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Abstract In the last decade Dynamic Bayesian Networks

(DBNs) have become one type of the most attractive

probabilistic modelling framework extensions of Bayesian

Networks (BNs) for working under uncertainties from a

temporal perspective. Despite this popularity not many

researchers have attempted to study the use of these net-

works in anomaly detection or the implications of data

anomalies on the outcome of such models. An abnormal

change in the modelled environment’s data at a given time,

will cause a trailing chain effect on data of all related

environment variables in current and consecutive time

slices. Albeit this effect fades with time, it still can have an

ill effect on the outcome of such models. In this paper we

propose an algorithm for pilot error detection, using DBNs

as the modelling framework for learning and detecting

anomalous data. We base our experiments on the actions of

an aircraft pilot, and a flight simulator is created for run-

ning the experiments. The proposed anomaly detection

algorithm has achieved good results in detecting pilot

errors and effects on the whole system.
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Introduction

It has been over a century since the Wright brothers made

history by building man’s first fixed wing controlled hea-

vier than air aeroplane. During that century human kind

made a giant leap in the development and use of aeroplanes

in many aspects of life, and along with that came aeroplane

related disasters, which lead to a great focus on aviation

safety measures and protocols.

Aviation disasters started since the first days of avia-

tion, and are still occurring up until this present day,

although an enormous amount of effort has been done to

prevent these from occurring and to a certain extent it has

been very successful, there is still a very long way before

preventing further disasters. According to statistics from

Kebabjian (2013), there has been over 1085 commercial

aeroplane accidents involving fatalities over the past half

century, as shown in Fig. 1. There have been many rea-

sons behind these accidents, but they can be generally

categorised into a limited number of main causes,

including:

• Pilot error related accidents

• Other human error related accidents

• Weather related accidents

• Mechanical failure related accidents

These and other main causes are listed in more detail

and by the number of crashes per cause per decade in

Table 1. Figure 2 shows that pilot caused errors are the

main reason, about 51 % of all these crashes.

Therefore it is crucial to take all possible measures to

detect a pilot error at the first time when it occurs before

causing a big problem and take the right action to recover if

any mistakes made. The method developed in this paper
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help to build such capability by reasoning the data col-

lected from the flight parameters and pilot actions.

A vast amount of effort has been made towards pre-

venting pilot errors that can have serious consequences,

and most of modern day aeroplanes come equipped with

many safety and alarm devices that help pilots achieve

their tasks as safely as possible. Most airline companies

have their own pre-flight check lists which insure every-

thing is implemented according to the latest safety mea-

sures, and they also have emergency check lists which

pilots use in the case of emergencies to handle the problem

in hand.

Fig. 1 Number of accidents with 100 or more fatalities by year (Kebabjian 2013)

Table 1 Causes of fatal accidents by decade (Kebabjian 2013)

Cause 1950s (%) 1960s (%) 1970s (%) 1980s (%) 1990s (%) 2000s (%) All

Pilot error 41 34 24 26 27 30 30

Pilot error (weather related) 10 17 14 18 19 19 16

Pilot error (mechanical related) 6 5 5 2 5 5 5

Total pilot error 57 56 43 46 51 54 51

Other human error 2 9 9 6 9 5 7

Weather 16 9 14 14 10 8 12

Mechanical failure 21 19 20 20 18 24 20

Sabotage 5 5 13 13 11 9 9

Other cause 0 2 1 1 1 0 1

Fig. 2 Flight accident causes



However, there are still circumstances where pilot

actions do lead to accidents, some of these accidents are

due to the fact that pilots were not following regulations.

But another major cause behind many of the remaining

accidents is something called ‘‘error chain’’ or a chain of

events that lead to an accident, some of the events in this

chain are due to pilot actions but the decisive factors are

caused by other unforeseen elements in the environment.

An example of such disaster is a recent aeroplane crash in

Nigeria, the preliminary accident investigation report (AIB

2013) has shown that the main reason behind this crash was

a series of events, including a pilot’s action of not

deploying flaps during the take-off(which is considered a

standard procedure). However this action by itself could

not have brought the aeroplane down (AIB 2013), the other

events in the chain were that an error in the engines

reduced the aeroplane’s thrust, and that accompanied with

an overly steep rotating or climbing angle, eventually lead

the aeroplane into what is known as an aerodynamic stall,

ultimately causing the aeroplane to crash into the ground. If

the pilot had the knowledge of his action’s effects and what

set of events caused this stall the outcome might have been

very different. This is why we are focusing our efforts on

detecting the types of pilot errors that if were combined

with other events the result would be an undesirable

outcome.

The anomalies that we are investigating in our paper, are

those of pilot actions in the context of a flight between two

airports, and these types of anomalies are contextual

meaning that they are only considered as anomalies or

errors when put in a certain context, so the main way for

our approach is to detect the effects of these anomalies

sometime after their occurrence, and the algorithm that we

will discuss later will detect these anomalies through

tracing their effects back from the unwanted system state.

This anomaly detection algorithm can help to modify

pilot activities in an effort to decrease flight accidents

caused by pilot actions. this can be implemented in two

ways:

Diagnoses approach A real time method for detecting

the cause of current system behaviour, (i.e. what is the

most likely sequence of events that lead the aeroplane to

the current unwanted state). This could be very helpful in

emergency circumstances as it might save valuable time

(needed to deal with the emergency itself) through early

detection of the causes.

Prognosis approach A real time method that will use

approximate inference to predict the state of the flight in

the future given all the system observations up until this

moment. This method will work with each change in the

whole system, it will predict the system state up until a

predefined point t ? k in the future. If the system state was

found to be of an unwanted type with a high level of cer-

tainty, the pilot is warned of the possible outcomes of his

action and urged to take an alternative action.

There are a number of approaches for detecting anom-

alies from data which inspire our algorithm development.

Many studies have been made just to give a clearer

understanding of anomalies, and to answer all the questions

around them. For a more in-depth look at data anomaly

detection and its variations, see survey papers: (Hodge and

Austin 2004; Chandola et al. 2009; Patcha and Park 2007;

Markos and Singh 2003a, b; Bakar et al. 2006). For this

paper we will only give a brief insight to the major

approaches taken to solve anomaly detection.

According to Hodge and Austin (2004) and Chandola

et al. (2009), most of the approaches to solving the

anomaly detection problem can be categorised into a few

main categories:

Statistical approaches

Statistical approaches for anomaly detection mainly use

statistical models to model normal data of the environment.

Once a model is trained, it is then used to calculate sta-

tistical probabilities of a given data instance and label it as

normal or anomalous, depending on its likelihood of

belonging to the learnt model. This is often done by

comparing its probability to a certain threshold. An

example of a statistical approach is that of Aggarwal and

Yu (2001) where the authors deal with high dimensional

data. Their data could have up to hundred of dimensions,

and the main focus of their work is to introduce a technique

that finds outliers through the behaviour of projections

from datasets, as high dimensional data cannot be

approached by the regular data proximity algorithms.

Classification approaches

Classification is one of the most popular approaches

towards anomaly detection, the basic idea behind classifi-

cation is to classify data instances and decide whether it’s

normal or anomalous. The classifier is trained on labelled

instances of data. The trained model or classifier is then

used to detect anomalies within the unlabelled testing data.

Chandola et al. (2009) and Upadhyaya and Singh (2012)

summarised various different algorithms and methods in

this category. Support vector machines (SVMs) are used to

build an intrusion detection system which monitors the

access to the Windows registry key (Heller et al. 2003).

Bayesian Networks have been used for anomaly detection

in a multi-class setting. In the testing phase the posterior

probability of the most likely class is calculated, leading to

the classification of a normal class, or an anomaly. Das and



Schneider (2007) have addressed the problem of anomaly

detection in high arity categorical data, through modelling

normal data using a Bayesian Network. The novelty in

their approach is that they compare test instances against

marginal distribution of attribute subsets. Neural Networks

are used as a multi-class or one-class detector. Han et al.

(2004) have proposed an intrusion detection technique

based on evolutionary neural networks. It takes shorter

time to obtain a superior neural network than traditional

neural networks, because it learns the structure and weights

simultaneously. for more information please refer to

(Markos and Singh 2003b; Chandola et al. 2009) survey

papers. Zhang et al. (2013a) proposed a method that

extracted psychophysiological features to characterise the

operators functional state (OFS), then used a Fuzzy c-mean

(FSM) algorithm to classify the OFS. this approach is very

promising if implemented in the context of detecting the

unwanted OFS of a pilot during flight operations. Zhang

et al. (2013b) have used multiple psychophysiological and

performance measures to build a data-driven model, that is

used to estimate the human operator cognitive state(HCS)

in a safety-critical human-machine interaction system.

They have used an improved sparse least squares support

vector machine (LS-SVM) and a Sparse and Weighted

one(WLS-SVM) to model the HCS. Both approaches have

shown great performance in detecting temporal fluctuation

trends of the HCS.

Clustering approaches

Clustering approaches work under different assumptions, it

mainly focuses on the idea that normal data instances occur

in clusters (these could be large and dense) given a simi-

larity measure whilst anomalous data occur outside these

clusters or further away from their centre or in a smaller

and less dense clusters. Nearest neighbour is one of the

most common clustering approaches. Noh et al. (2006)

have proposed a method for network anomaly detection

based on clustering sequences of patterns, these patterns

represent one TCP network session which is based on the

packets of the session.

Not many researchers have used DBN models as basis

for anomaly detection. Hill et al. (2007) have developed

coupled and uncoupled DBN anomaly detectors which aim

to detect erroneous data in two different windspeeds data

streams, including single or multiple data streams in real

time. Shotwell and Slate (2011) suggested an anomaly

detection algorithm using a new implementation of the

Dirichlet process precision parameter. Outlier detection is

done by calculating a maximum a posteriori (MAP) of the

data partition, where observations forming small or sin-

gleton clusters are deemed as anomalies. Babbar and

Chawla (2010) have used a Bayesian Network to model the

outliers as an ‘‘unlikely events under the current favored

theory of the domain’’. They used a Bayesian network to

model the background knowledge coupled with two rules

to detect the outliers. It does not only focus on detecting

outliers but also on explaining why these data are consid-

ered outliers. Other researchers use an unsupervised

approach towards detecting fraud operations in a stock

exchange market. (Ferdousi and Maeda 2006) is one of

such examples, they use peer group analysis (PGA) tech-

nique to characterise the expected pattern of behaviour

around the targeted time series financial sequence in terms

of the behaviour of similar objects and then detect outliers

through analysing the difference in evolution between

abnormal behaviour and expected behaviour.

Anomaly detection using Dynamic Bayesian Networks

Dynamic Bayesian Network model

Bayesian Networks are a type of probabilistic models that

are based on directed acyclic graphs (DAGs) (Pearl and

Russell 2003), the nodes in this model represent propo-

sitional variables of interest and the links between them

represent the dependencies among these variables. These

dependencies are quantified by conditional probabilities of

each node given its parents in the network. They have

been used extensively by the research community. Tu

et al. (2009) introduced an action relationship database

(ARDB) structured as a Bayesian Network, which used

Bayesian statistics to update its knowledge with new input

examples. A model of memory reconsolidation provided

the input and predicted relevant activities based on the

ARDB.

A Dynamic Bayesian Network is the extension of

Bayesian Networks to model probability distributions of

sets of random variables over time (Murphy 2002a). Nodes

in our DBN model Zt
k are divided into two sets where

t represents the slice number which indicates the time

variable, and k is the number of nodes in each slice. The

first set contains the hidden state nodes Xt
n = { Xt

1, Xt
2,

Xt
3,…, Xt

n } , where n represents the number of hidden

states in each slice. Hidden states represent immeasurable

variables in our model, and these are usually the variables

that we aim to gather information about. In Fig. 3 the

hidden nodes are the pilot action nodes. And the second set

is the set of observable nodes Yt
m = { Yt

1, Yt
2, Yt

3, …, Yt
m },

where m represents the number of observable nodes in each

slice. In Fig. 3 the observable nodes are the aircraft sensor

nodes. Observable nodes represent variables that can be

measured and are completely or partially observable. These

are sometimes called evidence nodes. Note that n ?

m = k in our model.



Before learning of the model, the structure of the net-

work has to be specified. This is done through specifying

the parameters of the network, and then the arcs between

them which specify the relationship between different

variables. The priori information is represented by prior

probability distribution over the model’s structure and

parameters. This is something known as the initial

knowledge, in which we use with training data to get a

posterior probability distribution over the model and

parameters as described in (Ghahramani 1998). We want to

compute the maximum likelihood estimate of the param-

eters given the model and data. Since only partial observ-

ability of data is available, the expectation maximisation

(EM) algorithm will be used, which works by alternating

between two steps to maximise the log likelihood with

respect to Q and h, where Q is some distribution over the

hidden variable and h represents the parameters. The two

EM steps (Ghahramani 1998) are:

E step : Qkþ1  argmax
Q

PðXjY ; hkÞ where Q is any

distribution over the hidden variables X, Y is the set of

observable variables and hk represents the parameters at

point k.

M step : hkþ1  argmax
h

P

X

PðXjY ; hkÞ logPðXjY; hÞ

where hk?1 represent the model’s parameters at point k ? 1,

X is the set of hidden variables, Y is the set of observable

variables and h represents the models parameters.

Each DBN slice contains n hidden variable nodes

which represent pilot actions, and m observable and

measurable nodes which represent different simulation

variables, and these are all observable in our model as you

can see in Fig. 3. The connections between model nodes

are set according to actual relationships between the

modelled environment variables see Fig. 4 for an exam-

ple. Inter slice connections are restricted to hidden nodes.

In the DBN model we set a prior probability distribution

over the structure and parameters P(X1), and we learn a

state-transition model P(Xt|Xt-1), and an observation

model P(Yt|Xt) from the data through computing the

maximum likelihood estimate over each parameter, this is

done through the EM algorithm. The model is limited to

first-order Markov:

PðXtjX1:t�1Þ ¼ PðXtjXt�1Þ

This is primarily done to reduce the complexity of the

model and to make all calculation with the number of

parameters in the model feasible. The observations are also

limited to conditionally first Markov.

PðYtjYt�1;XtÞ ¼ PðYtjXtÞ

Therefore inter slice relations are only between hidden

states in consecutive slices.

After the model is built with different variables in the

environment and their relationships, it is trained by the EM

algorithm. After training, inference techniques are applied

to gather the information needed about hidden variables,

including filtering, prediction, classification, control,

abduction and smoothing (Murphy 2002a).

A DBN for pilot actions in a flight system
Slice t+1Slice t

Pilot Actions Pilot Actions 

Aircraft Sensor_1 

Aircraft Sensor_2 

Aircraft Sensor_3 

Aircraft Sensor... 

Aircraft Sensor_m 

Pilot Actions Pilot Actions 

Aircraft Sensor_1 

Aircraft Sensor_2 

Aircraft Sensor_3 

Aircraft Sensor... 

Aircraft Sensor_m 

Pilot Actions Pilot Actions 

Aircraft Sensor_1 

Aircraft Sensor_2 

Aircraft Sensor_3 

Aircraft Sensor... 

Aircraft Sensor_m 

Aircraft Sensor_1 

Aircraft Sensor_2 

Aircraft Sensor_3 

Aircraft Sensor... 

Aircraft Sensor_m 

Aircraft Sensor_1 

Aircraft Sensor_2 

Aircraft Sensor_3 

Aircraft Sensor... 

Aircraft Sensor_m 

Aircraft Sensor_1 

Aircraft Sensor_2 

Aircraft Sensor_3 

Aircraft Sensor... 

Aircraft Sensor_m 

Fig. 3 A Simplified DBN model for pilot actions in a flight system

Real connection Example

Increase landing Speed 

Engine Throttle 4Engine Throttle 3Engine Throttle 2Engine Throttle 1Ground VelocityVertical SpeedAmbient Wind velocityAmbient Wind Direction

Fig. 4 An actual model connection between one pilot action and different variables in the environment



Anomaly detection using a DBN

Anomaly detection is the process of detecting patterns in data

that do not conform to the expected normal patterns. Anom-

alies are also referred to as outliers which Hawkins (1980)

defines as ‘‘an observation that deviates so much from other

observations as to arouse suspicions that it was generated by a

different mechanism’’. Our approach to anomaly detection is

not based on the typical approach which usually focuses on

detecting anomalies in general within data of a given model,

instead we take another route. When anomalies occur during

the prediction or classification process they often have a rip-

ple-like effect on the descendent states in the same slice and

consecutive slices. If the anomaly occurs in one slice, its affect

will spread to related states in the same slice and to consec-

utive slices, albeit the effect is shortly lived and soon all values

turn back to normal. So the longer the anomaly occurs, the

longer and bigger the effect is. In adaptive online learning

models if an anomaly continues to occur for a certain period of

time, the model will adapt to it and this anomaly will be then

considered to be normal. During the inference of trained

models new data is used. Data could be considered as an

anomaly due to its value which does not belong to the range of

acceptable values of a given variable; or it could have a normal

value most of the time, but it is not normal for this value to

occur at that point of time. The second type of anomalies could

pass undetected by the experts, and thus affecting descendent

states. If it continues to occur, it could lead to unexpected

values when inference is applied to the model. During take-off

if the pilot does not set the flaps to the correct setting, and when

accompanied by other unforeseen events, this could lead the

aeroplane into a aerodynamic stall. In that scenario the

expected value of the vertical speed variable is different from

the one recorded as it would be a negative value(opposed to a

positive expected value) in the state of an aerodynamic stall.

Our algorithm aims to detect this type of data anomaly.

During the inference phase, the model is supplied with a

data set containing some anomalies. The anomalies are of

an acceptable value but do not occur at the expected time,

their effect is propagated to related states in the same and

succeeding slices. We suppose that we are able to detect

these effects on other state/states Zt at slice t. Our

assumption is that all states Zt of slice t are observable with

known state values. Our objective is to go back trough the

slices until we can identify in which states Zt-k an anomaly

started to occur which have caused the values of future

states to be affected and changed. As we mentioned in the

previous section, our DBN model is first-order Markov,

and observations are conditionally first-order Markov, this

leads to the conclusion that hidden states has an affect only

on observable states of the same slice and hidden states in

the next slice and are only affected by hidden states of the

previous slice. We aim to find the node/set of nodes Xi
i�k in

slice t - k, where k is unknown, that effectively caused a

considerable change of value in state Zt
j in slice t in com-

parison with the data of the trained model.

Filtering: calculate state over time.

PðXtjy1:tÞ
Prediction: calculate

PðXtþK jy1:tÞ for some point k [ 0 into the future

Fixed-lag smoothing: calculate

PðXtjy1:tÞ i.e., estimating the variable in m [ 0 slices in the past

given all the evidence up-to now

Fixed-interval smoothing: calculate

PðXtjy1:tÞ This is used as part of training

Viterbi decoding: calculate

argmaxx1:t
Pðx1:tjy1:tÞ that is finding the most likely explanation

Classification: calculate

Pðy1:tÞ ¼
P

x1:t
Pðx1:tjy1:tÞ More detail in (Murphy, 2002a, b, 2012)



Algorithm 1 is the pseudo code for pilot error detection

using DBNs. It takes as input a state/set of states Y where

an abnormal value is detected, and produces as output the

state or set of states Xi
i�k that started an anomaly which

caused this abnormal change of value in Y. At first the

algorithm retrieve Y related parents in the same slice,

which are a state/set of states denoted Z. For every parent

state the algorithm calculates the highest probability of any

expected value of state Zt
j at slice t given the trained model.

argmax PðZ j
t jY1:t;MÞ

where Y is all observation data and M is the predefined

model.

Then this value is compared to probability of the actual

value of the state occurring, if there is a large difference

between these two values then this data is considered

anomalous. Otherwise the algorithm exits.

ðargmax PðZ j
t jY1:t;MÞ � PðZ j

t jYt;MÞÞ[ Threshold

Next step is to go back one slice and to compute the

probability of Zt
j occurring with its current values given all

possible values for its parent state and the trained model,

this is calculated through the state transition function of the

DBN model.

PðZ j
t�1jZ j

t ; Y1:t;MÞ

If this is not equal to the expected value at that time slice

then the state is added to the anomaly path, otherwise it is

considered a normal state. This process is repeated for all

parent states as long as the difference in probability

between predicted and real values is above the threshold.

When this difference drops below the threshold, the state in

that slice is considered normal, and the descendent state in

next slice is considered as the first anomalous state in the

anomalous path, see Fig. 5 for the anomaly detection

process.

Experiments and results

Experimental setup and the test scenario

We started by building a DBN model based on a flight

scenario, the flight is routed between London Heathrow

and East Midlands airports in the UK. The flight duration is

40 min on average. We have used Microsoftr Flight

Simulator X as the basis for our simulation, it has an SDK

which was used to build our software. The simulator is very

realistic and accurate, and it can give us over 1,100 dif-

ferent data variables in high frame rates. We have built our

custom software that interacts with the simulator and

records all of the flight data online with the desired frame

rates.

The first phase of our work was to define the types of

anomalies that we want to work with. An anomaly can be a

single point anomaly or a list of anomalies. It can be

always as an anomaly or just anomalous for some cir-

cumstances. We want to base our anomalies on errors in

actions of a pilot, as we mentioned before. Figure 6 shows

flight data in our simulation combined with accident data

Fig. 5 Flow chart of anomaly

detection algorithm



from Aircraft Crashes Record Office (ACRO 2012). The

figures reveal that most high risk phases of flying are the

Landing and taking-off phases. Therefore in this paper we

have focused on pilot errors that could happen or affect the

flight status within these two phases.

The type of anomalies that we focus on in this paper is

that of the contextual type which means they are only

considered as anomalies when put in a certain context.

Detection techniques for simple point anomalies or errors

have already been incorporated into most modern day flight

systems, including collective errors. When investigating

contextual anomalies in flight related scenarios, we focus

on errors that are known as chain errors, or event chain

errors, which is a chain of events that can lead to an

unwanted state of flight. Typically some of these events are

related directly to pilot errors and the rest are related to

circumstances that are unforeseen by the pilot, such as the

state of mechanical parts of the flight system or even out-

side events relating to weather or other variables in the

environment. Under most circumstances pilot actions

would have not lead to an unwanted flight state, but at a

given context with a specific chain of events they would

cause an undesirable outcome.

The three types of errors that have been chosen in this

study including excess speed error, landing gear error and

flaps error can lead the aeroplane to an unwanted state. We

have focused on accidents caused by an unstable approach.

According to FSF (1998) any approach that does not meet

any of the certain recommended criteria can be considered

as unstable. According to Airbus (2006) Airbus’s Flight

Operations Briefing Notes, ‘‘continuing an unstabilised

approach is a causal factor in 40 % of all approach-and-

landing accidents’’ and ‘‘In 75 % of the off-runway

touchdown, tail strike or runway excursion/overrun

accidents, the major cause was an unstable approach.’’. The

same report stated that 66 % of unstabilised approaches are

caused by either a ‘‘High and/or fast approach or Low and/

or slow approach’’. From this point we have chosen the

excess speed parameter as an error type, but this alone is

not enough for a type of anomalies, so other events that are

unforeseen by the pilot were added, namely a high possi-

bility of a vacuum pump failure and a visual flight rules

(VFR) approach rather than a instrument flight rules (IFR)

approach was used for landing. Any pilot not taking into

account the possibility of a vacuum pump failure and

commencing into a high speed VFR landing, could face

spatial disorientation in the event of a vacuum pump fail-

ure, this combined with such a high speed landing would

reach an unwanted outcome. However if a system incor-

porates maintenance cycles into its model, then a pilot

could be warned that one of the parts has a higher than

normal chance of failure and with current high speed

action, this could lead into an unwanted state. Therefore the

high speed approach can be avoided and if the vacuum

pump fails it will only be an inconvenience rather than an

accident causing event. The same goes to the other two

types of errors we chose. The flaps error basically is to

take-off with the aeroplane flaps not set to the correct

position, this normally can be fine, but when combined

with any event disturbing the engines thrust, or/and any

event affecting the climbing angle this could lead the

aeroplane into something called an aerodynamic stall,

which has caused a number of aeroplanes to crash after

take-off. As for the landing gear error, it relates the event of

an early deployment of a landing gear, in which case the

landing gear will be deployed for a longer time. This could

lead an unstable approach due to two scenarios, if the plane

is in high altitude with certain temperature condition it will

Fig. 6 Accidents by flight phase



cause the hydraulic system of the gear to be stiff on

landing, and if the plane was in low altitude and low speed

approach, deploying the landing gear a longer time before

it should have, would cause an unnecessary drag because of

the landing gear resistance to air, this will cause the

aeroplane to descend much faster which could lead to

touching down before the intended point.

After defining the anomalies we programmed the sim-

ulator to cause an effect on the related variables when these

anomalies continued to occur, such as having a rough and

bouncy landing when landing gears were kept extended for

a longer time than they should before landing, which

resemble realistic scenarios. The good point about these

types of anomalies is that they are contextual anomalies,

meaning that when they occur they can’t be detected easily

as they represent normal data instances at different cir-

cumstances. But at some specific circumstances they occur

in, they are considered as anomalies.

The DBN model that we have built is a single layer

DBN network. Which consists of two types of nodes:

hidden nodes Xt
n representing immeasurable pilot actions

which are annotated manually into the training data sets;

and observable nodes Yt
m which represent aeroplane

instrumentation data recorded by our software. The

observable variables are of a discrete type, including binary

nodes with two possible values and nodes with multiple

possibilities. You can find some of the variables that are

represented by the observable nodes in Table 2. Due to the

large number of available simulator variables in the

experiment, we had to narrow down the numbers of vari-

ables. We have chosen variables which are essential and

related to our experiment, check Table 2 to see a few of the

flight variables that we have recorded. Fig. 7 illustrates the

whole process of the proposed approach.

Experiments and results

The model is trained under the consideration that the data

is partially observable. Since not all training data sets

contain anomalous data, the EM algorithm is used to train

the DBN. In our training sets we have introduced three

types of errors (excess speed error, landing gear error, flaps

error), each one occurring 25 times, and the remaining 75

training sets have no errors. Each one of the errors intro-

duced has its own effect. Our algorithm starts working on

the slice where the effects appeared rather than the slice

where the error began.

In the testing phase we record 99 new data sets with the

same types of errors we have introduced, with each error

type occurring in 33 different data sets. Note that these data

sets do not contain annotated pilot actions, therefore when

the algorithm begins data of the observable variables is

fetched from the testing data set; whilst data of

unobservable variables are entered manually through an

annotation step done before running the algorithm.

we start by training the model gradually and at the same

time testing the trained model with the testing data

including all the three types of selected anomalies. We

continue adding normal and anomalous training sets to the

training phase and the detection successful rate increase

gradually until algorithm reaches an overall detection rate

of 90.9 %. The data sets were divided into two equal halves

of normal and anomalous data sets when possible. The first

learning experiment was on 15 data sets 8 of which were

normal and 7 anomalous. The second was on 30 data sets

divided into 15 normal and 15 anomalous. This process

was repeated in increments of 15 data sets at each step,

those 15 were always divided in half between normal and

anomalous, either 8 normal and 7 anomalous or vice versa.

steps are repeated until a total of 150 training data sets is

reached.

Once the algorithm is trained on all 150 data sets, it was

tested on all testing sets containing each error by turn. So

Table 2 Variables used in the experiments

See (Microsoftr 2008) for the parameter explanation

Aircraft engine data (4)

General engine throttle lever position ENG1

General engine throttle lever position ENG2

General engine throttle lever position ENG3

General engine throttle lever position ENG4

Aircraft position and speed data (6)

Ground velocity

Plane latitude

Plane longitude

Plane altitude

Plane pitch degrees

Plane bank degrees

Aircraft flight instrumentation data (1)

Vertical speed

Aircraft controls data (4)

Rudder position

Elevator position

Aileron position

Flaps handle index

Aircraft landing gear data (1)

Gear position

Aircraft environment data (5)

Ambient density

Ambient temperature

Ambient pressure

Ambient wind velocity

Ambient wind direction



we began with the (excess speed error), we run the algo-

rithm on all 33 test data sets for this type of error, at the end

the algorithm detects 30 out of 33 anomalies, which rep-

resent a 90.9 % detection rate. The same is repeated again

for both landing gear and flaps errors, the algorithm detects

29 and 31 out of 33 respectively, which amounts to 87.9

and 93.9 % respectively. Table 3 shows the undetected

anomalies (3 excess speed, 4 landing gear and 2 flaps). The

algorithm stopped the detection process earlier at a wrong

state in all of these cases. Which meant all of theses states

were considered as the source of the anomaly, when in fact

they were not. Therefore all of these detections were

considered as false positives. Table 3 shows the percentage

of the path to the real anomaly state that was identified

correctly before the algorithm stopped at a wrong state. On

most non-detections, the algorithm has recognised a large

part of the anomaly path correctly.

The overall anomaly detection accuracy rate for the

whole experiment is 90.9 % with a confidence range

of ±3 %, as shown in Fig. 8.

Fig. 7 Flow chart of the whole process

Table 3 Undetected anomalies for each error type (3 excess speed, 4

landing gear and 2 flaps), along with the percentage of how much was

correctly identified from the path to the real anomaly

Excess speed error (%)

1st undetected excess speed err anomaly 90.4

2nd undetected excess speed err anomaly 82.5

3rd undetected excess speed err anomaly 66.5

Landing gear error (%)

1st undetected landing gear err anomaly 86.6

2nd undetected landing gear err anomaly 92.4

3rd undetected landing gear err anomaly 86.6

4th undetected landing gear err anomaly 89.6

Flaps error (%)

1st undetected flaps err anomaly 84.3

2nd undetected flaps err anomaly 91.5
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Discussions and conclusions

The proposed anomaly algorithm is for a contextual type of

pilot errors. In the following we analyse the advantages and

disadvantages of our algorithm in comparison with other

main types of anomaly detection algorithms, including

classifications based algorithms, clustering based algo-

rithms, nearest neighbour based algorithms and informa-

tion theoretic based algorithms.

The outcome of the anomaly detection process comes

with a probability which can give an indication of how

certain the algorithm of the detection result, which most

classification based, cluster based and nearest neighbour

based algorithms cannot provide, they only classify the

results into anomalous or normal without giving any other

useful information.

Another main advantage is that there aren’t many

algorithms implemented for detecting anomalies with

respect to the temporal dimension, which DBN can deal

with.

The main disadvantage is like many other classification

and statistical based algorithms, our algorithms needs a

considerable amount of time for the training phase, but this

does not affect its deployability in online scenarios since

the testing phase is done in real time. Another accompa-

nying disadvantage is that the training phase requires a

large number of data instances.

Our approach is for a contextual type abnormality

detection, which means it needs an unwanted flight variables

to be present in order for the algorithm to start the search,

unlike clustering algorithms which can work unsupervised.

In this paper we focus on detecting data anomalies in a

DBN model. A novel algorithm to detect data anomalies

has been proposed through backtracking steps of its effect

on descendent states until a data anomaly is reached and

detected. A DBN model have been built based on pilot

actions and instrument data of a flight scenario. The

experimental results show its robustness in detecting data

anomalies that affect other future states in the model.
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