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Abstract: replace with: Currently, the impacts of wide-scale implementation of photovoltaic (PV) technology are evaluated
in terms of such indicators as rated capacity, energy output or return on investment. However, as PV markets mature,
consideration of additional impacts (such as electricity transmission and distribution infrastructure or socio-economic
factors) is required to evaluate potential costs and benefits of wide-scale PV in relation to specific policy objectives.
This study describes a hybrid GIS spatio-temporal modelling approach integrating probabilistic analysis via a Bayesian
technique to evaluate multi-scale/multi-domain impacts of PV. First, a wide-area solar resource modelling approach
utilising GIS-based dynamic interpolation is presented and the implications for improved impact analysis on electrical
networks are discussed. Subsequently, a GIS-based analysis of PV deployment in an area of constrained electricity
network capacity is presented, along with an impact analysis of specific policy implementation upon the spatial
distribution of increasing PV penetration. Finally, a Bayesian probabilistic graphical model for assessment of socio-
economic impacts of domestic PV at high penetrations is demonstrated. Taken together, the results show that
integrated spatio-temporal probabilistic assessment supports multi-domain analysis of the impacts of PV, thereby
providing decision makers with a tool to facilitate deliberative and systematic evidence-based policy making
incorporating diverse stakeholder perspectives.
1 Introduction and context

When evaluating the systemic impacts of the rapid expansion of
relatively new energy technologies within existing systems,
effective decision making and policy development requires
consideration of a wide range of complex inter-related issues.
These include factors such as the potential costs for grid
stabilisation (a technical factor) or the benefits related to fuel
affordability (a socio-economic factor). However, for photovoltaic
(PV) technology in national, regional or local contexts, these
complex issues are currently largely evaluated on a simplistic
basis; PV is in general considered as a homogenous collection of
devices, with their aggregated output and impacts being similarly
homogenous. With PV capacity in the UK exceeding 5 GWp as of
mid-2014 [1], the overarching question in this ‘whole system’
context is ‘how can we more accurately and holistically assess
benefits and costs within such a vibrant PV market?’.

Geographic information system (GIS)-based modelling has been
applied previously to facilitate wide-area assessment of the solar
resource [2] or to evaluate PV system yields [3]. However, to date,
an integrated approach that considers in detail all relevant factors
(such as different array orientations), regional differences in
environmental conditions (such as moving weather fronts or cloud
transients) as well as variations in local demand profiles or
socio-economic indicators has not been attempted. Furthermore,
while some previous studies have applied probabilistic approaches
to PV impact analysis [4, 5] there is no evidence of work relating
to the integration of probabilistic modelling with multi-parametric
spatio-temporal analysis.

In terms of the impacts of PV on electricity networks, small-area
studies have been carried out with somewhat contradictory results.
For example, one study focussed on PV in the Scandinavian
domestic sector [6] found that high penetration levels of PV power
generation may cause voltage problems in the electrical network
but that this also depends on the network type. Conversely, a UK
study of the impacts of PV on a domestic low voltage network [7]
indicated that even at very high penetrations of PV, network
voltage rises are small and unlikely to cause problems. At a wider
system level, it has been shown that the limited flexibility of base
load generators produces increasingly large amounts of unusable
PV generation when PV provides more than 10–20% of a system’s
energy [8].

Previous evaluation of the impacts of PV upon socio-economic
indicators such as net household fuel costs is very limited. A UK
study in 2007 based on nine dwellings in the social housing sector
[9] tentatively indicated that PV can ‘provide a significant
contribution towards the annual electrical demand and an overall
reduction of the fuel burden’.

In this context of complexity, the work described in this paper
attempts to address these issues via a GIS-based modelling
approach that integrates multi-domain spatial and temporal aspects.
Such a multi-parametric approach is subject to a relatively high
degree of uncertainty depending on the domain(s) under
consideration, and thus a probabilistic technique that utilises a
Bayesian inference network is used in conjunction with GIS. The
research describedhere addresses a series of questions in theUKcontext

† How much energy will be generated when and where? From a
current reference point in terms of installations, a model for the
performance prediction of systems based on post-codes was
developed and validated against monitored datasets.
† How much PV is likely to be achieved with different policies and
where is it likely to be installed? This considers different
socio-economic drivers, cost curves of PV and work on
installation scenarios giving links to the likely social background
of installations, locations (as in regions) and quantities.
† Taking into account distribution network and socio-economic
drivers, what future national installation architecture is optimal?
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Fig. 1 Summary of framework workflow
This includes an estimate of individual dynamic system energy
yields aggregated to generation regions.
† What system feedback effects will there be? Most policies will
have effects on the questions above and thus it is foreseen that a
feedback methodology will be created, calculating the costs/
benefits for UK plc as well as evaluating likely responses of the
policy makers and grid operators.

2 Spatial modelling and dynamic simulation of
the solar resource

The UK PV ensemble is often deemed to be a uniform set of
installations, whereas in reality numerous factors impact upon the
output of any individual device. This simplistic view results in
significant uncertainty when assessing the impact of relatively high
penetrations of PV on local, regional and national power
generation, transmission and distribution systems. Here, the focus
is on three environmental and geometric aspects, namely the solar
irradiation incident on the system, given its tilt and aspect.

Theoretically, incident irradiation is directly related to latitude,
with more northerly latitudes receiving less irradiation. However,
this does not take into account local terrain effects such as
increases in elevation. Furthermore, given the UK’s specific
maritime location, its daily weather can change rapidly, influenced
strongly by transient depressions and high pressure weather
systems. This influences insolation and for short time periods may
even reverse expected trends. The UK is mostly influenced by the
prevailing south-west wind, causing irradiation generally to
decrease from Cornwall to Shetland. Despite the variability of
irradiation across the UK, only between 80 and 94 weather
stations regularly record it [10], leaving large areas of the country
without information. In addition, typically only total global
horizontal irradiation is monitored, whereas plane-of-array
irradiation is required to accurately model PV yield. Thus, this
research presents a framework for the production of UK-wide tilt
irradiation data from the available inputs.
2.1 Framework outline

The framework within which the geographical diversity of the UK
PV fleet is accounted for comprises a series of stages, each of
which involves the sequential implementation of specific
algorithms before progression to the next stage, as illustrated in
Fig. 1.

The initial stage involves interpolation, whereby gaps between the
meteorological office station observations are filled to produce a
country-wide grid of high resolution data. Subsequently, each
global horizontal irradiation value is separated into its constituent
parts, namely beam and diffuse. This is a prerequisite to the final
stage of translation in which beam and diffuse irradiation
components are treated to transform them onto a tilted plane.
Separation requires a Sun geometry model, in which individual
translations of irradiation components must be completed because
of the unique inclination and orientation of each PV system. For a
2.5 km grid of the UK, this results in approximately 40 000 data
points originating from 80 weather stations.
2.2 Interpolation algorithm

Of at least 12 methods of interpolation (each with a range of up to 11
parameters), the Kriging method was selected as it has proven
effective in many fields [11]. It is especially suitable where data is
spatially autocorrelated (i.e. where spatial relationships are
correlated with proximity – Fig. 2). It is also effective where the
sample points are poorly distributed or are few in number or
where there is directional bias in the data. In Kriging, estimated
output pixel values are calculated as weighted averages (Wi) of
Diffuse fraction = (1+ EXP −5.38+ 6.63kt +
(
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known input point values (Zi) =∑(Wi × Zi). The solution is
achieved via implementation of a number of simultaneous equations.
2.3 Sun geometry model

Several Sun geometry equations that deliver the solar declination
angle were trialled. Declination changes with season and arises
from the Earth’s constant tilt of 23.45o within its orbit around the
Sun. The Strous algorithm [12], with an uncertainty of
approximately 0.01° was implemented in which

declination= arcsin(sin(eclong)x sin(23.45)) (1)

where eclong = earth – centred longitude calculated from Julian Date

The declination angle is used to compute the clearness index
which is essential in the next stage.
2.4 Separation of beam and diffuse components

The algorithm for this stage of the framework was selected
empirically. Only two UK weather stations log diffuse irradiation:
Camborne in Cornwall and Lerwick in the Shetlands. The results
of several split equations were compared with the actual measured
observations and the model which delivered the closest match was
selected. This was found to be that of Ridley et al. [13], which
comprises an algorithm described by a sigmoid graph as follows:
(see (2))

where, kt is clearness index, AST is apparent solar time (measured by
direct observation of the sun or a sundial and based on the length of
the apparent solar day which varies throughout the year because of
the earth’s elliptical orbit and axial tilt.), α is solar altitude, j is
persistence factor (average clearness index over 2 h)

Horizontal beam irradiance is then simply calculated as the
original global measured irradiance minus the just-calculated
horizontal diffuse irradiance.
2.5 Translation to specific inclination and orientation

Previous work in Loughborough [14] has demonstrated that an
all-sky model delivers the best results for UK conditions.
Therefore the Hay and McKay equation [15] with Reindl
correction [16] was employed. This has circumsolar and uniform
0.006AST− 0.007a+ 1.75kt + 1.31w
)−1

(2)
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Fig. 2 2013 data for

a Global horizontal irradiance at 12:00 on 21 June
b Average daily global horizontal irradiation interpolated from 85 UK meteorological stations
background components together with horizon brightening

Diffuse tilt irradiation

= Diffuse horizontal irradiation. (1− k)x(1+ cosb)/2
(3)

where k = beam irradiation/extra-atmospheric irradiation (anisotropy
index), β = inclination angle of the surface (degrees)

For horizon brightening

Diffuse tilt irradiation

= 1+√
horizontal beam/global horizontal
( )

sin(b/2)3
(4)

Finally, inclined beam irradiation is obtained via a simple cosine
calculation including the solar zenith.

Over the period 2005–2013, the Kriging step yields a yearly
average cross-validation root mean square error (RMSE) of
56 Wh/m2 (5%) for the interpolated values of global horizontal
irradiation compared with measured values. Interpolation error is
known to increase with distance from weather stations, hence it
is anticipated that satellite data will be eventually be
incorporated to improve the model. Furthermore, the uncertainty
of slope irradiance calculations is affected by the quality of
inclination and orientation inputs. Currently, sample and standard
values are being used but it is intended to utilise LiDAR data to
derive slope and aspect. Once estimates for plane-of-array
irradiance have been achieved, these are utilised within a PV
performance model, with the objective of establishing average
values for roof pitch and housing aspect for various
administrative areas (i.e. country subdivisions) and calculating
the possible yield per area assuming a variety of installation
scenarios. If PV aggregation is evaluated via transformer service
area (i.e. the amount of PV mounted on each group of houses
served by a respective transformer is considered), this provides
IET Renew. Power Gener., pp. 1–8
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the foundation for improved dynamic analysis of potential
impacts upon distribution networks. In addition, if individual
household roof slopes and orientations are grouped by postcode
or lower super output area (LSOA, a geography for the
collection of census data of approximately 650 households),
socio-economic aspects of PV establishment may be studied, as
demonstrated in Section 4 of this paper.
3 GIS modelling of PV distribution

Building upon the foundation provided by GIS-based dynamic
irradiation modelling, subsequent work focussed upon spatial and
temporal evaluation of PV expansion, and the impacts of various
policy frameworks upon PV diffusion dynamics. The following
sections describe the GIS methodology implemented to analyse
correlations between recent policy implementation and regional
levels of deployment.

3.1 Regional case study

A case study region was selected at the outset as a means of both
minimising the impact of geographic variables such as irradiation
upon deployment dynamics and at a scale consistent with that of
low and medium voltage network analysis. Cornwall in SW
England possesses relatively high levels of PV deployment per
capita; as a result, it provides a highly relevant case study to
understand the characteristics of this more developed market, as a
viewpoint to considering how less established regional markets
across the UK may evolve in the future. Furthermore, the
peninsular geographic context for Cornwall has resulted in a
distribution network which is relatively poorly interconnected at
the low and medium voltage level [6]. This factor combined with
the high penetration of PV provide a form of ‘worst-case’ scenario
approach to consider potential electricity network impacts.
3Commons Attribution License



Fig. 3 Monthly installation of domestic (0–4 kWp) PV capacity and FiT rate

Inset boxes show significant policy changes
To evaluate spatio-temporal trends, all grid-connected PV systems
were characterised in terms of capacity (kWp), commissioning date,
market segment (e.g. domestic rooftop, non-domestic rooftop or
ground-mounted) and locational information. For the purpose of
this work, locational data was defined within LSOAs. These are
census-based areas, each containing around 600 households, which
allow for subsequent integration of socio-economic datasets within
the impact modelling framework.
3.2 Impact of policy upon PV deployment

Although policies supporting PV have existed in the UK for over a
decade, it was the introduction of the feed-in tariff mechanism (FiT)
in 2010 that catalysed substantial market growth [17]. The FiT
followed similar examples set by other European states (notably
Germany, Italy and Spain) which pay generators a premium for
electricity produced, funded through consumer bills. Together with
rapidly falling module prices, in the UK a relatively high initial
FiT level led to a rapid expansion of the PV sector, which initially
exceeded Government forecasts significantly. In response, reactive
changes in the level of support occurred over a relatively short
time-frame. Specifically in March 2012 rates were reduced and
payments were linked to building energy efficiency standards. The
duration of the subsidy was also reduced from 25 to 20 years and
a further mechanism was introduced whereby the FiT rate was
linked to the level of deployment, with higher deployment leading
to a more rapid reduction in the FiT rate (i.e. a market triggered
mechanism).

To gain a quantitative insight regarding the impact of policy
dynamics on PV deployment, monthly installed domestic PV
capacity in Cornwall was analysed for 2010–2013. The data shows
that following the introduction of the FiT, deployment rapidly
increased from a small initial base. High monthly deployment
rates continued until the implementation of additional tariff
reductions in March and August 2012. Fig. 3 shows how the
monthly installations peaked just prior to the FiT reduction
deadlines, that is, between March and August 2012. This snapshot
of deployment highlights the key role of policy deployment trends,
in that both the level and structure of the subsidy have a
significant impact on the dynamics of deployment rates. The
introduction of a market triggered degression mechanism appears
to have allowed for more stable and predictable monthly
deployment trends.
4 This is an open access article publis
3.3 Spatial and temporal evaluation

To develop an insight into regional spatial distribution, a GIS
approach was utilised to aggregate domestic PV capacity at LSOA
level to provide a comparison across the case study area. Fig. 4
shows the spatial distribution of domestic PV in Cornwall as of
December 2013. This illustrates a significant inhomogeneity in
terms of PV capacity density, with even adjacent LSOAs having
substantial variations in installed capacities depending on
socio-economic, landscape and planning factors, such as specific
levels of urbanisation and availability of suitable roof-area to
mount PV installations [6].

The ongoing increase in domestic PV capacity as shown in Fig. 4
is characterised by a broadening of the distribution of installed PV
capacity per LSOA over time, indicating that the penetration of
PV in some LSOAs is increasing faster than the regional average.
It should be noted that in the context of regions such as Cornwall,
the inhomogeneous spatio-temporal evolution of PV capacity
provides an important tool for assessing regional planning and
policy effects, in terms of both the impact of PV on the regional
electricity network [18], as well as upon specific socio-economic
factors such as technology acceptance and household fuel
affordability. It is the latter aspect that is the focus of subsequent
analysis in this paper. It should also be noted that overt time it is
likely that maturation of the domestic PV market and related
supply chains influence perceived investment risk as seen
previously in more mature markets such as Germany [17].
4 Socio-economic impacts: PV and fuel
affordability

An assessment of the impacts of community-scale PV
implementation in a domestic rooftop context is presented.
Community-deployed renewable energy technologies are seen as a
valuable contribution to a number of energy policy objectives [19].
However, significant uncertainty exists with regards to the
potential impacts of PV in terms of socio-economic policy goals,
such as impacts on the incidence of ‘fuel poverty’ (proportional
net household fuel costs). Such uncertainty derives largely from
the wide variability of socio-economic parameters relevant within
the PV deployment space. These uncertainties represent a
significant risk for policy makers, particularly as their
interdependencies are rarely modelled and poorly understood.
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Fig. 4 Spatio-temporal distribution of PV within case study area

Histogram insets show year and cumulative capacity (MWp)
The challenges of multi-disciplinary assessment has been partly
addressed in parallel work by developing models which integrate
socio-economic, environmental and technical factors to provide
stakeholders with improved decision support, diagnostic and
simulation tools [19]. However, the effective management of
uncertainty remains a recognised problem; deterministic methods,
for example, need to incorporate sensitivity analysis to better
evaluate the variability of output parameters in relation to inputs
within a multi-dimensional problem space. With a large number of
parameters this can be difficult and often excludes a consideration
of dependencies between inputs.

Latterly, probabilistic graphical models (PGMs) have grown in
popularity for modelling problems that require the integration of
multiple knowledge domains while endogenising uncertainty. In
PGMs, model inputs and outputs are intrinsically probabilistic,
rendering their variability explicit and their sensitivity to the
multi-dimensional parameter space a matter of querying the
model’s joint probability distributions (JPD). Specifically,
Bayesian networks (BNs) can model and integrate knowledge
domains in a manner that is intuitive to interdisciplinary
researchers and stakeholders [20]. BNs have previously been
applied for modelling optimum carbon mitigation and economic
decision making in agriculture [21] and energy scenario studies for
national energy systems [22], and the endogenising of uncertainty
which allows decision makers to visualise risk as part of a due
diligence approach is a distinct advantage in such applications [23,
24]. The utility of BNs in this application suggests that
stakeholders can be provided with valuable socio-economic
decision support or policy making tools. To this end, a BN has
been constructed, and a candidate model is presented below, along
with an overview of the data with which to encode the
dependencies between variables. Finally, some results are explored
and discussed in the light of implications for decision support and
policy making.
Fig. 5 DAG
5 Bayesian networks

A BN is a mathematical model depicted by a directed acyclic graph
(DAG) where each variable is represented by a node and
IET Renew. Power Gener., pp. 1–8
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dependencies between variables are represented by directed edges
between them (Fig. 5).

A root node has no incoming edges and is encoded with a
discretised probability distribution. A child node has one or more
incoming edges leading from parent nodes and is encoded with a
conditional probability distribution for each combination of parent
node values. A leaf node is a node with no child nodes. The
conditional probability distributions quantify the relationship,
causal or observational, between a variable and its parents’
variables in the DAG.

This state space can be statistically enumerated using a JPD, P(U ),
which provides the probability of each possible combination of every
variable in the BN. The semantic of the BN is the independency
assumption: each variable of every pair of unconnected variables
is independent of the other, given their parent values. The JPD can
thus be factorised using the chain rule (5). Thus the BN’s encoded
probability distributions encapsulate the JPD and thereby the entire
knowledge domain for which the DAG is a conceptual model

P U( ) =
∏n

i=1

P Ai|pa Ai

( )( )
(5)

The utility of this highly compact knowledge representation is
5Commons Attribution License



Fig. 6 UML diagram of the relevant features of the PV OOBN

Fig. 7 Variance between PVGIS prediction and measured PV system yields
further enhanced with reasoning algorithms which propagate
evidence – observations on one or more variables – to calculate a
posterior probability distribution of all other variables in the BN
[25]. Bayes Rule for conditional probability is used, which given a
variable A, calculates the posterior distribution, P(A|B) given
evidence B, from the prior distributions, P(A) and P(B) and the
likelihood P(B|A) (6)

P A|B( ) = P B|A( ) · P A( )
P(B)

(6)

The benefits of a BN in this context are

† The efficient storage and encapsulation of an entire knowledge
domain.
† Effective inference-making in both a prognostic sense, when an
observation is applied to a root node or a diagnostic sense when
an observation is applied to a leaf node (one with parent but no
child nodes)
† A visual conceptual model in the form of a DAG which is an
intuitive causal or influence diagram for the problem domain
† The integration of knowledge domains using probabilistic
relationships between model parameters to create transdisciplinary
knowledge.

5.1 Object orientated Bayesian networks (OOBN)

An OOBN consists of a collection of connected BNs, each of which
encapsulates a particular knowledge domain [26]. Thus Fig. 5 can be
reinterpreted such that each object, A, B, C, D and E represents a
functioning BN with its own factorised JPD, and the connections
represent an interface between output nodes of one network and
input nodes of another to enable the transfer of probabilistic
information from one network to another.

An OOBN facilitates trans-disciplinary enquiry and, particularly
for a large network, provides a hierarchical model with each
sub-network delivering the benefits listed above. Owing to the
complexity and multi-disciplinary nature of the problem domain
discussed in this paper this was the approach employed in this
study. In the next section the knowledge domains which were
integrated into a single OOBN are discussed.
6 This is an open access article publis
5.1.1 Construction of the OOBN: A BN is often constructed
using expert knowledge to define the dependencies and
independences between the parameters included in the study [27,
28]. An OOBN facilitates this approach and the academic literature
was employed to support the DAG structure of each object. Fig. 6
presents a UML schema for the model with each titled box
representing a network object and the crow-foot connections
depicting an interface between the output node of one object and
the input of another.

The evaluation of socio-economic impacts in a community
context suggests a focus of the OOBN around defined UK
LSOAs. Thus the root BN object was designed to probabilistically
characterise the LSOA. The key parameters for which probabilistic
data were obtained were the building type, age and floor area, the
southernmost area, pitch and orientation of roofs from LiDAR data
and modelled household income distributions from census data
and the English Housing Survey using an iterative proportional
fitting approach [18]. Using GIS, roof parameters are provided as
inputs to the yield object which calculates the specific yield.
Irradiation data was then used to provide a modelled yield for
every property in the LiDAR dataset. This deterministic value is
augmented with an uncertainty parameter calculated from
empirical data and modelled data for the same systems. Outputs
from the yield and area objects enable the modelling of yields in
the PV system object (Fig. 7). A building energy demand object
was constructed using empirical datasets from the NEED
IET Renew. Power Gener., pp. 1–8
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framework [29]. This furnishes the energy cost object with the inputs
to provide a probabilistic domestic energy cost. The FiTs subsidy
object takes as inputs the energy demand and PV system yields to
determine income from export and generation tariffs. To account
for energy self-use, variability data were used to derive probability
distributions which were influenced by both the PV energy
generated and the total household electricity demand.

The last three objects are used to deliver three key indicators;
the socio-economic object provides fuel affordability indicators,
the NPV object provides a discounted cash flow analysis and the
carbon object provides the carbon savings. It should be
emphasised that this brief description masks somewhat the nature
of the model’s quantitative data. All the parameters have been
solicited to furnish the BN with probability mass functions (PMFs)
(discretised probability distributions), as shown in Fig. 7.
Furthermore, objects which have parent nodes are encoded with a
PMF for each combination of parent values. Thus there is a
significant degree of data processing and statistical analysis to
derive these distributions. Further discussion of all variables, data
sources and preparation of PMFs can be found in [19].

The OOBN itself was constructed using Netica BN software [20]
which allows the simple input of observations on any node to
observe the influence of the evidence on all other variables as
discussed in the next section.
5.2 Bayesian model implementation

The BN imparts an informative prior probability distribution for
every variable in the network, while generating posterior
distributions for socio-economic, financial and environmental
parameters of interest. Fig. 8 illustrates an example of the
application of the small-area technique for a typical LSOA. This
shows distributions of system yield calculated using
interpolation-based predictive modelling together with
LiDAR-enhanced building-specific data [29], CO2 reduction, NPV
Fig. 8 Per dwelling distributions of

a System yield (in kWh)
b CO2 reduction (in kg)
c 20-year NPV (in £ sterling)
d Percentage of household income spent on fuel, respectively
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and percentage of household income spent on fuel, respectively,
assuming all suitable rooftops are subject to PV installations
within the LSOA in question. The fuel spend parameter was
calculated using LSOA-specific domestic income distributions
obtained from small area simulation methods based on iterative
proportional fitting [30]. The BN also offers enhanced diagnostic
or prognostic utility by fixing one or more specific node values
(observations or predictions) and evaluating the resultant posterior
distributions of all other variables of interest. Thus, the model
achieves the objective of creating an integrated decision support
tool with which a large spectrum of queries can be posed and
probabilistic answers delivered.

With respect to providing an insight into fuel affordability aspects,
it should be noted that UK Government fuel poverty indicators use a
modelled energy demand calculated using a normative heating
regime. Since UK households are generally not heated to the same
intensity [31], official fuel poverty incidence may be expected to
be higher in general than that suggested by the proxy indicator
used in this research [32].
6 Conclusions

The results presented in this work demonstrate the potential for
integrated spatio-temporal probabilistic modelling to provide
valuable new insights across a range contrasting domains, in
specific terms

Interpolated GIS-based solar resource modelling using
meteorological station data, applied with the objective of
improving the accuracy of dynamic solar resource prediction. The
Kriging approach utilised gives a yearly average cross-validation
RMSE (2005–2013) of 56 Wh/m2 (5%) for the interpolated values
of global horizontal irradiation compared with measured values.

The influence of specific policy measures upon PV sector
expansion dynamics were examined, with the objective of
improving policy development and implementation moving
forward. The results indicate that policy can have a significant
influence on the growth of installed capacity, not only by its
ability to stimulate, but also to dampen the installation market,
thereby reinforcing the need for a stable and transparent policy
framework. The results identify drivers and provide a basis for
informing subsequent probabilistic modelling with deployment
distribution data based on empirical evidence.

In terms of socio-economic impacts, specific sustainability
indicators provide a valuable multi-criteria parameter set for
decision support which can account for diverse stakeholder
perspectives. A probabilistic assessment of parameters of interest
provides a versatile means of risk assessment relating to the
attainment of key performance indicators in a wide number of
simulated scenarios using a Bayesian approach. Thus, the
prospects of PV impact optimisation may be further improved by
deliberative policy and decision making under uncertainty.

Spatially disaggregated empirical energy demand and household
income datasets have been used to provide a probabilistic indicator
giving the percentage of income spent on fuel. Such a probabilistic
approach provides a useful spatially disaggregated proxy indicator
which can help with the targeting of mitigation interventions.
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