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Abstract 
 
Knowledge of the wind conditions at a potential 
offshore wind farm site is key in reducing 
investment risk. This is normally done through 
the use of large meteorological masts. 
However, the increasing scale of the turbines 
offshore requires higher and more expensive 
masts, driving interest in the use of alternatives 
to extend accurate assessment of the resource. 
This work examines the use of the WRF 
mesoscale model for assessing the wind 
resource at UK offshore sites. A comparison is 
made with existing data at two offshore sites, 
Scroby Sands and Shell Flats. In addition, a 
projection is made of the wind conditions and 
variability at a potential UK Round 3 site. 
 
Keywords: Offshore Wind Resource, 
Mesoscale Modelling, UK Round 3 

1 Introduction 

 
This research involves the use of the Weather 
Research and Forecasting (WRF) mesoscale 
model [1], [2] to assess the wind conditions at 
selected sites in UK offshore waters. 
Specifically, the Advance Research WRF 
model core (ARW) is used in this work. The 
accuracy of the model is assessed in a number 
of ways: 1) Through application of several 
planetary boundary layer (PBL) schemes, both 
individually and as an ensemble; 2) through the 
use of time-step ensembles; 3) by the use of 
different timescale filters; 4) through the use of 
model ‘nudging’ using nearby observations. 
Each model run has its boundary conditions set 
using output from the National Centers for 
Climate Prediction (NCEP) Climate Forecast 
System Reanalysis (CFSR) [3]. This research 
is therefore concerned with how well a 
mesoscale model can downscale global 
forecast analysis data. A comparison is made 
between model output and observations from 
meteorological masts at Scroby Sands off the 
east coast of the UK and two masts at Shell 
Flats off the north-west coast. Model 

performance is assessed in terms of ability to 
predict wind speed and atmospheric stability. 
Recommendations are made in terms of how 
best to use the model for offshore wind 
resource prediction. Finally, a projection is 
made of the wind conditions at a future potential 
offshore wind farm site in the UK Round 3 
Dogger Bank development zone. The variation 
in synoptic wind conditions across a large 
hypothetical 1.2GW wind farm in this area are 
also assessed including maximum expected 
wind speed and wind direction differences 
across the wind farm. 

2 Background 

 
WRF has become widely utilised in the 
atmospheric sciences research field. It has 
been applied to a full spectrum of investigations 
which include high resolution simulations, e.g. 
[4], which are relevant to wind resource 
assessment.  
 
A number of studies have used WRF for 
offshore wind resource assessment. In [5], an 
investigation was undertaken into the 
performance of WRF compared with the ERA-
Interim reanalysis product which was also used 
as initialisation and boundary data for the model 
run. The performance of the model was studied 
in the boundary layer which is of particular 
relevance to this study. Findings showed the 
model to offer a higher level of performance 
than the ERA-interim reanalysis product for the 
vast majority of variables studied apart from 
surface pressure. However, this was attributed 
to the provision of buoy data which was 
incorporated into the ERA-Interim product but 
not the WRF model run. The US army have 
investigated the operational use of WRF, at a 
high resolution, e.g. 0.3-3km, for the purposes 
of very short term forecasting and nowcasting 
applications [6]. For some locations, the use of 
WRF to create an offshore wind resource 
assessment product has already been 
undertaken, e.g. [7] describes a wind atlas for 
the South Baltic region. Such an application 
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was essential because of the lack of 
observational data to the south of the region, 
while output was validated at locations in the 
domain where observational series were 
available from Danish and German masts. 
WRF has the potential to perform well as a wind 
resource assessment tool and has already 
been applied in the production of a wind atlas, 
which makes the next step validating 
performance for use as a site assessment tool, 
both in a historical long-term context and short-
term operational context. A review was 
produced [8] for a system which is operational 
in China whereby GFS forecast data is 
downscaled by WRF and passed through a 
Kalman filter for the purpose of day ahead 
forecasting. It was found that the system 
performed with an acceptable level of error 
(16.47% normalised root mean squared error 
(RMSE)). Some traits of the model itself and 
setup options have been identified which 
should be considered when undertaking a wind 
resource study. The limit to the potential 
performance of the model is somewhat 
constrained by computing resource. In order to 
optimise a model run, outright resolution is 
often compromised to achieve a quicker model 
runtime and reduced computational resource 
requirement. In theory, the higher the simulated 
resolution, the better model performance would 
be as more processes are able to be directly 
resolved. However, it was found [9] that 
increasing resolution around the 4km range 
yielded diminishing returns with respect to the 
subsequent extra requirement in computing 
resource and instead suggested utilising larger 
spatial domains and vertical resolution to try 
and improve resolution of the larger scale 
features. Operationally, WRF has been shown 
to possess a high surface wind speed bias, e.g. 
[10], [11]. Knowledge of such a bias can be 
beneficial, as it allows for possible systematic 
correction in future predictions. Such a bias, 
however, might cause problems in model 
simulations which involve a coastal interface. 

3 Methodology 

3.1 Sites 
Two observational data series were used for 
validation in this work namely Scroby Sands, 
and Shell Flats (Figure 1). Ten-minute 
averaged data were collected at both sites. At 
Scroby Sands, temperature, wind speed and 
wind direction were measured at 33m and 51m, 
from 1995 to 2000. There were some periods of 
missing data and this had an influence on 
model run periods. Two masts were erected at 

Shell Flats At Mast 1 wind speed, wind 
direction, temperature, relative humidity, 
pressure, rainfall and solar radiation with 
instruments were recorded at 12m, 20m, 30m, 
50m, 70m, 80m and 82m above highest 
astronomical tide (HAT). Observations at Mast 
2 were made at 12m, 20m, 30m, 40m and 52m 
above HAT. 
 
Observational data from two onshore 
meteorological stations were also used in this 
study, namely one at Hemsby and one at 
Squires Gate (Figure 1). 
 
The meteorological conditions at a 
‘hypothetical’ site in one of the UK’s Round 3 
offshore wind farm development zones (Dogger 
Bank) were simulated to investigate the 
expected variability in wind speed and direction 
as well as atmospheric stability. This is also 
indicated in Figure 1. 
 

 
Figure 1: Locations of the three offshore and two 
onshore sites used in this study (offshore sites are 
marked as circles and onshore sites as pins). 

3.2 Model Set-up 
To run the model, two high performance 
clusters were used namely: Loughborough 
University’s Hydra cluster which is comprised of 
161 compute nodes, each having two six-core 
Intel Westmere Xeon X5650 CPUs and 24GB 
of memory; and the UK Engineering and 
Physical Sciences Council (EPSRC) national 
supercomputing facility HECToR (High-End 
Computing Terascale Resource). HECToR has 
2816 compute nodes, each with two 16-core 
AMD Opteron 2.3GHz Interlagos processors 
and 32Gb of memory. Aside from significant 
processor power, HECToR possesses 
advanced data communication hardware such 
that each 16-core socket is coupled with a Cray 
Gemini routing and communications chip which 
translates to data latency between two nodes of 
around 1-1.5μs. HECToR runs Linux and is 
available with many selectable modules and 



compilers, for example, gfortran, PGI, Intel and 
Cray. Ideally, HECToR would have been used 
for all runs, but the run-time allocation on this 
machine is limited due to demand.  
 
Three levels of nested domain were used for 
the ARW runs as shown in Figure 2 for Scroby 
Sands. A similar nesting configuration was 
centred on Shell Flats and the Round 3 site. 
Nests were offset to give more space for the 
model to simulate features originating over the 
Atlantic, where many weather systems which 
influence the UK originate. The 0.5° CFSR 
reanalysis product was used to initialise the 
model, which equated to a grid spacing of 
around 55km. During the testing phase, 
breaches of the CFL (Courant Friedrichs Levy) 
criterion in the vertical plane were causing the 
model run to stop. The number of vertical levels 
was reduced to 50 vertical model levels which 
resolved the issue of numerical stability. 
Vertical levels were fairly evenly distributed 
apart from close to the surface where more 
levels were concentrated to improve resolution 
in the PBL. 15 levels were located below 500m 
at 0, 20, 40, 65, 90, 110, 130, 150, 170, 190, 
230, 270, 330, 405, and 490m. 
 

 
Figure 2: Three nested domains used for the ARW 
runs with resolutions of 18km (outer), 6km (middle) 
and 2 km (inner). The set-up for Scroby Sands is 
shown here. 

The dynamical options used for the mesoscale 

model runs are given in Table 1. Two PBL 

schemes were used: for initial testing the 

Mellor-Yamada-Janjic (MYJ) scheme [12] and 

later the Yonsei University (YSU) scheme [13]. 

Scroby Sands was studied first for a relatively 

limited number of test cases in order to 

‘benchmark’ the model. In this case, 34 periods 

were simulated over a year for model 

predictions extending from t+0h to t+90h. In the 

case of Shell Flats, a much larger number of 

simulations was run to simulate, as far as 

possible, a continuous period over 18 months. 

In this case, model runs were undertaken such 

that 489 days were simulated where each run 

extended from t+0h up to t+90h which was the 

longest look ahead time for which model 

predictions were assumed to provide 

reasonable predictions, i.e. RMSE errors were 

not showing a significant increase.  

For the hypothetical Round 3 offshore wind 

farm site, simulations were undertaken to cover 

a period of one continuous year, once again 

from forecasts up to t+90h. 

Table 1: Dynamical parameters used in the ARW 
mesoscale modelling for Scroby Sands (SS), Shell 
Flats (SF) and the Round 3 site (R3). 

Model Parameter Setup 

Vertical model levels 50 (SS), 40 (SF, R3) 

Nesting Feedback On 

PBL Scheme 

Mellor-Yamada-Janjic 
(MYJ) for SS and Yonsei 

University (YSU) for 
SF/R3 

Cumulus scheme Betts-Miller-Janjic 

Radiation scheme - Long 
wave 

GFDL 

Radiation scheme - Short 
wave 

GFDL 

Microphysics option 
Ferrier (new Eta) 

microphysics 

Surface layer physics Monin-Obukhov (Janjic) 

Land surface option 
Unified Noah land-surface 

model 

 

3.3 Model Nudging 
Observational nudging is an objective analysis 

technique whereby an observational series is 

assimilated into the model input data. While 

large scale model input data are convenient 

due to global coverage, homogeneous levels 

and a wide range of variables, coarse resolution 

might not be exactly representative of 

conditions at, or near, a site of interest. Nudging 

the model input using objective analysis is 

intended to improve the first guess of particular 

variables at, or close to, a particular site. Given 

that WRF is updated for the duration of a model 

run by input and boundary files, nudging is 

performed throughout the whole run. Nudging 

was tried using data from Hemsby for the 

Scroby Sands assessment and in the case of 

Shell Flats, Mast 1 was used to nudge for 

simulations at Mast 2. There was the possibility 

to nudge using data from Squires Gate, but this 

is not reported in this paper. Only wind speed 



data were used to nudge the model as this was 

felt most relevant, though future investigations 

may use other variables. Nudged and non-

nudged simulations were compared. 

4 Results 

4.1 Scroby Sands 
It is clear that due to the limited temporal 

resolution of the model, the WRF would be 

unlikely to capture the observed variability at 

ten-minute intervals. Indeed, performance 

problems at short temporal scales were found 

[14], where variation in model output appeared 

damped in comparison to observations. With 

the innermost model domain resolution being 2 

km, the smallest features which can be 

expected to be well resolved are around 14km 

in size. Below 14km, the model is able to 

account for atmospheric features to an extent, 

but does so through parameterisation schemes, 

specifically the planetary boundary layer 

scheme. Given that the temporal resolution of 

the runs is 10-minutely, it is unlikely that model 

performance will be best at simulating high 

frequency change as the size of atmospheric 

features responsible for change in wind speed 

on such a timescale is smaller than the directly 

resolved scale of the model. In order to 

investigate model performance on longer 

timescales at which atmospheric features are 

directly resolved, temporal filtering was 

performed on model runs and concurrent 

observations. Initially, an un-weighted moving 

average filter was applied to the 10-minutely 

model output and Scroby Sands observations 

at intervals of 3, 9 and 17 time steps which 

corresponded to 30, 90 and 170 minute 

periods. Subsequently a low-pass Butterworth 

filter was also developed to filter out 

frequencies below 60, 180 and 360 minutes. 

Table 2 summarises the average results from 

all 34 runs. RMSE and Pearson correlation 

coefficient between model and observed values 

is shown. As a benchmark, the wind speed at 

Hemsby is used as a simple predictor of the 

wind speed at Scroby Sands and the correlation 

coefficient calculated. A clear improvement is 

evident from both of the filtering processes. 

While filtering should intuitively reduce the 

variation in a series, the model output must still 

exhibit similar characteristics to the 

observations in order for the correlation to 

improve. Results are improved for the three-

hour time increment by a greater margin using 

the moving average filter over the Butterworth 

filter and the performance gap compared to the 

simple Hemsby prediction is reduced.  

These results confirm the value of using the 

model when applied to simulate features of 

appropriate scale. When done so, model output 

would seem to a good substitute for 

measurements at a nearby coastal 

meteorological station at least in the case of an 

offshore site relatively close to land. 

Table 2: Pearson correlation coefficient and RMSE 
comparing WRF model predictions and observed 
data at Scroby Sands with various temporal filters. 
Hemsby is included as a benchmark predictor. 

 Hemsby Hemsby 
MA 

WRF WRF 
MA 

Effective 
temporal 
resolution 
(Minutes) 

60 180 10 170 

Correlation 0.746 0.785 0.639 0.720 

RMSE 
(m/s) 

  2.2 1.9 

 WRF Butterworth Filtered 

Effective 
temporal 
resolution 
(Minutes) 

60 180 360 

Correlation 0.662 0.698 0.733 

RMSE 
(m/s) 

2.1 2.0 1.8 

 

4.2 Shell Flats 
Table 3 summarises the RMSE and correlation 
coefficients for model predictions when 
compared with measurements for Mast 2 at 
Shell Flats. In this case, Squires Gate and Shell 
Flats Mast 1 are included as predictors and the 
correlation coefficients reported. Various 
Butterworth Filtered predictions are compared 
on timescales between 10 minutes and 360 
minutes. 
 
 
 
 
 
 



Table 3: Pearson correlation coefficient and RMSE 
comparing WRF model predictions and observed 
data at Shell Flats Mast 2 with various temporal 
filters. Squires Gate and Shell Flats Mast 1 are 
included as a predictors. 

 Squires Gate Shell Flats Mast 1 

Effective 
temporal 
resolution 
(Minutes) 

60 10 

Correlation 0.590 0.940 

 WRF 
Butterworth Filtered 

Effective 
temporal 
resolution 
(Minutes) 

10 60 180 360 

Correlation 0.856 0.865 0.883 0.901 

RMSE (m/s) 2.1 2.1 1.9 1.7 

 
It can be seen in this case that the RMSE is 
similar as for the Scroby Sands prediction with 
a reduction with increasing timetable. However, 
the correlation is significantly higher. In 
addition, the wind speed data at the onshore 
site at Squires Gate shows a rather lower 
correlation than in the case of Hemsby and 
Scroby Sands. The correlation is lower than 
that for the WRF model predicted wind speed. 
The wind speed data from the Shell Flats Mast 
1 shows a much higher correlation than Squires 
Gate and slightly higher than the WRF wind 
speed. 
 

4.3 Model Nudging 
 
For two periods of a month (July and October 2003) 
at Shell Flats model runs were undertaken with 
observational nudging using wind speed only from 
Mast 1. Statistics for these periods can be found in 
Table 4 and  

Table 5 for July and October, respectively, 
where the ‘raw’ observations from Mast 1 are 
presented as a benchmark. July 2003 provided 
the first case study, where the correlation 
coefficient between observed and modelled 
wind speed was improved by the nudging 
process. Interestingly, the correlation 
coefficient between observed and simulated 
direction also improved, albeit marginally. 
RMSE of the nudged wind speed time series 
was also found to be lower than the non-nudged 
series. Similarly, RMSE for wind direction was 
again slightly improved by nudging the speed 
with the nudged direction RMSE value slightly 

lower than that of the non-nudged. October 
2003 provided the second case study, in which 
the correlation coefficient for wind speed was 
marginally higher for the non-nudged run 
compared to the nudged run. Similarly, RMSE 
was marginally higher for the nudged run 
compared to the non-nudged run. By contrast, 
a slight improvement in wind direction was 
observed, with a higher correlation coefficient 
and a lower RMSE for the nudged run. 
 
From these results, it can be seen that nudging 
can sometimes improve predictions and other 
cases not, though this may be related to how 
good the correlation is initially.   
 
Table 4: Statistics for the July simulation period 
showing the performance of WRF as a predictor of 
the wind speed at Mast 2, with and without nudging 
from Mast 1. Comparison is made with raw data 
from Mast 1 as a simple predictor. Heights are 40m 
above HAT. 

  

Shell 

Flats 

Mast 1 

Nudged 

model 

(Model + 

Mast 1) 

Non-

nudged 

Model 

Speed 
Correlation 

coefficient 
0.934 0.810 0.739 

 
RMSE  

(ms-1) 
1.2 2.1 2.6 

Direction 
Correlation 

coefficient 
0.886 0.800 0.790 

 
RMSE  

(deg) 
31.5 44.4 46.9 

 

Table 5: Statistics for the October simulation period 
showing the performance of WRF as a predictor of 
the wind speed at Mast 2, with and without nudging 
from Mast 1. Comparison is made with raw data 
from Mast 1 as a simple predictor. Heights are 40m 
above HAT. 

  

Shell 

Flats 

Mast 1 

Nudged 

model 

(Model + 

Mast 1) 

Non-

nudged 

Model 

Speed 
Correlation 

coefficient 
0.919 0.888 0.889 

 
RMSE  

(ms-1) 
1.8 1.9 1.9 

Direction 
Correlation 

coefficient 
0.644 0.650 0.622 

 
RMSE 

(deg) 
50.6 53.6 56.1 



 

4.4 PBL and PBL Ensemble 

Predictions 
 
To assess the performance of different PBL 
schemes, 20 test periods were run for Scroby 
Sands. The results of this study are shown in 
Table 6: A comparison of PBL schemes in 
terms of WRF model performance at Scroby 
Sands with the best performing schemes 
assessed in terms of highest correlation and 
lowest RMSE for the 20 cases. In Table 6, the 
individual PBL schemes are run with nudging 
using wind speed data from Hemsby, with the 
exception of one set of simulations using the 
MYJ scheme where nudging was not included. 
An equally weighted ensemble of all of the PBL 
schemes was also analysed. In general across 
the runs undertaken, statistical performance of 
the schemes is very similar. The MYNN and 
ACM2 schemes display the best average 
statistics, very close to those of the ensemble 
mean, and perform the best in the highest 
number of cases for the nudged PBL schemes.  
Formulation of the ACM2 PBL scheme 
suggests it should be a capable performer 
under unstable conditions, which might account 
for its level of relatively high performance 
compared to the other schemes as previous 
work [15] has suggested that unstable 
conditions persist at Scroby Sands for a large 
proportion of time. The remaining schemes, 
MYJ and QNSE are not especially poor 
performers, though the QNSE scheme does 
fare less well compared to the other schemes. 
The technical difference between the MYJ and 
MYNN schemes is in the formulation of the 
master mixing length scale, which might be the 
reason for the observed difference in 
performance in this study. In the MYJ scheme, 
the mixing length is a function of height, where 
in the MYNN scheme, turbulence, buoyancy 
and surface length scales are all used to form 
the mixing length scale, which all provide more 
detailed information regarding the turbulence 
present contributing to fluxes through the 
boundary layer. The QNSE scheme displaying 
the lowest performance is not so surprising, as 
it is tuned for stable conditions. Further work is 
required to identify the specific nature of the test 
cases, for example identifying if they were 
neutrally, stably or unstably stratified, which 
could feed into the development of a more 
‘intelligent’ ensemble mean with appropriate 
weighting.  
 
Table 6: A comparison of PBL schemes in terms of 
WRF model performance at Scroby Sands 

PBL Scheme Number of cases 
as top performer 

Av. Statistics 

 Corr. RMSE Corr. 
Coeff 

RMSE     
(ms-1) 

MYJ 8 8 0.577 2.4 

MYNN 12 8 0.602 2.4 

ACM2 11 12 0.599 2.4 

QNSE 3 5 0.551 2.5 

MYJ (no 
nudging) 

16 12 0.558 2.5 

PBL ensemble 10 15 0.607 2.4 

 
 

4.5 Time Offset Ensemble 

System (TOES) 
As well as ensemble averages over all PBL 
schemes, an additional ensemble average was 
studied, namely the Time Offset Ensemble 
System. As each run was over 90 hours, there 
was the possibility of starting a new run at 
intervals during the 90 hours. In this case, the 
option of starting a run at 24 and 48 hours into 
the initial run was investigated for Scroby 
Sands. Ensemble averages were produced of 
the original, the next reinitialised run t+24 hours 
later, and a third t+48 hours after the original. 
For each of the three time offsets, all PBL 
schemes were run as reported in the previous 
section giving ensemble averages over time 
offset and PBL runs. Summary statistics after 
applying these methods to predicting the wind 
speed at Scroby Sands are shown in Table 7. 
This table also includes performance statistics 
for the PBL ensemble for the corresponding run 
without time offset averaging. It is seen that the 
combination of PBL and time offset averaging 
improves the correlation and reduces the 
RMSE. This would suggest that TOES are 
valuable in increasing prediction accuracy and 
that earlier run information still adds value even 
when a run period is reinitialised. 
 

Table 7: Summary statistics for the TOES methods 
applied to Scroby Sands. 

Comparison  
beginning 

 
Corr. 
Coeff. 

RMSE 
(ms-1) 

t+24h 
PBL 

Ensemble 
0.5591 2.6 

 
PBL/Time 

Offset 
Ensemble  

0.6003 2.4 

t+48h 
PBL 

Ensemble 
0.5862 2.4 

 
BPL/Time 

Offset 
Ensemble 

0.6374 2.2 

 
 



4.6 Atmospheric Stability 
For Shell Flats Mast 2, the atmospheric stability 

was classified using the Bulk and Gradient 

Richardson number inferred from measured 

data. This was then mapped to Obukhov length 

L and classified as either neutral (|L|>1000m), 

very unstable (-200≤L<0), unstable (-1000≤L<-

200), stable (0>L≥200) or very stable 

(200>L≥1000). The Gradient Richardson 

number was inferred from temperature data at 

12m and 82m and wind speed data from 10m 

and 82m. Bulk Richardson number was 

calculated using the same temperature data, 

but only wind speed at 82m. WRF model Bulk 

Richardson number data were produced based 

on temperature data output at 10m and 50m as 

well as wind speed data at 40m. As noted 

above the YSU PBL was used. 

Figure 3 summarises the stability statistics thus 

calculated. It can be seen that the observed 

Bulk and Gradient Richardson number metrics 

give quite a different picture in terms of the 

prevailing atmospheric stability. The observed 

Gradient Richardson number statistics agree 

broadly with [15] with predominantly unstable 

conditions, whereas the observed Bulk 

Richardson number suggests a more 

symmetrical spread, with fewer very stable or 

very unstable conditions. The reasons for this 

may be due to the way the two metrics are 

calculated; the gradient method can produce 

large values of the Richardson number when 

the wind speed values at the two heights are 

very close together. The Bulk method is 

relatively immune to this, but the mapping of 

Bulk Richardson Number to Obukhov length is 

more tenuous. The modelled Bulk Richardson 

Number shows a reasonable level of 

agreement with observations though there are 

a lower number of neutral conditions and a 

tendency to predict more stable conditions. 

Figure 4 shows the stability statistics this time 

by direction sector. It can be seen that there are 

a larger proportion of unstable conditions when 

the wind blows from the north and more stable 

from the south reflecting the fact that colder 

northerly air overlying warmer water will tend to 

promote unstable conditions whereas warmer 

southerly air overlying cooler water will tend to 

promote more stable conditions. The model 

simulates this trend quite well albeit with a 

tendency to predict more stable conditions as 

noted above. 

 

 
Figure 3: Observed and modelled surface layer 
atmospheric stability statistics for Shell Flats Mast 
2. 

 
 
 
 
 
 
 
 
 
 



 

 

 
Figure 4: Observed and modelled surface layer 
atmospheric stability conditions at Shell Flats Mast 
2 by direction. 

4.7 Round 3 Wind Farm Site 
WRF simulations of the wind and stability 
conditions were carried out at a hypothetical 
site in the UK’s Round 3 Dogger Bank Offshore 
Wind Farm Development Zone. Using a 
mesoscale model provides an opportunity to 
assess variability across a large area such as a 
large wind farm spanning over 20km and in this 
case, data were extracted for a central point 
and for grid points spanning a hypothetical wind 
farm site of area 20km x 20km containing 
1.2GW of capacity. As for the main Shell Flats 
study, the YSU PBL scheme was used. 
 
The overall distribution of wind speeds at the 
site suggests a Weibull-like distribution with 
scale parameter, C=10.2m/s and shape 
parameter, k=2.13 at 90m height. Figure 5 
shows the projected wind rose for this site with 
a dominance of wind from the south moving 

clockwise round to the north-west where the 
highest wind speeds are projected. 
 
Figure 6 shows the distribution of projected 
stability conditions at this site. The projection is 
for predominantly neutral conditions with some 
stable/very stable conditions observed, though 
this should be viewed with some caution as the 
model has a tendency to predict more stable 
conditions then observed as noted above at 
least using the YSU PBL scheme. Figure 7 
shows the breakdown in stability by direction. 
The same tendency is noted as for Shell Flats 
with more stable conditions from the south, 
though this tendency is less pronounced for the 
Round 3 site. 
 
  
 

 
Figure 5: Projected wind rose for the Round 3 site. 
Colour scale is in units of m/s.   

 

Figure 6: Stability distribution at the Round 3 site. 



 

Figure 7: Stability distribution at the Round 3 site by 
direction. 

Three months of simulations were also 

performed to gain an impression of the 

deviation in conditions seen across the farm. 

Due to the size of a Round 3 site, it is entirely 

possible that turbines at opposite extremities of 

the farm might be subject to different weather 

systems at the same time.  

 

Figure 8: Schematic representation of wind direction 
variation across the Round 3 site on a certain day 
during the three-month simulation period. 

Figure 8 is an example of one occasion where 

wind direction was very variable over the extent 

of the wind farm area with an extreme 

difference of over 50 degree. This could have 

significant implications for the overall 

performance of the wind farm due to wake 

interactions and highlights the importance of 

considering synoptic as well as smaller scale 

turbulent wake meandering and Coriolis effects 

when considering overall farm performance for 

such large potential sites. 

 

5 Conclusions 
The work presented in this paper has 

summarised the application of a mesoscale 

model to offshore wind farm resource 

assessment. It has been shown that: 

 The WRF mesoscale model can predict 

offshore conditions at two sites 

relatively close to land with an RSME of 

1.7-2.1 m/s depending the degree of 

temporal filtering employed. 

 In some cases, model nudging can 

improve performance but only when 

the initial correlation between 

measurements and model output is 

less good. 

 PBL and time offset ensemble 

averages show some benefit in 

reducing RMSE and there is further 

work to be down to perhaps produce 

dynamic ensembles if it is known for 

example that one PBL scheme 

performs less well under particular 

synoptic or stability conditions. 

 WRF with YSU PBL scheme produces 

a reasonable representation of the 

stability conditions at an offshore site 

albeit with a tendency to more stable 

conditions than observed. 

 A Round 3 site further offshore is likely 

to experience more neutral conditions 

than the two sites close to the coast. 

 A large Round 3 wind site may 

experience significant differences in 

wind conditions across the site on 

occasion which will have implications 

for performance. 

More work is required to validate against a 

broader range of sites to generalise the findings 

of this work. 
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