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Abstract— This paper proposes UAV rendezvous and
standoff tracking guidance laws against a moving target
using differential geometry. Searching and subsequent
tracking of moving ground based target is one of the
primary capabilities of cooperative UAVs. In performing
such missions, UAVs are to approach a target and
keep a certain distance, known as a standoff distance.
This allows target tracking without being noticed and
acquisition of accurate target information. In this study,
standoff target tracking is proposed using the solution of
differential geometry between the UAV and the target.
The proposed algorithm brings several advantages along
with its inherent simplicity: rigorous stability, explicit use
of a target velocity, and tuning parameter reduction. The
feasibility and performance of the proposed approach
is not only mathematically analysed, but also verified
through realistic scenarios.

I. INTRODUCTION

The large scale of UAV (Unmanned Aerial Vehi-
cle) applications has proliferated vastly within the
last two decades. The operational experience of
UAVs has proven that their technology can bring
a dramatic impact to both military and civilian
applications. This includes, but not limited to:
obtaining real-time, relevant situational awareness
before making contact; helping operators to lead
appropriate decision making; and reducing risk to
the mission and operation.
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Groups of UAVs are of special interest due to
their ability to coordinate simultaneous coverage
of large areas, or co-operate to achieve common
goals. Specific applications under consideration for
groups of cooperating UAVs are border patrol,
search and rescue, surveillance, airborne police
enforcement, adversarial or enemy monitoring,
and ground vehicle convoy. In these applications,
searching and subsequent target tracking become
one of key UAV capabilities required.

For search and tracking of ground based target,
it is desirable to acquire accurate target motion
information, as well as to track the target without
being noticed. These capabilities can be enabled
by approaching the target and keeping a certain
relative distance with a prescribed inter-vehicle
angular separation. The certain relative distance
from the target is called the standoff distance
and therefore this approach is known as stand-
off target tracking. A configuration of UAVs for
standoff tracking generally adopts two strategies:
i) distribute UAVs to have equal angular separation
around the target [1] or ii) position them at a
certain angular position in the orbit. In the second
strategy, the number of team members and sensor
characteristics are taken into account to determine
the angular separation maximising the estimation
accuracy of target information [2], [3].

In a domain of standoff target tracking,
Lawrence [4] firstly proposed the application of
Lyapunov vector field, which was further inves-
tigated by Frew et. al. [5], [6] to incorporate
phase-keeping as well as standoff tracking for
two-UAV formation. They proposed a decoupled
guidance structure in which speed and heading-rate
are separately controlled for standoff distance and
phase angle keeping, respectively. Summers et. al.
[7] extended this phase-keeping idea to multiple
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UAVs using information architectures in vehicle
formations. Similarly, Kingston et. al. [8] used
vector field approach, however, they introduced
a sliding mode control concept and orbit radius
change without velocity change for phase-keeping
of multiple UAVs. Chen et. al. [9] proposed the
use of a tangent-plus-Lyapunov vector field which
includes a simple switching logic between tangent
and Lyapunov vector fields to make convergence
to the standoff circle faster. Moreover, Sepulchre
et. al. [10] applied the collective control of multi-
agent system to stabilise circular formation around
the target. Klein and Morgansen [11] proposed
a steering control law making the velocity of
the collective centroid match a reference velocity
allowing tracking of a moving target. Wise and
Rysdyk [12] well surveyed and compared the
different methodologies and recently, Prevost et.
al. [13] and Kim et. al. [14] applied a model-based
predictive control for standoff tracking.

This paper proposes UAV rendezvous and stand-
off tracking guidance to a moving ground target
using differential geometry motivated by previous
works [15], [16]. Using the relative geometry,
convergent, divergent and parallel solutions can
be obtained depending on their initial positions
and the velocity ratio between them. Then, the
convergent solution can be used to guide the
UAV on the corresponding rendezvous geometry
associated with the target movement. In a similar
way, a novel guidance law for standoff tracking
is derived by superimposing a standoff orbit circle
around the target position. In order to verify the
feasibility and benefits of the proposed approach,
numerical simulations are performed using a re-
alistic scenario, in which two cooperative UAVs
are equipped with MTIR (Moving Target Indicator
Radar) and run extended Information filter with
decentralised sensor fusion for target localisation.

The proposed differential geometric guidance
law has several advantages along with its inherent
simplicity over the other standoff tracking guid-
ance laws. First of all, whilst most of literatures
have focused on the stability analysis limited to
standoff tracking of a fixed target, the proposed
approach can analyse stability for both rendezvous
and standoff tracking of a moving target. Another
benefit is that the guidance command can explic-

itly consider a target velocity for enhancing the
tracking performance when its estimation by the
localisation filter is reasonably accurate. Lastly, the
proposed guidance law requires the reduced num-
ber of tuning variables, only a curvature command,
unlike other approaches such as vector field guid-
ance requiring more parameters for appropriate
vector field generation as well as guiding vehicle
into the field [8], [17].

The remainder of this paper is organised as fol-
lows. Section II introduces rendezvous geometry
between the UAV and the target using differential
geometry. The description of standoff tracking ge-
ometry follows in Section III. Section IV proposes
the guidance algorithms to generate the UAV turn-
rate command for both rendezvous and standoff
tracking against a moving target and then proves its
global convergence using Lyapunov theory. Lastly,
numerical simulations are performed to verify the
performances of the proposed methodology in Sec-
tion V. Conclusions and future works are given in
Section VI.

II. DIFFERENTIAL GEOMETRY ASSOCIATED
WITH UAV AND TARGET

A. Rendezvous geometry
Consider an UAV and a moving target with their

motion associated each other in a Frenet-Serret
frame [18], [15]. Rendezvous geometry is built
up using the two-dimensional Frenet-Serret frame
defined by a tangent vector t and a normal vector
n of each vehicle as shown in Fig. 1. The required

Fig. 1. Guidance geometry

tangent direction of the UAV for rendezvous, t̂1,
is represented with the following vector addition
on the rendezvous triangle in Fig. 1:

s1t̂1 = rts + s2t2 (1)



where t2 and ts are a current velocity vector of
the target and a line-of-sight (LOS) vector from
the UAV to the target, respectively, r is a distance
between the UAV and the target, and s1 and s2 are
the resultant lengths of the tangent vectors to the
rendezvous point. Let us define a velocity ratio of
the UAV and the target, γ, as:

γ =
v1
v2

=
s1
s2

(2)

where vi is the constant speed of each vehicle.
Then, Eq. (1) changes to:

t̂1 =
1

γ

[
r

s2
ts + t2

]
. (3)

Applying a cosine rule to the geometry around the
LOSs to the target gives:(

r

s2

)2

− 2 cos(θs2)

(
r

s2

)
−
(
γ2 − 1

)
= 0.(4)

Solving this equation gives:(
r

s2

)
= cos(θs2)±

√
γ2 − sin2(θs2). (5)

For this case of a straight line rendezvous, the tri-
angle of the rendezvous point and vehicle positions
is thus invariant in shape, but will shrink or grow
as UAVs travel along the solution. One solution
will result in rendezvous, the other in a divergent
geometry as shown in Figure 2. In this figure, a

(a) Convergent Solution (b) Divergent Solution

Fig. 2. Solution geometries for rendezvous

circle with radius of s1 is drawn to visualise the
reachable area of the UAV considering the length
(or velocity) ratio γ = s1

s2
as in Eq. (2), and possible

initial conditions for rendezvous geometry between
the UAV and target. The convergent solution uses
the positive square root, whilst the divergent so-
lution uses the negative square root. Hence for

this case, the solution will always use the positive
square root, as:(

r

s2

)
= cos(θs2) +

√
γ2 − sin2(θs2). (6)

It is also worth exploring the solution as a function
of the speed ratio γ. If γ > 1, then the expression
within the square root is always greater than zero
for all θs2, or:

γ2 − sin2(θs2) > 0, γ > 1. (7)

This means that there will always be a real solution
for any initial geometry. Such a condition is shown
in Fig. 3(a). However, if γ < 1, then there will be

(a) Rendezvous solution al-
ways possible

(b) No rendezvous solution

(c) Parallel solution

Fig. 3. Rendezvous solutions depending on initial positions and
γ

some θs2 for which:

γ2 − sin2(θs2) < 0, γ < 1. (8)

This implies that for some geometry, a real solution
is not possible, and the UAV will not be able to
rendezvous with the target. For example, for the
fixed target direction shown in Fig. 3(b), the circle
indicating all the possible travel directions of the
UAV has no intersection with the trajectory of the
target abiding by the length ratio γ, and thus there
is no solution. For the case of the two vehicles
having the same speed, i.e. γ = 1, the rendezvous
geometry equation now becomes:

t̂1 =

[
r

s2
ts + t2

]
(9)



with (
r

s2

)2

− 2 cos(θs2)

(
r

s2

)
= 0. (10)

The solution for this case is given by:(
r

s2

)
= 2 cos(θs2) or 0. (11)

There is no longer an imaginary solution, and now
two real solutions are given. The first solution
implies a geometry which gives rise to an isosceles
triangle solution as before, but only where s1 = s2.
Since the solution depends on the initial positions
and orientation of the target, global convergence
is not possible for this case. The second solution
implies that the ratio r/s2 is zero. For r > 0,
this implies s2 = ∞ or θs1 = θs2 = π/2.
This solution results in the UAV and the target
moving on parallel courses that neither converge
or diverge as shown in Fig. 3(c), and the vehicles
will maintain the geometry both in shape and size
for this solution. Hence this solution is of interest
when the vehicles are required to move in some
form of group or formation where they will retain
some sort of cohesion in manoeuvre. Note that this
condition does not imply any particular geometry,
much as the other solutions do. All that is required
is that the ratio of the two paths s1 and s2 in the
solution are the same as the speed ratio between
them.

The guidance algorithm must therefore compute
the required velocity vector tangent t̂1 using Eq.
(3) along with Eq. (5) for the UAV and produce
a closed loop system which drives the current
tangent vector t1 onto it in a stable manner.

B. Standoff tracking geometry
This section extends the rendezvous problem

of the previous section into standoff tracking for
which the UAV needs to track the moving target
while maintaining a certain distance from it. In a
similar way to the previous section, let us consider
the associated geometry of the UAV and the target
with newly adopting a standoff distance dm. The
relative velocity of the UAV with respect to the
target is shown in Fig. 4 for rendezvous. The
relative velocity of the UAV with respect to the
target is given by:

vr = v1 − v2 (12)

Fig. 4. Relative velocity for rendezvous

The condition for rendezvous is shown to be such
that the relative velocity vector should lie along the
LOS between the UAV and the target. This ensures
that the geometry does not change over time as
the rendezvous triangle shrinks but maintains its
shape. This is consistent with the fact that the
solution of r/s is constant as defined in Eq. (5).
This can now be modified to produce the geometry
of standoff tracking by superimposing a circle of
radius dm around the target as shown in Fig. 5.
If the relative velocity vector vr is aligned with

Fig. 5. Relative velocity for standoff tracking orbit approach

the tangent line to the standoff circle, then the
rendezvous point for standoff tracking will be at
pm.

Now, the rendezvous geometry shown in Fig. 1
is modified to fit the standoff tracking as shown in
Fig. 6. Herein, the original rendezvous triangle is
modified into the triangle given by {p1,pm,ps},
for both a clockwise and anti-clockwise rotation
from the LOS to pm. The vector sum on the
engagement geometry is given as:

t̂1 =
1

γ

[
dr
s2
td + t2

]
(13)

where td is the unit tangent vector from the UAV
to pm, and dr is the distance between the UAV and
rendezvous point pm. Applying the cosine rule to



(a) Clockwise solution

(b) Anti-clockwise solution

Fig. 6. Geometry for standoff tracking

this geometry gives:(
dr
s2

)2

− 2 cos(θsm2)

(
dr
s2

)
− (γ2 − 1) = 0 (14)

where

dr =
√
r2 − d2m (15)

θsm2 = θs2 ± θd1. (16)

Herein, θd1 is either added for a clockwise solu-
tion and subtracted for an anti-clockwise solution.
Substituting the following relations:

cos(θd1) =
dr
r

=

√
r2 − d2m
r

(17)

sin(θd1) =
dm
r

(18)

into

cos(θsm2) = cos(θs2 ± θd1) (19)
= cos(θs2) cos(θd1)∓ sin(θs2) sin(θd1)

gives

cos(θsm2) =

√
r2 − d2m
r

cos(θs2)∓
dm
r

sin(θs2).

(20)

Note that as the standoff distance is reached, the
parameters become:

r → dm, dr → 0, θd1 →
π

2
.

Although the geometry of this case is not fixed
with respect to the LOS, the solution requires the
relative velocity vector to lie along the tangent
line vector td which will not be changed, and the
two vehicle velocity vectors are fixed. Therefore,
the triangle {p1,pm,ps} is fixed in shape and
orientation, and will shrink as the UAV approaches
to the standoff orbit pm. Then, the ratio dr/s2, a
solution to Eq. (14), will have a fixed solution as:(

dr
s2

)
= cos(θsm2)±

√
γ2 − sin2(θsm2). (21)

The guidance algorithm must therefore compute
the required velocity vector t̂1 using Eq. (13)
along with Eq. (21) for the UAV and produce
a closed loop system which drives the current
tangent vector t1 onto it in a stable manner, as
in the case for rendezvous.

III. UAV GUIDANCE LAW FOR RENDEZVOUS
AND STANDOFF TRACKING

This section first introduces UAV dynamic
model and then proposes the guidance laws for
both rendezvous and standoff tracking case. For
ease of deriving the guidance laws, this paper
assumes that at the current sampling time, the
target is instantaneously non-manoeuvring but its
velocity is exploited, which can be estimated by
tracking filters of the UAVs.

A. UAV dynamic model
Assuming each UAV has a low-level flight

controller such as SAS (Stability Augmentation
System) and CAS (Controllability Augmentation
System) for heading and velocity hold functions,
this study aims to design guidance inputs to this
low-level controller for rendezvous and standoff
target tracking. Consider a two-dimensional UAV
kinematic model [14] as:

ẋ
ẏ

ψ̇
v̇
ω̇

 = f(x,u) =


v cosψ
v sinψ
ω

− 1
τv
v + 1

τv
uv

− 1
τω
ω + 1

τω
uω

 (22)



where x = (x, y, ψ, v, ω)T are the inertial position,
heading, speed and yaw rate of the UAV, respec-
tively. τv and τω are time constants for considering
actuator delay. u = (uv, uω)T are the commanded
speed and turning rate constrained by the following
dynamic limits of a fixed-wing UAV:

|uv − v0| ≤ vmax (23)
|uω| ≤ ωmax (24)

where v0 is a nominal speed of UAV. The contin-
uous UAV model in Eq. (22) can be discretised by
Euler integration into:

xk+1 = fd(xk,uk) = xk + Tsf(xk,uk) (25)

where xk = (xk, yk, ψk, vk, ωk)
T , uk =

(uvk, uωk)
T , and Ts is a sampling time.

B. Rendezvous case

This section designs a guidance law for ren-
dezvous covering all the convergent solutions dis-
cussed in Section II. Assuming the UAV has a
speed advantage over the target, the positive so-
lutions are considered from Eq. (4). Let us define
the angle between the required tangent vector t̂1
and the current UAV tangent vector t1 as:

χ1 = (π − θs1)− θ̂s1 (26)

where (π−θs1) and θ̂s1 are the current UAV tangent
angle and the required tangent angle with respect
to the LOS, respectively, as shown in Fig. 1.
To guide the UAV onto the required geometry,
considering an actively rotating tangent vector t1,
the guidance command uω for turn rate is set by
using a curvature command as:

uω = θ̇1 = κ1v1 (27)

where v1 is the UAV speed, and κ1 is the curvature
command. For ease of analysis, the turn rate θ̇1 will
be used rather than the explicit κ command.

To develop the guidance algorithm and assess
the resulting stability, consider a Lyapunov func-
tion as:

L1 =
1

2
χ2
1. (28)

Its time derivative is given by:

L̇1 = χ1χ̇1 (29)

where
χ̇1 = −θ̇s1 − ˙̂

θs1. (30)

The differential of the required angle θ̂s1 is ob-
tained from examining the rate of change of t̂1 as:

t̂1 =
1

γ

[(
r

s2

)
ts + t2

]
(31)

Differentiating this gives:

˙̂t1 =
1

γ

[
d

dt

(
r

s2

)
ts +

(
r

s2

)
ṫs

]
=

˙̂
θ1n̂1 (32)

where n̂1 is the normal vector to t̂1, and ṫ2 = 0
is used from the assumption a target is instanta-
neously non-manoeuvring at the current sampling
time. A geometric interpretation of Eq. (31) is
reproduced in Fig. 7 to make use of the relation
between corresponding angles (especially for θs2
and θ̂s1) intuitively. As the value of r/s2 exists
between its maximum (1 + γ at θs2 = 0) and
minimum (1 − γ at θs2 = π) bounds from Eq.
(6), the magnitude of vector ts, r/(γs2), has its
maximum and minimum values. Figure 7 shows

(a) Geometry γ > 1

(b) Geometry γ < 1

Fig. 7. Geometric interpretation of rendezvous solutions

that as the engagement geometry changes by the
guidance, the solution t̂1 will change and rotate
around the circle, and the rotation of the solution



vector t̂1 is related to the rotation of the LOS
vector ts. As shown in Fig. 7, as solution A
moves to solution B when γ > 1, θ̂s1 as well as
the target to LOS angle θs2 increases, and hence
there is a monotonic relationship between these
two angles. Meanwhile, for the γ < 1 case, the
angles oscillates between maximum and minimum
bounds according to the condition from Eq. (6).
Hence, the following equation holds:

˙̂
θs1 = λ1(r/s2, θs2)θ̇s2 (33)

From Fig. 1 and Fig. 7, the relations between the
angles are given as:

θ̇s2 = θ̇s (34)
˙̂
θs1 =

˙̂
θ1 + θ̇s (35)

since

θs2 = θ2 + θs (36)
θ̂s1 = θs + θ̂1 (37)

and θ̇2 = 0. Combining Eq. (33) and
Eqs. (34)∼(35) gives:

˙̂
θs1 =

˙̂
θ1 + θ̇s = λ1(r/s2, θs2)θ̇s. (38)

Rephrasing this yields:

˙̂
θ1 = − [1− λ1(r/s2, θs2)] θ̇s. (39)

The time derivative of Lyapunov candidate func-
tion in Eq. (30) can be rephrased by using Eq. (39)
as:

L̇1 = χ1

[
θ̇1 + (1− λ1) θ̇s

]
. (40)

since

χ̇1 = −θ̇s1− ˙̂
θs1 = θ̇1+θ̇s−(

˙̂
θ1+θ̇s) = θ̇1− ˙̂

θ1 (41)

where
θs1 = (π − θ1)− θs (42)

To find the bounds of 1 − λ1, first of all, the
differential of r/s2 is obtained by differentiating
Eq. (4) as:

d

dt

(
r

s2

)
=
− sin(θs2)

(
r
s2

)
(
r
s2

)
− cos(θs2)

θ̇s. (43)

Substituting Eq. (43) and Eq. (39) into Eq. (32)
gives:

1

γ

− sin(θs2)
(
r
s2

)
(
r
s2

)
− cos(θs2)

 ts +

(
r

s2

)
ns

 θ̇s (44)

= − [1− λ1(r/s2, θs2)] θ̇sn̂1

Taking a norm of both sides of this equation gives:

|1− λ1| =
1
γ

(
r
s2

)√(
r
s2

)2
− 2 cos(θs2)

(
r
s2

)
+ 1

|
(
r
s2

)
− cos(θs2)|

.

(45)
Using Eq. (4) for the term under the square root
of the above equation gives:

|1− λ1| =

(
r
s2

)
∣∣∣( r
s2

)− cos(θs2)
∣∣∣ . (46)

Combining above equation and Eq. (6) gives:

−
(

1 +
1

γ

)
≤ (1− λ1(r/s2, θs2)) ≤

(
1 +

1

γ

)
(47)

Then, the guidance command to UAV, turn rate θ̇1,
can be set as:

θ̇1 = −
(

1 +
1

γ

) ∣∣∣θ̇s∣∣∣ sign(χ1)− kχχ1 (48)

where control gain kχ > 0 and

sign(x) =

 1, if x > 0
0, if x = 0
−1, if x < 0

(49)

The resulting Lyapunov rate is now:

L̇1 = χ1[−
(

1 +
1

γ

) ∣∣∣θ̇s∣∣∣ sign(χ1)

+ (1− λ1) θ̇s]− kχχ2
1 ≤ 0. (50)

L̇1 is negative semi-definite since Eq. (47) makes
an absolute magnitude of the first term in the
square brackets equal to or greater than that of the
second term. Thus the guidance law derived herein
will produce a stable convergence of the UAV onto
a rendezvous with the target.



C. Standoff target tracking case
As the modified geometry for the standoff track-

ing problem was shown to be also invariant, its
guidance law can be obtained in a similar way to
the rendezvous case. Lyapunov function is identi-
cal as in Eq. (28) but using a different error angle
function as:

χ1 = (π − θsm1)− θ̂sm1 (51)

where (π − θsm1) is the angle between the UAV
velocity vector and the tangent line to the standoff
circle around the target. In practice, an error angle
χ1 can be obtained by using difference between
the engagement vector t̂1 from Eq. (13) and UAV’s
current tangent vector t1. Differentiating Eq. (13)
with respect to time gives:

˙̂t1 =
1

γ

[
d

dt

(
dr
s2

)
td +

(
dr
s2

)
ṫd

]
=

˙̂
θ1n̂1. (52)

A geometric interpretation similar to the ren-
dezvous problem is shown in Fig. 8. The same

(a) Geometry γ > 1

(b) Geometry γ < 1

Fig. 8. Geometric interpretation of standoff tracking solutions

relation holds for the standoff tracking as for the
rendezvous as:

˙̂
θsm1 = λ1(dr/s2, θsm2)θ̇sm2 (53)

with:

−
(

1 +
1

γ

)
≤ λ1(dr/s2, θsm2) ≤

(
1 +

1

γ

)
.

(54)
The differential of r/s2 can be obtained by differ-
entiating Eq. (21) as:

d

dt

(
dr
s2

)
=
− sin(θsm2)

(
dr
s2

)
(
dr
s2

)
− cos(θsm2)

θ̇sm2 (55)

In a similar way to the rendezvous case, by using
θd, dr

s2
, and θsm2 instead of θs, r

s2
, and θs2, the

guidance command to UAV, turn rate θ̇1, can be
modified to:

θ̇1 = −
(

1 +
1

γ

) ∣∣∣θ̇d∣∣∣ sign(χ1)− kχχ1 (56)

where kχ > 0. The resulting time-derivative of
Lyapunov candidate is:

L̇1 = χ1[−
(

1 +
1

γ

) ∣∣∣θ̇d∣∣∣ sign(χ1) +

(1− λ1) θ̇d]− kχχ2
1 ≤ 0. (57)

To avoid the chattering problem which results
from the discontinuity of sign function, continuous
saturation function could be applied as given:

sat
(x
ε

)
=

{
x
ε
, if

∣∣x
ε

∣∣ ≤ 1
sign

(
x
ε

)
, otherwise (58)

where ε > 0 represents the width of the boundary
layer.

Note that the LOS rate θ̇s to the target is
replaced by the tangent line rate θ̇d to the standoff
circle in Eq. (56). As the UAV sensor generally
measures a LOS angle, a range and their rates, a
calculation of the tangent line rate θ̇d is required
starting from the following relation as:

θd = θs ± θd1. (59)

From Fig. 6, the following relation holds as:

tan(θd1) =
dm
dr
. (60)

Differentiating both sides of the above equation
gives

1

cos(θd1)2
θ̇d1 = −dm

d2r
ḋr. (61)



Rephrasing this yields:

θ̇d1 = −cos(θd1)
2dm

d2r
ḋr. (62)

Substituting the relation cos(θd1) = dr
r

gives:

θ̇d1 = −dm
r2
ḋr. (63)

Finally, substituting the above equation into the
time-derivative of Eq. (59) yields:

θ̇d = θ̇s ±
dm
r2
ḋr. (64)

Note that the solution involves the tangent line rate
ḋr to the standoff circle, not the LOS rate directly
to the target position. This is practical since the
range rate from the UAV to the target becomes zero
and range measurement might be unobservable at
the point of closest approach to the standoff orbit
as the LOS gets normal to the tangent line.

In the case that the UAV is inside the standoff
orbit, since a tangent line does not exist, the
proposed guidance algorithm cannot be applied
directly. Although several approaches can be sug-
gested for this case such as keeping current speed
until the UAV reaches standoff orbit or hybrid
algorithm combining with other stable vector fields
[13], this study uses modified control command θ̇m
which exploits the condition of the UAV reaching
the standoff orbit virtually whenever the UAV is
inside the standoff orbit (i.e dm > r) as:

θ̇m = θ̇1t ±∆θ̇ tanh

(
η
d

dm

)
(65)

where d = r − dm, and η > 0 and ∆θ̇ are
control variables which adjust the convergence to
the standoff orbit. θ̇1t represents temporary control
command which makes the UAV to track the target
having the orbit radius of current distance from
the target. As the UAV approaches to the desired
standoff orbit, this modified control command gets
closer to the original standoff tracking control
command since d goes to zero.

IV. NUMERICAL SIMULATIONS

A. Rendezvous and standoff tracking against
constant-velocity target

This section carries out numerical examples
using the proposed differential geometric guidance

for rendezvous and standoff tracking of a UAV
against a moving ground target. Inhere, it is as-
sumed that the target velocity is ideally available,
there is no actuator delay in the UAV controller,
and wmax is set to be 0.35 rad/s. Firstly, Fig. 9
shows the simulation result of the rendezvous of
the UAV to the target with different speed ratios
between them. This simulation considers a UAV
flying at different constant speeds of {10, 20, 30,
40} m/sec and a target traveling at a constant
speed of 10 m/sec. Hence, γ =1, 2, 3, or 4 for
this case. As can be seen in Fig. 9, the faster
the UAV is compared to the target, the closer a
rendezvous position gets to the initial position of
the target. The UAV with a higher γ moves with a
faster convergence time but consumes more control
energy. For the case of the UAV travelling at 10
m/sec (γ = 1) distant from the target, a parallel
solution results in no convergence to rendezvous
since r/s2 → 0 as shown in Fig. 10.

The guidance law for standoff tracking is also
applied to the scenario with the UAV flying dif-
ferent constant speeds of {20, 30, 40, 50} m/sec
and a target travelling at a constant speed of 10
m/sec. Hence, γ =2, 3, 4, or 5 for this case. The
cases of γ = 1 or lower values of γ are dropped
as the UAV not faster than the target is difficult to
catch up with a standoff circle continuously. The
required standoff distance from the UAV to the
target dm is set to be 300 m, wmax is set to be
0.3 rad/s, and the rotating direction of the UAV
with respect to the target position is clockwise.
The resultant trajectories for different γ are shown
in Fig. 11. Figure 12 shows the standoff tracking
for UAVs inside the standoff orbit with dm = 400
m, ∆θ̇ = 0.1 and η = 5. As can be seen in the
trajectories and relative distances of Fig. 11-12,
the faster the UAV is compared to the target, the
faster it converges to the standoff circle around
the target. However, the UAV with a higher γ
moves with consuming more control energy and
aggressive manoeuvres.

B. Standoff tracking against realistic movement of
ground vehicle

To verify the feasibility and benefits of the
proposed approach in this paper, a differential ge-
ometric guidance algorithm is applied to a civilian



(a) Trajectory

(b) Relative distance

(c) Heading rate

(d) Lyapunov function

Fig. 9. Rendezvous of UAV to target with different speed ratios:
γ = 1, 2, 3, and 4

Fig. 10. Parallel solution of rendezvous of the UAV to the target

ground target tracking scenario using two cooper-
ative UAVs. For this, the vehicle trajectory data
acquired at 2Hz in a S-Paramics [19] traffic model
of Devizes, Wiltshire, United Kingdom, is used
to generate the MTIR (Moving Target Indicator
Radar) measurements composed of relative range
and azimuth angle with respect to a position of the
UAV as shown in Fig. 13. The ground vehicle de-
parts at the western side of Devizes and traverses a
part of the town centre and then turns back until the
journey ends at the northwestern side of Devizes
[20]. As shown in Figs. 13∼14, the ground vehi-
cle moves complicatedly with frequently changing
direction of driving and its speed.

1) Tracking filter for target localisation and
prediction: After analyzing the car trajectory data
acquired by running a S-Paramics traffic program
and general driving behaviours, it is observed
that the jerk of the car is not negligible, but the
acceleration is piecewise constant for a specific
duration of time. This study, therefore, considers
acceleration dynamics [20], [21] to apply it to
tracking of the moving ground vehicle. The MTIR
radar measurement (r, φ)T can be defined as the
following nonlinear relation using the target posi-
tion (xtk, y

t
k)
T and the UAV position (xk, yk)

T as:

zk =

[
rk
φk

]
= h(xtk) + νk (66)

=

( √
(xtk − xk)2 + (ytk − yk)2

tan−1
ytk−yk
xtk−xk

)
+ νk



(a) Trajectory

(b) UAV trajectory relative to target

(c) Relative distance

(d) Heading rate

Fig. 11. Standoff tracking of the UAV to the target with different
speed ratios between UAV and target: γ = 2, 3, 4, and 5

(a) UAV trajectory relative to target

(b) Heading rate

Fig. 12. Standoff target tracking of the UAV inside standoff orbit,
∆θ̇ = 0.1 and η = 5

Fig. 13. Ground Vehicle trajectory within the road network of
Devizes, Wiltshire, United Kingdom with GIS satellite data overlaid
thanks to Google Map

where νk is a measurement noise vector, and its
noise covariance matrix is defined as:

V [νk] = R =

[
σ2
r 0

0 σ2
φ

]
. (67)

Since this study assumes multiple UAVs carry
out the cooperative standoff tracking of a ground
moving target, each UAV’s MTIR sensor can get
its own measurement and execute the tracking filter
algorithm separately. After each UAV receives the
other’s estimation via communication link, it can
run a decentralised sensor fusion to enhance the



tracking accuracy. Considering the fact that h(xtk)
in the measurement equation is nonlinear as shown
in Eq. (66) and the advantage of using information
form in multi-sensor system with its less communi-
cation load, the localisation of a target is designed
by the extended Information filter (EIF) [22] as:

Prediction

ytk|k−1 = Yk|k−1FkY
−1
k−1|k−1y

t
k−1|k−1 (68)

Yk|k−1 = (FkY
−1
k−1|k−1F

T
k +Qk)

−1 (69)

Update

ytk|k = ytk|k−1 +HT
k (Rk)

−1 · (70)

[zk − h(xtk|k−1) +Hkx
t
k|k−1]

Yk|k = Yk|k−1 +HT
k (Rk)

−1Hk (71)

where Yk = (Pk)
−1 and ytk = Ykx

t
k represent the

information matrix and information state vector,
respectively. And the output matrix Hk is a Ja-
cobian of h with respect to the time-update state
xtk|k−1. Moreover, this study adopts the decen-
tralised EIF [22] scheme to fuse communicated
data under the assumption that the communication
bandwidth is wide enough to transmit information
in both directions between a pair of UAVs.

2) Standoff tracking results: To maximise sen-
sor coverage to the target, enhance the accuracy
of the target estimation or avoid the collision,
the phase coordination between UAVs is required
during the mission. In this scenario, the phase-
angle keeping is accomplished separately from the
standoff orbit tracking by controlling the speed of
UAVs as [5], [6], [12]:

uv = ±kv(∆θ − θd)dm + vd (72)

where kv > 0 is a control gain, ∆θ is a differ-
ence of azimuth angles between UAVs relative to
the target position, θd = π is a desired phase
difference between UAVs, and vd is a desired
velocity command. In other words, by changing
the speed of two vehicles accordingly moving on
the same standoff orbit, desired angular separation
can be achieved while avoiding collision each other
as well as maximise the sensor coverage to the
target. The setting of parameters needed for the
proposed differential geometry guidance can be
found in Table I. Firstly, the decentralised extended
Information filter shows a good tracking accuracy

TABLE I

SIMULATION PARAMETERS

Parameter Value Unit
θd π rad
vd 40 m/s
dm 500 m
vmax 10 m/s
ωmax 0.2 rad/s
τv, τω 1/3 sec
(kv, kχ) (0.1, 1) N/A
(σr1 , σr2) (5, 7) m
(σφ1 , σφ2) (3.5, 2) deg
(∆θ̇, η) (0.1, 5) N/A

even in x and y coordinate velocity as shown
in Fig. 14. Figure 15(a) displays the absolute
trajectories of UAVs and ground vehicle, and Fig.
15(b) displays the relative trajectories of UAVs
with respect to the ground vehicle. As can be
seen in Figs. 15(c)∼(d), the proposed guidance
shows a reasonably good tracking performance for
both the standoff distance error and phase angle
keeping between UAVs. Figures 15(e)∼(f) show
the control input histories of speed and turn rate.
These are commanded control inputs, and as can
be seen in the UAV dynamic model as Eq. (22),
first-order time constants for considering actuator
delay are used to respect dynamic constraints in
the simulation providing smooth and realistic fly-
ing path. Moreover, standoff tracking performance
with different control gain kχ and velocity ratio γ
is investigated using the same scenario as above,
but with a single UAV having a constant velocity
during each simulation as shown in Fig. 16. In
this figure, γmean represents the mean value of
velocity ratio between the UAV and the moving
target of each simulation, and it is changed by
using different velocities of the UAV with the
same ground target. Note that the variable γ is not
tuned but in real-time computed in the guidance
loop using the estimated target speed and the
UAV’s own one. As velocity ratio γmean and the
control gain kχ increase, the standoff distance error
decreases except for the case of a small control
gain. Since the target keeps changing its velocity,
it is difficult for the UAV using a small control
gain to track the target precisely, and it is becoming
more difficult with increasing velocity of the UAV.
On the other hand, the control effort obtained



(a) Absolute trajectories of UAVs and target (b) Relative trajectories of UAVs with respect to target

(c) Standoff distance error (d) Phase angle difference of UAVs

(e) Control input of UAVs: uv (f) Control input of UAVs: uω

Fig. 15. Standoff tracking simulation results



(a) Trajectory

(b) x and y velocity

Fig. 14. Ground target estimation using DEIF

by integrating the time histories of |uw| tends to
increase as the control gain and velocity ratio
increase continuously. In short, these simulation
results show the trade-off between tracking error
and control effort, and facilitate system operators
to define a requirement of the speed dominance
of UAVs over the target depending on the mission
specification.

V. CONCLUSION

This paper presented a novel guidance algorithm
ensuring rendezvous and standoff tracking against
a moving target using differential geometry. Using
the relative geometry between the UAV and the
target, convergent, divergent and parallel solutions
were obtained depending on the initial positions
and velocity magnitude ratio. Then, the convergent
solution which gives the required tangent direction
was used to guide UAV onto the rendezvous or
standoff tracking geometry. The proposed guidance
law showed a reasonable tracking performance for
the realistic civilian ground target tracking scenario
having the advantage of simple stability analysis

(a) Standoff distance error, er = r − dm

(b) Control effort, uw

Fig. 16. Standoff tracking performance with different control gain
kχ and velocity ratio γ̄

by using geometric relation and Lyapunov theory
as well as less tuning parameters. As a future
work, the proposed differential geometric approach
will be extended to consider the target manoeuvre
with unknown or imperfect information by adding
robust or adaptive control term. The control of
multiple patterns using the proposed differential
geometric concept and a comparison with other
comprehensive approaches [23], [24] will also be
followed for cooperative missions.

REFERENCES

[1] S. Martinez and F. Bullo. Optimal sensor placement and mo-
tion coordination for target tracking. Automatica, 42(4):661–
668, 2006.

[2] G. Gu, P. Chandler, C. Schumacher, A. Sparks, and
M. Pachter. Optimal cooperative sensing using a teams
of UAVs. IEEE Transactions on Aerospace and Electronic
Systems, 42(4):1446–1458, 2006.

[3] E.W. Frew. Sensitivity of cooperative target geolocalization
to orbit coordination. Journal of Guidance, Control, and
Dynamics, 31(4):1028–1040, 2008.

[4] D.A. Lawrence. Lyapunov vector fields for UAV flock
coordination. 2nd AIAA Unmanned Unlimited conference,
workshop, and exhibit, Reston, VA, USA, 2003.



[5] E.W. Frew, D.A. Lawrence, and S. Morris. Coordinated
standoff tracking of moving targets using lyapunov guidance
vector fields. Journal of Guidance, Control, and Dynamics,
31(2):290–306, 2008.

[6] S. Morris and E.W. Frew. Cooperative tracking of moving
targets by teams of autonomous unmanned air vehicles. Tech-
nical Report FA9550-04-C-0107, MLB Company, 2005.

[7] T.H. Summers, M.R. Akella, and M.J. Mears. Coordinated
standoff tracking of moving targets: Control laws and in-
formation architectures. Journal of Guidance, Control, and
Dynamics, 32(1):56–69, 2009.

[8] D. Kingston and R. Beard. UAV spaly state configuration
for moving targets in wind. Lecture Notes in Control and
Information, 369:109–128, 2007.

[9] H. Chen, K. Chang, and C. Agate. Tracking with UAV using
tanget-plus-lyapunov vector field guidance. International
Conference on Information Fusion, Seattle, WA, USA, 2009.

[10] R. Sepulchre, D.A. Paley, and N.E. Leonard. Stabilization
of planar collective motion: All-to-all communication. IEEE
Transactions on Automatic Control, 52(5):811–824, 2007.

[11] D.J. Klein and K.A. Morgansen. Controlled collective mo-
tion for trajectory tracking. In American Control Confer-
ence, American Control Conference, Minneapolis, Minnesota,
2006.

[12] R.A. Wise and R.T. Rysdyk. UAV coordination for au-
tonomous target tracking. AIAA Guidance, Navigation and
Control Conference, Keystone, Colorado, USA, 2006.

[13] C.G. Prevost, O. Theriault, A. Desbiens, and E. Poulin.
Receding horizon model-based predictive control for dynamic
target tracking: a comparative study. AIAA Guidance, Naviga-
tion, and Control Conference, Chicago, Illinois, USA, 2009.

[14] S. Kim, H. Oh, and A. Tsourdos. Nonlinear model predic-
tive coordinated standoff tracking of moving ground vehicle.
Journal of Guidance, Control, and Dynamics, In press, 2012.

[15] B.A. White, R. Zibkowski, and A. Tsourdos. Direct intercept
guidance using differential geometry concepts. IEEE Trans-
actions on Aerospace and Electronic Systems, 43(3):899–919,
2007.

[16] B.A. White, H.S. Shin, and A.Tsourdos. UAV obstacle
avoidance using differential geometry concepts. In 18th IFAC
World Congress, Milano, Italy, Aug 2011.

[17] D.A. Lawrence, E.W. Frew, and W.J. Pisano. Lyapunov
vector fields for autonomous unmanned aircraft flight control.
Journal of Guidance, Control, and Dynamics, 31(5):1220–
1229, 2008.

[18] B. O’Neill. Elementary Differential Geometry (2nd ed.). San
Diego, CA: Academic Press, 1997.

[19] SIAS Limited. S-Paramics software. http://www.sias.com, Jan
2011.

[20] S. Kim, R.W. Zbikowski, A. Tsourdos, and B.A. White. Be-
haviour recognition of ground vehicle for airborne monitoring
by UAV swarm. IFAC Symposium on Intelligent Autonomous
Systems, Lecce, Italy, 2010.

[21] K. Mehrotra and P.R. Mahapatra. A jerk model for tracking
highly maneuvering targets. IEEE Transactions on Aerospace
and Electronic Systems, 33(4):1094–1105, 1997.

[22] A.G.O. Mutambara. Decentralized Estimation and Control for
Multisensor Systems. CRC Press LLC, Boca Raton, Florida,
1998.

[23] A.P. Aguiar, I. Kaminer, R. Ghabcheloo, A.M. Pascoal,
E. Xargay, N. Hovakimyan, C. Cao, and V. Dobrokhodov.
Coordinated path following of multiple UAVs for time-critical
missions in the presence of time-varying communication

topologies. In 17th IFAC World Congress, Seoul, Korea, July
2008.

[24] M. Shanmugavel, A. Tsourdos, B. A. White, and
R. Zbikowski. Differential geometric path planning of
multiple UAVs. Journal of Dynamic Systems, Measurement,
and Control, 129:620–632, 2007.


