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Abstract 
This paper examines the differences and/or similarities 
between some of the commonly used canonical equations 
describing the effective permittivity and permeability of 
heterogeneous substrates with dielectric or metallic 
inclusions, at microwave frequencies. Graphical results are 
presented for the different structures considered. Simulated 
results from heterogeneous mixtures with both dielectric 
and metallic inclusions are presented, and compared with 
results from the canonical equation representation. 
Simulated results of a patch antenna on a heterogeneous 
medium and on its homogenous equivalent have also been 
presented. 

1. Introduction 
The overall goal of this research is to one day, be able to 
apply nanomaterial fabrication techniques to the production 
of microwave antenna systems, such that these systems are 
made in one process. As such, an important aspect is to 
understand the electromagnetic (EM) properties of 
heterogeneous structures which are structures consisting of 
small-scale inclusions in a homogenous host. Heterogeneous 
structures have been of interest to engineers and physicists 
alike as they provide additional degrees of freedom when 
designing various electromagnetic structures. These 
heterogeneous structures can be applied to the design of 
microwave antennas to control the dielectric and possibly 
the magnetic properties, thus allowing the creation of novel 
substrates with pre-determined characteristics. EM 
advantages related to bandwidth, efficiency and size may be 
achieved as a by-product of being able to control the 
material’s EM properties. In previous work, it has been 
shown that a larger bandwidth can be achieved with an as 
yet unrealizable substrate with equal permittivity and 
permeability [1]. In addition, using textured dielectrics in 
which the permittivity of the substrate is mapped to the 
electric field intensity, such as with a patch antenna, has 
been shown to improve antenna performance [2–5]. Fig. 1 
shows an example of how these inclusions can be smoothly 
varied in a substrate to dictate the local effective 
permittivity. 

Lord Rayleigh in [6] was the first reported person to 
examine these structures in the mid-19th century but more 
commonly used is the paper by Lewin in [7]. Since his 
analysis in 1946, extensions, modifications and alternatives 

to his equations for the effective permittivity, 𝜀𝑒𝑒𝑒 and 
effective permeability, 𝜇𝑒𝑒𝑒 of a semi-infinite heterogeneous 
structure with spherical inclusions have been published [8–
13]. An initial analysis carried out by the authors in [14] in 
which these different canonical equations for the 𝜀𝑒𝑒𝑒 and 
𝜇𝑒𝑒𝑒 are listed and briefly explained, is being extended in 
this paper. These equations are compared and analysed in 
further detail here. 

 
Figure 1: A sketch showing how the permittivity can be 
varied within the substrate by changing the spacing of the 
inclusions (not to scale) 
 

Section  2 highlights the differences and similarities 
between the different effective medium theories in order to 
determine which of these theories are robust enough to cover 
the structures investigated in this research, and which ones 
were not suitable. Mathematical manipulations and 
application of assumptions/conditions such as using metallic 
inclusions and using uniform inclusion spacing in all three 
axes, were carried out on some of the equations to show 
their similarities.  Section  3 presents some graphical results 
using these equations while Section  4 investigates a 
heterogeneous structure with both dielectric and metallic 
inclusions and presents simulated results of different 
configurations. The complete simulation and inversion 
process of the scattering (S-) parameters has been described 
in detail and used in [15], [16]. A patch antenna on a 
heterogeneous substrate with dielectric cubic inclusions and 
on the homogenous equivalent substrate, have been 
simulated and the return loss values presented in Section 5. 
Finally, conclusions are given in Section 6. The values of 𝜀 
and 𝜇 given here are absolute values (except otherwise 
stated) and relative to those of free space, 𝜀𝑜 and 𝜇𝑜. 
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2. Comparative Analysis 
2.1. Mathematical Comparisons 

By assuming conducting spheres in a cubic array and using 
algebraic manipulations, it is shown below that the equations 
from [7] and [10] for the 𝜀𝑒𝑒𝑒 and 𝜇𝑒𝑒𝑒 of these 
heterogeneous structures are similar to each other. These 
equations are given respectively in equations (1) and (2). 

𝜀𝑒𝑒𝑒 = 𝜀1 �1 + 3𝑝 �𝜀𝑝+2𝜀1
𝜀𝑝−𝜀1

− 𝑝�� � ;  

𝜇𝑒𝑒𝑒 = 𝜇1 �1 + 3𝑝 �𝜇𝑝+2𝜇1
𝜇𝑝−𝜇1

− 𝑝�� �    (1) 

where (𝜀1, 𝜇1) are the 𝜀 and 𝜇 of the host medium; 𝑝 =
4
3
𝜋 𝑎3 𝑠3⁄  is the inclusions’ volume ratio; (𝑎, 𝑠) are the 

radius and centre-to-centre spacing of the inclusions; 
�𝜀𝑝, 𝜇𝑝� are the effective 𝜀 and 𝜇 of the inclusions, given by: 

𝜀𝑝
𝜀2

= 𝜇𝑝
𝜇2

= 2(𝑠𝑖𝑛𝜃−𝜃𝑐𝑜𝑠𝜃)
(𝜃2−1)𝑠𝑖𝑛𝜃+𝜃𝑐𝑜𝑠𝜃

= 𝐹(𝜃)  (1b) 
where the constant, 𝜃 = 𝑘𝑎√𝜇2𝜀2; 𝑘 = 2𝜋 𝜆⁄  and 𝜆 = 
operating wavelength; (𝜀2, 𝜇2) are the bulk 𝜀 and 𝜇 of the 
inclusion material. 

𝜀𝑒𝑒𝑒 = 1 + 𝑁𝛼1
1−𝛼1𝐶

  𝜇𝑒𝑒𝑒 = 1 + 𝑁𝛽1
1−𝛽1𝐶

  (2) 
where 𝛼1,𝛽1 are the inclusion’s electric and magnetic 
polarisabilities, N is the density of the inclusions and C is 
the interaction constant.  

The electric and magnetic polarisabilities for spherical 
inclusions are given by: 𝛼1 = 4𝜋𝑎3 and 𝛽1 = −2𝜋𝑎3 [10] 
respectively. Assuming uniform spacing, 𝑠 in the x, y, and z 
directions,  

𝐶 = 1
𝜋𝑠3

[1.202 − 16𝜋2𝐾0(2𝜋)]   (2a)  
where 𝐾0(∙) is the modified Bessel function of the second 
kind and reduces to 𝐶 =  1.06/𝜋𝑠3 using the approximation 
for the Bessel function for large variables. Substituting this 
into equation (2) gives, 

𝜀𝑒𝑒𝑒 = 1+8.33𝑎3 𝑠3⁄
1−4.24𝑎3 𝑠3⁄

  𝜇𝑒𝑒𝑒 = 1−4.16𝑎3 𝑠3⁄
1+2.12𝑎3 𝑠3⁄

  (3) 

As discussed in [7], for metal particles, 𝜀𝑝 is much greater 
than 𝜀1. Thus the expression for permittivity in equation (1) 
reduces to 

 𝜀𝑒𝑒𝑒 = 𝜀1[1 + 3𝑝 (1 − 𝑝)⁄ ]  (4a) 
Substituting the expression for 𝑝 = 4𝜋𝑎3/𝑠3 reduces the 

expression in the square brackets above to 1+8.38𝑎3 𝑠3⁄
1−4.19𝑎3 𝑠3⁄ , 

which is very similar (±0.05 difference in the multipliers of 
𝑎3 𝑠3⁄ ) to the expression for 𝜀𝑒𝑒𝑒 in equation (3). Since a 
“lightweight binder” like Polyfoam which has a dielectric 
constant of 1.05 [17] is used in the analysis in [10], 𝜀1 can 
be approximated to 𝜀0. 

Also, using the approximation for 𝜇𝑒𝑒𝑒, if the particles 
are non-magnetic such that 𝜇𝑝 → 0, the expression for 
permeability in equation (2) is reduced to  

𝜇𝑒𝑒𝑒 = 𝜇1(1 − 3𝑝 2 + 𝑝⁄ )   (4b) 
Substituting for 𝑝, reduces the expression in the bracket 

above to 1−4.19𝑎3 𝑠3⁄
1+2.09𝑎3 𝑠3⁄ , which is again similar to (3). Since the 

binder material is non-magnetic, 𝜇1 ≈ 𝜇0. 
From the foregoing calculations, the expressions for the 

𝜀𝑒𝑒𝑒 and 𝜇𝑒𝑒𝑒 of a dielectric host containing spherical 
particles, obtained in [7] and [10] are almost the same 
assuming: uniform simple cubic spacing, non-magnetic 
spherical conducting inclusions and a host permittivity close 
to that of air, 𝜀0 = 1. 

Furthermore, the expressions for the effective parameters 
by Collin [10] as shown in equation (2) are similar to those 
of Cai et al [8] as shown in equation (5).  

𝜀𝑒𝑒𝑒 = 1 + 𝑁𝛼1
1−𝑁𝛼1/3

  𝜇𝑒𝑒𝑒 = 1 + 𝑁𝛽1
1−𝑁𝛽1/3

  (5) 

In [10], the interaction constant for equally-spaced spheres 
was obtained as 𝐶 = 1.06/𝜋𝑠3. In this case, 𝑁 = 𝑠−3, and 
therefore 𝐶 = 𝑁 × 1.06/𝜋. Since 1.06

𝜋
≅ 1/3, substituting in 

equation (2) yields 𝜀𝑒𝑒𝑒 = 1 + 𝑁𝛼1
1−𝑁𝛼1/3

, which is the same as 
Cai’s equation in [8]. The equations in [10] also suggest that 
they can be applied to mixtures with non-uniform spacings 
along the x, y and z axes. 

Although [8–10], [12] have used polarisabilities in their 
determination of effective constitutive parameters, they 
have represented these expressions differently. As an 
example, the expression for polarisability in equation (4) [8] 
and that in [12] yield very similar graphs as shown in Fig. 2 
when used to plot the 𝜀𝑒𝑒𝑒 against frequency, even though 
they are mathematically not exactly equal. In addition, 
although there is a ‘4π’ product difference in their equations 
for the effective properties appearing in the numerator and 
denominator as in [12], the 4π’s cancel each other out. 
Another disparity is in the expressions for polarisability in 
[8] and [12] which is due to the presence of the host 
medium’s refractive index value in the expression in [12].  

2.2. General Comparisons 

The limit of the validity of formulas is that the spherical 
particles should not be densely packed. This is similar to that 
in [10] whose validity is based on the relationship between 
the obstacles’ dimension and their spacing. Notable is the 
difference in the representation of the Clausius-Mossotti 
equation by Sihvola [9] from that used in equation (5) by 
Cai et al [8], by the presence of the ‘𝜀1’ term in the 
denominator. This is because equation (5) by Cai et al from 
[8] takes into account the EM properties of the inclusions 
but not that of the host or assumes the host has EM 
properties close to that of free space. 

The difference between the Maxwell-Garnett equation 
and Lewin’s formula from [7] is that while Lewin makes the 
particles exhibit an effective 𝜀 and 𝜇 due to their small size, 
Maxwell-Garnett assumes that the smaller size particles 
have the same EM properties as when in their bulk forms. 
As the value of 𝜃 (see equation (1b)) changes from being 
very small to being large and complex as the size-to-
wavelength ratio increases, this variation in permittivity 
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decreases. The value of the expression for 𝜃 in [7], [13], 
[18] differs with the size parameter, 𝑥 (= 𝑘𝑎√𝜀1𝜇1) in [8], 
[12], in that the effect of 𝜀2 and 𝜇2 are not accounted for. 
√𝜀2𝜇2 in the expression for θ  is equal to the refractive index 
of the material of the particle, say 𝑛2, while x uses the 
refractive index of the host medium, 𝑛0. 

Kolmakov et al in [13] adopts the formula by Sihvola in 
[9] for mixtures with more than one size of spherical 
inclusions to write an expression for 𝜀𝑒𝑒𝑒 and 𝜇𝑒𝑒𝑒 of a 
heterogeneous medium with a single-size sphere but having 
two different frequency-dependent polarisabilities. It takes 
into account the fact that the radii, the polarisabilities, the 
volume fractions and volume densities of the spheres will 
vary in magnetic and electric resonance modes. This is the 
primary difference from Lewin’s study in [7] where these 
variations are not taken into account. The spheres have 
different radii and were arranged accordingly. In their study 
the particle spacing was also taken to be much smaller than 
the wavelength – in line with the conditions for formulae 
validity in [7]. Numerical simulations were carried out on 
dielectric spherical and cylindrical particle arrays and it was 
found out that when the inclusions’ spacing was close to a 
wavelength, or even approximately half of the wavelength, 
the effective medium approach is not best suited for such 
mixtures [13]. This is because “the particle interferes with 
the normal behaviour” of the host in [7]. 

Other minor differences are that: the difference in the 
formulas for effective constitutive parameters in [7], [10] 
and [11] can be attributed to the product term difference of 
𝜀𝑜 in their expressions for dipole moment, 𝒑�.  

3. Graphical Results 
In order to further highlight the similarities and differences 
between these equations, a variation of the 𝜀𝑒𝑒𝑒 and 𝜇𝑒𝑒𝑒 
with particle size are given in Fig. 2. Data used: frequency, 
𝑓 =  3 GHz, spacing, 𝑠 = 200 µm, inclusion radius, 𝑎 = 1-
100 µm, the dielectric host medium, 𝜀1 = 2.25 (tan 𝛿 = 
0.001). The inclusions are made of Copper (𝜎 = 5.8 ×
107S/m); the relative permittivity of Copper was obtained as 
𝜀2 = (1.2 − 𝑗103.5) × 106, from first principles using the 
Drude model [19], 𝜇1 = 𝜇2 = 1. 

The results from [8] and [10] agree with each other but 
do not agree with those from [7], [9], [12], [13] as [8] and 
[10] do not include the value of the host permittivity, 𝜀1 in 
their equations and so will only agree with the others when 
the host permittivity, 𝜀1 ≅ 1. Even though 𝜇1 = 𝜇2 = 1, 
𝜇𝑒𝑒𝑒 reduces with increase in the inclusions’ volume 
fraction because the inclusions are metallic and may create 
diamagnetism with the medium when illuminated by an 
external magnetic field. This diamagnetic effect has been 
reported in previous work [20]. But due to the denominator 
term, 𝜇2 − 𝜇1 being equal to 0 in [9], this results in its 
𝜇𝑒𝑒𝑒 = 1. 

Formulations from [9], [10] do not have frequency terms, 
therefore only equations from [7], [8], [12], [13] are used to 
understand the effect of variation of the operating frequency 
with the EM properties of the heterogeneous mixture as 
shown in Fig. 3. Here, it is assumed that the permittivities of 

the host and the inclusions are constant with frequency. Data 
used: 1-30 GHz; 𝑎 = 100 µm, 𝑠 = 220 µm, 𝜇1 = 𝜇2 = 1, 
𝜀1 = 2.25 (tan 𝛿 = 0.001) and 𝜀2 = (1.2 − 𝑗103.5) × 106. 
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Figure 2: Variation of (a) 𝜀𝑒𝑒𝑒 and (b) 𝜇𝑒𝑒𝑒 with spherical 
inclusion size, a, from [7] (▬■▬), [8] (▬•ж•▬), [9] 
(═•═•●•═•═), [10] (─••+••─), [12] (─ ─♦─ ─) and [13] 
(▪▪▲▪▪). 

As shown in Fig. 3, 𝜀𝑒𝑒𝑒 from [8] differs significantly 
from the others because 𝜀1 > 1 which is not included in its 
equation for 𝜀𝑒𝑒𝑒. The other results agree over the frequency 
range considered. For the case of 𝜇𝑒𝑒𝑒, all the results from 
the equations agree with each other. As the frequency 
increases an initial reduction in the 𝜇𝑒𝑒𝑒 from 1 is seen, and 
then 𝜇𝑒𝑒𝑒 remains nearly constant at approximately 0.5. This 
may be due to the rather high value of 𝜀2 for metallic 
inclusions. 

0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

Ef
fec

tiv
e 

Pe
rm

ea
bil

ity
, 

μ e
ff

Ef
fec

tiv
e 

Pe
rm

itt
iv

ity
, 

ε e
ff

Frequency (GHz)  
Figure 3: Variation of 𝜀𝑒𝑒𝑒 and 𝜇𝑒𝑒𝑒 with frequency from [7] 
(▬■▬), [8] (▪▪●▪▪), [12] (--♦--) and [13] (─•▲•─). 

𝜀𝑒𝑒𝑒  [8] 
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4. Mixed Inclusions 
More advanced studies are carried out in [9], [21] for 
mixtures that include two or more homogenous material 
particles of equal or different sizes. This can also allow the 
creation of anisotropic materials. Here, the effective 
permittivity is a function of summation terms where the 
volume fractions of each included material and their 
respective permittivities are examined separately. The 
different arrangements of these structures examined in this 
section are shown in Fig. 4. In this section, analytical results 
are compared with FDTD simulations in conjunction with a 
retrieval algorithm for the 𝜀𝑒𝑒𝑒 and 𝜇𝑒𝑒𝑒. 

 
(a) 

 
(b) 

 
(c) 

Figure 4: (a) y-oriented, (b) x-oriented and (c) alternating 
arrays of metallic (red, thick circles) and dielectric (blue, 
thin circles) inclusions in a homogenous host. The 
orientations refer to the orientations of the columns/rows of 
the metallic inclusions shown in bold red lines in (a) and 
(b). 

Using the inversion process as described in [15] for 
extracting the 𝜀𝑒𝑒𝑒 and 𝜇𝑒𝑒𝑒 of heterogeneous structures, the 
results shown in Fig. 5 were obtained. Data used: 𝑓 = 1-20 
GHz, 𝑎 = 100 µm, 𝑠 = 300 µm, 𝜀1 = 2.25 (tan 𝛿 = 0.001), 
𝜀2𝑎 = 4.40 (tan 𝛿 = 0.02), 𝜀2𝑏 = (1.2 − 𝑗103.5) × 106 

(Copper), 𝜇1 = 𝜇2𝑎 = 𝜇2𝑏 = 1; where (𝜀, 𝜇)2𝑎,2𝑏 represents 
the 𝜀 and 𝜇 of the different inclusions. A 6-by-6 array was 
used in the plane of the infinite/symmetry boundaries, that 
is, the yz-plane, and the structure had 11 layers, implying a 
thickness of 3.3 mm in the direction of propagation of the 
plane wave – the x-axis. Perfect Electric and Perfect 
Magnetic Conductor (PEC and PMC) boundary conditions 
are used along the z- and y-axes respectively. They act as 
symmetry planes to create an infinite structure along those 
boundaries. Absorbing boundary conditions are used in the 
x-axis to minimize reflections as the wave travels. An in-
depth description of these boundaries is given in [15]. Fig. 5 
shows the 𝜀𝑒𝑒𝑒 and 𝜇𝑒𝑒𝑒 of the structures in Fig. 4 and 
includes the cases when the spheres are either all dielectric 
or all metallic. 

As shown in Fig. 5, as the volume fraction of the 
metallic inclusions increases, the 𝜀𝑒𝑒𝑒 increases while the 
𝜇𝑒𝑒𝑒 decreases, as expected. Table 1 gives a summary of the 
important properties of these heterogeneous media, where  
𝑝𝑑 and 𝑝𝑚 are the volume fractions of the dielectric and 
metallic inclusions respectively. Even though spherical 
inclusions are used, the orientation of the rows of 
metallic/dielectric spheres has been shown to have an effect 
on the 𝜀𝑒𝑒𝑒. As shown, the extracted values of 𝜀𝑒𝑒𝑒 from the 
simulation-inversion process agrees well with the analytical 
results from [9] as shown in equation (6): 

𝜀𝑒𝑒𝑒 = 𝜀1 + 3𝜀1
∑ 𝑝𝑘

𝜀𝑘−𝜀1
𝜀𝑘+2𝜀1

𝐾
𝑘=2

1−∑ 𝑝𝑘
𝜀𝑘−𝜀1
𝜀𝑘+2𝜀1

𝐾
𝑘=2

   (6) 

where 𝑘 represents the different inclusions. The extracted 
values are the average values over the frequency range 
examined. There are no results for the 𝜇𝑒𝑒𝑒 from [9] as 
𝜇𝑒𝑒𝑒 = 1, in all cases as explained in Section 3. With 
increased volume fractions of the metallic inclusions, the 
𝜀𝑒𝑒𝑒 will further increase while the 𝜇𝑒𝑒𝑒 will decrease. 

Table 1: Summary of simulated results 
 𝑝𝑑 𝑝𝑚 𝜀𝑒𝑒𝑒 𝜀𝑒𝑒𝑒 [9] 𝜇𝑒𝑒𝑒 
y-oriented 0.071 0.085 3.04 3.01 0.89 
x-oriented 0.078 0.078 2.97 2.97 0.89 
Alternate 0.078 0.078 2.98 2.97 0.90 
All-dielectric 0.155 - 2.51 2.51 1.00 
All-metallic - 0.155 3.54 3.49 0.79 
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(b) 

Figure 5: Variation of (a) 𝜀𝑒𝑒𝑒 (continuous) and (b) 𝜇𝑒𝑒𝑒 
(dashed) with frequency for different heterogeneous 
mixtures 

5. Patch Antenna 
As mentioned earlier, heterogeneous mixtures can be used as 
antenna substrates. In this section, the geometry and 
simulated results of simple example are given. Fig. 6 shows 
the geometry of a simple inset-fed patch antenna on a 
heterogeneous medium with dielectric cubic inclusions. Data 
used: patch dimensions: 24 mm by 27.76 mm, transmission 
line width = 3.12 mm, inset feed depth = 8 mm, cube length, 
𝑙 = 0.5 mm, spacing, 𝑠 = 0.75 mm, thickness of the 
substrate, 𝑑𝑠 = 1.5 mm, 𝜀1 = 2.08 (tan 𝛿 = 0.0004), 𝜀2 = 
12.94 (tan 𝛿 = 0.006), 𝜇1 = 𝜇2 = 1. The 𝜀𝑒𝑒𝑒 for the 
heterogeneous medium is 3.55 (tan 𝛿 = 0.0016) obtained 
from equation (1), and is used as the permittivity for the 
homogeneous equivalent. The return loss, 𝑆11, for these two 
structures are shown in Fig. 7. The results show good 
agreement with the resonant frequency of the heterogeneous 
substrate (3.21 GHz) being slightly lower than that of the 
homogenous equivalent (3.25 GHz). Previous work by the 
authors in [22], [23] have shown this to be the case for 
spherical and metallic inclusions. The radiation efficiencies 
are 93.52% and 92.82% for the homogenous and 
heterogeneous respectively which again show good 
agreement. These good agreements provide further 
confidence that the canonical equations accurately predict 
the effective EM properties of these heterogeneous media. 
This shows that the match is maintained and reasonable 
efficiencies are possible. 

 
(a)  

(b) 
Figure 6: (a) Side view and (b) top view of inset-fed patch 
antenna on a heterogeneous substrate (not drawn to scale) 

 
Figure 7: Simulated 𝑆11 of same sized patch on a 
homogenous (continuous) and heterogeneous (dashed) 
substrates with dielectric cubic inclusions 

6. Conclusions 
Canonical equations from different authors have been 
compared with each other and with simulated results. Even 
though the equations appear to be different, on closer 
inspection and under certain assumptions, they can be shown 
to be quite similar to each other. Heterogeneous mixtures 
with more than one type of inclusion have been simulated 
with the results showing good agreement with the equivalent 
canonical equation. An example patch antenna on a 
heterogeneous substrate with dielectric cubic inclusions 
have been simulated and shown to have good agreement 
with when the patch antenna is on its homogenous 
equivalent substrate. 
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