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Abstract 

Self-paced endurance performance is compromised by moderate to high ambient 

temperatures which are evident in many competitive settings. It has become common 

place to implement pre-cooling prior to competition in an attempt to alleviate 

perceived thermal load and performance decline. The present study aimed to 

investigate pre-cooling incorporating different cooling avenues via either evaporative 

cooling alone and/or in combination with conductive cooling on cycling time trial 

performance. Ten trained male cyclists completed a time trial on three occasions in 

hot (35˚C) ambient conditions with the cooling garment prepared by i) immersion in 

water (COOL, evaporative), ii) immersion in water and frozen (COLD, evaporative 

and conductive) or iii) no pre-cooling (CONT). COLD improved time trial 

performance by 5.8% and 2.6% vs CONT and COOL, respectively (both p<0.05). 

Power output was 4.5% higher for COLD vs CONT (p<0.05). Mean skin temperature 

was lower at the onset of the time trial following COLD compared to COOL and 

CONT (both p<0.05) and lasted for the first 20% of the time trial. Thermal sensation 

was perceived cooler following COOL and COLD. The combination of evaporative 

and conductive cooling (COLD) had the greatest benefit to performance, which is 

suggested to be driven by reduced skin temperature following cooling. 
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Introduction 
 

Endurance exercise performance progressively deteriorates as the surrounding 

ambient temperature increases (Galloway and Maughan, 1997), which is further 

exacerbated when combined with increasing humidity (Watson et al., 2011). It 

appears that there is a strong link between increases in thermoregulatory strain, due to 

elevations in both metabolic and ambient heat, and impaired endurance performance. 

The attainment of a critical core body temperature of approximately 40˚C has been 

proposed as the main factor limiting endurance performance in hot environments 

(Gonzalez-Alonso et al., 1999). It is suggested that this critical core temperature (Tc) 

is used as a set point, around which the body bases pace judgment alteration and 

effort perception in an attempt to complete a given task as quickly as possible without 

achieving a dangerously high core temperature (Marino, 2004; Schlader et al 2011a). 

However, recent work on self-paced exercise indicates that a Tc of >40˚C may not be 

critical in performance determination (Ely et al., 2009), particularly when considering 

self-paced rather than fixed intensity exercise. 

Increases in skin temperature in response to exercise have been suggested to 

be an important factor in regulating endurance performance in warm ambient 

conditions (Kenefick et al., 2010; Sawka et al., 2012). In hot conditions, fatigue has 

been shown to be less reliant on high absolute core temperature, but more dependent 

on hot skin temperature (>35˚C), as fatigue occurred at relatively low core 

temperatures of approximately 38.5˚C (Latzka et al., 1998; Montain et al., 1994).  

Ways to alleviate the deleterious effect excessive thermal strain has on 

performance has received wide-ranging focus. One of the most widely adopted 

practices is that of pre-cooling. Pre-cooling can be applied externally using a variety 
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of methods (Bogerd et al., 2010; Kay et al., 1999), internally via the use of cold or ice 

slurry beverages (Ross et al., 2013), or via combinations of pre-cooling methods 

(Ross et al., 2010). All of these have the aim of reducing core temperature prior to the 

onset of exercise, thereby increasing the body’s ability to store endogenous and 

exogenous heat and consequently improving exercise performance (Ross et al., 2013).  

Several previous studies have demonstrated that pre-cooling prior to exercise 

has a beneficial effect on performance (for a review see Tyler et al., 2013). However, 

few studies consider ways in which pre-cooling may be influenced by the type of 

cooling (e.g. evaporative, conductive, convective) and the effect this may have on 

performance. Furthermore, we have shown that there are regional differences in heat 

exchange over the body, with the hands and torso providing a particularly effective 

location for targeting heat exchange with the surrounding environment (Faulkner, 

2012). The effectiveness of hand and forearm cooling at reducing heat strain 

(Giesbrecht et al., 2007) and performance (Kwon et al., 2010) has been shown 

previously, however these studies have only used hand/forearm cooling in isolation 

with devices which are impractical for field use and competition. To our knowledge, 

no studies combine the use of cooling-vests with hand and forearm cooling to 

examine the effectiveness at reducing core temperature and improving performance in 

hot ambient conditions using different combinations of evaporative and conductive 

cooling. Therefore, it was the aim of this study to investigate the effect of a novel 

combination of hand, forearm and torso pre-cooling via either mainly evaporative or a 

combination of evaporative and conductive cooling on subsequent cycling time-trial 

performance in the heat. We hypothesized that core temperature, skin temperature and 

the rate of heat storage would be lower following pre-cooling. Furthermore, we 

hypothesized that these reductions would lead to improved cycling performance, 
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represented by a faster time trial completion, and that the largest improvement would 

be seen with the coldest pre-cooling treatment. The garments studied provided 

cooling via moisture evaporation (held in a special gel) and by conduction to the pre-

cooled or frozen (phase change) material. 

 

METHOD 

Participants 

Ten endurance trained competitive male cyclists and triathletes (25.1 ± 6.1 yrs; height 

178.9 ± 6.1 cm; weight 72.5 ± 5.1 kg; ሶܸ ܱଶ max 61.3 ± 4.3 ml/kg/min; body fat 7.2 ± 

2.9% body fat) who were familiar with the type of testing involved were recruited for 

this study. All participants were required to be free from injury. The Loughborough 

University ethical advisory committee approved all experimental procedures and 

confirmed to the Declaration of Helsinki. Participants gave their written informed 

consent.  

 

Experimental Design 

Participants visited the laboratory on a total of 5 occasions. Visit 1 consisted of body 

composition measurement and an incremental exercise test to exhaustion to determine 

ሶܸ ܱଶ  max and maximal power output (Wmax). Visits 2, 3, 4 and 5 were simulated 

cycling time trials in which participants were instructed to complete a set amount of 

work in as short a time as possible. Visit 2 served as a familiarisation trial to ensure 

that participants were able to complete the required exercise and to minimize any 

potential learning effect on time trial performance. Visits 3, 4 and 5 constituted the 

experimental visits where participants underwent i) cold pre-cooling using a cooling 

garment frozen over night (COLD; evaporative and conductive cooling), ii) moderate 
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pre-cooling where the cooling garments were saturated in cool (14.2 ± 1.2˚C) water 

for 30 minutes prior to wearing (COOL; evaporative cooling mainly); or iii) no pre-

cooling implemented (CONT). Trials were conducted in a randomized and 

counterbalanced order, with each visit separated by a minimum of 7 days to minimize 

acclimation effects. 

 

Visit 1 

Participants first had their height (Seca, Birmingham, UK) and weight (ID1 Multi 

Range, Sartorius, Goettingen, DE) recorded. Body composition was determined using 

skinfold calipers (Harpenden, HaB Intl Ltd, Warwickshire, UK) and the 7 site 

skinfold method as described by Jackson and Pollock (2004) and weighted for the 

athletic population. The ሶܸ ܱଶ  max test was conducted on an electronically braked 

cycle ergometer (Lode Excalibur Sport, Groningen, The Netherlands), and consisted 

of 3 minutes at 95W, followed by 35W increments every 3 minutes until the 

participant reached volitional fatigue.  

 

Visits 3-5 

Participants reported to the laboratory in the morning (0600-0900) following an 

overnight fast and having abstained from caffeine and alcohol ingestion or any 

strenuous exercise in the preceding 24 hours. Each participant completed their trials at 

the same time of day to minimize the effects of circadian variation on exercise 

performance.  

 

Prior to each experimental visit, participants were given an ingestible temperature pill 

(VitalSense, Mini Mitter, Oregon, USA) to measure core temperature and instructed 
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to take it 8-10 hours prior to reporting to the laboratory.  On arrival the pill was 

located using a receiver to confirm that it was functioning correctly. Participants then 

had their nude weight recorded (ID1 Sartorius, Goettingen, DE). They were then 

instrumented with wireless temperature sensors (iButton, DS1922, Sunnyvale, CA, 

USA) that were secured in place using Medipore tape (3M, Berkshire, UK). The 

locations of the iButtons were forehead, scapula, right bicep, left pectoral, left 

forearm, left hand, right thigh and left calf, to allow for the subsequent calculation of 

mean skin temperature (ISO 9886 1992). The iButtons recorded at 60 s intervals 

throughout the duration of each trial. Mean skin temperature (T sk ) was calculated 

using an area weighted 8-site calculation (ISO 9886 1992). Heart rate was monitored 

and recorded throughout the trials (RS800, Polar, Finland). In order to minimize 

differences in clothing insulation, all participants wore a standard athletic shirt during 

the stabilization, cooling and warm up periods along with their own cycling shorts. 

This shirt was removed on completion of the warm up prior to the start of the time 

trial.  

 

Following instrumentation, participants remained in a temperate climate (21.2 ± 

0.8˚C) prior to the collection of baseline measures after 30 minutes. Participants were 

then moved to an environmental chamber maintained at 35.0 ± 0.4˚C and 50.6 ± 1.3 

% relative humidity, where they donned the cooling garments for the experimental 

conditions or remained seated in cycling clothing for a further 30 minutes. On 

completion of the precooling phase, participants then mounted the cycle ergometer to 

complete a standardised 9-minute warm up (WUP) which consisted of 3 minute 

stages of 150W, 200W and 250W. If worn, the cooling garments were removed on 
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completion of the warm up and participants had 5 minutes to stretch and prepare for 

the start of the time trial. 

 

For the time trial, participants were given a set amount of work, equivalent to cycling 

for 1 hour at 75% Wmax (912.7 ± 131.3 kJ) to complete in as fast a time as possible. 

The ergometer was set in linear mode so that 75% Wmax was obtained when 

participants cycled at their preferred cadence. Participants exercised separately with 

no performance feedback other than the accumulated work done, target workload and 

a graphical representation of fluctuations in power output. They had minimal 

interaction with the investigators.  

 

Heat storage was estimated using the following equation for partitional calorimetry: 

ܵ	ሺܹ ൉ ݉ଶሻ ൌ ሺሺܥ௣		ݔ	ݐݓ	ݔ	ሺ߂ ௕ܶሻሻ/ݐ/BSA 

Where S equals heat storage (W.m2), Cp is equal to the specific heat of body tissue 

(3474 J.kg-1.°C-1), wt equals body weight (kg), ΔTୠ	is equal to the change in body 

temperature (°C; Hardy and DuBois, 1938), t equals the time of observation (min) and 

BSA equals total body surface area (m2). 

 

During the time trial, participants were allowed to drink water ad libitum, with the 

total volume consumed recorded to allow for sweat rate calculation.  Water was kept 

at the same temperature as the surrounding environment. At 10% intervals of total 

work done, Tc was recorded. At 20% intervals, RPE (Borg, 1982), thermal sensation 

(ASHRAE, 1997) and thermal comfort (Griffiths and Boyce, 1971) were recorded. 

20% intervals were chosen to minimize participant/investigator interaction. 
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Cooling Garments 

Figure 1 shows the design and placement of the cooling packs on the anterior side of 

the vest and sleeves. The vest and sleeves were constructed of a breathable mesh 

fabric, and pockets of hydrophilic silica gel. During cooling for the COOL trial, 

cooling was achieved mainly through evaporative cooling from the fabric surface and 

the gel packs, whereas in the COLD trial, there was a gradual phase change 

throughout wearing as the ice heated to liquid. Cooling power for the vests in both the 

COOL and COLD conditions was calculated using a thermal manikin (NEWTON, 

Measurement Technology Northwest, USA) with a surface temperature of 34°C to 

mimic skin temperature and a wet surface to represent sweat production. The 

garments remained in place on the manikin for 60 minutes, with power recorded 

every 30s. The cooling power of the garments was 190 W.m-2 (COLD) and 170 W.m-2 

(COOL), with forearms having greatest cooling power (COLD: 254 W.m-2; COOL 

225 W.m-2). Assuming that the rate of evaporative cooling between pre-cooling 

conditions was the same, the calculated difference in heat content between the two 

vests was 84.9kJ, which equated to a difference in cooling power of 31.5W. 

 

Figure 1 near here 

Statistics 

Two-way repeated measures analysis of variance (ANOVA) was used to determine 

main effects of condition and time. Differences in heat storage were analysed using a 

one-way ANOVA. Where significant differences were identified, post-hoc pairwise 

comparisons with a Bonferonni correction were conducted. Correlations between 

variables were calculated by Pearson’s correlation coefficient. Effect sizes were 

calculated for time trial completion times, with effect sizes of <0.2 classified as small, 
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0.4-0.6 as medium and > 0.8 as large (Cohen, 1988). The accepted level of 

significance was p<0.05. All data are presented as mean  SD unless otherwise stated. 

. 

 
 
Results 
 
Time Trial Performance 
 
Time to complete the time trial was significantly faster following COLD (p<0.05; d = 

0.6, figure 2) compared to CONT, which equated to an improvement of 240 ± 187s, 

or 5.8%. In addition COLD was faster than COOL (2.6%, d = 0.4, p<0.05).  

 
Figure 2 near here 

 
 
 
Power output 
 
Mean power output throughout the duration of the time trial was higher for COLD 

(234.4 ± 33.8W) vs CONT (224.4 ± 27.9 W, p<0.05, figure 2). This equates to a 10.0 

± 8.4W or 4.3% improvement in mean power output for COLD compared to CONT 

(p<0.05). There were, however, no significant differences in power output between 

COLD and COOL (227.1 ± 25.7W) or at individual time points. 

 
 

Mean skin temperature  

Conversely, there were significant effects of both pre-cooling conditions (p<0.05) and 

time (p<0.05) on mean skin temperature (figure 3). There was a significant interaction 

for condition and time on T sk (p<0.05). Mean skin temperature was significantly 

lower for both COOL and COLD when compared to CONT at T0 (both p<0.05) This 
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effect lasted until 20% of the target workload for COLD. In addition, mean skin 

temperature was correlated to power output (r2 = -0.673, p<0.05).  

 

 

Heart rate and core temperature 

There was no effect of time or condition on either heart rate throughout each 

condition. Furthermore, there were no differences in average heart rate between 

conditions during the time trial (CONT = 166 ± 15 beats.min-1, COOL = 171 ± 11 

beats.min-1, COLD 170 ± 10 beats.min-1). There was a main effect of time on core 

temperature (p<0.05) but no effect of condition on core temperature at the start of the 

time trial (CONT = 36.7 ± 0.4 °C; COOL =  36.7 ± 0.6 °C; COLD = 36.5 ± 0.3 °C) or 

upon its completion (CONT = 38.6 ± 0.5 °C; COOL = 38.6 ± 0.5 °C; COLD = 38.7 ± 

0.4 °C). 

 

Heat Storage 

There were no differences in the rate of heat storage between conditions throughout 

the whole duration of the test. There were differences in the rate of heat storage 

between conditions following warm up (CONT 41.8 ± 7.5 W.m2; COOL 62.2 ± 14.6 

W.m2; COLD 79.7 ± 12.3 W.m2, p<0.05).  There were also differences between 

conditions at the start of the time trial, with a higher rate of heat storage for both 

COLD (177.4 ± 49.5 W.m2) and COOL (122.2 ± 50.7 W.m2) when compared to 

CONT (11.3 ± 98.5 W.m2 both p<0.05). 

 

 

Figure 3 near here 
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Perceptual measures 

There was a significant effect of both time (p<0.005) and condition x time (p<0.05) 

on thermal sensation (figure 4). An increase in thermal sensation towards feeling 

“hot” was evident in all conditions throughout the course of the trial. There was a 

trend for thermal sensation to be less warm for both COOL and COLD compared to 

CONT, and COLD < COOL throughout. This trend reached significance at T0 

(COOL < CONT, p<0.05; COLD < CONT p<0.01), warm up (WUP; COOL < 

CONT, p<0.05) and recovery (REC; COLD < CONT, p<0.05). Pre-cooling 

application had no effect on either RPE or thermal comfort.  

 

Discussion 

The present data demonstrate that using a novel design of a frozen cooling 

garment which incorporating evaporative and conductive cooling of the torso, hand 

and forearms resulted in a faster time trial performance (4.8%) in the heat (35˚C) 

compared to when no pre-cooling was undertaken. This effect was present in the 

absence of significant changes in Tc. Furthermore, the data show that pre-cooling lead 

to a reduction in T sk , which was coupled with improvements in thermal sensation at 

the onset of the time trial. We propose that the observed improvements in 

performance are due to changes in the peripheral feedback and central regulation of 

pacing strategies owing to reductions in Tsk as we demonstrate improved average 

power following COLD pre-cooling was associated with lower mean skin 

temperatures and was independent of any changes in Tc. As these reductions are 

associated with a concurrent improvement in self-paced time trial performance, it 

appears likely that T sk  is important in regulating exercise performance in the heat, 



	 13

and that Tc may have less of a unique regulatory role than has previously been 

suggested (Gonzalez-Alonso et al., 1999; Ely et al., 2009).   

When comparing conditions COOL and COLD, it is evident that evaporative 

cooling alone (COOL), though showing an indication of an effect, is not capable of 

having significant impact on performance. On the other hand, the combination of 

evaporative and convective cooling within the phase change component in COLD (ice 

 water) does clearly provide a significant improvement to performance in the heat 

and is likely due to reductions in Tsk and a higher rate of heat storage at the onset of 

exercise, resulting in improved performance (Tucker et al., 2006; Tucker 2009). 

However, this view has been challenged, owing to the nature of the relationship 

between core and skin temperature and the calculation of heat storage (Jay et al., 

2007; Jay and Kenny, 2009).  This has recently been supported experimentally by 

Ravanelli et al (2014) who demonstrate that changes in self-paced exercise intensity 

are not driven by early differences in heat storage following exercise onset. 

Furthermore, the present data demonstrate that the change in heat storage is primarily 

driven by a reduction in Tsk as there was no change in Tc in response to cooling. 

Compared to traditional ice vests, the currently tested garment also provides more 

surface area for cooling, which may also contribute to its effectiveness, particularly if 

reductions in Tsk are important in increasing power output during cycling time trials in 

the heat. 

It was initially believed that one of the primary outcomes of pre-cooling was 

to cause a reduction in core temperature at the onset of exercise, and that it was this 

reduction in Tc which resulted in improved endurance performance (Arngrimsson et 

al., 2004). However, more recently published work has begun to question the 

importance of core temperature in performance regulation of test protocols which are 
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self-paced in nature rather than fixed intensity (Ely et al., 2009). Combined with the 

data presented here, this suggests that in self-paced exercise, the importance of core 

temperature as a limiting factor is likely to be less important than previously believed. 

Indeed, it now appears that other feedback mechanisms may be of equal, if not greater 

importance in regulating pacing than that of Tc. 

Evidence has begun to emerge that skin temperatures in excess of 35˚C and 

resultant high skin blood flow requirements can impair prolonged aerobic exercise 

(Sawka et al., 2012; Schlader et al., 2011a). In environmental conditions similar to 

those employed in the present study, exhaustion has been shown to occur at relatively 

low core temperatures (<38.5˚C) but with skin temperatures in excess of 35˚C 

(Montain et al., 1994). This points to the potential importance of an ambient 

temperature threshold above which pre-cooling is likely beneficial, regardless of the 

rate of heat production. As a result of elevations in Tsk, there is an increase in skin 

blood flow in an attempt to dissipate some of the accumulated heat. The increase in 

skin blood flow causes redistribution away from the active musculature (Cheuvront et 

al., 2005) and is likely detrimental to performance. An increase in Tsk and 

cardiovascular strain has been associated with reductions in cycling time trial 

performance due to reductions in power output and oxygen uptake (Periard et al., 

2011). Therefore, following pre-cooling, it is possible that there is a reduction in 

cardiovascular strain and better maintenance of central blood volume following pre-

cooling, which allows for greater skeletal muscle blood flow and oxygen delivery 

during exercise, thus enhancing performance. Moreover, in situations where Tsk is 

elevated, such as during prolonged endurance exercise and/or in moderate to warm 

ambient conditions, an individual will work at a greater percentage of ሶܸ ܱଶ max for 

the same absolute workload, compared to when Tsk is lower or when ambient 
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conditions are more temperate.  However, given that the present data do not indicate a 

reduction in cardiovascular strain following pre-cooling, as evidenced by a lack of 

change in heart rate, we suggest that the performance improvements appear to be 

more heavily influenced by reductions in Tsk, particularly given the link between 

reduced Tsk and elevated mean power output during the time trial. 

Taken together, the aforementioned studies suggest that elevated skin 

temperatures are capable of impairing aerobic performance. In the present study, pre-

cooling had the effect of reducing skin temperature. Furthermore, the point at which a 

Tsk of 35˚C was reached was delayed for between 14 (COOL) and 23 minutes 

(COLD) of the time trial. Therefore, if Tsk at the onset of exercise provides important 

input into initial self-selected power output and thus overall performance, the 

improvement in both mean power output and time trial performance may be due to 

reductions in skin temperature and total cardiovascular strain in response to the 

intensity the pre-cooling interventions used. This adds to the suggestion that Tsk may 

have an important regulatory function in the fatigue process via a combination of 

central and peripheral mechanisms in warm ambient conditions.  

Reductions in thermal sensation towards feeling less hot may be of importance 

in the regulation of pacing strategy selection (Schlader et al., 2011b), suggesting 

thermal perception is an important component of thermoregulatory behaviors which 

may influence performance. Several authors have reported that perceptual measures 

are linked to alterations in exercise performance (Bogerd et al., 2005;  Tucker, 2009), 

and that lower thermal sensation following pre-cooling is associated with improved 

running performance in the heat (Dugas, 2011; Lee et al., 2008). It is possible that 

perceptual measures may act as a way of regulating pace or effort based on an 

individual’s expectations of a task and how it should “feel” when compared to similar 
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tasks they have experienced. Several authors have suggested that these comparisons 

are used by the central nervous system to regulate work rate in order to complete an 

event as quickly as possible (Noakes et al., 2005; Tucker, 2009). Recently, Levels et 

al. (2013) suggested that an increased sense of coolness following a pre-cooling 

procedure resulted in improved pacing in the latter stages of a cycling time trial in the 

heat. However, the idea of central regulation as an anticipatory controller of exercise 

performance (Noakes et al., 2005; Tucker et al., 2006) is a current area of much 

debate and controversy (Perrey et al., 2010) warranting more in-depth investigation. 

In conclusion the present study demonstrates that the use of a novel design of 

ice vest, incorporating torso, forearm and palm cooling is effective at improving 

cycling time trial performance in the heat by 4.8%. This improvement in performance 

may be attributable to the method of pre-cooling used being effective at improving 

heat balance, reducing Tsk and thermal sensation, all of which have previously been 

linked to better endurance performance. The present data support recent evidence 

questioning the importance of a critical limiting core temperature in determining 

exercise performance, as it indicates that peripheral changes in skin temperature, 

coupled with a reduction in body heat content may contribute to improved endurance 

exercise performance in hot ambient conditions. 

 

Perspectives 

Pre-cooling interventions have become common practice in a wide variety of sports 

before training and competition in the heat in an attempt to improve performance. The 

present study indicates that a novel pre-cooling intervention combining both 

evaporative and conductive cooling of the torso, forearms and hands improves cycling 

time trial performance in the heat more than evaporative cooling alone. This reflects 
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that the phase change from ice to water adds additional cooling power to that 

provided by evaporative cooling alone which is important for performance 

enhancement. Importantly, it appears that skin temperature is a key determinant in 

improving performance, confirming that core temperature may not be the sole 

determinant of performance regulation and pacing in the heat. The present data 

highlights the importance of further evaluating the importance of skin temperature 

manipulation on pacing strategies and exercise performance in a variety of ambient 

conditions. Furthermore, the impact of a skin temperature reduction as a result of 

external pre-cooling, without concurrent core temperature reduction, on the risk of 

exertional heat illness requires further research. 
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Figure 1: The cooling vest and sleeve ensemble. The vest and sleeves consisted of a 
breathable mesh body, with hydrophilic silica gel packs (blue regions) that became 
saturated following water immersion. A) Anterior aspect, B) Posterior aspect. 
Temperature was manipulated after saturation via cold-water immersion with 
subsequent storage in a refrigerator (COOL) or a freezer (COLD) 
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Figure 2:  The temporal relationship between time to complete a set workload time 
trial and power output A) Time to complete a cycling time trial was significantly 
improved following the use of an ice vest incorporating both evaporative and 
conductive cooling compared to the use of no pre-cooling. B) Pre-cooling increased 
mean power output throughout the course of the time trial for COLD compared to 
COOL and CONT, with no effect of COOL on CONT. *p<0.05. Data presented as 
mean  SD  
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Figure 3:  Pre-cooling had a significant effect on reducing mean skin temperature 
both during and after cooling application. Cooling reduced skin temperature for both 
COOL and COLD, with the reduction lasting between 10% (COOL) to 20% (COLD) 
of the total target workload. *=COLD < CONT p<0.05; # = COOL < CONT p<0.05, 
†= COLD < COOL p<0.05. Data presented as mean  SD 	
 
 
 


