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Abstract 

Purpose: Antimicrobial proteins (AMPs) in saliva including secretory immunoglobulin A (SIgA), lactoferrin 

(SLac) and lysozyme (SLys) are important in host defence against oral and respiratory infections. This study 

investigated the effects of hydration status on saliva AMP responses to endurance exercise. Methods: Using a 

randomized design, 10 healthy male participants (age 23±4y, V̇O2max 56.8±6.5ml/kg/min) completed 2h cycling 

at 60% V̇O2max  in states of euhydration (EH) or dehydration (DH) induced by 24h fluid restriction. 

Unstimulated saliva samples were collected before, during, immediately post-exercise and each hour for 3h 

recovery. Results: Fluid restriction resulted in a 1.5±0.5% loss of body mass from baseline and a 4.3±0.7% loss 

immediately post-exercise. Pre-exercise urine osmolality was higher in DH than EH and overall, saliva flow rate 

was reduced in DH compared with EH (p<0.05). Baseline SIgA secretion rates were not different between 

conditions; however, exercise induced a significant increase in SIgA concentration in DH (161±134 to 

309±271mg/L) which remained elevated throughout 3h recovery. SLac secretion rates increased from pre- to 

post-exercise in both conditions which remained elevated in DH only. Overall, SLac concentrations were higher 

in DH than EH. Pre-exercise SLys concentrations were lower in DH compared with EH (1.6±2.0 vs. 

5.5±6.7mg/L). Post-exercise SLys concentrations remained elevated in DH but returned to pre-exercise levels 

by 1h post-exercise in EH. Conclusions: Exercise in DH caused a reduction in saliva flow rate yet induced 

greater secretion rates of SLac and higher concentrations of SIgA and SLys. Thus, DH does not impair saliva 

AMP responses to endurance exercise. 
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Abbreviations 

Abbreviation Meaning 

ACTH Adrenocorticotrophic hormone 

AMPs  Antimicrobial proteins  

ANOVA Analysis of variance  

BM  Body mass  

DH  Dehydration  

EH  Euhydration  

FR Salivary flow rate 

HPA axis  Hypothalamic-pituitary-adrenal axis  

HR Heart Rate   

RPE  Perceived exertion  

SLac Salivary lactoferrin 

SIgA Salivary secretory IgA 

SLys Salivary lysozyme 
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Introduction 

Mucosal secretions play an important role in immunity as the first line of defence against potential pathogens 

invading the oral cavity and upper respiratory tract (Gleeson and Pyne 2000). Salivary secretory IgA (SIgA) has 

been the most commonly studied marker of mucosal immunity and its deficiency has been associated with a 

higher incidence of infections (Fahlman and Engels 2005, Neville et al. 2008, Gleeson 2000, Gleeson and 

Bishop 2013). More recently however, the importance of other antimicrobial proteins (AMPs) in saliva has 

gained greater recognition. There are a diverse range of AMPs in saliva, many of which act to form a protective 

barrier against bacteria and other pathogens. Two of the most abundant AMPs present in the mucosal secretions 

of the upper respiratory tract are salivary lysozyme (SLys) and salivary lactoferrin (SLac). The presence of 

AMPs such as SLys and SLac in salivary secretions without prior exposure to infectious agents is indicative of 

their integral role in the innate immune system (West et al. 2006a).  

Immune resilience is an important factor in the success of an elite athlete (Malm 2004). It is known that 

prolonged and intense periods of exercise can cause transient perturbations in many cellular and hormonal 

immune factors (Gleeson et al. 2013). A small collection of studies have investigated the effects of endurance 

exercise on salivary AMPs. Koutedakis and colleagues (Koutedakis et al. 1996) were the first to report 

significant reductions in salivary flow rate (FR) and SLys concentrations following exercise in elite swimmers. 

Other studies have reported equivocal results; short-duration, high intensity exercise led to increased secretion 

rates of AMPs such as SIgA and SLys in active men (Allgrove et al. 2008) and prolonged endurance exercise 

either decreased SIgA with no change in SLys secretion rates (Gill et al. 2013, Gillum et al. 2013) or resulted in 

no change in SIgA concentrations (Davison et al. 2009, Blannin et al. 1998, Li and Gleeson 2005). The variation 

in the findings of these studies may be due to the differences in exercise intensity, duration and relative stress on 

the participant. Furthermore, there are numerous possible mechanisms by which exercise could affect the 

concentration and secretion of AMPs both acutely and chronically including; increased secretion of 

neuropeptides, secretion of AMPs induced by proinflammatory cytokines, secretion of AMPs from neutrophils 

or damaged epithelial cells or simply hyperventilation during exercise resulting in drying of the respiratory tract 

(for detailed review see (West et al. 2006b)). In addition, circulating stress hormones such as cortisol have been 

implicated in the inhibition of salivary IgA (Hucklebridge et al. 1998) and Lys (Perera et al. 1997) production, 

mobilization and secretion. 

Saliva secretion is regulated by the autonomic nervous system and humans typically produce ~1500 mL saliva 

per day (Gleeson et al. 2013). However, fluid balance studies have observed significant reductions in salivary 

FR when in a state of hypohydration (Gill et al. 2013, Fortes et al. 2012). Fortes and colleagues reported 

significant reductions in salivary FR and secretion of AMPs at a modest dehydration of -3% body mass (BM) 

loss induced by fluid restriction (Fortes et al. 2012). Dehydration of 1.3-2.4% BM loss resulting from prolonged 

endurance exercise has also been shown to reduce salivary FR (Gill et al. 2013). In addition to a reduction in 

salivary FR the authors reported a significant decrease in SIgA secretion rates but no change in SLys. During 

exercise, the concentration of the saliva, and its FR, are thought to be influenced by sympathetic nervous 

activity and the hypothalamic-pituitary-axis (HPA axis) (Allgrove et al. 2008). It has been proposed that 

increases in protein content are influenced by noradrenalin release via sympathetic nervous stimulation, whereas 

FR is considered to respond primarily to parasympathetic stimulation (Chicharro et al. 1998).  
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In line with the well-established guidelines, athletes are regularly advised to drink sufficient fluids before, 

during and after exercise to limit dehydration to <2% loss in BM (American Dietetics Association, Dietitians of 

Canada, 2009, Maughan and Shirreffs, 2011). However studies suggest that commencing exercise in a mild state 

of hypohydration is not uncommon across athletic populations (Garth and Burke 2013, Volpe et al. 2009, 

Maughan et al. 2005). Furthermore, it has been shown that many athletes fail to consume sufficient fluids during 

exercise to offset fluid loses, resulting in levels of dehydration in excess of 2% BM loss (Gore et al. 1993, 

Kurdak et al. 2010). Exercising in a state of hypohydration has been shown to increase cardiovascular strain 

(increased heart rate (HR)) (Adams et al. 2014) and to significantly increase plasma cortisol levels (Maresh et al. 

2006) compared to euhydration. Thus the potential for a disturbed immune response when exercising in a state 

of hypohydration is significantly augmented.  

It is apparent that prolonged exercise can effect secretion of salivary AMPs however it is not known how the 

hydration status of an athlete may affect these changes. The aim of this study was to investigate the effects of 

moderate dehydration during prolonged endurance cycling on exercise performance and salivary markers of 

immune function.  

 

Materials and Methods 

Participants 

Ten recreational male cyclists were recruited to participate in this study. Participant characteristics are presented 

in Table 1. Inclusion criteria required participants to be weight stable, involved in regular exercise, complete a 

general health questionnaire without reporting any chronic or underlying illness or disease, free from 

medications that may disrupt fluid-electrolyte balance and to have not suffered any symptoms of an upper 

respiratory tract infection during the four weeks prior to the study. Females were not included in the study due 

to potential disruptions in fluid balance resulting from the menstrual cycle. All participants were informed of the 

purposes of the study and the risks associated with the procedures. Written informed consent was obtained from 

each participant and a health questionnaire was completed before the study commenced. The study was 

approved by the Loughborough University ethical advisory committee. 

 

Table 1: Participant Characteristics 

 

Experimental Design  

Participants underwent two experimental trials in a randomised, counterbalanced-cross over design, consisting 

of 2 h cycling on an electronically braked ergometer at 60% V̇O2max in either a euhydrated (EH) or a moderately 

dehydrated state (DH). Saliva samples were collected pre-exercise, throughout the exercise session and each 

 Age (y) Height (cm) Body Mass (kg) 𝐕̇𝐎𝟐𝐦𝐚𝐱 (ml/kg/min) 

Mean ± SD 21 ± 1  178.0 ± 7.9  72.4 ± 8.0 58.2 ± 6.2 
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hour for 3 h post-exercise. Urine samples were collected pre- and immediately post-exercise and again 2 h 

(blood) and 3 h (urine) post-exercise. Trials were separated by a minimum of 6 days.  

 

Pre-trial Tests & Familiarisation 

Prior to the exercise trials, participants completed an incremental cycle exercise test to volitional exhaustion on 

an electronically braked cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands) in order to determine 

V̇O2max. Briefly, following a 10 min warm up at 70 Watts (W), participants began the exercise test at 95 W, 

undergoing 35 W increments every 3 min. Breath samples were collected from participants into Douglas bags 

during the final minute of each stage and rating of perceived exertion (RPE) was recorded (Borg, 1998). Heart 

rate (HR) was measured throughout the test using short-range telemetry (Polar RS800CX, Kempele, Finland). A 

paramagnetic oxygen analyser (Servomex 1420B, Crowborough, UK) and infrared carbon dioxide analyser 

(Servomex 1415B) were used in combination with a dry gas meter (Harvard Apparatus, Edenbridge, UK) for 

determination of V̇E, V̇O2 and V̇CO2. The work rate in Watts corresponding to 60% V̇O2max was then calculated 

from the V̇O2–work rate relationship using a linear equation. Following a 15 min rest period, during which time 

participants were familiarised with the saliva collection protocols, participants completed a 20 min 

familiarisation at 60% V̇O2max representing the workload of the subsequent trials. Expired gas samples were 

collected during each trial at 5, 15 and 20 min to ensure the calculated work rate elicited the desired relative 

intensity. In addition to the pre-trial V̇O2max test, participants were required to visit the laboratory on the final 

three mornings prior to their first trial to establish fasted baseline body mass. On each occasion nude body mass 

was recorded, following a urine void, and the average of these data was used to estimate baseline BM at 

euhydration (Seca, GmbH, Germany, accurate to 1 d.p.).  

 

Exercise Trials 

Participants reported to the laboratory between 07:00-09:00 for each exercise trial having completed an 

overnight fast (≥10 h). Each participant performed both trials at the same time of day to reduce inter-trial effects 

of diurnal variations in cortisol (Petrovsky et al. 1998, Kanaley et al. 2001). Participants were requested to 

complete a 24 h weighed food diary prior to their first trial and to avoid consumption of foods with a high fluid 

content. Participants were then instructed to replicate their nutritional intake during the 24 h prior to their second 

trial. Participants were also requested to abstain from any physical activity and alcohol consumption for 48 h 

prior to each trial to help prevent disturbances in fluid balance. Prior to commencing exercise trials, participants 

provided a urine void, nude BM measurement and a saliva and blood sample for analysis. Participants cycled for 

120 min at 60% V̇O2max on a stationary cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands) in a 

laboratory environment maintained at 21.0 ± 1.0 ˚C. Saliva samples and expired gas were collected at 15, 45, 75 

and 105 min of exercise. Heart rate was recorded continually during each exercise trial with short range 

telemetry (Polar RS800CX, Kempele, Finland). Participant’s RPE scores were recorded at 15, 45, 75 and 105 

min (Borg, 1998). Post-exercise saliva, blood and urine samples were collected following exercise cessation and 

BM was measured before participants were provided with 500 mL water. Participants remained in the laboratory 

for 180 min, sitting quietly, to enable hourly saliva sampling and a final blood (120 min) and urine sample to be 

collected (180 min). 
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Treatment 

To induce DH, participant’s fluid intakes were restricted to 500 mL water during the 24 h period pre- trial. 

Furthermore, no water was provided prior to or during the 2 h cycling protocol. On completion of the exercise 

trial, following saliva and urine sampling, participants were provided with 500 mL water. During EH, 

participants were encouraged to consume their normal fluid intakes during the 24 h leading into the trial. In 

addition, participants were provided with 500 mL water before commencing the exercise trial and given an 

additional 250 mL water every 20 min during exercise. The exercise protocol was identical for both trials. 

 

Measures and Analysis 

Unstimulated saliva samples were collected at each time point; pre-exercise (baseline), post-exercise 

(immediately following exercise cessation) and again at 1 h, 2 h and 3 h post-exercise. Participants were 

instructed to be the seated position, leaning forward with their head tilted forward and asked to swallow to 

empty their mouth of any residual saliva before the timed sample collection began. Saliva collections lasted 3 

min, during which time participants were requested to minimise orofacial movement and passively dribble into a 

pre-weighed vial. Samples were weighed to estimate saliva volume and micro-centrifuged to remove cells and 

insoluble matter before storing at -20°C. The saliva flow rate (ml/min) was determined by dividing the volume 

of saliva by the collection time. Subsequently, saliva samples were analysed for SIgA using an ELISA kit 

(Salimetrics, Philadelphia, USA) and both lactoferrin and lysozyme were analysed using commercially available 

ELISA kits (Calbiochem, USA and Biomedical Technologies, USA, respectively). Secretion rates for each of 

the salivary AMPs were calculated as the multiple of the saliva FR and the antimicrobial protein concentration. 

All saliva assays were carried out in duplicate. The intra-assay CV for SIgA, lactoferrin and lysozyme were 

1.8%, 8.1% and 5.3%, respectively. Urine osmolality was analysed via freezing-point depression using a single 

sample osmometer (Osomamat 030, Gonotec, Berlin, Germany). Venous blood samples were collected from an 

antecubital vein immediately before commencing exercise trials, immediately post-exercise and at 120 min post-

exercise. Blood samples were collected into a K3EDTA vacutainers and analysed for haematocrit via an 

automated cell-counter (A
c
.T 5diff haematology analyser, Beckman Coulter, High Wycombe, UK). Remaining 

blood was centrifuged and stored at -20˚C for later analysis of cortisol. Plasma cortisol concentrations were 

determined using a commercially available solid phase enzyme-linked immunosorbent assay (IBL International, 

Hamburg, Germany).  

 

Statistical Analysis 

All data were analysed using statistical software (IBM SPSS Statistics 21) and are presented as Mean ± Standard 

Deviation. Changes in hydration and saliva markers and plasma cortisol were analysed using a 2-way repeated 

measures analysis of variance (ANOVA). A Bonferroni adjustment was included into the analysis to correct for 

multiple comparisons. Data sets that were found to be significantly non-normal (SLys and SLac) were log 

transformed prior to analysis. Between trial differences in performance parameters (mean HR, V̇O2and RPE) 

were determined using an independent samples t-test. The level of significance was set at p<0.05. 
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Results 

Hydration Variables 

Table 2 provides an overview of the hydration variables during each trial. Twenty-four hour fluid restriction 

resulted in a 1.5 ± 0.5% loss of body mass from baseline and a 4.3 ± 0.7% loss immediately post-exercise. No 

differences in BM were reported between pre-exercise and baseline BM (72.5 kg ± 8.0 vs. 72.4 kg ± 8.0, 

respectively) in EH. Urine osmolality was significantly higher at pre-and post-exercise in DH compared to EH 

(p<0.05). Pre-exercise haematocrit was similar between conditions (46.9 ± 3.4 vs 46.0 ± 3.4%, for DH and EH, 

respectively) and was significantly elevated by exercise in both conditions (46.5 ± 0.9 to 48.8 ± 1.0%; p<0.01), 

remaining elevated at 2 h post-exercise (47.7 ± 1.0%; p<0.01; Fig 1). No difference in pre-exercise salivary FR 

was observed between conditions. However, immediately post-exercise and for the remainder of the trial, FR 

was significantly higher in EH than DH (p<0.05).  

 

Table 2: Overview of Hydration Variables 

 

Data are means ± SD. * Indicates significant condition effect. 
ǂ
 Indicates significant change from  pre-exercise. 

 

 

 

 

 

 

 

 

 

 Body Mass  

(kg) 

Urine Osmolality  

(mOsm/kg) 

Haematocrit (%) 

 EH DH EH DH EH DH 

Pre-Exercise 72.5 ± 8.0 71.3 ± 8.0 721 ± 237 958 ± 134* 46.0 ± 3.4 46.9 ± 2.4 

Post- Exercise   

(0 min) 

71.6 ±7.7 69.4 ± 7.8 584 ± 252 918 ± 137* 48.0 ±3.7
ǂ
 49.7 ± 3.4

ǂ
 

Post-Exercise 

 (120 min ) 

72.0 ± 8.4 70.9 ± 6.7 NA NA 47.6 ± 4.6 47.8 ± 2.8 
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Figure 1: Haematocrit levels at pre-exercise, immediately post-exercise and at 2 h post exercise for Euhydrated 

(EH) and Dehydrated (DH) trials. Data are means ± SE. ǂ Indicates significant change from pre-exercise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance Data 

Average power output during trials was 175 ± 22 W, resulting in an exercise VO2 of 60 ± 4% V̇O2max with no 

difference between trials. Mean HR and RPE were significantly higher throughout exercise in DH compared to 

EH (157 ± 13 vs. 151 ± 11 bpm; p<0.01, and 14.1 ± 2.2 vs. 13.0 ± 1.8 RPE; p<0.05).  

 

Haematology 

Figure 2 illustrates plasma cortisol concentrations pre-exercise, immediately post- and 2 h post-exercise. 

Exercise elicited a significant rise in plasma cortisol levels in both conditions (632 ± 26 to 771 ± 33 nmol/L; 

p=0.01). At 2 h post-exercise, cortisol concentrations had fallen and were significantly lower than pre-exercise 

levels (p=0.03). 

 

 

 

 

 

ǂ 

ǂ 
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Figure 2: Plasma cortisol concentrations at pre-exercise, immediately post-exercise and at 2 h post exercise for 

Euhydrated (EH) and Dehydrated (DH) trials. Data are means ± SE. ǂ Indicates significant change from pre-

exercise. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Salivary Analysis 

Salivary AMP concentrations are presented in Table 3. There was a significant increase in SLac concentrations 

with exercise (p<0.01) which returned to pre-exercise values by 1 h post-exercise in EH, but remained elevated 

in DH. Overall, SLac concentrations were higher in DH than EH (p=0.02). Pre-exercise SLys concentrations 

were significantly lower in DH compared to EH (p<0.05). Exercise resulted in an increase in SLys concentration 

(p<0.01), which remained elevated above pre-exercise levels during DH, but returned to pre-exercise 

concentrations in EH by 1 h post-exercise. Pre-exercise SIgA and SLac concentrations were not difference 

between conditions. Following exercise SIgA concentrations were higher in DH than EH; overall SIgA 

concentrations were significantly higher in DH than EH (p<0.01). 

 

 

 

 

 

 

 

 

 

 

ǂ 

ǂ 
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Table 3: Salivary AMP concentrations pre- and post-exercise for Euhydrated (EH) and Dehydrated (DH) trials.   

 

 

Data are means ± SD. * Indicates significant difference between conditions. ǂ Indicates significant change from pre-exercise.  

 SLac (mg/L) SLys (mg/L) SIgA (mg/L) 

Mean ± SD EH DH EH DH EH DH 

Baseline (Pre-Exercise) 5.0 ± 5.5 3.5 ± 2.8 5.5 ± 6.7 1.6 ± 2.0* 104.9 ± 84.4 160.6 ± 134.3 

Post-Exercise  11.9 ± 7.0
ǂ
 15.0 ± 12.7

ǂ
 11.1 ± 4.8

ǂ
 9.5 ± 9.1

ǂ
 136.9 ± 98.3 309.3 ± 271.2* 

1 h Post 4.8 ± 3.1 13.6 ± 9.3*
ǂ
 2.4 ± 1.9 9.1 ± 5.3* 73.9 ± 32.5 241.6 ± 214.7* 

2 h Post 7.9 ± 8.6 18.7 ± 21.0
ǂ
 2.1 ± 2.8 9.5 ± 7.4* 87.9 ± 56.2 239.9 ± 140.7* 

3 h Post 5.4 ± 4.5 15.3 ± 12.3*
ǂ
 3.1 ± 3.5 8.9 ± 6.7 74.6 ± 41.6 246.6 ± 146.6* 
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No differences were observed between pre-exercise salivary FR, however FR was significantly lower during DH 

than EH at all time points during and post-exercise (p<0.05; Fig 3). SLac secretion rate increased significantly 

following exercise (p=0.01; Fig 4A). No differences between EH and DH were observed. Exercise elicited a 

significant increase in SLys secretion rate in both conditions; with a tendency to be higher in EH than DH 

(p=0.05; figure 4B). SLys secretion rate fell significantly after exercise in EH (p=0.02) but remained elevated in 

DH at the end of the trial. SIgA secretion rates were not acutely effected by exercise; however, at 3 h post-

exercise SIgA secretion rates were significantly higher in DH than EH (p<0.01; Fig 4C). 

 

Figure 3: Salivary flow rate pre- and post-exercise for Euhydrated (EH) and Dehydrated (DH) trials.  Data are 

means ± SE. * Significant difference between conditions. 
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Figures 4A-C: AMP secretion rates pre- and post-exercise for Euhydrated (EH) and Dehydrated (DH) trials. 

Data are means ± SE. * Significant difference between conditions. ǂ Significant change from pre-exercise. 
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Discussion 

The aims of the present study were to investigate the effects of moderate dehydration during prolonged 

endurance cycling on exercise performance and salivary markers of immune function. In the knowledge that 

many athletes commence exercise with pre-existing fluid imbalances (American College of Sports Medicine 

2007), we were interested in the effects of prior dehydration (with fluid restriction) on exercise performance and 

immune function during exercise and short term recovery. The main findings of this study were that exercise in 

a mildly dehydrated state caused a chronic reduction in salivary FR and resulted in transient changes in salivary 

AMPs during and immediately post-exercise that had mostly returned to pre-exercise levels by 3 h of recovery. 

A small collection of studies have reported the effects of a single bout of exercise on AMPs involved in host 

defence. Allgrove and colleagues  investigated salivary AMPs in acute exercise at 50%,70%V̇O2max and during 

an incremental test to exhaustion and observed temporal increases in secretion rates of SIgA and SLac at 

exhaustion, post-exercise increases in SLys secretion rate at 70%  V̇O2max  and no effects at 

50% V̇O2max(Allgrove et al. 2008). The authors concluded that sympathetic stimulation during high intensity 

exercise was sufficient to increase SIgA and SLys transport, despite the short-duration of the exercise period.  

No studies have investigated the effects of endurance exercise (>90 min) on AMPs, with the exception of two 

field studies which analysed SIgA and SLys (and SLac (Gillum et al. 2013)) during ultra-marathon racing and 

reported equivocal results. The authors of the multi-stage ultra-marathon observed exercise-induced body mass 

losses over the duration of the race and postulate that hydration status may play a role in protecting the upper 

respiratory trace when exercising (Gill et al. 2013).  

Current hydration guidelines advise athletes to limit body mass losses during exercise to no greater than 2% in 

order to prevent deleterious effects of dehydration on exercise performance and health (American Dietetics 

Association, Dietitians of Canada 2009, Maughan and Shirreffs 2011). Dehydration has been shown to increase 

cardiovascular strain, core temperature, heart rate, perceived exertion response (Sawka and Coyle 1999) and a 

mean change in HR of 3 bmp for every 1% change in BM loss has recently been reported (Adams et al. 2014), 

ultimately inhibiting exercise performance. (Institute of Medicine 2005). In line with these findings, we 

observed significantly higher mean HR and RPE at the same work rate in DH compared with EH. Twenty-four 

hour fluid restriction in this study resulted in a mean body mass loss of 1.5%, (0.3-1.9 kg loss). Following 

exercise in DH, mean body mass loss was 3.9% (2.1-4.2 kg loss). Pre-exercise urine osmolality was 972 

mOsmol/kg (777-1113 mOsmol/kg) in DH compared to 687 (353-1092 mOsmol/kg) in EH and haematocrit was 

47 % (43-50 %) and 46 % (43-50 %) for DH and EH, respectively. These data highlight the large individual 

variability in sweat rates and fluid homeostasis between individuals undergoing the same level of fluid 

restriction.  

Given the known effects of fluid intake (Bishop et al. 2006) and sweat rates (Oliver et al. 2007, Walsh et al. 

2004)  on salivary FR, the potential for exercising in a dehydrated state to interfere with salivary AMP activity 

is high. Despite this, the effects of hypohydration on salivary AMPs during exercise are relatively understudied. 

To the author’s knowledge, only one study has investigated the effects dehydration and exercise on salivary 

AMPs. Fortes and colleagues investigated the effects of dehydration caused by exercise in the heat, with 

subsequent overnight fluid restriction on immune function (Fortes et al. 2012). The authors reported a 

significant reduction in salivary FR immediately following exercise in the dehydration trial, which remained 

Figure 4B ǂ 
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suppressed until rehydration was permitted the following morning. In addition, they observed an increase in 

SIgA concentration, with no change in secretion rate and a decrease in SLys secretion rates with no change in 

concentration. Other studies that have investigated the effects of exercise on SLys, independent of hydration 

status, have reported decreased SLys concentrations (Koutedakis et al. 1996), increased secretion rates 

(Allgrove et al. 2008) and no change in secretion rates (Gill et al. 2013, Gillum et al. 2013) following a range of 

exercise sessions.  

We did not observe any differences in pre-exercise salivary FR between EH and DH, despite 24 h fluid 

restriction. However, during exercise, salivary FR decreased significantly in DH, with no change in EH, and 

remained significantly lower than pre-exercise levels until 2 h post-exercise. SIgA secretion rates were not 

acutely affected by exercise; however by 3 h post-exercise SIgA secretion rates were significantly higher in DH 

than EH. We also observed significantly higher concentrations of SIgA and SLac in DH than EH throughout the 

trial, likely the result of a concentrating effect from the attenuated salivary FR caused by dehydration. SLac 

secretion rates increased with exercise, with no differences between conditions. Participants in both trials 

presented a significant increase in SLys concentrations which returned to pre-exercise values within 1 h post-

exercise in EH but remained elevated for the duration of the trial in DH. Furthermore, we observed a transient 

increase in SLys secretion rate despite no change in salivary FR during exercise in EH. Despite a reduction in 

salivary FR in DH, we observed an increase in SLys secretion rates that remained elevated for the duration of 

the trial.  

Due to the differences in salivary FR between conditions, it is important to consider secretion rates when 

looking at AMP immune responses, and not absolute concentrations. Increases in SIgA secretion rates in DH 

(above that reported in EH) and elevated SLys secretion rates above pre-exercise values at 3 h post exercise in 

DH suggest that hypohydration exacerbated the immune response to endurance exercise. Whilst we did not 

observe any significant differences in cortisol concentrations between conditions, it may be possible that a 

heightened stress response in DH (evidenced by increased HR and RPE during exercise) resulted in a great 

immune response. Furthermore, it has been suggested that high-intensity exercise may increase the mobilization 

of SIgA into the saliva via sympathetic nervous activity (Allgrove et al. 2008), therefore it could be speculated 

that the increased exercise strain in DH effectively increased the relative intensity of the exercise and caused a 

greater mobilization of SIgA. 

Exercising in a state of severe hypohydration (5% and 7% BM loss) has previously been shown to increase 

resting and post-exercise cortisol concentrations compared to euhydration (Maresh et al. 2006, Francesconi et al. 

1985). However, moderate dehydration in this study did not influence resting cortisol, or differentially effect 

post-exercise response compared to euhydration in this study. These data support the findings of Mitchell and 

colleagues, who reported no effect of hydration status (~1 % BM loss versus EH) on cortisol concentrations 

when exercising in an ambient environment (Mitchell et al. 2002). It is interesting that we observed higher RPE 

and HR in DH compared to EU without seeing differences in cortisol. This may be explained by relatively high 

pre-exercise concentrations due to the diurnal pattern of cortisol and the fact that testing was carried out early in 

the morning which may have somewhat masked an influence of hydration status. Alternatively, the level of 

dehydration may not have been sufficiently severe to trigger an increased stress response. In conclusion, we 

observed transient changes in salivary AMPs during and immediately post-exercise that had mostly returned to 

pre-exercise levels by 3 h of recovery, with little influence of pre-exercise hydration status on these responses. 
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The responses may have been greater if participants were exercising in the heat and/ or if the level of 

dehydration was greater; however, exercising in thermoneutral temperature at low-moderate levels of 

dehydration is a more common occurrence in most athletic populations and therefore this was chosen as the 

subject of the present investigation. It may have been beneficial to collect a saliva sample prior to the 24 h fluid 

restriction to provide additional insight into the impact of mild dehydration on mucosal immunity and therefore 

future studies should include this measurement. It would appear that the moderate levels of dehydration 

achieved in this study do not impair salivary AMP responses to endurance exercise and are therefore unlikely to 

be of clinical relevance. 
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