburnt mixture. 𝑺𝒖 R is obtained as the 

interception with the y-axis at 𝑲 = 0. Value of 𝑳𝒃 yields as the gradient of the line 

which represents the variation of measured flame speed, 𝑺𝒏, against 𝑲P

 (Bradley et al. 

1996; Bradley et al. 1998), as shown in Fig. 2-19. 

 

Fig. 2-19 Variations of stretched flame speeds under different equivalence 

ratios against flame stretch rate. The flame stretch rate is denoted as α in this 

case (Andrews & Bradley 1996) . 

Bradley et al. (1972a) proposed a phenomenological law to account for two separate 

flame stretch effects that are respectively attributed to 1). Curvature at the cold front of 

a spherically outwardly propagating flame, 2). Flow field aerodynamic strain, and Eq. 

2-17 becomes: 

                            𝑺𝒖 − 𝑺𝒏 = 𝑳𝒄𝑲𝒄 + 𝑳𝒅𝑲𝒅                      (2-18) 

𝑳𝒄 and 𝑳𝒄  are Markstein Lengths associated with flame front curvature and the 

aerodynamic strain, respectively. 𝑲𝒄 and 𝑲𝒅 are the corresponding stretch rates. 
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Detailed methodology of deriving 𝑺𝒖, 𝑳𝒄 and 𝑳𝒅 are stated by Bradley et al. (1972a). 

The two separate Markstein Lengths are usually combined into one single Markstein 

Length in practice, as proposed by Bechtold et al. (2001): 

                             𝑳 = 𝜹[𝜶 − (𝝈 − 𝟏)𝜸𝟏/𝝈]                    (2-19) 

For the sake of convenience, the Markstein Length is often normalised by the flame 

thickness, 𝜹𝒇, to give a dimensionless parameter Markstein Number, 𝑴𝑫: 

                                   𝑴𝑫 = 𝑳/𝜹𝒇                         (2-20) 

The Markstein Number is very sensitive to fuel type, mixture strength and system 

pressure. Bechtold et al. (2001) measured the Markstein Number for different types of 

fuels at different equivalence ratios, as shown in Fig. 2-20. The number of carbon 

contents in the fuel molecules have a dominant effect on Markstein Number. Fuels 

with higher carbon contents have higher Markstein Number and the Markstein 

Number decreases with increasing equivalence ratio, in a manner such that the higher 

the carbon contents the faster the Markstein Number decreases. However, simple 

hydrocarbon fuels such as Methane with only one carbon atom and non-hydrocarbon 

fuels such as Hydrogen show the opposite behaviour. Lean hydrogen-air mixtures 

also show negative Markstein Number which indicates the existence of negative 

flame stretch that is not found in hydrocarbon fuels. 

The Markstein Number is also found to decrease with increasing pressure for 

stoichiometric and lean iso-octane/ air mixture (Bechtold & Matalon 2001). This 

phenomenon indicates a decreasing influence of the flame stretch on the laminar 

burning velocity at higher pressures. Increasing the temperature can partially restore 

the effectiveness of the flame stretch only at pressures higher than 2.5bar, and would 

otherwise worsen the effect of the flame stretch. 
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Fig. 2-20 Markstein Number of different types of fuel-air mixtures under 

different equivalence ratios (Bechtold & Matalon 2001). 

Markstein Number has also been proven to have important influence on flame 

instabilities (Kwon & Faeth 2001). Although in S.I. engines the spark ignited flame will 

eventually become unstable and flame instabilities can enhance the burn rate, early 

destabilization is not favoured. Flames have higher Markstein Number, i.e., higher 

flame stretch rate, in the early stages of their growth and therefore it helps to stabilise 

the flames against hydrodynamic instabilities through the flame-stretch-induced 

thermo-diffusive effects. The larger the Markstein Number the greater the stabilization 

effect. As the flame grows the flame stretch decreases because of the reduction in 

surface curvature, so as the stabilization effect. Therefore the flame is more 

vulnerable to surface cellularity which eventually leads to self-turbulising. Early 

self-turbulising of flame can result in total distortion of flame surface and flame 



Chapter Two: Literature Review 
 

  47 

 

extinction and thus should be avoided. Negative Markstein Number is also found to be 

responsible for preferential-diffusion instability (Kwon & Faeth 2001).   

Lewis Number is another key parameter in the studies of flame stretch. In one-step 

reaction mechanisms with large activation energies, Lewis Number is the differential 

diffusion of heat and deficient reactant (Kwon & Faeth 2001): 

                                  𝑳𝑹 = 𝝀
𝝆𝑪𝒑𝑫

                            (2-21)  

where the term 𝝀/𝝆𝑪𝒑 represents the thermal diffusivity of the mixture and the term D 

is the mass diffusivity of the deficient reactant. It has been long proven that cellular 

flames tend to form in mixtures that are deficient in the light reactants, such as in rich 

heavy hydrocarbon-air mixtures (n-heptane, iso-octane, etc) and lean light 

hydrocarbon-air mixtures (methane, hydrogen etc). The formation of cellular surface 

is partially due to thermo-diffusive instabilities, which is originally caused by 

competing effects of heat conduction from, and reactant diffusion into, the flame front. 

Smooth flame surface can be unstable when the mass diffusivity of the deficient 

reactant is greater than the heat diffusivity of the mixture, i.e., when 𝑳𝑹 < 1 (Bechtold 

& Matalon 1987). Flames suffers thermo-diffusive instability can be unstable from the 

initial stage of propagation. Some researchers (Peters 2000) concluded that cellular 

patterns will form for 𝑳𝑹 < 1 because the initial perturbation of the flame front is 

enhanced, while the 𝑳𝑹 > 1 case is stabilizing. However in some research works 

(Groff 1982)(Simon & Wong 1953), instable flame surfaces are observed for mixtures 

with 𝑳𝑹 > 1. Bechtold et al. (1987) conclude that this is a result of the hydrodynamic 

instability, which arise from thermal expansion generated by interaction between 

flame and the hydrodynamic disturbances. Various experimental observations 

showed that hydrodynamic instability occurs only when the flame reaches a critical 

value. Bechtold et al. (1987) proposed a critical value for Lewis Number: 

                                 𝑳𝑹∗ = 𝟏 − 𝝈𝟐𝑸𝟏
𝑸𝟐𝑬

                         (2-22)   
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where 𝑸𝟏 and 𝑸𝟐 are empirical coefficients, derived in (Aung et al. 1997). It is also 

found that in most cases the critical Lewis Number is less than unity, which indicates 

that the rate of heat loss from the flame front has to be, by some margin, less than the 

rate of deficient mass flow into the flame front in order to maintain a stable flame. 

Influences of chemistry and heat loss have been widely analysed. Under the 

assumption of one-step chemistry mechanism with large activation energy, non-unity 

Lewis Number induces a temperature change in the thin reaction layer, to which the 

burning velocity is very sensitive (Libby & Williams 1982; Libby & Williams 1983). 

Lewis Number larger than one causes excessive heat losses and promotes flame 

extinction, which can be retarded by density effect. By applying two-step reaction 

mechanism, Tam et al. (1984) found that, asymptotically, in weak flame stretch 

conditions reaction intermediate products are effective in retarding flame extinction, if 

the activation energy of the first reaction is large. Other researchers concluded as well 

that these intermediates influence the flame’s response to stretch (Peters & Smooke 

1985). 

In situations where the Lewis Number deviates significantly from unity, its effect is 

amplified. Peters et al. (1985) tested stretched lean (Φ=0.6) and rich (Φ=1.4) 

hydrogen-air flames with elementary kinetics. Due to the large diffusivity of hydrogen 

the Lewis Number is 0.31 for the lean mixture and due to large thermal diffusivity it is 

3.02 in the rich case. The results show that in both cases, the effect of Lewis Number 

is dominating over the details of chemical kinetics. Extinction is observed for positive 

stretch in rich Hydrogen flames (𝑳𝑹 > 𝟏).  

2.4 Turbulent flames 

When a laminar flame is entering a turbulent flow field the combustion regime of the 

flame is then replaced by one where the turbulence and the flame interact. Turbulent 

combustion results from the two-way interaction of chemistry and turbulence. When a 
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flame interacts with a turbulence flow, turbulence is modified because of the strong 

accelerations through the flame front induced by heat release and of the large change 

in kinematic viscosity associated with temperature change. On the other hand, 

turbulence alters the structure of the flame and influence the reaction rates, in 

extreme cases, inhibit the flame completely leading to flame quenching (Aditya 2010).  

It’s been well known by experimentalists that by changing the turbulence level before 

initiating combustion in a vessel the combustion duration would vary significantly. The 

combustion rate, which is deduced from the turbulent burning velocity, is seen to 

increase with increasing turbulence level. 

Unlike laminar burning velocity, SL, which is a physico-chemical constant that only 

depends on the mixture strength, temperature and pressure, the turbulent flame 

speed, ST, is also dependent on some turbulent parameters. The complexity of 

turbulent flame speed makes it more difficult to be properly defined and calculated 

(Aditya 2010). One common focus is in this field is the determination of the ratio ST/SL 

as a function of SL, and other turbulence parameters. However, there still lacks 

general consensus in this field except that turbulence enhances the ratio ST/SL in a 

limited range. There are still important questions to be answered e.g., the 

dependence of the turbulence Reynolds’s number on ST/SL, limits of enhancement on 

ST, etc. 

The purpose of this section is to carry out a selective review on some well-established 

turbulent flame speed correlations. The relative strengths and weaknesses of these 

correlations will be discussed. A correlation that suits the purpose of being integrated 

with the laminar flame speed model and used for turbulent flame speed prediction in 

later S.I. engine simulation will be chosen. 

It is not the author’s intention to either judge and criticise any of the reviewed 

correlations or fulfil any drawbacks they may have. These correlations are reviewed 

solely in order to select the best-suited one for the application in later S.I. engine 
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simulation. 

2.4.1 Correlations of Turbulent Flame Speed 

In the past, many experimental studies have been performed with different 

configurations and measurement techniques to obtain turbulent flame speed 

correlations. Many of these correlations are derived for specific fuels or limited range 

of conditions. 

Anand-Pope’s correlation 

Anand et al. (1987) studied an idealised premixed turbulent flame which is statistically 

stationary and one-dimensional, and propagates through high-Reynolds-number 

turbulence which is non-decaying, homogeneous and isotropic upstream of the flame. 

The flame is studied with density ratio as a parameter. A one-step global chemistry is 

combined with the Bray-Moss-Libby model and the instantaneous thermo-chemical 

state is related to the reaction progress variable c, as introduced in chapter 2.2.3. The 

change of c is described by a probability density function (PDF) that is not 

pre-assumed. A linear correlation is obtained: 

                                   𝑺𝑻
𝑺𝑳

= 𝟏.𝟓 ∙ (𝒖
′

𝑺𝑳
)                       (2-23) 

The model results showed that the turbulent flame speed, ST, decreased with 

increasing density ratio and attained an asymptotic value at 𝝆𝒖 𝝆𝒃⁄ = 4. 

The correlation proposed by Anand and co-workers is not fuel-specific, i.e. the model 

can take input of properties of different fuel properties. Due to its linear nature, the 

computational time required is modest. Anand claimed a 20 minutes computation time 

on IBM desktop.  
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Fig. 2-21 Normalised turbulent flame speed against density ratio (Anand & Pope 

1987). 

Wirth-Peters’ correlation 

Wirth and Peters (1992) measured turbulent flame speeds for propane-air flames 

using a VW transparent engine. The engine is a four-cylinder, 1.6L unit with 

bore/stroke ratio of 79.5/80mm and a compression ratio of 8.5. The optical access is 

provided by via elongated crankcase and pistons with quartz window in the piston 

crown of about 58mm in diameter. Three additional square windows, 20 by 20mm, are 

placed into the cylinder wall beneath the cylinder head to provide three-dimensional 

optical access. Experiments were carried out using laser tomographic technique with 

Nd:YAG laser pulse. Experimental results revealed a decreasing trend of turbulence 

structure size. 
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Fig. 2-22 Schematic of the VW transparent engine, optical layout and imaged 

area in the combustion chamber (Wirth & Peters 1992). 

Wirth and Peters derived a flamelet formation for premixed turbulent flames based on 

a scalar field equation that describes the instantaneous flame front location in the 

turbulent flow field. The differential equation derived represents the local kinematic 

balance between fluid flow velocity, burning velocity and flame propagation velocity. A 

spectral closure of the problem was performed on the basis of a two-point correlation: 

                           𝑺𝑻
𝑺𝑳

= 𝟏 + 𝟏.𝟔(𝒖𝒕
′

𝑺𝑳
)𝟏.𝟓 + 𝟏.𝟓(𝒖𝒕

′

𝑺𝑳
)                  (2-24) 

This correlation also includes the effects of flame stretch, which is seen as the sum of 

tangential strain and flame front curvature. Two key assumption made in the 

derivation are that the response of flame to a train field is instantaneous and 

time-varying strains only influence the flame at the mean property level. By applying 

these assumption, the derived correlation is only valid for turbulence flames in which 
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the chemistry is sufficiently fast. 

Gulder’s correlation 

Gulder (1991) developed a turbulent flame speed correlation for the wrinkled flamelet 

combustion regime that is in similar formation of that derived by previous researchers 

(Wirth & Peters 1992): 

                            𝑺𝑻
𝑺𝑳

= 𝟏 + 𝟏.𝟔𝟐(𝒖𝒕
′

𝑺𝑳
)𝟏.𝟓 ∙ 𝑹𝑹𝑳𝟏.𝟐𝟓                 (2-25) 

The wrinkled flamelet regime was defined by the area bounded by 𝑹𝜼 ≥ 𝟏.𝟓𝒖′ 𝑺𝑳⁄  

and 𝑹𝑹𝑳 ≤ 𝟑𝟐𝟏𝟏. Eq. 2-25 was validated against experimental data obtained on 

various types of fuels, as shown in Fig. 2-23. 

Gulder considered two different turbulent combustion regimes: The wrinkled flamelet 

regime where the turbulent Reynolds number based on the Kolmogorov length scale, 

𝜼, is larger than the ratio 𝒖′ 𝑺𝑳⁄ ; The distributed reaction regime where the ratio 

between the laminar flame thickness, 𝜹𝑳 and 𝜼 is significantly larger than unity and 

the mixing is rapid compared to the chemistry. Additionally, Gulder claimed that there 

existed a transition regime where 𝜼 is in the same magnitude of 𝜹𝑳 and the flame 

front no longer consists of then wrinkled reacting sheets and it gets thicker. Pockets of 

unburnt gas and burnt gas start to appear in the burnt zone and the unburnt zone, 

respectively. The turbulent flame speed correlation under this regime is expressed as: 

                             𝑺𝑻
𝑺𝑳

= 𝑹𝑹𝟏.𝟐𝟓 ∙ 𝑬𝑬𝑷[𝑫(𝒖
′

𝑺𝑳
)𝟏.𝟓]                  (2-26) 

Where 𝑫 is a constant comparable to the slope of Eq. 2-25.  



Chapter Two: Literature Review 
 

  54 

 

Gulder’s correlation is relatively simple but works well in all three combustion regimes 

considered, with manipulations of equations and constants. It also has good flexibility 

as it’s been validated against a number of fuels. 

Fig. 2-23 Comparison of Eq. 2-25 and experimental results obtained using 

different fuels, including Hydrogen, Methane, Propane, Ethyne, Benzene and 

Natural Gas (Gülder 1991). 

Bradley’s correlation 

Abdel-Gayed and Bradley (1981) derived a correlation based on experimental data of 

stretched Methane-air flames: 

                          𝑺𝑻
𝑺𝑳

= 𝟏 + 𝟏.𝟒𝟒𝟔(𝒖𝒕
′

𝑺𝑳
)𝟏.𝟒 ∙ 𝑹𝑹𝑳𝟏.𝟏𝟓                  (2-27) 

The two-eddy theory of burning expresses the eddy decay and dissipation rates in 

terms of both eddy decay and chemical reaction for two groups of eddies within the 

turbulent spectrum: the large and the dissipative eddies. The large eddies are of a 

size given by the integral length scale, with a life time of 𝒖′/𝒍𝑻. The dissipative eddies 

of a size, 𝜼 , a lifetime, 𝒕𝜼 , given by the Kolmogorov length and time scales, 

respectively. The rate of burning of each eddy size, is expressed by the product of the 



Chapter Two: Literature Review 
 

  55 

 

rate of eddy decay and the amount of mixture chemically reacted during the eddy 

lifetime. 

Compared to previous correlations, Abdel-Gayed and Bradley’s correlation showed 

exceptional accuracy in terms of predicting 𝑺𝑻 𝑺𝑳⁄  under high level of turbulence, i.e., 

𝑹𝑹𝑳 = 𝒖′𝒍𝑻 𝝂⁄  is large. However, the performance degraded when 𝑹𝑹𝑳 is reduced, 

as shown in Fig. 2-24. The performance degradation was attributed to not only the 

incomplete understanding of physical/chemical nature of turbulent combustion, but 

also the uncertainties arisen in the two-eddy theory about the chemical lifetime in a 

dissipative eddy and the fractional volume occupied by such eddies (Abdel-Gayed & 

Bradley 1981). 

Zimont’s correlation 

An efficient computational model was proposed by Zimont et al. (1998) with turbulent 

combustion at high Reynolds number in mind. Zimont and co-workers took into 

account of a series of physico-chemical phenomena in the determination of the 

correlation. These include: influence of fuel composition and concentration and the 

combustion pressure; thickening and distortion of the flame front by small- and 

large-scale eddies at high Reynolds number; effect of flame stretch; preferential 

diffusion effect. The derivation of the correlation started with the transport equation for 

the progress variable and its closure proposed by Moss et al. (1977). The closure is 

then completed by the turbulent flame speed model. Finally a flame stretch extension 

is added to the model. An expression for 𝑺𝑻  is derived for both wrinkled and 

thickened flamelets in terms of physico-chemical characteristics of the combustible 

mixture: 

                          𝑺𝑻 = 𝑨 ∙ 𝒖′𝟑/𝟒 ∙ 𝑺𝑳𝟏/𝟐 ∙ 𝝌𝒖
−𝟏/𝟒 ∙ 𝒍𝑻

𝟏/𝟒               (2-28) 
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where 𝝌𝒖
−𝟏/𝟒 is a term accounting for the molecular heat transfer coefficient of the 

unburnt mixture. The correlation was validated against multiple fuels including CH4, 

C2H6, C3H8 and H2 with estimated turbulent Reynolds number in the order of 1000, 

which is higher than typically reached in laboratory experiments. 

Fig. 2-24 Comparisons of experimental and theoretical values of 𝑺𝑻 𝑺𝑳⁄  with 

different values of 𝑹𝑹𝑳 (Zimont et al. 1998). 
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2.4.2 Comparisons of correlations 

The above-reviewed correlations are summarized in Table 2-1 below. Besides the 

mathematical expressions of these correlations, Table 2-1 also focuses on other 

characters of these correlations such as: whether the effect of flame stretch has been 

taken into account, and, the range of fuels used for the validation of the correlation. 

These additional information is important as they aid the selection of a best-suit 

correlation for future S.I. engine simulation application. In order to reveal the 

difference in between these correlations, their simulation results have been plotted in 

Fig.2-25. The turbulent Reynolds number used in Gulder’s, Bradley’s and Zimont’s 

correlations is 1000 which is purposely chosen to be higher than typical values 

achieved in fan-stirred vessels. Additionally, in Zimont’s correlation, 𝑺𝑳 is chosen as , 

the laminar burning velocity of stoichiometric Methane-air mixture at NTP, i.e. 0.45m/s 

(Bradley et al. 1996). 𝑨, 𝒍𝑻 and 𝒖′ are 0.52, 0.005m and 10m/s respectively, as 

recommended by Zimont. The value of 𝝌𝒖 is obtained in literature (Kuo,K 2005b). 

Fig. 2-25 showed that there is a large scatter of data sets for turbulent flame speed 

correlations. The only agreement between reviewed correlations is that 𝑺𝑻 increases 

noticeably with increasing 𝒖′. Such scatter indicates that substantial research is still 

needed in correlating 𝑺𝑻 and 𝒖′. A universal turbulent flame speed is not yet existent. 

Each correlation proposed is developed based on different turbulence and 

combustion theories and the author’s personal opinions, therefore they are all only 

reliable for a limited range of applications. All the correlations reviewed are derived 

within the wrinkled flamelet combustion regime. This is because the correlation that is 

chosen at the end of this chapter will be used in S.I. engine simulation. 
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Author Correlation Regime 
Stretch 

Effect 

Validati

on Fuel 

Anand et al.  

(1987)  
𝑺𝑻
𝑺𝑳

= 𝟏.𝟓 ∙ (
𝒖′

𝑺𝑳
) 

Wrinkled 

Flamelet 
No CH4 

Wirth  

et al. (1992) 

𝑺𝑻
𝑺𝑳

= 𝟏 + 𝟏.𝟔(
𝒖𝒕′

𝑺𝑳
)𝟏.𝟓

+ 𝟏.𝟓(
𝒖𝒕′

𝑺𝑳
) 

Wrinkled 

Flamelet 
No C3H8 

Gulder (1991) 

𝑺𝑻
𝑺𝑳

= 𝟏 + 𝟏.𝟔𝟐(
𝒖𝒕′

𝑺𝑳
)𝟏.𝟓

∙ 𝑹𝑹𝑳𝟏.𝟐𝟓 

Wrinkled 

Flamelet 

Corrugated 

Flamelet 

Yes Multiple 

Bradley et al.  

(1981) 

𝑺𝑻
𝑺𝑳

= 𝟏 + 𝟏.𝟒𝟒𝟔(
𝒖𝒕′

𝑺𝑳
)𝟏.𝟒

∙ 𝑹𝑹𝑳𝟏.𝟏𝟓 

Wrinkled 

Flamelet 
Yes 

Multiple
1 

Zimont et al. 

(1998) 

𝑺𝑻 = 𝑨 ∙ 𝒖′𝟑/𝟒 ∙ 𝑺𝑳𝟏/𝟐

∙ 𝝌𝒖
−𝟏/𝟒

∙ 𝒍𝑻
𝟏/𝟒 

Wrinkled  

Corrugated 

Flamelet 

Yes Multiple 

Table 2-1 Summary of reviewed turbulent flame speed correlations proposed by 

different researchers.

                                                

1 Bradley and co-worker validated the model by experimenting Methane-air flames. They also compared 

their model results with others’ experimental results obtained from different fuels. 
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Fig. 2-25 Comparison of reviewed turbulent flame speed correlations proposed by different researchers. 
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2.4.3 Discussion on reviewed correlations 

Anand and co-workers followed the original relation between 𝑺𝑻 and 𝑺𝑳 proposed 

by Damkohler (1947) and derived a linear correlation between 𝑺𝑻 and 𝑺𝑳. However, 

more recent experimental investigations of premixed turbulent flames, even at high 

ratios 𝒖′/𝑺𝑳 in the flamelet regime, showed that the relation between ST/SL and 

𝒖′/𝑺𝑳 is not linear and depends on fuel type. Some local influences are found to be 

responsible for this effect (Wirth & Peters 1992). 

Wirth and Peter developed a non-linear correlation using the G-equation concept. 

the correlation has been validated on a near-production S.I. engine, which is 

favourable for the current research. However, this correlation does not take into 

account of the effect of flame stretch. Flame stretch has been found to be 

particularly influential under lean-burn operating conditions, and have considerable 

impact on the mean turbulent heat release intensity (Zimont & Polifke 1998). 

Besides, Wirth and Peter’s correlation has only been validated against one type of 

fuel which may make one to doubt its flexibility when some other available 

correlations are validated against multiple fuels. 

Zimont’s correlation has more solid and detailed theoretical background and is 

claimed to be more robust and computationally efficient. This makes it favourable for 

multi-dimensional simulations in complex geometries, e.g. internal combustion 

engines. Zimont’s correlation has actually been adopted in the well-known 

commercial CFD package FLUENT 6.3 for turbulent flames speed prediction, a 

proof that it is sufficiently accurate and efficient. The only drawback of this 

correlation, from the current author’s point of view, is the inclusion of the empirical 

constant 𝑨. On the plus side, such inclusion makes the correlation very flexible, i.e. 

𝑨 can be tuned to suit different fuels or operating conditions. But there is not 
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implication that the variation of 𝑨 is related to either the combustion process or the 

properties of the turbulence. This makes it difficult for an end-user to use values of 

𝑨  other than those recommended by Zimont and co-workers, with a sound 

theoretical ground. 

The correlations proposed by Gulder and Bradley have very similar formation as 

they both include the effect of turbulent Reynolds number. Flame stretch is 

considered in both correlations and they have all been validated against multiple 

types of fuels. The only difference, from the current author’s perspective, is that they 

are biased towards different applications. Gulder’s correlation is applicable for three 

turbulent combustion regimes, making it a very flexible tool for a wide range of 

turbulent combustion. Bradley’s correlation, on the other hand, is based on the 

two-eddy theory and therefore is focused on the wrinkled flamelet regime. Bradley 

claimed that, by comparing to different theories of turbulent combustion, the 

two-eddy theory is more satisfactory for combustion in higher levels of turbulence. 

 

2.5 Chemical Kinetics 

The equilibrium composition of a reactive mixture can be predicted by the 

application of thermodynamic laws, In the case of that the chemical processes are 

much faster compared with the other processes like diffusion, heat transfer, flow etc. 

the thermodynamics alone allow the description of the system locally. In most cases, 

though, chemical reactions occur on timescales comparable with those of the flow 

and of the molecular transport processes. Therefore, information is needed about 

the rates at which the chemical reactions proceed. For this purpose, chemical 

kinetics has been investigated to study the rates of chemical processes in an effort 
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to understand the factors that influence these rates and to develop theories that can 

be used to predict chemical processes. 

In the research of internal combustion engines, chemical kinetics fulfils the needs for 

compact numerical models to represent hydrocarbon combustion and enables the 

establishment and development of numerical models for the design and prediction 

of practical engine systems. In general, chemical kinetics forms a link between 

experimental observation and numerical interpretations of the combustion 

processes in internal combustion engines. 

2.5.1 Rate laws and rate constants  

In this section, three types of reactions that are global, elementary and chain reactions 

and the terms, equations and basic laws applied to describe each reaction type are 

introduced. 

Global reactions 

The chemistry in fuel oxidation can be expressed by a global reaction mechanism. 

Assuming that a mole of fuel reacts with combustion products, it yields: 

                   𝟏𝟏𝒖𝑹𝒍 +  𝜶 𝑶𝑶𝒊𝒂𝒊𝑶𝑹𝑷 → 𝒃 𝑷𝑷𝑷𝒂𝒖𝒄𝒕𝒅                 (2-29) 

The fuel consumption rate can be expressed by: 

                   𝒂[𝑬𝟏𝒖𝑹𝒍]
𝒂𝒕

=  𝒌𝑮(𝑻)  ∙  ⌈𝑬𝟏𝒖𝑹𝒍⌉𝒏 ∙  [𝑬𝑶𝑶𝒊𝒂𝒊𝑶𝑹𝑷]𝒎                (2-30) 

where [𝑬𝒊] denotes the molar concentration of the ith species in the mixture. 𝒌𝑮(𝑻) 

is the global rate coefficient and is a strong function of temperature. The minus sign 

indicates that fuel concentration decreases with time. The exponent n and m relate to 
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the reaction order. 

Use of global reactions to express a chemical reaction system is frequently a ‘black 

box’ approach by providing the input-to-out perspective to the chemical process, 

which is not capable of providing a basis for understanding what is actually happening 

chemically in a system. The chemical equation Eq. 2-29 indicates that the oxidation 

process of the fuel is a one-step and instantaneous process. In reality, it is however a 

much more complex and sequential process. This process involves the breaking and 

formation of chemical bonds and production and destruction of intermediate species. 

A global equation consequently is not adequate to describe a chemical process in 

details, so a collection of elementary reactions has to be used to depict a chemical 

process, which will be considered in the following section. 

Elementary reactions 

Elementary reactions express how actual molecules or ions react with each other. 

The equation in an elementary reaction represents the reaction at the molecular 

level rather than at a global point of view. Based on the number s of the molecules 

involved, elementary reactions are categorised into three types: unimolecular 

reactions, bimolecular reactions and trimolecular reactions (Liu 2010): 

Unimolecular reactions 

Unimolecular reactions describe the process that a molecule or ion decomposes 

itself. They are always first order reactions and can be expressed in the following 

form: 

                            𝑨 → 𝒑𝑷𝑷𝒂𝒖𝒄𝒕𝒅                           (2-31) 
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The reaction rate of above reaction is directly proportional to the concentration of the 

reactant, 𝑨: 

                              𝒂[𝑨]
𝒂𝒕

=  −𝒌 ∙ [𝑨]                          (2-32) 

where 𝒌 represents the rate coefficient. 

Bimolecular reactions 

Most elementary reactions involved in combustion are bimolecular. In a bimolecular 

reaction two molecules collide and react with each other and form two different 

molecules: 

                             𝑫𝑨 + 𝒃𝑩 → 𝒄𝑪 + 𝒂𝑫                     (2-33) 

where 𝑫, 𝒃, 𝒄 and 𝒂 are stoichiometric coefficients. The reaction rate of this 

reaction is calculated by multiplying the reaction rate constants by the concentration 

of each of the reactants: 

               𝟏
𝑫

 𝒂[𝑨]
𝒂𝒕

=  𝟏
𝒃
𝒂[𝑩]
𝒂𝒕

=  −𝟏
𝒄
𝒂[𝑪]
𝒂𝒕

=  −𝟏
𝒂
𝒂[𝑫]
𝒂𝒕

=  −𝒌 ∙ [𝑨] ∙ [𝑩]         (2-34) 

The negative reaction rates indicate that the species are being consumed. 

Trimolecular reactions 

A trimolecular reaction involves the collisions amongst three molecules. The general 

form of a trimolecular reaction is: 

                            𝑨 + 𝑩 + 𝑴 → 𝑪 + 𝑴                       (2-35) 

and the its reaction rate is expressed as: 
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                          𝒂[𝑨]
𝒂𝒕

=  −𝒌 ∙ [𝑨] ∙ [𝑩] ∙ [𝑴]                     (2-36) 

where 𝑴 can be any molecule and is often referred to as the third body. 

Reaction rates of elementary reactions 

It has been observed from both kinetic theories of gases and experiments that the 

rate constant, 𝒌 , for an elementary reaction is an exponential function of 

temperature and is in the form of the Arrhenius equation: 

                         𝒌(𝑻) = 𝑨 ∙  𝑻𝒃  ∙ 𝑹𝑶𝒑 �− 𝑬𝑨
𝑹𝒖𝑻

�                   (2-37) 

where 𝑨  is the pre-exponential factor and 𝑬𝑨  is the activation energy of the 

reaction which represents the energy level required to activate the chemical bonds 

break-up and rearrangement processes. These two constants are determined 

experimentally. 

 

Chain reactions 

Most gas-phase chemical reactions are initiated at low concentrations by the 

formation of an extremely reactive species that sets off a series of reactions leading 

to a self-amplifying and self-sustaining chain of chemical events. Such process is 

referred to as a chain reaction. Chain reactions occur after a short induction period 

that allows the formation and accumulation of the reactive species. 

The sequence of a reaction chain can be typically divided into four stages: 

Initiation: A highly reactive intermediates is formed usually through the action of an 

agent such as light, heat or a catalyst. These intermediates can be in the form of an 

atom, an ion or a neutral molecular fragment. 
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Chain branching: highly reactive intermediates react with the initial reactants to 

produce stable products and another intermediates. The newly formed intermediate 

reacts with the initial reactants as before to create a repetitive cycle during which 

more radicals are created than destroyed. 

Chain propagation: the number of radicals remain more or less the same but 

different types of radicals are being produced in a stable manner. 

Chain termination: opposite to the chain branching stage, more radicals are 

destroyed than produced in this stage. 

A typical example of combustion chain reaction can be illustrated by the following 

generic reaction set: 

 

 

 

 

 

 

where 𝑺 represents the fuel molecules, 𝑹�̇�, 𝑹�̇�, 𝑹�̇� and 𝑹�̇� are the intermediates 

and P is the product. 𝒌𝒇 and 𝒌𝑷 represent the forward and reverse reaction rates, 

respectively. 
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Reaction rates of chain reactions 

Based on the elementary reaction rates expressed using Eq. 2-35, 2-36 and 2-37, 

the net production or destruction rates of any species involved in a series of chain 

reaction can mathematically expressed. The net production rate of 𝑹�̇� is the sum of 

all elementary rates producing 𝑹�̇� minus the sum of all elementary rates destroying 

𝑹�̇�: 

                     𝐝�𝑹�̇��
𝐝𝐭

=  𝐤𝐟𝟏[𝐒] +  𝐤𝐟𝟐�𝑹�̇���𝑹�̇��+  𝒌𝒇𝟒[𝑷]𝜷 −   𝐤𝐫𝟏�𝐑�̇�� −  𝐤𝐫𝟐�𝐑�̇��[𝐒]−

                                                                 𝐤𝐟𝟒�𝐑�̇���𝐑�̇���𝐑�̇���𝐑�̇��                      (2-38) 

The same applies to 𝑹�̇�, 𝑹�̇� and 𝑹�̇� and after obtaining expressions for each 

species it yields a system of first-order ordinary differential equation that describes 

the evolution of the chemical system: 

                   𝒂[𝑬𝒊](𝒕)
𝒂𝒕

= 𝒇 ([𝑬𝟏](𝒕), [𝑬𝟐](𝒕), … , [𝑬𝒏](𝒕))                (2-39) 

With known initial conditions: 

                             [𝑬𝒊](𝒕 = 𝟏) =  [𝑬𝒊]𝟏                       (2-40)  

Together with the conservation equations of mass and energy the set of equations 

can be numerically integrated using computerized methods. It should be noted that 

such chemical system has an important feature of being stiff, which means some of 

the variables are changing rapidly while some are changing very slowly. The 

character of stiffness of a system of ODEs requires more complex numerical 

integration methods, i.e., Backward Euler method, to achieve reliable results. 

2.5.2 Chemical kinetic combustion models 

Chemical kinetics mechanisms are very useful tools in the prediction of autoignition 
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in the study of both S.I. and H.C.C.I. engines, i.e., the autoignition timing, energy 

release rates, reaction intermediates and combustion products. There has been 

continuous interests in the development of better hydrocarbon- or 

hydrogen-oxidation mechanisms in order to increase combustion efficiency and 

reduce emissions (O Conaire et al. 2004). According to the numbers of species and 

elementary reactions involved, chemical kinetics mechanisms that are widely used 

in combustion simulations can be divided into three categories: detailed, reduced, 

and global: 

Category Description Species Reactions 

Detailed 

(O Conaire et al. 2004; Konnov 2008; 

Li et al. 2004; Strohle & Myhrvold 

2007) 

A comprehensive 

reaction set 
≈ 11 ≈ 20 to 21 

Reduced 

(Smooke & Williams 1995; Vlachos 

1996; Boivin et al. 2011) 

A simpler set by 

reduction of a detailed 

mechanism. 

≈ 5 ≈ 4 to 7 

Global 

(Fernández-Galisteo et al. 2009) 

Utilization of one-step 

global reaction for 

simplicity. 

3 1 

Table 2-2 Kinetics mechanisms used in the studies of hydrogen-oxidation. 

Detailed chemical kinetics models 

A detailed chemical kinetics model is a model that attempts to describe at molecular 

level the chemical process which occurs during combustion and which is essential 

for trace species predictions. The actual numbers of species or elementary 

reactions considered are subject to debate as different models have different 
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focuses (Simmie 2003). Many researchers use truncated or skeletal mechanisms 

that completely neglect some intermediates or do not differentiate between various 

quantum state of one compound. 

For decades, the study and development of chemical kinetics mechanisms have 

been concentrated on single sets of experimental data obtained from shock tubes, 

flow reactors or rapid compression machines (O Conaire et al. 2004). Schott and 

Kinsey (1958) studied the formation of OH radicals in hydrogen-air combustion 

under 1atm and a wide temperature range between 1085-2700K in a shock tube. 

Five chain branching reactions from a detailed mechanism were shown to have 

significant influence on the oxidation of hydrogen and its ignition delay. Skinner and 

Ringrose (Konnov 2008) performed measurements in shock tube with extended 

pressure up to 5atm and found similar results. Chen et al. (1984) and Slack (1977) 

measured the ignition delay of hydrogen-air mixture under similar temperature and 

pressure range but different levels of dilution using inert gas Argon. However, the 

reliance on just one set of experimental data is criticized recently (Smith 2002) who 

asserts uncertainty limits on individual reaction rate constants produce a parameter 

space for imprecise predictions of key combustion properties such as the flame 

speed and the ignition delay. Following Smith’s critics some researchers started to 

develop and validate their chemical kinetics mechanism against a wider range of 

experimental results that were obtained by various experimental techniques. 

Several detailed hydrogen oxidation mechanisms have been proposed over the 

years. The motivation of such continuous development is the substantial progress 

made in accurate measurement of the elementary reaction rates and 

thermodynamic properties as well as in measurement of the integral combustion 

characteristics such as burning velocities, ignition delays, and product formation 

during slow oxidation (Konnov 2008). Others (Mueller et al. 1999) proposed a 
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detailed hydrogen oxidation mechanism using only a flow reactor over the 

temperature range of 850-1040K, at equivalence ratio between 0.3 and 1.0 and 

pressures between 0.3 to 17.5atm. By taking advantages of a expanded database 

and improved rate constants of H + O2 (+ N2) = HO2 (+ N2), HO2 + OH = H2O + O2, 

and HO2 + HO2 = H2O2 + O2, the proposed mechanism was in better agreement 

with experimental results. Similarly, Davies et al. (2003) improved the detailed 

H2/CO mechanism they proposed previously by adopting new rate constants for the 

important reaction H + O2 + M = HO2 +M and new thermodynamic data for OH 

radicals. Based previous works of (Konnov 2008),(Hughes et al. n.d.) and the 

GRI-mech (Smith et al. n.d.), Conaire (2004) developed a detailed hydrogen 

oxidation mechanism which was validated against experimental results obtained 

from multiple sources including shock tube, flow reactor, freely propagating flames 

and burner-stabilized flames. With increased attention paid to the suitability to 

simulations under high pressure, i.e. internal combustion engines, Conaire validated 

the mechanism over the range of 298-2700K, 0.05-87atm and Ф = 0.2-6. By 

applying a pressure-dependent rate constant for H + OH + M = H2O + M Conaire’s 

mechanism achieved better overall agreement to a wide range of physical 

conditions and greater consistency over existing hydrogen oxidation mechanism. 

Reduced chemical kinetics models 

As the numbers of species and reactions required to describe a chemical reaction 

system in details increases, the demand on computational power becomes the 

major huddle that prevents detailed chemical kinetics models to be adopted in the 

simulation of practical combustion applications, i.e. internal combustion engines. 

The situation gets even worse when detailed chemical kinetics models are coupled 

with multi-dimensional CFD calculations (Ra & Reitz 2008). Recent detailed 
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n-heptane oxidation mechanism developed by Curran et al. (1998) contains 560 

species and 2539 elementary reaction. An iso-octane oxidation mechanism by the 

same author later (Curran et al. 2002) contains 857 species and 3606 elementary 

reactions. It is still too expensive to use detailed chemical kinetics mechanisms in 

engine simulation with multidimensional CFD codes, even with modern 

high-performance super computers. Therefore methods of simplification on detailed 

chemical kinetics models are required. The simplified mechanisms are often 

referred to as reduced chemical kinetics mechanisms. The reduced mechanisms 

should retain all the critical fuel chemistry predicted by detailed mechanisms, but 

with much improve computational efficiency. The extent of comprehensiveness of 

the reduced mechanisms depends on the available computational resources and 

the information required from the simulation. 

Various theoretical methods of simplification have been proposed. Maas et al. (2000) 

proposed a reduction method based on the Intrinsic Low-Dimensional Manifolds 

(ILMDs). The dynamical behaviours of the chemical systems are well reproduced, 

independent on the fuel type considered. Simpler reaction mechanisms of Syngas, 

methane, iso-octane, n-dodecane are achieved. By analysing the reaction rates, 

Law et al. (1998) developed a reduced methane oxidation mechanism that consists 

of 16 species and 12 lumped steps. The reduction was carried out on GRI-Mech 1.2 

which consists of 31 species and 175 elementary reactions. The reduced 

mechanism retained the capabilities of predicting a wide range of combustion 

phenomena with extensive thermo-dynamical parametric variations. 

In terms of applications in engine combustion simulations, Reitz et al. (2008) 

proposed a reduced oxidation mechanism by combing reduced n-heptane and 

iso-octane oxidation mechanisms. By adopting the reduced mechanism into a 

multi-dimensional CFD H.C.C.I. engine model and D.I. diesel engine model, the 
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mechanism was proven to produce reliable predictions on engine combustion as 

well as improved computational efficiency over detailed mechanism. Tanaka et al. 

(2003) have developed a reduced oxidation mechanism for gasoline, as a mixture of 

n-heptane and iso-octane, as shown in Fig. 2-26. The mechanism which consists of 

32 species and 55 elementary reactions takes into account of the effects of wall heat 

transfer on the adiabatic core gas temperature by adding then displacement volume 

of the laminar boundary layer to the cylinder volume. Chemical interactions between 

n-heptane and iso-octane are also included. Tanaka’s mechanism successfully 

predicts the two-stage heat release of heavy hydrocarbons which involves low and 

high temperature cycles followed by a chain explosion. 

Global chemical kinetics models 

Global chemical kinetics mechanisms describe the chemistry in terms of a few of the 

principle reactants and products in one or more function steps (Zheng 2005). The 

motivation of developing a global chemical kinetics mechanism is the application in 

combustion simulations that required considerable computational resource, i.e. 

multi-dimensional engine simulation. 

The chain reaction theory still applies in the construction of global mechanisms. In 

general, the high temperature chemistry is described by one or two reaction steps 

and the other reactions are used to represent the low and intermediate temperature 

chemistry (Liu 2010). The drawback of global mechanisms is its inability of 

predicting the post-ignition reactions and the combustion intermediates. Therefore, 

the usage of global mechanisms is limited to the prediction of pre-ignition 

behaviours, e.g. ignition delay. 
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Fig. 2-26 Illustration of the reduced chemistry of the mixture of n-heptane and 

iso-octane as developed by Tanaka et al. (Tanaka et al. 2003). 

Westbrook et al. (1996) developed a one-step global mechanism of hydrogen 

oxidation: 

H2 + 1/2 O2 = H2O 

where the overall reaction rate is expressed as: 

               𝒌 = 𝟏.𝟔 𝑶 𝟏𝟏𝟏𝟑  ∙ 𝑬𝑬𝑷 �−𝟏𝟏𝟔𝟏𝟒𝑲
𝑻

� ∙  [𝑯𝟐]𝟏.𝟏  ∙  [𝑶𝟐]𝟏.𝟓         (2-41) 

In laminar flame speed simulations, the global mechanism was only reliable in a 

limited range of equivalence ratio between 0.55 and 1.1. Predictions outside this 
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range was considered poor and unreliable. The poor prediction was attributed to the 

chemical and thermal structure changes in the flame as the stoichiometry varies 

which could not be properly accounted for in the global mechanism.  
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Chapter Three: Hydrogen-Air Spherical Flame 
Instabilities  

 

This chapter focuses on the systematic studies of the onset of hydrogen-air spherical 

flame instabilities which is defined by the critical radius, and its relationships with 

equivalence ratio, temperature and pressure. The aim of the current chapter’s 

research is to:  

(1) Experimentally identify the critical radius for the onset of instabilities of 

hydrogen-air flames, and,  

(2) Systematically examine the effects of temperature, pressure and fuel-air 

equivalence ratio on the variation of the critical radius. 

3.1 Cellular flame instabilities 

According to the mechanism that triggers the instabilities of laminar flames two main 

kinds of instabilities are defined and studied: unequal diffusion instability and 

hydrodynamic instability (Bradley et al. 1996; Tang et al. 2009; Aung et al. 1998; Hu et 

al. 2009; Aung et al. 1997; Kwon & Faeth 2001; Bradley et al. 1998; Sun et al. 2012; 

Bradley & Harper 1994). A third category, buoyant instability, caused by gravitational 

effect, can also be found in previous research (Vu et al. 2011). It is often neglected as 

its effect on rapidly propagating flames is minor compared to the other two categories 

of instabilities. 

3.1.1 Unequal diffusion instabilities 

The unequal diffusion instability is sometimes referred to as thermal-diffusive 

instability. During the flame propagation process, both mass and thermal diffusions 

exist across the flame surface. The energy ratio of the two kinds of diffusion is 
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expressed by the Lewis Number, 𝑳𝑳: 

                               𝑳𝑳 = 𝑫𝑻
𝑫𝒊𝒊

              (3-1) 

Where 𝑫𝑻 is the thermal diffusivity of the unburnt mixture: 

                               𝑫𝑻 = 𝝀
𝝆𝒖𝑪𝒑

           (3-2) 

Where 𝝀 is the unburnt gas thermal conductivity, 𝝆𝒖 is unburnt gas density and 𝑪𝒑 

is specific heat at constant pressure. And, 𝑫𝒊𝒊 is the mass diffusivity of the deficient 

reactant (e.g. fuel in lean flames, oxygen in rich flames): 

                           𝑫𝒊𝒊 = (∑ 𝑽𝒋/𝑫𝒊𝒋
𝒏
𝒋=𝟏
𝒋≠𝒊

)−𝟏                       (3-3)                                                                                          

Where 𝒊 indicates the limiting reactant, 𝑽𝒋 is the volume fraction of species 𝒋 and 

𝑫𝒊𝒋 is the mass diffusivity of the deficient reactant relative to the species 𝒋. 

When 𝑳𝑳 > 1, the energy of thermal diffusion exceeds the mass diffusion and the 

swelling parts lose heat energy more rapidly than the mass diffusion of the deficient 

reactant can compensate for. Therefore the net energy flow would be negative. As a 

result, the flame temperature gradually falls below the adiabatic temperature and the 

burning velocity reduces. The concave parts, on the contrary, gain positive net energy 

due to stronger mass diffusion of the deficient reactant than the energy loss by 

thermal diffusion. Consequently, flame temperature and burning velocity both 

increase. In general, the decelerating and accelerating effects induced, respectively, 

in the swelling and concave parts cancel each other out, and the flame surface 

maintains its smoothness and stability. On the other hand, when 𝑳𝑳 < 1, both the 

swelling and concave parts will be enhanced, and therefore the flame rapidly loses its 

surface smoothness . Such instability often occurs in the early stage of flame 

propagation when 𝑳𝑳 < 1 and can be identified by irregular distortions of the flame 

surface, as shown in Fig. 3-1. 
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Fig. 3-1 Evolution of the unequal diffusion instability on hydrogen-air flame at 

298 K, 1 bar and Φ=0.2. Measured at 1.324ms, 2.654ms and 5.314ms after 

ignition. 

3.1.2 Hydrodynamic instabilities 

In some occasions, although the flame can maintain 𝑳𝑳 > 1 it still undergoes cellular 

instability in the later stage of its propagation. This instability was first studied by 

Darrieus and Landau (2001). In their research the flame is seen as a density 

discontinuity and mechanism of such instability is described as the interactions 

between the hydrodynamic disturbances generated by the flame and the flame itself. 

Additionally, hydrodynamic instability is also responsible for flame surface wrinkling 

(Vu et al. 2011). Such instability can be distinguished when the flame radius is large 

enough and the diffusion stability cannot offset its effect. It can be identified by regular 

cellular distortions of the flame surface, as illustrated in Fig. 3-2. 

 
Fig. 3-2 Evolution of the hydrodynamic instability on hydrogen-air flame at 298 

K, 1 bar and Φ=1.0. Measured at 0.707ms, 1.704ms and 4.032ms after ignition. 

Hydrodynamic instability occurs in all flame propagation processes and its intensity is 

directly proportional to density ratio, 𝝈, of burned and unburnt gas, and inversely 
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proportional to flame thickness 𝜹. 

                                 𝝈 = 𝝆𝒖 
𝝆𝒃

           (3-4) 

                                 𝜹 = 𝒗
𝒖𝒍

           (3-5) 

Where 𝝂  is unburnt gas kinematic viscosity; 𝒖𝒍  is unstretched laminar burning 

velocity.   

3.1.3 Buoyant instabilities  

The buoyant instability is caused by the body force in the presence of density gradient. 

For relatively fast-burning mixtures the flames have a spherically symmetric structure 

and the fast flame speeds leave the buoyant effect not enough time to operate. For 

weaker mixtures, the flames can retain a spherical structure initially but begin to rise in 

the later stage of combustion. This phenomenon is due to the gravitational 

acceleration (buoyancy forces) preferentially accelerates the less-dense burnt 

mixtures contained in the spherical flame kernel and such acceleration destabilises 

the flame. The buoyant instability occurs in relatively weak mixtures and 

near-flammability limit scenarios. Experimental studies on hydrogen-air flame 

instabilities showed that for the buoyant instability to make noticeable effect on the 

flame the fuel-air equivalence ratio has to be approximately 0.3 or leaner (Aung et al. 

1998). 

Fig. 3-3 Evolution of the buoyant instability on hydrogen-air flame at 298 K, 0.5 

bar and Φ=0.3. Measured at 3.373ms, 19.998ms and 46.598ms after ignition. 
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3.2 Experimental results 

3.2.1 Experimental apparatus 

A spherical stainless steel combustion bomb with 400mm inner diameter which is 

capable of withstanding the temperature and pressure generated by combustion with 

initial conditions up to 1.5MPa and 650K, as shown in Fig.3-4, has been employed. 

The bomb has extensive optical access through a pair of orthogonal quartz windows 

of 100mm diameter. The optical system is arranged into a Z-shaped, the two primary 

mirrors have diameter of 100mm and focal length of 100cm.The slit has an 

adjustment range of 0-3mm and the blade can be adjusted in the range of 0-10mm. 

There are two intake routes, one for air, the other for hydrogen. Low-pressure sensor 

is used to accurately measure partial pressure of gas with the precision of 0.001bar. 

The combustible mixture is spark ignited at centre of the chamber using electrodes 

extending from the top and the bottom. One electrode is fixed while the other could be 

moved for adjusting the ignition gap. After the induction of fuel and air is completed 

sufficient time is allowed for the mixture motion to decay. The bomb is flushed with dry 

air when combustion is finished to ensure minimum amount of residuals are left 

before subsequent combustion is initiated. Following the ignition, gas temperature 

inside the bomb is obtained from two chrome–alumel thermocouples. Pressure is 

measured during the explosion with a Kistler pressure transducer. Flame images are 

recorded by a TRI Phantom v7.3 camera which is capable of a maximum speed of 

200,000 frames per second.  
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Fig. 3-4 Schematic illustration of the experimental apparatus. 

3.2.2 Experimental data processing 

The flame images are then post-processed by imaging analysis software, and the 

flame radius is tracked. In some measurements the spherical flame front becomes 

un-recognisable in the later stage of flame propagation due to flame instabilities and 

the self-tubulisation phenomenon, therefore only those images in which a clear and 

sphere-like flame front can be identified have been processed 

In most flame propagation processes, two distinctive instants at which flame surfaces 

lose initial smoothness can be found: 

 Large cracks on the flame surface begin to branch and the formation of cracks in 

new directions, as illustrated by the 3rd images of Fig. 3-4. The reason for the 

formation of these cracks can be unequal diffusion instability, un-even distribution 

of spark energy and local unburnt mixture inhomogeneity.  
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 Sudden and spontaneous appearance of a large number of small cells over the 

entire flame surface (the 4th image of Fig. 3-5). The characteristic length scale of 

such cells is significantly smaller than that of those large cracks. The appearance 

of these small cells is caused by hydrodynamic instability. 

 

Fig. 3-5 Serial images of propagation process of hydrogen-air flame at 298 K, 1 

bar, Φ=0.8. Measurement times are (from top left to bottom right): 0.382ms, 

0.771ms, 1.50ms, 3.01ms, 3.48ms and 4.56ms. 

In the analysis below, the second instant will be used primarily as the onset of flame 

instability, unless significant unequal diffusion instability can be identified earlier. The 

reason being: firstly, unlike the unequal diffusion instability, hydrodynamic instability 

occurs in almost all flame propagations. Secondly, compared to the growth and 

branching of large cracks, hydrodynamic instability occurs with very high intensity, i.e. 

small cells grow across the entire flame surface spontaneously, making it relatively 

easier to accurately identify the exact onset timing. Additionally, values of 𝑳𝑳, σ and δ 

are calculated based on initial temperature, pressure and equivalence ratio prior to 

ignition.  

.  
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3.3 Results and discussion 

In order to systematically understand the parameters that influence the onset timing of 

cellular flame instabilities, the effects of fuel-air equivalence ratio, temperature, and 

pressure have been measured, categorised and discussed. In order to eliminate the 

effect of difference in bomb size, the onset timing of instabilities is represented by 

‘normalised critical flame radius’ which is defined as the ratio of critical flame radius 

and the bomb radius: Rf/Rbomb. 

 

3.3.1 Effects of fuel-air equivalence ratio 

Fig. 3-6 to Fig. 3-8 show the effects of the fuel-air equivalence ratio on onset timing of 

flame instabilities. A common characteristic found in all three figures is that, despite 

the increase in initial temperature, the flame tends to lose stability earlier under leaner 

conditions and becomes progressively more stable as the equivalence ratio moves 

towards stoichiometry. Such behaviours are expected as lean and stoichiometric/rich 

hydrogen-air flames, respectively, are naturally unequal diffusion instable (𝑳𝑳 > 1) 

and stable (𝑳𝑳 <1).  

 

Fig. 3-6 The variations of the normalized critical flame radius under different 

equivalence ratios at an initial temperature of 298 K and initial pressure of 1, 2 

and 4bar. 
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Fig. 3-7 The variations of the normalized critical flame radius under different 

equivalence ratios at an initial temperature of 343 K and initial pressure of 1, 2 

and 4bar. 

 

Fig. 3-8 The variations of the normalized critical flame radius under different 

equivalence ratios at an initial temperature of 423 K and initial pressure of 1 and 

2bar. 

Fig. 3-9 shows the variation of the Lewis number, calculated using Eq. 3-1, under 

different equivalence ratios, temperatures and pressures. Lean hydrogen-air mixtures 
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have low Lewis numbers and therefore are prone to unequal diffusion instability, 

especially when 𝜱 = 0.2 that the propensity to destabilize is so strong such that the 

flame stretch effect cannot offset the destabilization to stabilize the flame; the flame 

surface loses uniformity at a very early stage as shown in Fig. 3-2. 

 

Fig. 3-9 Calculated Lewis Number under different equivalence ratios, 

temperatures and pressures. 

The fuel-air equivalence ratio affects the flame instabilities primarily by reducing and 

enhancing the propensity to unequal diffusion instability. For lean hydrogen-air flames 

unequal diffusion instability occurs in the initial stage of flame propagation before any 

signs of hydrodynamic instability can be observed. On the other hand, stoichiometric 

and rich hydrogen-air flames naturally have Lewis numbers that are greater than 1 

and thus have higher resistance to unequal diffusion instability. In experimental 

observations, these flames can maintain uniformity to a later stage of propagation 

before hydrodynamic instability is triggered. In general, equivalence ratio affects flame 

instability under lean-burn conditions and at the early stage of flame propagation. 

Flame stability becomes less sensitive to equivalence ratio when 𝛷 gradually moves 

towards stoichiometry.   
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3.3.2 Effects of temperature 

The effects of temperature on the flame instabilities are illustrated in Fig. 3-10 and Fig. 

3-11. Graphically these effects can be split into two categories: effect on lean flames 

(𝜱 = 0.2, 0.4) and effect on near-stoichiometric to stoichiometric flames (𝜱 = 0.8, 1.0). 

For lean flames, increased temperature can, especially under lower pressure, delay 

the occurrence of unequal diffusion instability. The reason could be that very lean 

flames (𝜱 = 0.2, 0.4) always suffer from slow burning speed. Such slow propagation 

gives cracks that are formed by either initial spark defects and local inhomogeneity or 

unequal diffusion effect plenty of time to grow and branch. By increasing the 

temperature the combustion is greatly intensified, so is the burning speed. This 

increase in burning speed is particularly significant in very lean flames. It greatly 

reduces the time for the cracks to form and grow. Therefore the flames retain their 

relative smoothness for a longer time (‘relative’ means that very lean flames are often 

‘born’ with large cracks due to unequal diffusion instability). 

 

Fig. 3-10 The variations of the normalized critical flame radius under different 

temperatures at an initial pressure of 1bar and fuel-air equivalence ratio of 0.2 

to 1.0. 
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Fig. 3-11 The variations of the normalized critical flame radius under different 

temperatures at an initial pressure of 2bar and fuel-air equivalence ratio of 0.2 

to 1.0. 

For stoichiometric and near-stoichiometric flames (𝜱 = 0.8, 1.0) the above-mentioned 

delaying effect of increasing temperature is also noticeable. These flames are either 

naturally unequal diffusionally stable or have much stronger resistance to unequal 

diffusion instability compared to leaner flames, therefore, it is logical to conclude that 

increased temperature stabilizes flames from hydrodynamic instability.  

Calculated density ratio, σ, using Eq. 3-4 and shown in Fig. 3-12, revealed that σ is 

inversely proportional to temperature, which means that propensity to hydrodynamic 

instability is reduced as the temperature is increased. Contradictorily, when the 

combustion is initiated in a higher pressure environment the delaying effect is 

completely levelled off for very lean flames or even reversed for stoichiometric and 

near-stoichiometric flames. It suggests that temperature is not the dominant factor for 

the onset of flame instabilities. 
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Fig. 3-12 Calculated density ratio under different equivalence ratios, 

temperatures and pressures. 

3.3.3 Effects of pressure 

Under lower pressure (i.e., 1bar), flames under different equivalence ratios show good 

consistence in terms of unequal diffusion instability i.e., lean hydrogen flames 

(𝜱 = 0.2, 0.4) lose stability very early; when the mixture is enriched to 𝜱 = 0.8 the 

flame shows much better resistance to unequal diffusion instability, but still loses 

surface smoothness much sooner than stoichiometric flame which is naturally 

unequal diffusionally stable and eventually breaks up due to hydrodynamic 

destabilization, as shown in Fig. 3-13. 
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Fig. 3-13 The variations of the normalized critical flame radius under different 

pressures at an initial temperature of 298K and fuel-air equivalence ratio of 0.2 

to 1.0. 

As the pressure is increased all flames exhibit much earlier destabilization, 

particularly the stoichiometric and near-stoichiometric flames. Very lean flames 

(𝜱 = 0.2, 0.4) experiences relatively less advance in destabilization. That is to say, it is 

the hydrodynamic instability rather than the unequal diffusion instability that has been 

more significantly enhanced. However, since the Lewis number, 𝑳𝑳, and density ratio, 

𝝈, are almost unchanged with pressure variation (shown in Fig. 3-9 and Fig. 3-12 

respectively), neither unequal diffusion nor hydrodynamic instability, in theory, should 

be enhanced by the increase of pressure. Therefore another parameter must be 

responsible for the advance in destabilization. Fig. 3-14 shows the calculated flame 

thickness, 𝜹, obtained using Eq. 3-5. It can be clearly seen that 𝜹 is stable against 

temperature change but is more sensitive to pressure increase i.e., the flame 

becomes thinner as the pressure is increased. A thinner flame usually indicates 

intensified combustion and faster flame speed but it also results in lower tolerance to 

both internal and external disturbances, making the flame more vulnerable to 

destabilization. 
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Fig. 3-14 Calculated flame thickness under different equivalence ratios, 

temperatures and pressures. 

The same characteristic was also found and summarized in the work by Law (2004). 

Therefore it is logical to conclude that thinner flames tend to promote early 

hydrodynamic instability, as shown in Fig. 3-15. Also found from Fig. 3-15 is that as 

the flame front becomes thinner the number of cells increases and the average size of 

cells decreases. 

 

Fig. 3-15 Serial images of propagation process of hydrogen-air flame at 298 K, 

Φ=0.8 and 1bar (upper row) and 2bar (lower row). Respective flame thicknesses 

are calculated to be 0.03 and 0.016mm. 
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3.4 Summary 

The onset of flame instabilities of laminar hydrogen-air spherical premixed flames has 

been studied in a constant volume combustion bomb using high-speed Schlieren and 

Shadow photography techniques. The effects of equivalence ratio, temperature and 

pressure were identified and analysed. The following conclusions can be drawn 

based on the analysis of experimental results:  

• Outwardly propagating spherical flames experience two categories of instabilities: 

unequal diffusion instability caused by unequal mass and thermal diffusion, and 

hydrodynamic instability caused by interactions between the flame and external 

disturbances. 

• Unequal diffusion instability can be visually identified by the gradual growth and 

branching of large cracks. Its appearance is governed by the Lewis number. 

Stoichiometric hydrogen flames are naturally stable to unequal diffusion instability.  

• Hydrodynamic instability can be visually identified by sudden and spontaneous 

appearance of small cells across the entire flame surface. Changes to certain 

parameters can only delay its appearance but not totally eliminate it.  

• The onset of flame instabilities is identified by the means of measuring critical 

flame radius. The critical radius is proven to be under the influences of 

equivalence ratio, temperature and pressure. 

• Equivalence ratio governs the value of the Lewis number, 𝑳𝑳, and therefore 

decides whether the flame is naturally stable or instable to unequal diffusion 

instability. When 𝑳𝑳 < 1 , cells induced by unequal diffusion effect grow 

instantaneously at the beginning of flame kernel formation.  

• Increased temperature has a strong delaying effect on the appearance of unequal 

diffusion cells, particularly for very lean flame. The reason could be enhanced 

combustion rate and flame speed that allow less time for the cells to appear and 

grow. For stoichiometric flames, temperature increase reduces the density ratio, 

𝝈, and therefore weakens the hydrodynamic instability. 
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• Experimental results revealed that pressure is the most dominant of the three 

parameters under investigation in terms of the onset of flame instability. Although 

pressure variation barely affects either 𝑳𝑳 or 𝝈 which means it doesn’t enhance 

unequal diffusion and hydrodynamic instabilities, but it affects the flame in a more 

direct manner: by changing the flame thickness. Increased pressure significantly 

weakens the flame front making it more vulnerable to destabilization. Higher 

pressure also induces a larger number of cells of smaller average size. 
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Chapter Four: Calculation of Transient Stretched 
Laminar Flame Speed 
 

4.1 Introduction 

The calculation of the laminar burning velocities is one of the fundamental components in 

modelling a variety of combustion systems, such as internal combustion (IC) engines. Some 

studies were conducted in constant volume combustion experiments and the laminar burning 

velocity was express as function of bomb pressure history, 𝒖𝒍 = � 𝟏
𝑭𝟏𝑷

� �𝒓𝒄
𝑷
� �𝒅𝑷

𝒅𝒅
�  (Iijima & 

Takeno 1986). Others using semi-empirical equations in the form of: 𝒖𝒍 = 𝒖𝒍𝟎 �
𝑻𝒖
𝑻𝟎
�
𝒂
�𝑷𝒖
𝑷𝟎
�
𝒃
, 

where 𝒖𝒍𝟎 is the reference laminar burning velocity at known mixture strength, temperature 

and pressure, 𝒂 and 𝒃 are dependents determined experimentally (Lewis & von Elbe 1934). 

More recently, Dowdy (1991) and Rahim (2002) developed methods, either linear or non-

linear, for extrapolating expressions of the mass fraction burnt and the instantaneous flame 

speed using bomb pressure history. The authors claimed that these models were reliable 

when the flame size was relatively small and the bomb pressure increase is not significant. 

This is due to the fact that the relationship between the mass fraction burnt and the bomb 

pressure becomes non-linear as the flame size exceeds approximately 10% of the size of 

the combustion bomb (Dowdy et al. 1991; Rahim et al. 2002). In order to make above-

mentioned calculations work, full sets of experimental data, i.e. the exponents 𝒂 and 𝒃 and 

the bomb pressure history, is a prerequisite. The accuracy of a and b depends on the range 

of the experiments conducted. Numerous experiments with small increments of temperature 

and pressure have to be conducted in order to maintain high fidelity, making it an expensive 

and time consuming process (Lewis & von Elbe 1934; Metghalchi & Keck 1982; Metghalchi 

& Keck 1980). Furthermore, it is difficult to integrate combustion chemistry into such 

calculations, when prediction of combustion products has become increasingly important in 

IC engine simulations. Some commercial packages, such as the Chemkin Fort�́� (Anon 2013), 

integrate three-dimensional fluid dynamics and chemical kinetics to study the flame 

propagation and emission formation processes in IC engines. These packages are capable 

of providing simulation results of high complexity and accuracy, but at the costs of 

computational time at the magnitude of hours. It would be a necessity to have a cost-
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effective one-dimensional laminar burning velocity model that is integrated with combustion 

chemistry. 

The aim of this study is to develop a one-dimensional transient laminar burning velocity 

model that eliminates the need for priori experiments and with the capability of solving 

combustion chemistry. The model developed is based on a one-dimensional three-zone 

thermodynamic model that calculates the mass transfer and diffusion and the heat transfer 

between zones. The chemical processes involved in the combustion are solved using an in-

house chemical kinetics solver with an established reduced hydrogen-oxidation mechanism 

from literature. The model has the potential to be adopted into future IC engine models for 

the purpose of cost-effective combustion and emission formation studies. 

4.2 Model Development 

The propagation of a spherical flame front divides the combustion bomb into three distinctive 

zones: burnt zone, burning zone and unburnt zone, as illustrated by Fig.4-1. The flame front 

consumes the unburnt gas at the rate of the stretched laminar flame speed i.e. 𝑺𝒇 = 𝒅𝒓𝒇 𝒅𝒅⁄ , 

which can be seen as the result of the combination of three factors: the laminar burning 

velocity, the relative thermal expansion and the flame stretch effects. The model 

development starts with calculation of the laminar burning velocity and the effects of relative 

thermal expansion and flame stretch will be added later.  

The mode has a layered structure where the unburnt zone is divided into a number of thin 

sub-layers, which is denoted by 𝒏 . The flame propagation process is seen as the 

consecutive consumption of these thin unburnt layers. After the ignition, the flame will first 

consume the innermost layer and this unburnt layer has become the burning zone. During 

the consumption, the temperature and pressure will increase in the burning zone, thereby 

compressing and heating up the rest of the unburnt zone. After a short period of time, 

△ 𝒅𝒇𝒍𝒂𝒇𝒇, the consumption of the current burning layer completes and the flame then moves 

into the adjacent unburnt layer (the second innermost one). The laminar burning velocity at 

the nth layer is calculated as: 
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𝒖𝒍,𝒏 =  (𝒓𝒃𝒃𝒇𝒃−𝒓𝒌𝒇𝒓𝒏𝒇𝒍)/𝒏
∆𝒅𝒇𝒍𝒂𝒇𝒇,𝒏

                                                                               (4-1)

 

Fig.4-1. Schematic of the three-zone layout and the flame propagation process. 

One advantage of the ‘layered’ structure is avoidance of flame thickness calculation. In 

practice, a flame consumes unburnt mixture entrained within the flame thickness at each 

propagation step. Flame thickness of a laminar flame has been well-studied and is a function 

of local temperature, pressure and mixture strength (M Metghalchi & Keck 1980)(Milton & 

Keck 1984). However, proper calculation of thickness of turbulent flames, which are 

commonly seen in IC engines, is still lacking (Liu & Chen 2009). This can be a potential 

problem in the future when the current laminar burning velocity model is adopted into IC 

engine models. In the ‘layered’ structure, each layer can contain multiple flame propagation 

steps, i.e. multiple flame thicknesses. Therefore, the laminar burning velocity obtained using 

Eq.4-1 can be interpreted as the average laminar burning velocity through the thickness of 

each sub-layers.  

4.2.1 Modelling assumptions  

The following widely-used assumptions in combustion and flame simulations have been 

applied in the current modelling: 

• both burnt and unburnt gases act as perfect gas;  

• flow motion within the bomb is neglected throughout combustion;  

• pressure across the bomb is uniform during the combustion process;  

• flame maintains its spherical shape and laminar flame speed is uniform across the 

flame front;  

• unburnt mixture is compressed isentropically by the flame and is in a chemical-frozen 

status. 

• combustion starts at an ignition kernel, 𝒓𝒌𝒇𝒓𝒏𝒇𝒍, of 2mm; 
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4.2.2 Governing equations 

The unstretched laminar burning velocity is a fundamental combustion parameter and 

depends only on temperature, pressure and equivalence ratio. Thus it is possible to 

calculate the unstretched laminar burning velocity with thermodynamics and chemical 

kinetics models. The thermodynamics model calculates the unburnt temperature, pressure 

and mixture composition at each flame position as the flame propagates, and the chemical 

kinetics model solves the combustion chemistry.  

The principles of energy and mass conservation are applied to all three zones to describe 

the energy flow within the combustion bomb. 

Unburnt Zone: Temperature and pressure of the unburnt zone are influenced by two major 

factors: the heat transfer from the flame and the compression work exerted by the flame. 

These are described in Eq.4-2: 

�𝒇𝒖 −𝒇𝒇� ∙ 𝑪𝒑,𝒖 ∙
𝒅𝑻𝒖
𝒅𝒅

=  𝑸𝒇,𝒖̇ + 𝑾𝒇̇ + 𝑸𝒇,𝒅̇ − 𝒇𝒇 ∙ 𝑯𝒖                                                  (4-2) 

where 𝒇𝒇  represents the mass entrained by the burning zone, 𝑸𝒇,𝒖̇  represents the 

convective heat transfer from the flame to the unburnt zone and 𝑾𝒇̇  is the compression work 

done by the volume change. 𝑯𝒖 represents the mean specific enthalpy of burning mixture at 

𝑻𝒖. 

𝑸𝒇,𝒖̇ =  𝒉𝒇 ∙ 𝑨𝒇 ∙ (𝑻𝒇 − 𝑻𝒖)                                                           (4-3) 

𝑾𝒇̇ =  𝐏𝒖 ∙
𝒅𝐕𝐮
𝒅𝒅

                                                                                      (4-4) 

where 𝒉𝒇 is the heat transfer coefficient, 𝑨𝒇 is the surface area of the flame, 𝑻𝒇 and 𝑻𝒖 are 

the temperature of the flame and the unburnt zone respectively, 𝑽𝒖 represents the 

instantaneous volume of the unburnt zone and 𝑷𝒖 is the unburnt pressure.  

The heat transfer coefficient, 𝒉𝒇, for flame propagation inside internal combustion engines is 

estimated as (Liu & Chen 2009): 

𝒉𝒇 =  𝑪𝒉 ∙ 𝑩−𝟎.𝟐 ∙ 𝑷𝟎.𝟖 ∙ 𝒘𝟎.𝟖 ∙ 𝑻𝒇𝟎.𝟓𝟓                                                                         (4-5) 

where 𝑪𝒉 is the heat transfer rate constant, 𝑩 is cylinder diameter, 𝒘 is the characteristic 

speed within the cylinder. The term 𝑩 will be set as the diameter of the bomb, instead of that 

of an engine cylinder. 
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Burnt Zone: All burnt mixtures are assumed to be in chemical equilibrium state (Daneshyar 

& Hill 1987). The energy conservation of the burnt zone is in a similar manner to that of the 

unburnt zone, except that the energy addition by mass transfer from the previous calculation 

step has to be taken into account: 

(𝒇𝒃 + 𝒇𝒇) ∙ 𝑪𝒑,𝒃 ∙
𝒅𝑻𝒃
𝒅𝒅

=  𝑸𝒇,𝒃̇ + 𝑽𝒃 ∙
𝒅𝑷
𝒅𝒅

+ 𝒇𝒇 ∙ 𝑯𝒇                                  (4-6) 

where 𝒇𝒇 represents the burnt mass transferred from the burning zone into the burnt zone. 

𝑯𝒇 represents the mean specific enthalpy of burning mixture at 𝑻𝒇. 

Burning Zone: The energy flow within the burning zone is described by Eq. 7.  

𝒇𝒇 ∙ 𝑪𝒑,𝒇 ∙
𝒅𝑻𝒇
𝒅𝒅

=  𝑸𝒄𝒉𝒇𝒇̇ + 𝑸𝒇,𝒖̇ + 𝑸𝒇,𝒃̇ −  𝑸𝒇,𝒅̇                                                                        (4-7)  

where 𝑸𝒄𝒉𝒇𝒇̇  represents the primary heat release from chemical reactions and the kinetic 

equations that describe the reactions within this layer are formulated as an ODE set (Liang 

et al. 2009): 

𝑸𝒄𝒉𝒇𝒇̇ =  −∑ 𝒅𝒀𝒌
𝒅𝒅

𝑲
𝒌=𝟏

(∆𝒉𝒇
𝟎)𝒌

𝑾𝒌
                                                                                                   (4-8) 

𝒅𝒀𝒌
𝒅𝒅

= 𝝎𝒌̇
𝝆
𝑾𝒌    𝒌 = 𝟏, … ,𝑲                                                                                                    (4-9) 

where (∆𝒉𝒇𝟎)𝒌 is the enthalpy of formation of the kth species, 𝝆 represents the density of the 

reacting mixture, 𝝎𝒌̇  and 𝑾𝒌  are the molar production rate and molecular weight of the 

species, respectively. In previous work (Saeed & Stone 2004; Byun 2011), the heat transfer 

from the flame front to the bomb walls has been found to be negligible and is therefore not 

included in the model. 

The term 𝑸𝒇,𝒅̇  takes into account of the energy transfer due to the diffusion effect of burning 

mixtures to the unburnt zone. It is evaluated using the mixture-averaged method introduced 

in the TRANSPORT library in the CHEMKIN-III package (Kee et al. 1996): 

𝑸𝒇,𝒅̇ =  𝑯𝒇

𝒄𝒑
∑ 𝝆 ∙𝑲
𝒌=𝟏

𝒅𝒀𝒌
𝒅𝒅

 ∙  𝑽𝒌  ∙  𝒄𝒑,𝒌                                                                                      (4-10) 

where 𝑽𝒌and 𝒄𝒑,𝒌 are, respectively, the diffusion velocity and constant pressure and the heat 

capacity of the kth species.  
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4.2.3 Chemical kinetics mechanism 

The accuracy of unstretched laminar burning velocity calculation depends on the realism of 

the kinetics mechanism and the accuracy of the reaction rates. Hydrogen combustion 

kinetics has been widely studied (Mueller et al. 1999)(Vlachos 1996)(Law et al. 2003)(O 

Conaire et al. 2004)(Li et al. 2004)(Konnov 2008)(Hu et al. 2009). The hydrogen combustion 

kinetics mechanism used in the current research is the mechanism consists of 11 species 

and 19 reversible elementary reactions (Burke et al. 2011). The major improvements of this 

mechanism over previous mechanism include: clarification of uncertainties in the 

temperature and pressure dependence of rate constants for HO2 formation/consumption 

reactions; demonstration of the pressure dependence of H+O2=OH+O and the temperature 

dependence of the H+HO2 channels. The thermo-chemical data for the species involved are 

computed using the CHEMKIN-III package. An in-house chemical kinetics solver (Liu & Chen 

2009) will be used in the burning zone to calculate the reaction rates of each elementary 

reaction and concentration variations of each reactants. 

4.2.4 Defining of the end of in-flame reactions 

In order to calculate the in-flame reaction duration, △ 𝒅𝒇𝒍𝒂𝒇𝒇 , needed in Eq.4-1, one 

parameter that defines the end of the in-flame reaction need to be defined. The end of the in-

flame reactions is not necessarily the end of the overall reactions occurs between the fuel 

and oxidant entrained into the flame. Together with intermediate products, a tiny amount of 

unburnt fuel and oxidant will continue reacting after being transferred into the burnt zone, 

this is commonly known as post-flame reactions . 

In-flame reactions are characterized as high reaction rate and rapid energy release while 

post-flame reactions are relatively slow and release less energy. Therefore, reaction rates of 

some active intermediate products would be a sensible indication of the transit from in-flame 

to post-flame reactions. The H radical is known to be a very important intermediate product 

in hydrogen and hydrocarbon oxidations (Li et al. 2004)(Burke et al. 2011). It provides critical 

channels for H+O2 and H+HO2 reactions. As shown in Fig.4-2, the change in the 

concentration of the H radical is closely related to consumptions of fuel and oxidant and the 

temperature increase (energy release). Fig.4-3 shows the variations of H radical mole 

fraction and its change rate, 𝒀�̇�. 

𝒀�̇� = (𝒀𝑯 −  𝒀𝑯′ )/∆𝐭                                                                                                          (4-11) 
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where 𝒀𝑯and 𝒀𝑯′ are the mole fraction of H radical in current and previous calculation time 

steps. ∆𝐭 is the calculation time interval which is 10-6 second. In order to plot both curves on 

the same graph, 𝒀�̇� has been divided by 105. 

Fig.4-2. Variations of the mole fractions of reactants and the burning zone 
temperature during H2-Air combustion at Ф=1.0, 1000K and 1bar. 

Fig.4-3. Variations of the mole fraction of H radical and its change rate. 

Initial shape increase of 𝒀�̇�  indicates a period of fast production of H radicals that 

overwhelms the consumption; after reaching its positive maxima  𝒀�̇� starts to drop showing 

that the consumption rate increases rapidly and eventually overwhelms the production rate 

when  𝒀�̇�  becomes negative; the negative minima of  𝒀�̇�  indicates the period of fastest 

consumption, after which both the production and consumption of H radicals start to cease 

as 𝒀�̇� increases towards a constant value close to zero, which indicates the end of fast 

chemical reactions. In the current study, the end of in-flame reactions is defined as the point  
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when (𝒀�̇� − 𝒀𝑯′̇ )/𝒀�̇�≦10-3. The value of the unstretched laminar burning velocity is then 

calculated using Eq.4-1. The choice of 𝒏 in Eq.4-1 is largely dependent on the size of the 

bomb. For the bomb used in the current study (𝒓𝒃𝒃𝒇𝒃=200mm), the value of 𝒏 is chosen to 

be 400 to achieve best balance between convergence and computational time. 

4.3 Unstretched laminar flame speed 

Regarding to the characterization of a spherical expanding laminar flame, two categories of 

velocities have to be distinguished (Byun 2011; Gerke 2007): one is the velocity at which the 

laminar flame front propagates into the unburnt mixtures at a fixed reference spatial frame, 

i.e. 𝒅𝒓𝒇 𝒅𝒅⁄ , also known as the laminar flame speed; the other is the corresponding burning 

velocity which differ from the laminar flame speed by the amount of burnt gases expansion 

velocity.  

The unstretched laminar flame speed can be obtained by adding the burnt gases expansion 

velocity, 𝑺𝒃, to the unstretched laminar burning velocity (Byun 2011): 

𝑺𝒖 = 𝒖𝒍 +  𝑺𝒃 =  𝒖𝒍  ∙ 𝜿𝒇𝒆𝒑                                                                                                  (4-12) 

𝜿𝒇𝒆𝒑 = 𝝆𝒖 𝝆𝒃⁄
�(𝝆𝒖 𝝆𝒃⁄ )−𝟏�𝑿𝒃+𝟏

                                                                                                        (4-13) 

where 𝑺𝒖 represents the unstretched laminar flame speed, 𝜿𝒇𝒆𝒑 is the expansion coefficient,  

𝝆𝒖 and 𝝆𝒃 are densities of the unburnt and the burnt mixtures and 𝑿𝒃 is the mass fraction 

burnt. Fig.4-4 shows the calculated density ratios, 𝝆𝒖 𝝆𝒃⁄ , at different temperatures and 

pressure. Both the equivalence ratio and initial temperature have great effects on the density 

ratio and the initial pressure only influences the value slightly.  
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Fig.4-4. Calculated density ratio of unburnt and burnt Hydrogen-Air mixtures at 
different initial temperatures, pressures and equivalence ratio. 

4.4 Stretched laminar flame speed 

The relationship between the unstretched laminar flame speed, 𝑺𝒖, the stretched laminar 

flame speed, 𝑺𝒇, is described as (Bradley et al. 1996):  

𝑺𝒇 = 𝑺𝒖 − 𝑳𝒃𝜿                                                                                                                   (4-14)  

𝜿 = 𝟐 𝑺𝒇
𝒓𝒇

                                                                                                                             (4-15) 

where 𝜿 is the total stretch rate of a stable outwardly propagating spherical flame, 𝑳𝒃 is the 

Markstein length of the burnt mixture. One limitation of Eq.4-14 is that, as the response of 

the flame speed to the stretch is not always monotonic, when the flame becomes unstable it 

accelerates due to the cellular structure on the surface and the linear relationship is violated. 

Some researchers (Bradley et al. 1996)(Verhelst et al. 2005) adopted a methodology that 

only extrapolates the linear part in the flame speed vs. flame stretch plot to zero stretch. 

Such methodology ignores the non-linear response of the flame speed but is widely 

accepted and used. The onset of the cellular structure is represented by the critical Peclet 

Number, 𝑷𝒄𝒍 =  𝒓𝒄𝒍/𝜹𝒍 , where 𝒓𝒄𝒍  is the radius that the flame starts to accelerate due to 

cellularity and 𝜹𝒍 is the laminar flame thickness. Since there is few computation methods that 

reproduce the non-linear behaviour of 𝑳𝒃  without priori experimental measurements the 

author has to use the proposed values of 𝑳𝒃 obtained based on the linear extrapolation of 𝑺𝒇 

vs. 𝜿 curves, although this might result in underestimation of flame speed when the flame 

radius is relatively large. Several methods of extrapolating 𝑳𝒃 of hydrogen-air mixtures have 

been reported at normal temperature and pressure (NTP) (Aung et al. 1997). 𝑳𝒃 tends to 

increase monotonically with equivalence ratio and change sign around 𝜱  = 0.8, which 
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implies that lean mixtures experience an earlier transition to unstable cellular structure. 

Verhelst (Verhelst et al. 2005) proposed values of 𝑳𝒃 for higher temperature and pressure by 

using the regression methodology developed by Bradley (Bradley et al. 1996). These values 

will be used in the current study.  

Finally, based on Eq. 1and 12-15 and the relationship between stretched and unstretched 

laminar flame speed, 𝑺𝒇 can be obtained as: 

𝑺𝒇 =  𝒖𝒍  ∙ 𝝆𝒖 𝝆𝒃⁄
�(𝝆𝒖 𝝆𝒃⁄ )−𝟏�𝑿𝒃+𝟏

− 𝑳𝒃
𝟐∙𝑺𝒇
𝒓𝒇

                                                                                  (4-16) 

In the RHS of Eq.4-16, the stretched laminar flame speed is represented as a combination of 

the unstretched laminar burning velocity, the relative thermal expansion, and the flame 

stretch effect. 

4.5. Model Validation 

4.5.1 Experimental apparatus 

A spherical stainless steel combustion bomb with 400mm inner diameter which is capable of 

withstanding the temperature and pressure generated by combustion with initial conditions 

up to 1.5MPa and 650K, as shown in Fig.3-4 in Chapter Three, has been employed. The 

bomb has extensive optical access through a pair of orthogonal quartz windows of 100mm 

diameter. The optical system is arranged into a Z-shaped, the two primary mirrors have 

diameter of 100mm and focal length of 100cm.The slit has an adjustment range of 0-3mm 

and the blade can be adjusted in the range of 0-10mm. There are two intake routes, one for 

air, and the other for hydrogen. Low-pressure sensor is used to accurately measure partial 

pressure of gas with the precision of 0.001bar.The combustible mixture is spark ignited at 

centre of the chamber using electrodes extending from the top and the bottom. One 

electrode is fixed while the other could be moved for adjusting the ignition gap. After the 

induction of fuel and air is completed sufficient time is allowed for the mixture motion to 

decay. The bomb is flushed with dry air when combustion is finished to ensure minimum 

amount of residuals are left before subsequent combustion is initiated. Following the ignition, 

gas temperature inside the bomb is obtained from two chrome–alumel thermocouples. 

Pressure is measured during the explosion with a Kistler pressure transducer. Flame images 

are recorded by a TRI Phantom v7.3 camera which is capable of a maximum speed of 

200,000 frames per second. Additional information on the experimental apparatus can be 

found in literature (Liu et al. 2011). 
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Three measurements are performed for each initial condition and the deviations are less 

than 7%. The flame images are then post-processed by imaging analysis software, and the 

flame radius is tracked. In some measurements, the spherical flame front becomes un-

recognisable in the later stage of flame propagation due to flame instabilities and the self-

tubulisation phenomenon, as shown in Fig.4-5, therefore only those images in which a clear 

and sphere-like flame front can be identified have been processed. The instantaneous flame 

speed is calculated as: 𝑺𝒇 = 𝜟𝒓𝒇/𝒅𝒅𝒄𝒂𝒇𝒇𝒓𝒂, where 𝜟𝒓𝒇 is the flame radius increase between 

two consecutive flame images and  𝒅𝒅𝒄𝒂𝒇𝒇𝒓𝒂 is the time interval between two images.  

Fig.4-5. Experimental images in the sequence of propagation. Measured flame 
radiuses are: 5.8, 12.1, 17.8, 23.9, 30.0 and 35.0mm. H2-Air mixture at 298K, 1bar and 

Φ=0.6. 

4.5.2 Validation of unstretched laminar burning velocity 

Fig.4-6 shows the unstretched laminar burning velocities at various equivalence ratios. In all 

three cases, the burning velocities increase with increasing temperature and become more 

sensitive to temperature increase at higher temperature region. These phenomena are 

expected as the unstretched laminar burning velocities are kinetically-controlled. These 

values are also compared with results obtained from a correlation (Iijima & Takeno 1986). 

The maximum differences in three cases are: 6.6% for Ф=1.0, 6.3% for Ф=0.8 and 7.0% for 

Ф=0.6, these values are all below the recommended deviation suggested by the authors.  

Fig.4-6. Comparisons of simulated unstretched laminar burning velocities of 
hydrogen-air mixtures and numerical correlations (Iijima & Takeno 1986). 
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4.5.3 Validation of stretched laminar flame speed 

Fig.4-7 shows the comparisons of the calculated transient stretched laminar flame speeds, 

using Eq.4-16, and the experimental results. In order to clearly demonstrate the variations of 

flame speed at different stages of its propagation, the flame radius is normalised by the 

bomb radius to give a dimensionless parameter normalised flame radius: 𝒓𝒏 = 𝒓𝒇/𝒓𝒃𝒃𝒇𝒃. 

Such normalisation also enables the comparisons to experimental data obtained in spherical 

bomb of different sizes. The moment when the flame surface becomes cellular is marked by 

the open symbols in Fig.4-7. Leaner flames tend to destabilize earlier as they have a Lewis 

number that is less than unity and are therefore less resistant to destabilization. 

The calculated flame speeds match the measured flame speeds well in most of the flame 

propagation processes and the effects of flame stretching is discussed in section 3.5. 

Fluctuations of flame speed are noticeable. These fluctuations are due to flame surface 

cellularity which causes variations of flame speed and the inconsistence in the defining of 

the flame front during the post-process of experimental images, particularly when the flame 

surface is completely cellular. The flame speed of very lean mixture (𝜱=0.6) maintains an 

almost constant value throughout the combustion with a large initial speed reduction due to 

large stretching rates. It has been reported that the rapid decay of the ignition energy also 

contributes to the flame speed reduction (Verhelst et al. 2005). In contrast, stoichiometric 

hydrogen-air flame experiences a rapid initial flame speed increase as a result of decaying 

flame stretch and strengthening combustion. Following the initial increase the flame speed 

maintains a nearly constant value from 20% to 55% bomb radius. The flame surface 

becomes completely cellular when the flame radius reaches the size of about 60% bomb 

radius and a steep increase in flame speed is triggered by the cellular structures.  
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Fig.4-7. Comparison of the transient stretched hydrogen-air laminar flame speeds. 
Solid lines represent simulation results and markers represent experimental results. 

Initial temperature 298K and initial pressure 1 bar. 

4.6 Summary 

i. A transient unstretched laminar burning velocity model based on three-zone 

thermodynamic model and reduced chemical kinetics has been developed. The 

model achieved similar level of accuracy as traditional numerical correlations, while 

being independent on bomb pressure history or priori determination of reference 

laminar burning velocities. Thus the model has been more predictive, rather than 

simply reproduce what has happened in the experiments. 

ii. The employment of chemical kinetics in the burning zone enables the model to 

calculate flame-out burnt products and gives the model the potential of predicting 

post-flame reactions and ultimately the emission formation when integrated into IC 

engine models. 

iii. Based on the unstretched laminar burning velocity model, stretched flame speed 

model has been developed using established theories and experimental data. The 

model reproduced the effect of flame stretch well. The predicted flame speed has 

been validated against experimental results and good agreement has been achieved. 



Chapter Four: Calculation of Transient Stretched Laminar Flame Speed 
 

  105 
 

Flame speed has been found to increase with increased fuel-air equivalence ratio 

(from 0.6 to 1.0), temperature and pressure.  

iv. The timing of the end of in-flame reactions has not been thoroughly studied and 

clearly defined in the literature. The choice of using the change rate of the 

concentration of H radical to define the end of the in-flame reactions is based on the 

literature study of hydrogen oxidation mechanisms, where the H radical has been 

identified as one of the most active intermediate products and is directly related to 

the consumptions of the fuel and the energy release rate.  

v. Since a method that predicts the non-linear behaviour of Markstein length, 

particularly after the flame surface is cellular, is not yet available, the authors have to 

adopt the linear Markstein length, this results in underestimation of laminar flame 

speed when the flame front is cellular. Future improvement of the model should be 

focused in this area. 

vi. The developed model requires less computational power and completes calculation 

for flame speeds in a combustion bomb of 200mm inner radius in the magnitude of 

fifteen seconds. The computational costs are expected to be in the magnitude of a 

few minutes when the developed model is integrated into IC engine simulations, 

which represents a noticeable saving on computational costs.  
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Chapter Five: Simulation of Flame 

Propagation in SI Engine  

 

5.1 Introduction 

Turbulent flame propagation within the combustion chamber is inherently unsteady 

(Heywood 1988) and is of great importance to spark ignition engine operation. Firstly, 

the unburnt charge, theoretically, is to be consumed by the propagating flame front in 

a sequential manner, therefore, the flame is responsible for combustion efficiency and 

cycle-to-cycle variations; Secondly, the propagating flame front is widely accepted as 

one of the major factors that contributes to the end gas autoignition. The key 

parameter for systematic understand of accurate prediction of combustion process is 

knowledge of the burning rate of the flame propagating through the charge (Liu et al. 

2013). Due to the unsteady and transient nature of turbulent flames, extrapolation of 

experimental results obtain in laboratory conditions, i.e. NTP, is very difficult because 

of high in-cylinder temperature and pressure (Liu et al. 2013; Aleiferis & Rosati 2012; 

Peterson et al. 2014; Dahms et al. 2011).  

In recent decades, numerical engine combustion simulation is becoming a powerful 

and cost-effective (when compared to engine testing) tool in the research and design 

of spark ignition engines. There are different levels of spark ignition engine 

combustion models. Computation fluid dynamics (CFD) modelling coupled with 

detailed (Long & Reitz n.d.), reduced (Blunsdon & Dent 1994; Eckert et al. 2003; Kong 

et al. 1995) and global (Liu et al. 2006) chemical kinetics showed a potential of 

replicate the turbulent flame propagation and predict abnormal combustion 
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phenomenon, e.g. knock, in spark ignition engines. The chemical kinetics mechanism 

is applied to account for the temporal and spatial variance of the properties of unburnt 

mixture. The actual turbulent flame speed is calculated using a turbulent flame speed 

closure and an empirical correlation of laminar flame speed (Zimont & Polifke 1998). 

The combination of CFD thermodynamics model and chemical kinetics model 

provides sufficient accuracy but it comes with massive computational costs. 

Additionally, because empirical laminar flame speed correlations are fuel specific and 

only reliable in a limited range of operating conditions, the flexibility of the model is 

affected. Simpler spark ignition models have been developed using zero-dimensional 

modelling technique. These models use chemical equilibrium combustion models to 

determine the thermo-chemical state of the burnt products at a predefined flame 

temperature. These models are computationally efficient, and provide a handy tool in 

engine design and operating strategy testing. However, the turbulent flame 

propagation process is completely neglected and replace by a function of burnt mass 

fraction, i.e. Wiebe function (Shayler et al. 1990; Stone 1987; Rakopoulos & Michos 

2008; Shudo et al. 2001; Ball et al. 1998; Rousseau et al. 1999; Ghojel 2010). The 

use of chemical equilibrium makes these models functionally unable to predict end 

gas autoignition. Liu (Liu & Chen 2009) greatly improved models of this kind by having 

a three-zone formation and adopting a reduced gasoline chemical kinetics 

mechanism into the unburnt zone to not only the combustion but also the onset of 

knock. Liu’s work has broadened the usage of models based on zero-dimensional 

thermodynamics and chemical kinetics for spark ignition engine research. 

The current research has been vastly motivated by Liu’s work. The purpose of current 

research is to implement the developed chemical kinetic laminar flame speed model 

(introduced in chapter four), together with an ‘out-of-box’ turbulent flame speed 

correlation, into a zero-dimensional multi-zone thermodynamics model to simulate the 

turbulent flame propagation process within the combustion chamber. 
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5.2 Overview of the model 

The model developed by the current study is a zero-dimensional SI engine 

combustion model which has a three-zone formation. It consists of, moving away from 

the spark plug, a burnt zone, a burning zone and a unburnt zone. The division of the 

zone is based on their different thermodynamic and chemical states, as shown in Fig. 

5-1 below. 

 

Fig. 5-1 Schematic illustration of the three-zone combustion chamber layout. 

The burnt zone contains the burnt products and trace of intermediates that are not 

fully reacted, and is assumed to be in a thermodynamic and chemical equilibrium 

state. The burning zone represents the reaction layer of the flame front. It is where the 

unburnt mixture is consumed by violet chemical chain reactions and heat energy is 

released. The unburnt zone is made of unburnt fuel and air mixture upstream of the 

propagating flame front. The unburnt zone, unlike the burnt zone, is not assumed to 
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be in a thermodynamic and chemical equilibrium state. The temperature and pressure 

in this zone is allowed to vary as a result of piston motion, flame propagation and heat 

transfer. 

A modified version of Tanaka’s chemical kinetics mechanism (Tanaka et al. 2003) is 

applied to both the burning and the unburnt zone in order to: 

 Study the combustion process within the flame front by calculating a number 

of parameters including: flame temperature, species concentration evolution 

and combustion duration. 

 Predict autoignition of unburnt mixture and onset timing of knock. 

The modification was carried out by Liu et al. (2009) in order to adapt the mechanism 

into spark ignition engine combustion simulation, as the original mechanism was 

developed for HCCI combustion. 

The simulation model consists of five major components:  

 A engine cylinder model 

 A flame geometry model 

 A zero-dimensional thermodynamics model 

 An in-cylinder turbulence model 

 A chemical kinetics model (applied in two zones) 

These components will be introduced in the following sections.  

5.2.1 Model assumptions 

The proposed model is a mathematical model of the compression and combustion 

(BDC-TDC-BDC) processes in a premixed naturally aspirated spark ignition engine. 

Some assumptions are applied in the development of the model: 
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1. Throughout these processes, the cylinder is treated as a variable volume 

plenum chamber, spatially uniform in pressure (Filipi & Assanis 1991).  

2. Gas properties are calculated based on the ideal gas law. The in-cylinder 

mixture is assumed to be homogeneous and in a chemical-frozen state prior 

to ignition. Unburnt mixture is compressed isentropically. Autoignition is 

neglected at this stage of simulation to concentrate on flame propagation 

simulation. 

3. The ignition process is neglected and a flame kernel is assumed to exist after 

the breakdown period. The kernel initially propagates at the rate of laminar 

flame speed under thermodynamic conditions at ignition. Pressure is 

assumed to be uniform on both sides of kernel (Tan & Reitz 2003). Herweg 

and Marly (1992) suggested values for kernel size and breakdown period to 

be 1mm radius and 200μs respectively. 

4. The combustion regime in SI engines is assumed to fall into the wrinkled 

flame regime, as discussed in Chapter Two, where a turbulent flame is seen 

as thin laminar flamelets embedded in a turbulent flow. The advantage of the 

regime is that the calculation of chemical reactions and turbulent flow can be 

separated (Tan & Reitz 2003).  

5. The turbulent flame front is assumed to have a spherical shape and such 

shape is maintained throughout the combustion process. The instantaneous 

turbulent flame front is arbitrarily wrinkled by the small eddies in the turbulent 

flow. A mean flame front centre line is introduced to simplify the flame 

geometry, as depicted in Fig. 5-2. The red solid line and grey dashed curves 

represent the instantaneous and the mean centre line of the flame front 

respectively. Two solid black curves represents the mean flame front based 

on the mean flame front centre line. The mean flame front has the same 

thickness as the instantaneous flame front, which is denoted as 𝜹𝑻. 
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6. The turbulent intensity within the combustion chamber is assumed to be 

spatially uniform. Additionally, the turbulence intensity is assumed to be a 

function of crank angle and its reference value at TDC, at a given engine 

speed. 

Fig. 5-2 Schematic diagram showing the mean instantaneous centre line of the 

flame front, mean centre line of the flame front and the mean flame front. 

5.3 The engine cylinder model 

The engine cylinder model calculates the following parameters as a function of the 

crank angle: 

 Combustion chamber volume variation due to piston motion. 

 Combustion chamber height variation due to piston motion. 
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 Cylinder area variation due to piston motion. 

 Unburnt mixture temperature and pressure variations due to piston motion 

and convective heat transfer from/to the walls. 

5.3.1 In-cylinder volume derivation 

The volume of the cylinder and its derivative are calculated as a function of crank 

angle from the compression ratio, stroke, bore and connecting rod length (Shaver & 

Gerdes 2003).  

Fig. 5-3 Illustration of a typical piston-crank-cylinder assembly. 

In Fig. 5-3 b is cylinder bore, s is stroke of the engine, l is the connecting rod length 

and a is the crank radius. The volume of the combustion chamber when piston is at 

TDC is referred as the clearance volume, Vc, the volume when piston is at BDC is the 

maximum volume of the cylinder, Vmax. the volume in between Vmax and Vc is known as 

the displacement volume, Vd. 

                                   𝑽𝒅 =  𝝅
𝟒
∙ 𝒃𝟐 ∙ 𝒔                        (5-1) 

At a given crank angle, the instantaneous chamber volume is expressed as: 

                                  𝑽 =  𝝅
𝟒
∙ 𝒃𝟐 ∙ 𝑯 + 𝑽𝒄                     (5-2) 
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where 𝑯 is the instantaneous chamber height: 

                    𝑯 = 𝒂 + 𝒍 − [�𝒍𝟐 − 𝒂𝟐𝑺𝑺𝑺𝟐𝜽�𝟎.𝟓 + 𝒂𝒄𝒄𝒔𝜽]               (5-3)   

The compression ratio is defined as r =Vmax/ Vc and therefore r =1+Vd/ Vc. Solving for 

Vc  yields: 

                                   𝑽𝒄 =  𝑽𝒅
𝒓−𝟏

                            (5-4) 

Substituting Eq. 5-4 and 5-4 into Eq. 5-2: 

                  𝑽 =  𝑽𝒅
𝒓−𝟏

+ 𝑽𝒅
𝟐

[𝟏 + 𝑹− 𝒄𝒄𝒔𝜽 − (𝑹𝟐 − 𝑺𝑺𝑺𝟐𝜽)𝟎.𝟓]            (5-5) 

The predicted instantaneous combustion chamber height and volume are shown in 

Fig. 5-4. 

5.3.2 Surface area derivation 

In order to study the heat transfer between the flame and the cylinder walls, 𝑨𝑾, 

cylinder head, 𝑨𝑯, and the piston head, 𝑨𝑷, the instantaneous surface area of the 

cylinder, 𝑨, has been evaluated: 

                 𝑨 = 𝑨𝑾 + 𝑨𝑯 + 𝑨𝑷 = 𝝅𝒃𝝅 + 𝟏𝟐 ∗ 𝑽𝒄
𝒃

+ 𝝅
𝟒
∙ 𝒃𝟐                (5-6) 

The predicted instantaneous cylinder area is shown in Fig.5-4 

5.4 The flame geometry model 

The flame is assumed to be initiated at the cone tip of the combustion chamber and 

propagates downwards to the piston. Due to relative motion and positions of the flame 

front and the piston, a number of possible flame front geometries may occur during its 

propagation by comparing the cone radius, 𝑹𝒄𝒄𝑺𝒄 and the instantaneous chamber 

height, H. The resultant flame geometries are illustrated in Fig. 5-5 and Table 5-1 

below. 
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Fig. 5-4 Illustration of calculated instantaneous combustion chamber height 

(upper), instantaneous combustion chamber volume (mid) and instantaneous 

cylinder area (lower). 
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Fig. 5-5 Illustration of two possible flame geometries due to position of the 
piston position. Case 1 (left) represents situations where 𝑹𝒄𝒄𝑺𝒄 > 𝐻 and case 2 
(right) represents situations where 𝑹𝒄𝒄𝑺𝒄 < 𝐻. 

 

Table 5-1 Illustration of the volume of flame and burnt zone as a function of 

flame radius. 
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5.5 The thermodynamics model 

5.5.1 Volume of combustion chamber 

The combustion chamber volume varies as a function of crank angle and as a result 

of piston motion. Nevertheless, the instantaneous chamber volume at any given crank 

angle is conserved: 

                              𝑽 =  𝑽𝒃 + 𝑽𝒇 + 𝑽𝒖                          (5-7) 

where 𝑽𝒃, 𝑽𝒇, 𝑽𝒖 are volumes at the beginning of each calculation step. 

5.5.2 Conservation of mass and species: 

The total mass at the start of compression stroke (BDC) is conserved throughout 

compression and combustion stroke: 

                              𝒎 = 𝒎𝒃 + 𝒎𝒇 + 𝒎𝒖                        (5-8) 

where 𝒎𝒃, 𝒎𝒇, 𝒎𝒖 are mass at the beginning of each calculation step. 

                                𝒎𝒖 = 𝒎𝒖′ −𝒎𝒇                         (5-9) 

                                𝒎𝒃 = 𝒎𝒃
′ + 𝒎𝒇′                        (5-10) 

where 𝒎𝒖′, 𝒎𝒇′ and 𝒎𝒃
′  are mass of the previous calculation step. 

The species in three zones are also conserved. The concentrations of any species in 

unburnt and burning zones are expressed as: 

                                   
𝒅𝑿𝑺,𝒋
𝒅𝒅

=  𝑴𝑺∙𝝎𝒊̇
𝝆𝒋

                         (5-11) 

where X represents the mass fraction of a species. Subscripts i and j denote the 

species and zones considered. 𝑴𝑺 and 𝝎𝑺 represents the molecular weight and 

molar production rate of species i respectively. Similar expression for the burnt zone 

can also be obtained: 
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                      𝒅𝑿𝑺,𝒃
𝒅𝒅

= 𝟏
𝒎𝒃

𝒅𝒎𝒃
𝒅𝒅

∙ �𝑿𝑺,𝒇 − 𝑿𝑺,𝒃�+ 𝑴𝑺∙𝝎𝑺̇
𝝆𝒃

                (5-12) 

5.5.3 Conservation of energy 

The energy conservation equations for burnt, burning and unburnt zone are described 

in Section 4.2 in Chapter Four in details. The same set of equations is used here. 

5.6 The chemical kinetics model 

The chemical kinetics model used in the current research is a modified version of 

Tanaka mechanism (Tanaka et al. 2003). The mechanism was originally developed for 

mixtures of n-heptane and iso-octane in HCCI combustion mode and modified by Liu 

(Liu & Chen 2009) to suit SI combustion simulation. 

The modification process is briefly introduced below. Sensitivity analysis on the 

Tanaka mechanism showed that R6 and R18 (generally expressed as RH + OH = R 

+H2O) were the most influential on both the ignition delay and the burn rate. The 

enhancement of their pre-exponential constants of the rate constants leads to a 

shorter ignition delay and a higher burn-rate. This phenomenon is attributed to the 

role of alkyl radical formation reactions in the oxidation chemistry, where both 

reactions represent the attack of the active radical OH to abstract the atom H from fuel 

molecules. The pre-exponential constants were enhanced by a factor of 1 to 10, and 

the modified mechanism was put into the model to investigate its effect on knock 

onset, knock intensity, combustion duration and peak cylinder pressure. The results 

show that the increase of the enhance factors from 1 to 6 leads to knock position 

being advanced by about 23%, the peak pressure being increased by around 16%, 

and knock intensity being raised by about 100%. Further increasing the enhance 

factors from 6.0 to 10.0 can only affect these three parameters by about 3%, 2%, and 

15%, respectively. Thus, it was concluded the enhance factor of the value of 6.0 was 
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the turning point and has been employed. The modified mechanism is listed in 

Appendix A.  

5.7 The turbulence flame speed correlation 

Based on the discussion in Section 2.4.3 in Chapter Two, the correlation proposed by 

Bradley and co-workers (1981) has been chosen to be used for turbulent flame speed 

calculations. The choice is based on: 

 The correlation does not contain empirical constant, therefore end users 

don't have to tune the correlation to make it fit its purpose for different 

applications. 

 The correlation is comprehensively validated against a number of fuels and 

takes into account of effects of flame stretch and the turbulent Reynolds 

number. 

 The two-eddy theory, which the correlation is based on, is particularly 

suitable for combustion with higher turbulence levels, e.g. modern internal 

combustion engines with higher compression ratios and boosted engines. 

In order adopt this correlation, calculations of a number of parameters are required, 

including the turbulence Reynolds number, integral length scale and turbulence 

intensity. The Rapid Distortion Theory developed by Wong and Hoult (1979) is widely 

used for this purpose. Wong and Hoult claimed that the instantaneous integral length 

scale and turbulence intensity can be calculated as a function of a reference value 

and the instantaneous mixture density, based on the conservation of angular 

momentum for large eddies: 

                               𝒍𝑻 = 𝒍𝑻′ ∙ (𝝆𝒖,𝟎
𝝆𝒖

)𝟏/𝟑                         (5-21) 

                               𝒖′ = 𝒖𝟎′ ∙ ( 𝝆𝒖
𝝆𝒖,𝟎

)𝟏/𝟑                        (5-22) 
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where 𝝆𝒖,𝟎 is the unburnt density at the time of spark ignition. The theory has been 

adopted by a number of researchers for spark ignition engine simulation (Filipi & 

Assanis 1991)(Assanis & Heywood 1986)(Prucka et al. 2010). Heywood et al. and 

Filip et al. suggested 𝒍𝑻′  to be the combustion chamber height at TDC. Prucka et al. 

(Prucka et al. 2010) extended the theory and concluded that 𝒍𝑻′  equals to 

instantaneous chamber height at a given crank angle and Eq. 5-21 becomes: 

                               𝒍𝑻 = 𝑯 ∙ (𝝆𝒖,𝟎
𝝆𝒖

)𝟏/𝟑                         (5-23) 

Eq. 5-23 provides a convenient dimensionless method to estimate the instantaneous 

integral length scale which is a critical parameter in the model. 

It’s been clearly shown in Eq. 5-22 that, in order to calculate turbulent flame speed, a 

reference or initial value of turbulent intensity is still required. In-cylinder turbulence 

intensity is inherently unsteady and experiences significant cycle-to-cycle variation. A  

lot of efforts (Hall & Bracco 1987) have been dedicated into the measurement of 

in-cylinder turbulence intensity and resolving for turbulence intensity at TDC. Kim et al. 

(Kim et al. 1992) measured turbulence intensity at TDC on a Subaru engine that has 

very similar operating conditions to the test engine used for the current study. The 

turbulence intensity has been found to increase linearly against engine speed.  

5.8 Model validation 

In order to validate the engine combustion and flame propagation model, the 

calculated results are compared to experimental data obtained from engine tests. 
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Fig. 5-6 Comparison between experimental data (dashed) and calculated results 

(solid). Initial temperature, pressure, equivalence ratio are 300K, 1bar and 0.7. 

Ignition at 9°BTDC. 

Liu et al. (2009) measured engine performances using a single cylinder, 4-stroke 

Ricardo E6 research SI engine. The engine specifications are listed in Table 5-2. The 

engine was equipped with a pressure transducer and the data was recorded at an 

interval of one-tenth of a crank angle degree. A Lab-View based engine data 

acquisition system was used to record 50 consecutive engine cycle data. Fig. 5-6 

shows the comparison between measured and calculated cylinder pressure. The 

measured pressure shown is the averaged pressure based on 50 cycles under WOT 

position, 1500RPM and ignition timing of 9°BTDC. 
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Stroke 111.2 mm 

Bore 76.2 mm 

Con-rod length 240.5 mm 

Compression ratio 10 

IVO 9°BTDC 

IVC 37°ABDC 

EVO 41°BBDC 

EVC 10°ATDC 

Table 5-2 Test engine specifications 

 

 

Fig. 5-7 Comparison of measured and calculated peak cylinder pressure. 
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It can be seen from Fig. 5-6 that the calculated cylinder pressure matches 

experimental results well. The calculated pressure under-estimates the pressure by 

approximately 2bar between the end of compression stroke and the initial stage of 

combustion. It can be attributed to the assumption of a constant cylinder wall 

temperature of 420K. The unburnt mixture temperature increases and exceeds the 

assumed 420K wall temperature towards the end of compression stroke and starts to 

loss heat energy to the wall. Such loss reduces the cylinder temperature and pressure. 

Shortly into the combustion phase, the cylinder pressure variation becomes to be 

dominated by the propagating turbulent flame front. Therefore the over-estimated 

heat loss to the wall is not significant from this point and onwards. 

Fig. 5-7 illustrates the measured and calculated peak cylinder pressure with various 

fuel-air equivalence ratio. The peak cylinder pressure increases with increasing 

equivalence ratio. The increase is attributed to faster laminar flame speed which leads 

to faster turbulent flame speed in the model. The calculated peak cylinder pressure is, 

in general, slightly underestimated and the matching with measured data gets better 

as equivalence ratio increases. The underestimation may be due to the use of a 

spherical mean flame front, as described in Section 5.2.1. The assumed mean flame 

front has a smaller surface area than the actual wrinkled flame front does, and 

therefore the heat transfer to the unburnt zone, which is proportion to the flame 

surface area, is reduced and less heat energy is transferred into the unburnt zone. 

The match with measured data gets better with increasing equivalence ratio may be 

because leaner combustion is less stable and experiences greater cyclic variation. 

Richer combustion is more stable and repeatable, therefore produces more reliable 

experimental data. 

Fig. 5-8 illustrates the maximum flame temperature achieved during flame 

propagation at various equivalence ratios. The maximum flame temperature is 

relatively low for lean mixtures and increases rapidly as the mixture is strengthened 
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Fig. 5-8 Comparison of flame temperature variations against equivalence ratios. 

Initial temperature and pressure are 300K and 1bar. Ignition at 9°BTDC. 

towards stoichiometry. Slightly rich mixture, i.e. Ф is approximately 1.05, has the  

highest flame temperature. Also shown in Fig. 5-8 is the comparisons with adiabatic 

flame temperatures at the same initial conditions obtained by different researchers 

(Ferguson & Kirkpatrick 2001)(Negus 1997). The calculated flame temperatures are 

lower than the adiabatic flame temperatures, which is expected as heat transfer is 

neglected in the calculation adiabatic flame temperatures. The difference between the 

calculated and adiabatic flame temperatures is not constant, i.e. about 100K for 

leaner mixtures and 30-70K for stoichiometric and richer mixtures. This may be 

attributed to the difference in the accumulative heat loss. Leaner mixtures have lower 

flame speeds and therefore allows longer time for accumulative heat energy loss to 

the unburnt zone and cylinder walls, if the whole combustion process is considered. 

On the contrary, although richer mixtures combust at higher flame temperatures which 

increase temperature gradient and the rate of heat loss, they have faster flame 
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speeds and allows less time for heat energy loss to accumulate. Therefore, richer 

flames combust at temperatures that is closer to the ‘ideal’ adiabatic flame 

temperatures. 

5.9 Model Results and Discussion 

This section presents some results obtained by the engine combustion model, these 

include: engine cylinder pressure, laminar burning velocity, turbulent flame speed and 

the ratio of turbulent and laminar flame speed.  

Fig. 5-9 shows the cylinder pressure histories of various equivalence ratios at 

1500RPM and ignition at 9°BTDC. The cylinder pressure is roughly the same until 

approximately 20°after TDC. The small pressure difference may be attributed to 

different heat transfer coefficients caused by different mixture compositions. After that 

the cylinder pressure starts to vary with an increasing trend as the mixture is 

strengthened form lean to slightly rich, i.e. Ф=1.1. This is expected as richer mixtures 

contain more chemical energy and combust at a higher efficiency. However, the 

cylinder pressure starts to decrease when the mixture is further strengthened from 

Ф=1.1 and onwards, as a result of excessive fuel and lower combustion efficiency. 

Fig. 5-10 shows the instantaneous laminar burning velocities during flame 

propagation process at various equivalence ratios. Laminar burning velocities 

increase with crank angle during the combustion phase as a result of increased 

unburnt zone temperature. the rate of increase reaches maximum between 

approximately 30 to 35°after TDC when the unburnt zone is compressed to a small 

fraction of its original volume and obtains very high temperature. The rate of increase 

start to decrease towards the end of the flame propagation process. Such decrease 

occurs immediately after the peak cylinder pressure is achieved. This phenomenon 

indicates that the decrease is pressure-related and is caused by the enhancements to 

pressure-sensitive chain termination reactions.       
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Fig. 5-9 Calculated cylinder pressure at various equivalence ratios. Initial 

temperature and pressure are 300K and 1bar. Ignition at 9°BTDC. 

 

Fig. 5-10 Calculated laminar burning velocity during the combustion phase at 

various equivalence ratios. Initial temperature and pressure are 300K and 1bar. 

Ignition at 9°BTDC. 
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Fig. 5-11 Calculated turbulent flame speeds during the combustion phase at 
various equivalence ratios. Initial temperature and pressure are 300K and 1bar. 
Ignition at 9°BTDC. 

 
Fig. 5-12 Calculated ratios between turbulent and laminar flame speeds during 
the combustion phase at various equivalence ratios. Initial temperature and 
pressure are 300K and 1bar. Ignition at 9°BTDC.   
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Fig. 5-11 shows the calculated turbulent flame speeds during the flame propagation 

processes at different equivalence ratios. Similar to the calculated laminar burning 

velocities in Fig. 5-10, turbulent flame speed increases against crank angles and 

richer mixtures combust at higher speeds. The increase with increase equivalence 

ratio is expected as turbulent flame speed is vastly dependent on laminar burning 

velocity, as shown in Chapter Four. The calculated turbulent flame speeds have much 

higher rate of increase, compared to the calculated laminar burning velocities. This is 

attributed to the influence of turbulence intensity which is illustrated by Eq. 2-17. 

Turbulence intensity affects the laminar flamelets by stretching and wrinkling the 

flame surface and thus enhances the burn rate (Gülder 1991). Also seen in Fig. 5-11 

is that the calculated turbulent flame speeds accelerate earlier than the calculated 

laminar burning velocities do, but with lower rate of increase, indicating that other 

factors are influential in the variation of turbulent flame speeds. 

Fig. 5-12 reveals the variation of ST/SL during the combustion phase at various 

equivalence ratios. The ratio can be considered as the effect of the turbulent flow on 

the laminar flamelets. ST/SL increases steadily during the early stage of flame 

propagation with a decreasing rate of increase, which is attributed to decay of the 

turbulence induced during the intake stroke. However the rate of increase raises 

rapidly from around 200°crank angle. Such sudden increase is caused by the 

turbulence amplification due to the rapid distortion resulting from unburnt mixture 

compression exerted by the propagating flame front (Assanis & Heywood 1986). The 

sudden increase also coincides with rapid increase of calculated turbulent flame 

speeds seen in Fig.5-11. In addition, it can be clearly seen that in-cylinder turbulence 

has more significant effect on leaner flames, e.g. Ф=0.8, than it does on stoichiometric 

and rich flames. This may be because of leaner flames propagates at lower speeds 

and allow more time for the turbulence to take effect. Previous studies (Tseng et al. 

1993) on hydrocarbon –air flames concluded that leaner flames are thinner, and 

therefore can be affected by a wider range of eddies in the turbulence spectrum. 
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5.10 Summary 

Turbulent flame propagation process plays an important role in spark ignition 

combustion. It has dominating effect on combustion efficiency and cyclic variations. In 

this chapter, a simulation model has been developed to study turbulent flame 

propagation in spark ignition engines. The model is based on the zero-dimensional 

approach and consists of three zones, i.e. burnt, burning and unburnt. A modified 

chemical kinetics mechanism, originally developed by Tanaka and co-workers, has 

been applied in the burning zone to simulate the in-flame combustion. The calculated 

results have been validated against available experimental data for cylinder pressure 

history, maximum cylinder pressure and maximum flame temperature.  

The model has shown the ability of calculating instantaneous turbulent flame speeds 

based on the wrinkled flamelet combustion regime where the combustion and the 

turbulence are predicted separately. Both laminar burning velocities and turbulent 

flame speeds are found to increase with increasing equivalence ratios from lean to 

slightly rich conditions. The effects of the turbulence intensity are plotted and 

discussed. It has been revealed that turbulence flow has more significant effects on 

leaner flames which travel at lower flame speeds and are influenced by a wider range 

of eddies in the turbulence spectrum. 

The model also shows potential of being modified to study abnormal combustion 

phenomenon, i.e. knock, in spark ignition engines, due to the zonal formation of the 

model and the available gasoline combustion chemical kinetics mechanism. In the 

next chapter, the model will be modified and used to study the knock phenomenon.  
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Chapter Six: Downsized Boosted SI Engine 

Knock Simulation 

 

6.1 Introduction 

Design of modern spark ignition engines are significantly influenced by stringent 

emission regulations and growing customers’ demand for lower running costs. 

Downsizing and intake boosting have become the short-to-medium term solution for 

major car manufacturers. By downsizing an engine, it is pushed to operate at higher 

engine load and therefore has higher efficiency. The power and torque losses due to 

reduction of wept volume is compensated by intake boosting, e.g. turbocharging and 

supercharging. With these new engine designs, has come a growing concern for the 

understanding, control and avoidance of end gas autoignition and the resultant knock 

(Blunsdon & Dent 1994). 

It is widely accepted that the propagating flame front is one of the most important 

factors that contribute to the occurrence of end gas autoignition and knock. The 

propagating flame front influence end gas autoignition and knock by increasing 

unburnt mixture temperature and pressure by compression and heat convection. 

Rapid compression and excessive heat convection to the unburnt mixture and easily 

trigger autoignition and the resultant knock with high intensity. However, due to its 

complexity and extremely transient nature, the relation and interaction between flame 

propagation and knock are still not thoroughly understood. 

In previous chapter, a spark ignition engine turbulent flame propagation model has 

been developed and validated. The model is capable of predicting turbulent flame 
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propagation process within the combustion chamber with reasonable accuracy. The 

objective of this chapter is to further develop the model to enable the capability of 

predicting end gas autoignition and the resultant knock. 

6.1.1 Model assumptions 

The model assumptions are largely carried over from corresponding section in 

Chapter Five with some minor changes: 

1. the unburnt mixture is no longer assumed to be in a chemically-frozen status. 

Chemical reactions are allowed but only after ignition. Pre-ignition prior to 

ignition is neglected. 

2. Autoignition is assumed to occur in one bulk gas and not in a distributed manner. 

And in one calculation step, the total mass fraction burnt consists of 

contributions of flame, Xf, and autoignition, Xauto, i.e.: 

                          𝑿𝒃𝒃𝒃𝒃𝒃 = 𝑿𝒇 + 𝑿𝒂𝒃𝒃𝒂                      (6-1) 

3. The variation of unburnt zone temperature is influenced by the addition of 

chemical energy released from autoignition, and Eq. 4-2 becomes: 

     �𝒎𝒃 −𝒎𝒇 −𝒎𝒂𝒃𝒃𝒂� ∙ 𝑪𝒑,𝒃 ∙
𝒅𝑻𝒃
𝒅𝒃

=  𝑸𝒂𝒃𝒃𝒂̇ +𝑸𝒇,𝒃̇ + 𝑾𝒇̇ − (𝒎𝒇 +𝒎𝒂𝒃𝒃𝒂) ∙ 𝑯𝒃 (6-2) 

where 𝒎𝒂𝒃𝒃𝒂 represents the mass consumed by autoignition and 𝑸𝒂𝒃𝒃𝒂 is the 

energy released by autoignition. 

6.2 Knock Detection 

Identification of knock during spark ignition engine cycles has been widely researched. 

A number of different methods of identifying the onset and the intensity of knock have 

been proposed (Blunsdon & Dent 1994; Inoue et al. 2012; Blunsdon & Dent 1994; Lee 

et al. 1998; Worret et al. n.d.; Attard et al. 2010). Cylinder pressure histories have 
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been proven to be a very indicative parameter in the study of knock. Pressure history 

of a typical knocking cycle can be characterized by two distinctive features: random 

pressure oscillation and sudden shape pressure increase (Arrigoni & Cornetti 1974). 

The onset timing and intensity of knock can be determined by either of these two 

parameters.  

Due to the inability of predicting cylinder pressure oscillation, the onset timing and 

intensity are calculated based on the cylinder pressure history in the current research. 

Liu et al. (2009) proposed a method that used a threshold value of cylinder pressure 

gradient change rate to identify the onset timing of knock: 

                          𝑲 = (𝑷𝒃 𝑷𝒃−𝟏⁄ )/∆𝜽+(𝑷𝒃+𝟏 𝑷𝒃⁄ )/∆𝜽
∆𝜽

                   (6-3) 

This method is illustrated in Fig. 6-1. A threshold value for 𝑲  is recommended by 

Liu and co-workers to be 30bar/CA2 by matching pressure histories and occurrence of 

knock over 50 consecutive non-knocking and knocking cycles. In the present study, 

cycles with the value of 𝑲 greater than the threshold are considered as knocking 

cycles. The crank angle where this threshold value is first exceeded is identified as 

the onset timing of knock. The level of knock is represented by knock intensity which 

can be defined as the maximum pressure increase rate, (dP/dθ)max. 

7.3 Model Validation 

The engine used for the knock model validation is the same Ricardo E6 single 

cylinder 4-stroke test engine as introduced in Chapter Five. Due to large cyclic 

variations under knocking combustion, 50 consecutive cycles have been measured. 

The knock onset timing and intensity are then calculated by averaging the 

experimental data obtained from the knocking cycles of the 50 measured cycles. This 

process is illustrated in Fig. 6-2 and 6-3 below. 

The test conditions are 1500RPM, 373K, 1bar and Ф=0.9 at 9°BTDC ignition. Big 
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scarce of experimental data can be found in both figures and are attributed to 

significant cyclic variations under knocking combustion cycles. Out of these 50 

 

Fig. 6-1 Schematic illustration of the method used to identify knock onset 

timing and intensity (Liu & Chen 2009). 

Fig. 6-2 Illustration of experimental data process method applied to knock onset 

timing measurements. Based on 49 knocking cycles out of 50 measured. 
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Fig. 6-3 Illustration of experimental data process method applied to knock 

intensity measurements. Based on 49 knocking cycles out of 50 measured. 

measured cycles, 49 are knocking cycles and 1 is considered to be knock-free. The 

averaged values are obtained by adding measured data and dividing the number of 

knocking cycles. 

Fig. 6-4 shows the comparisons of calculated and measured knock onset timing and 

intensity at different engine speeds. It can be clearly seen that as the engine speed is 

increased, knock onset timing is delayed and knock intensity is reduced, both in a 

almost linear manner. Engine speed determines the time available for the combustion 

phase. Due to its kinetically-controlled and time-dependent nature, knock (end gas 

autoignition) is logically delayed as engine speed increases. The reduction in knock 

intensity may be attributed to the fact that the compression exerted by the propagating 

flame front on unburnt mixture is growingly offset by the faster downward motion of 

piston during the expansion stroke, as the engine speed is increased. The match with 

measured results is acceptable and the model has been proven to be able to simulate 

spark ignition engine autoignition and knock. 
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Fig. 6-4 Comparisons of calculated (solid lines) and measured (dashed lines) 

knock onset timing and intensity at different engine speeds. 

6.4 Model Results and Discussion 

6.4.1 Effect of intake pressure 

Fig.6-5 illustrates the effect of intake pressure on cylinder pressure history. It can be 

seen that the cylinder pressures of all three cases increased isentropically during the 

compression stroke prior ignition. Intake pressure takes effect shortly after TDC when 

the cylinder pressure of the case with 3bar intake pressure increases with the highest 

increase rate. Before reaching its peak cylinder pressure, there has been a period 

when the cylinder pressure increases almost vertically, indicating that a large amount 

of heat energy is released in short time. Cylinder pressure history of combustion with 

2bar intake pressure has a similar increase rate but has much lower peak cylinder 
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pressure. Additionally, the cylinder pressure curve is smoother compared to 3bar 

intake pressure scenario. That means the autoignition occurs in a less aggressive 

manner and the heat release is more gradual and regulated. 

Fig. 6-6 shows the corresponding knock onset timing and intensity. A conclusion can 

be drawn that as intake pressures is increased, knock occurs earlier during the 

combustion phase and with higher intensity. This is attributed to increased unburnt 

temperature as a result of the increase in intake pressure. Fig. 6-7 depicts the unburnt 

zone temperature at the crank angle when knock intensity is defined in the three 

cases discussed. This temperature increases with increase intake pressure in almost 

the same manner as the knock intensity does in Fig.6-6. Autoignition is extremely 

sensitive to temperature change due to its kinetically-controlled nature. Chemical 

reaction rates are significantly amplified when temperature is high. Additionally, higher 

intake pressure means more fuel and air mixture is inducted into the combustion 

chamber and therefore more energy can be released, by either flame combustion or 

autoignition, creating higher cylinder pressure. 

Fig. 6-5 Calculated cylinder pressure histories with different initial pressures. 

Other initial conditions are 1500RPM, 373K, Ф=1.0 and ignition at 9°BTDC. 
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Fig. 6-6 Calculated knock onset timing and intensity at different intake 

pressures. Other initial conditions are 1500RPM, 373K, Ф=1.0 and ignition at 

9°BTDC. 

 

Fig. 6-7 Unburnt temperature at CA where knock intensity is defined. 
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7.4.2 Mass fraction burnt 

Fig. 6-8 Comparison of mass fraction burnt histories at different intake 

pressures. Other initial conditions are 1500RPM, 373K, Ф=1.0 and ignition at 

9°BTDC. 

Fig. 6-9 Comparisons of mass fraction burnt by autoignition at different intake 

pressures. Other initial conditions are 1500RPM, 373K, Ф=1.0 and ignition at 

9°BTDC. 
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Mass fraction burnt histories of the three cases being discussed are shown in Fig. 6-8. 

The characteristics of the curves for 1bar and 2bar combustion scenarios generally 

follows the typical SI engine combustion process described by Wiebe Functions that it 

consists of three stages: an initial slow burning stage where the flame develops and 

accelerates; a fast burning period when 80% of combustible mixture is consumed; 

finally a finishing stage when the burning rate reduces significantly due to flame 

quenching and extinguishing (Rousseau et al. 1999). However, when intake pressure 

is increased to 3bar the mass fraction burnt curve shows noticeable additional 

acceleration at approximately 20°after TDC, when approximately 50% of initial mass 

has been burnt. In order to investigate the cause of such additional acceleration, the 

histories of mass fraction burnt by autoignition at all three intake pressures are 

depicted in Fig. 6-9. It can be clearly seen that mass fraction burnt by autoignition 

increases as intake pressure is raised. At lower intake pressures, i.e. 1 and 2bar, the 

mass fraction burnt by autoignition shows much longer build-up period but only 

consumes 1% and 1.4% of total initial mass, respectively. When intake pressure is 

increased to 3bar, the characteristics of mass fraction burnt by autoignition changes 

dramatically. The build-up period is almost halved with much greater rate of increase 

and ultimately consumes 4.4% of total initial mass, which is three times more than 

combustion at 2bar intake pressure. This rapid burning period by autoignition 

corresponds to the sudden acceleration of total mass fraction burnt curve in Fig. 6-8. 

Clearly, the occurrence of autoignition significantly shortens the overall combustion 

duration. Such changes in overall combustion duration cannot be well described using 

typical Wiebe Functions alone. 

6.4.3 Effect of flame speed 

As previously mentioned the engine speed determines the time available for 

combustion and end gas autoignition. When the engine speed is fixed, then the flame  
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Fig. 6-10 Illustration of relation between average flame speed during 

combustion and knock onset timing. 

Fig. 6-11 Illustration of relation between average flame speed during 

combustion and knock intensity. 
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speed becomes the dominating time scale for combustion and end gas autoignition. It 

is necessary to investigate the relation between flame propagation and knock. Fig. 

6-10 and 6-11 show the relations between average flame speed and knock onset 

timing, and knock intensity, respectively. Initial conditions are 373K, stoichiometric 

mixture and ignition at 9°BTDC. The average flame speed is obtained by adding 

calculated turbulent flame speed at each crank angle and divide the sum by number 

of crank angles of the combustion phase. Average flame speed has been chosen over 

peak flame speed because it is more indicative when being used as indication of time 

availability for autoignition.  

6.5 Summary 

It can be clearly seen that average flame speed increases with increasing intake 

pressure. This is mainly attributed to the correspondent temperature increase 

resultant from the intake pressure change. As described in Chapter Five, the 

calculated turbulent flame speed consists of a chemical-kinetics-based laminar flame 

speed and a laminar-to-turbulent flame speed correlation. Therefore, as the unburnt 

temperature raises the laminar flame speed is increased, and so does the turbulent 

flame speed. However such increase of turbulent flame speed is not linear against 

intake pressure variation, i.e. 35.9% increase in average flame speed is achieved by 

increasing intake pressure from 1bar to 2bar, but only 9% has been achieved when 

it’s been further increased to 3bar. This may be because when intake pressure is 

raised to 3bar, cylinder pressure during later stage of combustion is sufficiently high 

for pressure-sensitive chain termination reactions to become dominant over 

temperature-sensitive chain branching reactions, and thus reduces the laminar flame 

speed. Additionally, the turbulence intensity is assumed to be a function of only its 

reference value and crank angle, i.e. independent of temperature and pressure 

change. Therefore the increase rate of average flame speed is lowering as intake 
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pressure is increased. 

Also shown in Fig. 6-10 and 6-11 is that, as average flame speed is increased, knock 

onset timing is advanced and knock intensity is amplified. Theoretically, faster 

average flame speed should allow less time for autoignition to build up and develop 

into knock, or reduce knock intensity if it does develop into a knocking cycle. However, 

such phenomenon has not been replicated in the simulation results. This finding 

indicates that, in practical application, increasing intake pressure without optimisation 

of other engine operating parameters will increase flame speed and cylinder pressure 

and, therefore, improve engine performance, but also induce severe knock problem, 

making such operating strategy unfeasible. An optimized operating strategy that 

allows higher intake pressures to improve engine performance but also, at the 

meantime, keeps the knock in a controlled level should be further investigated. 
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Chapter Seven: Mitigation of Knock in SI Engine 

7.1 Introduction 

A key strategy for knock prevention and mitigation is shortening the combustion duration and 

allowing less time for autoignition to develop (Towers & Hoekstra, 1998). Increasing average 

flame speed during combustion phase is one of the most effective ways for shortening the 

combustion duration. So far, the methods used to increase flame speed is by the use of 

increased cylinder pressure and temperature. These methods have been proven to be 

effective but also to promote the occurrence of knock. Therefore, an operating strategy that 

increases average flame speed but does not affect the occurrence of knock needs further 

development. 

The turbulent flame speed in the current study is calculated as a combination of laminar 

flame speed and effect of turbulence intensity. Increase of turbulence flame speed can be 

achieved by manipulations of either laminar flame speed or turbulence intensity. Increase of 

laminar flame speed is always accompanied by higher propensity of knock, and is therefore 

unfeasible. In this section of the chapter, the effect of increasing turbulence intensity on 

occurrence of knock will be investigated.  

7.2 Effect of Turbulence Intensity on Combustion 

According to Eq. 4-2, increase of turbulence intensity, 𝒖′, has a direct effect on turbulent 

flame speed. Fig. 7-1 to 7-3 show the effect of enhancing turbulence intensity on average 

flame speed during the combustion phase of three intake pressures (1, 2 and 3bar). The 

turbulence intensity is artificially increased by multiplying by an enhancing factor, i.e. 2, 4 

and 6. The resultant increased average flame speeds under three intake pressures have 

been enhanced by factors of approximately 1.31, 1.65 and 2.18, respectively. This has 

proven that turbulence intensity enhancement is a very effective method for increasing flame 

speeds. Also shown in these three figures are the corresponding changes in combustion 

durations in these three scenarios. A similar trend can be found for all three scenarios, that is 

as turbulence intensity is increased, average flame speed decreases and combustion 

duration shortens. This is logical as majority of combustible charge inducted into the 

combustion chamber is consumed by flame propagation. More rapid flame speed means 
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less time required to burn a given amount of combustible charge. The reduction in 

combustion duration, however, is not uniform in all three scenarios. Reduction under lower 

intake pressures, i.e. 1 and 2bar, is more significant than it is under higher intake pressure, 

i.e. 3bar. This may be attributed to the fact that when flame propagates very rapidly it 

impinges piston head earlier and loses surface area and heat energy (Chander & Ray, 2005). 

The loss of flame surface area reduces overall burning rate of the flame. Increased heat 

transfer lowers flame temperature and reduces combustion efficiency. Under higher intake 

pressures, average flame speed is indeed increased by turbulence intensity enhancement, 

but such increase is partially offset by the earlier impingement of piston head. Therefore less 

reduction in combustion duration is achieved as intake pressure is increased. 

Fig. 7-1 Effects of turbulence intensity enhancement on combustion. Initial conditions 

are 1bar, 373K, stoichiometric mixture and ignition at 9°BTDC. 

Fig. 7-2 Effects of turbulence intensity enhancement on combustion. Initial conditions 

are 2bar, 373K, stoichiometric mixture and ignition at 9°BTDC. 
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 Fig. 7-3 Effects of turbulence intensity enhancement on combustion. Initial 

conditions are 3bar, 373K, stoichiometric mixture and ignition at 9°BTDC. 

7.3 Effect of Turbulence Intensity on Engine Knock 

Nevertheless, the enhancement of turbulence intensity can potentially be a mitigation 

method for knock, especially under higher intake pressures. As previously mentioned, 

enhanced turbulence intensity increases average flame speed and shortens combustion 

duration, thus allows less time for time-dependent autoignition to develop into knock or 

retards the onset timing of knock to reduce its intensity. Fig. 7-4 to 7-6 show the effects of 

turbulence intensity enhancement on knock onset timing, knock intensity and mass fraction 

burnt by autoignition. It can be clearly seen that as turbulence intensity is enhanced, knock 

onset timing is slightly advanced towards TDC, indicating an increase in unburnt mixture 

temperature. This is attributed to increased flame speeds causing faster compression on 

unburnt mixture. Both knock intensity and mass fraction burnt by autoignition have been 

reduced by turbulence intensity enhancement. As the flame propagates faster more 
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combustible charge is consumed by flame combustion and less is burnt by slower-reacting 

time-dependent autoignition combustion. Because less charge is burnt in unburnt zone by 

autoignition, less energy is released and therefore lowering knock intensity significantly.  

Fig. 7-4 Effects of turbulence intensity enhancement on knock onset. Initial conditions 

are 373K, 3bar, stoichiometric mixture and ignition at 9°BTDC. 

Fig. 7-5 Effects of turbulence intensity enhancement on knock intensity. Initial 
conditions are 373K, 3bar, stoichiometric mixture and ignition at 9°BTDC.  
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Fig. 7-6 Effects of turbulence intensity enhancement on mass fraction burnt by 
autoignition. Initial conditions are 373K, 3bar, stoichiometric mixture and ignition at 9°
BTDC. 

 

Fig. 7-7 Comparisons of mass fraction burnt by flame and overall combustion with 
baseline turbulence intensity and enhanced turbulence intensity (by a factor of 6). 
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Fig. 7-8 Comparison of mass fraction burnt by autoignition with baseline turbulence 
intensity and enhanced turbulence intensity (by a factor of 6). 

The combustion and autoignition processes with high intake pressure and enhanced 

turbulence intensity are illustrated in Fig. 7-7 and 7-8. Mass fraction burnt by flame 

combustion under enhanced turbulence intensity is noticeably higher than non-enhanced 

baseline scenario, at the same crank angle after ignition. This is resultant from increased 

turbulent flame speed due to stronger turbulence intensity. Overall combustion duration has 

been shortened by approximately 8 crank angle degrees. In Fig. 7-8, it can be seen that 

autoignition under enhanced turbulence intensity occurs approximately 4 crank angle 

degrees earlier than non-enhanced baseline scenario. Additionally, autoignition under 

enhanced turbulence intensity takes much less time to reach the maximum mass fraction 

burnt, indicating chain chemical reactions proceed with higher rates and under higher 

temperature. Although autoignition under enhanced turbulence intensity occurs at higher 

reaction rates, it ultimately burns less combustible mass, about 67% of non-enhanced 

baseline scenario. This is attributed to the fact that faster flame consumes more combustible 

mass before the time-dependent autoignition is fully developed and leaves less combustible 

mass to be burnt in autoignition. This phenomenon also explains why, under enhanced 

turbulence intensity, knock onset timing is advanced but knock intensity is somehow reduced. 
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7.4 Summary 

Downsized and boosted spark ignition engines provide higher performance and lower fuel 

consumption and CO2 emission. The benefit of such operating strategy is hugely limited by 

end gas autoignition and attendant knock. Traditional knock mitigation methods include 

retardation of spark timing and reduction of intake pressure, although effective, but these 

method results in compromises on engine performance and fuel consumption. A better knock 

mitigation method that minimise these compromises should be investigated. 

In SI engines, knock is induced by autoignition of unburnt mixture ahead of the propagating 

flame. Chemically, autoignition is extremely temperature dependent and is slower that in-

flame reactions. Autoignited mixtures need time to develop and gain strength to induce 

engine knock. Therefore, it is critical to control the time allowed for autoignition to develop to 

supress the occurrence of engine knock. At any known engine speed, this time allowed for 

autoignition to develop is dominated by the turbulent flame speed within the combustion 

chamber. As reviewed in Chapter Two, turbulent flame speed can be increased by enhanced 

turbulence intensity.  

A knock mitigation strategy based on turbulence intensity enhancement has been 

investigated. Simulation results revealed that, by enhancing turbulence intensity, average 

flame speed during the combustion process can be increased to shorten the overall 

combustion duration. As the flame propagates faster, more combustible mass is consumed 

by the flame and leaves less combustible mass to be burnt by unburnt mixture autoignition, 

and thus knock intensity has been reduced. The drawback of such strategy is the 

advancement in knock onset timing, resultant from increased compression exerted by the 

faster propagating flame. Such compromise is acceptable in practical engine operation as it 

is the knock intensity that is more damaging to the engine. 
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Chapter Eight: Conclusions and Future Work 

 

8.1 Concluding remarks 

The current research study has been focused on the development, validation and 

application of two spark ignition engine models: 

1. A naturally aspirated spark ignition engine combustion and flame propagation 

model. 

2. A downsized boosted spark ignition engine knock model. 

Both models are developed based on zero-dimensional multi-zone modelling 

philosophy, for the simulation of kinetically-driven combustion phenomenon within the 

flame and in the unburnt mixtures.  

The major contributions of this research study is primarily made to establish a 

mathematical simulation model based on available physical, chemical, 

thermodynamic and fluid dynamic principles of combustion ,flame propagation and 

autoignition occur in spark ignition engines. The developed model is then solved by 

an in-house numerical solver. The aims of this research study is to establish better 

understanding of the transient turbulent flame propagation and its interaction with end 

gas autoignition and the attendant knock in spark ignition engines. The simulation 

model can be used as a diagnose tool for combustion and knock characteristics under 

realistic in-cylinder conditions.  

Both in-flame combustion and end gas autoignition in spark ignition engines are 

chemical-kinetic-controlled. The difference is the ignition source where in-flame 

combustion is initiated by external energy input, i.e. electrical spark, and is maintained 

through mass diffusion and heat transfer. End gas autoignition, in contrary, is initiated 
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by chemical reactions with heat release resultant from compression work by piston 

motion and flame propagation. Therefore, chemical kinetics modelling has been 

adopted to simulate both in-flame and autoignition combustion, which can be seen as 

processes of hydrocarbon oxidation occurring at different time scales and intensities. 

Zero-dimensional, multi-zone engine modelling has been widely used as a functional 

simulation philosophy to study the combustion process in spark ignition engines. It 

has been regarded as a optimal balance between computational accuracy and costs. 

Combination of chemical kinetics models and zero-dimensional multi-zone 

thermodynamics model is then a effective and efficient method of modelling turbulent 

flame propagation and end gas autoignition phenomenon in spark ignition engines. 

Additional benefits of zero-dimensional multi-zone modelling are briefly listed below: 

 Compared to single-zone models, multi-zone models account for 

temperature, pressure and composition gradient within the combustion 

chamber. It also enables the separation of a dedicated flame/burning zone to 

study the flame propagation process.  

 Multi-zone models are capable of simulating mass and heat transfer between 

burning and unburnt zone, which is critical in flame propagation mechanism. 

 Multi-zone models can be coupled with simplified mean turbulence models to 

significantly reduce computational costs, when detailed in-cylinder flow 

characteristics are not concerned. 

In the development process of the model, some coding principles are bear in mind to 

make the model more efficient and user-friendly: 

 The model has been written in programming language FORTRAN 77/90 to 

make the codes transferable between computers and different operation 

systems. 

 The model has been constructed in a modular structure where a relatively 
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simple main program controls the data flow and calls for subroutines of 

different functions. It is therefore easier to turn some of the functions of the 

model on and off. 

 A DVODE (Double-precision Variable-coefficient Ordinary Differential 

Equation) solver is applied to solve initial value problems for both stiff and 

non-stiff ODEs systems. 

8.1.1 SI engine turbulent flame modelling 

Turbulent flame propagation within spark ignition engines is closely related to 

combustion efficiency, fuel consumption, cyclic variation and abnormal combustion 

phenomenon. Previous research work on turbulent flame propagation under 

engine-like conditions is limited by its complexity and extremely random and transient 

nature. In the current research, turbulent flame propagation within spark ignition 

engines is assumed to fall into the wrinkle flamelet combustion regime. Therefore, the 

combustion process and the effects of turbulence on reacting laminar flamelets can 

be separately studied and modelled. The turbulent flame speed is then considered as 

a combination of laminar flame speeds and contribution from critical turbulence 

parameters, i.e. turbulence intensity.  

The instantaneous turbulence intensity and other turbulence parameters at any given 

crank angles are evaluated using the rapid distortion theory with reference values at 

TDC position that are obtained experimentally. 

Laminar flame speed is considered as a result of laminar burning velocity, flame 

stretch, flame instabilities and thermal expansion. Laminar burning velocity is a 

property of a fuel at given initial conditions, i.e. temperature, pressure and 

composition. Laminar burning velocity is chemically-controlled and therefore modelled 

using chemical kinetics mechanism. Such novel methodology has been firstly 

validated by modelling of spherical flames in constant volume combustion chamber, 
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before being applied in spark ignition engine turbulent flame modelling. 

The interaction between turbulence and laminar flame speed has been described 

using a established turbulence flame speed correlation. This correlation has been 

selected by extensive review on available correlations by the criterion that it best suits 

turbulence combustion under engine-like conditions which are characterised by 

higher turbulence levels and increased turbulent Reynolds Number. 

Some model-specific assumptions are applied to suit the development of the model: 

 The ignition process is neglected and a flame kernel is assumed to exist after 

the breakdown period. The kernel initially propagates at the rate of laminar 

flame speed under thermodynamic conditions at ignition. Pressure is 

assumed to be uniform on both sides of kernel. Adopted values for kernel 

size and breakdown period to be 1mm radius and 200μs respectively. 

 The turbulent flame front is assumed to have a spherical shape and such 

shape is maintained throughout combustion. The instantaneous turbulent 

flame front is arbitrarily wrinkled by the small eddies in the turbulent flow. A 

mean flame front centre line is introduced to simplify the flame geometry, as 

depicted in Fig. 6-2. The mean flame front has the same thickness as the 

instantaneous flame front, which is denoted as 𝜹𝑻. 

 The turbulent intensity within the combustion chamber is assumed to be 

spatially uniform. Additionally, the turbulence intensity is assumed to be a 

function of crank angle and its reference value at TDC, at a given engine 

speed. 

Major contributions and findings of spark ignition engine turbulent flame modelling are 

listed below: 

 Instantaneous laminar burning velocity increases during the flame 

propagation process, as a result of increased unburnt zone temperature. The 

increase rate of laminar flame speed is relatively low at initial stage of flame 
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propagation. The rate increases suddenly and results in maximum laminar 

flame speed between 30 to 35°ATDC when the unburnt zone is compressed 

to a small fraction of its volume before ignition. The rate then starts to 

decrease towards the end of the flame propagation process. Such decrease 

has been attributed to pressure-sensitive chain termination reactions in the 

chemical kinetics model. 

 Instantaneous turbulence flame speed increases with crank angle during the 

combustion phase. Richer mixtures have higher turbulence flame speed 

under simulated conditions (0.8<Ф<1.2). Increase rates of turbulent flame 

speed are generally greater than those of laminar burning velocity at the 

same crank angle. This is attributed to contributions of turbulence intensity. 

 Investigation of relation between turbulent and laminar flame speed, ST/SL, 

revealed that leaner laminar flames are more sensitive to turbulence intensity 

due to their relatively low flame speeds and thinner flame front. The effect of 

turbulence intensity has been found to decrease in the initial stage of 

combustion due to rapid decay. However, such effect starts to increase at 

around 200°CA as a result of strong compression of unburnt mixture by 

propagating flame. 

8.1.2 Downsized boosted SI engine knock modelling 

The current research also investigated the knock phenomenon in modern downsized 

boosted spark ignition engines. A modified Tanaka chemical kinetics model for 

gasoline has been applied to unburnt zone to simulate end gas autoignition. The 

purpose for modification is to make the model suitable for spark ignition combustion, 

as the original model was designed for HCCI combustion of gasoline. Reaction rates 

of key chain branching elementary reactions R6 and R18 in the original model have 

been amplified and validated to reproduce the characteristics of spark ignition 

combustion, which are higher burning rate and shorter ignition delay. 
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In order to simulate the effect of downsizing and boosting on combustion, intake 

pressure has been increased in the simulation model. The following knock 

characteristics have been revealed, at initial conditions of 373K, 1-3bar, stoichiometric 

mixture and ignition at 9°BTDC: 

 Peak cylinder pressure has been found monotonically with increasing intake 

pressure. Peak cylinder pressure at 3 bar intake pressure is 53.8% and 208.5% 

higher than peak cylinder pressures recorded at 2bar and 1bar intake 

pressure, respectively. 

 As intake pressure is increased, knock onset timing is advanced and knock 

intensity is amplified. This attributed to the increased unburnt zone 

temperature as a result of intake pressure increase.  

 Autoignition at 1, 2 and 3bar intake pressure has been found to consume 

1.10%, 1.37% and 4.49% of combustible charge inducted into the cylinder, 

respectively. This trend agrees with the fact that knock occurs earlier and has 

higher intensity when intake pressure is increased. End gas autoignition and 

attendant knock have effectively shortened the overall combustion duration. 

 Average flame speed during the combustion phase has been proven to be 

influential in knock onset timing and intensity. Higher average flame speed 

causes earlier knock onset with higher intensity. 

 Increased intake pressure can increase average flame speed and, 

theoretically, allows less time for time-dependent autoignition to occur and 

develop. However, such phenomenon is not depicted in the simulation results. 

This finding indicates that, in practical application, increasing intake pressure 

without optimisation of other engine operating parameters will increase flame 

speed and cylinder pressure and, therefore, improve engine performance, 

but also induce severe knock problem, making such operating strategy 

unfeasible. 
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A knock mitigation strategy that has minimum side effects on engine performance has 

been proposed. The strategy is based on the theory that when flame propagates 

faster and consumes more combustion mass, it leaves less time and combustible 

mass for end gas autoignition to develop and gain intensity. Previous attempts to 

manipulate in-cylinder turbulent flame speeds are concentrated in two areas: increase 

of intake temperature and increase of intake turbulence level. Increase of intake 

temperature is feasible in prevention of knock as autoignition is extremely 

temperature-sensitive. Therefore, a knock mitigation strategy based on increased 

turbulence intensity has been tested and following conclusions have been drawn: 

 Turbulence intensity at ignition has noticeable effect on average flame speed 

during the combustion phase. Enhancements of turbulence intensity by a 

factor of 2, 4 and 6 resulted in 31%, 65% and 118% increase of average 

flame speed, respectively. 

 The increase of average flame speed during the combustion phase shortens 

the combustion duration by up to 19.8%. 

 When turbulence intensity is enhanced by a factor of 6, knock onset timing at 

3bar intake pressure has been advanced by around 3°CA. However, knock 

intensity is reduced by 26% and mass fraction burnt by autoignition is 

reduced to 2.52% from 4.49% without enhancement. 

 Detailed investigation of mass fraction burnt plots showed that, after 

turbulence intensity enhancement, the mass fraction burnt by flame 

propagation has increased at a given CA, while the mass fraction burnt by 

autoignition started to increase earlier but reached a lower maximum. 

8.2 Future work 

Based on the experience gained during the development of the models described in 

this thesis, together with knowledge gained from literature review on relevant topics, 
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the following improvements are recommended for future researchers using these 

models: 

 The heat transfer between the flame and the unburnt zone has been 

modelled using a semi-empirical correlation that was not originally designed 

for spark ignition engine combustion. Although the correlation contains 

parameters that can be tuned to match experimental results to validate the 

model, there is still a need for better systematic understanding and numerical 

expression of heat convection in the flame-unburnt interface. 

 As recommended by a number of highly-regarded publications, the addition 

of a fourth zone, thermal boundary layer between unburnt zone and cylinder 

walls, will improve the model’s ability of predicting emissions and heat 

transfer to cylinder walls. This is not particularly necessary for the current 

study as flame propagation and knock are the major concerns. However, as 

emissions are becoming more important in modern engine design, such 

addition is strongly recommended. 

 The gasoline chemical kinetics model applied in the current models is a 

reduced mechanism. This is attributed to both the lack of a detailed gasoline 

kinetics mechanism and the lack of highly efficient numerical algorithm, such 

as parallel computing. The adoption of new numerical algorithm may involve 

major modifications on the code structure or even translation of the codes 

into other programming language. 

 In terms of the model codes, the models developed are written in Windows 

Visual Studio 2010 using FORTRAN composer XE compiler. The 

interpretation and modification of the codes have to be conducted using the 

software package. This greatly limits the distribution and user-friendliness of 

the models. It is recommended that a GUI (Graphic User Interface) being 

developed for the models and subroutines in the models being transformed 



Chapter Eight: Conclusions and Future Work 
 

  157 
 

into toolboxes, to allow end-users to take advantage of full or partial 

functionalities of the models. 
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Appendix B: Code Structure of Engine Flame 

Propagation and Knock Models 

 

Start of Simulation 
(BDC) 

Chemical Kinetics 
Mechanism & Thermo 
database & Transport 
database 

Functions 
(Ti, Pi, Vi, Yi,j, ρi, H, etc ) 

Input Files for: 
 Initial conditions;  
 Engine Geometry; 
 Solver Parameters; 

Flame Model (after ignition) 
 Volume; 
 Surface Area 
 Entrained Mass 

DVODE Solver 

Governing Equations 

Solver Output for: 
 Zone temperatures, pressures 

and compositions. 
 In-flame combustion duration 
 

mburnt = minitial ? 
NO 

YES 

Output for Knock Model Only: 
 Temperature, pressure and 

composition update. 
 Mass burnt by autoignition 

t = t’ + ∆t 
(∆t = 0.1 CA) 

End of Simulation 
Record Total Combustion Duration 
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