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Abstract

Modern industrial machining environments face new challenges in implementing process monitoring systems to improve energy efficiency 
whilst ensuring quality standards. A process monitoring methodology for tool state identification during milling of aluminium has been 
implemented through the utilisation of an infrared (IR) camera. A features extraction procedure, based on statistical parameters calculation, was 
applied to temperature data generated by the IR camera. The features were utilised to build a fuzzy c-means (FCM) based decision making 
support system utilising pattern recognition for tool state identification. The environmental benefits deriving from the application of the 
developed monitoring system, are discussed in terms of prevention of rework/rejected products and associated energy and material efficiency 
improvements.
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1. Introduction

In modern industries, the contemporaneous advancements 
in sensor monitoring systems, together with the understanding 
of environmental impacts flow analysis is leading to enhanced
process performance for manufacturing activities.

In this context, improving energy efficiency has become
increasingly vital. This rationalisation of energy consumption 
is not only a cost-effective way of cutting carbon emissions 
but can also improve productivity and energy security [1].

These improvements can be interpreted in terms of 
reduction of rejects and better machine utilisation, which are
crucial factors to achieve a more energy efficient production. 

Power consumption in machining processes increases with 
the tool wear [2], this highlights the importance of the 
development of Tool Condition Monitoring (TCM) systems,
which operate in real time and employ indirect methods,
representing the mainstream in today's automated 
manufacturing [3]. The measurement of temperature, as an 

indirect TCM, can be considered a particularly important “tool 
wear indicator” [4].

Since the work of Taylor in 1907, it has been recognised 
that machining temperature has a critical influence on tool 
wear and tool life [4][5], and Trigger and Chao [6]
demonstrated that the growth of crater wear at the tool-chip 
interface was directly governed by the temperature 
distribution along the interface. Relatedly, Rivero et al. [7]
showed the relationship between the tool temperature, the 
built-up layer and the large variability in those internal data 
that is sensitive to tool wear.

It has also been reported that high temperatures in 
machining can cause problems in the workpiece as well, 
including poor dimensional accuracy and surface finish, and 
residual stresses [5]. Current methodologies for temperature 
measurement in TCM of material removal processes comprise
the use of resistance methods, thermocouples, thermo physical 
processes and “Spectral Radiation Thermometry” (infrared 
monitoring); this last method has shown to have the best 
spatial and temporal resolution [5][8].
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This approach exploits the correlation between the 
temperature of an object and the wavelength of the 
electromagnetic radiation energy that it emits.

One of its major advantages for the monitoring of 
machining processes is the remote nature of the measurement 
method, meaning that no holes or sensors need to be 
incorporated into the cutting tool, which may impact the 
accuracy of reading [4][5]. Spectral radiation thermometry
also looks at the local surface temperatures on the faces and 
edges of the cutting tool, which are more important than the 
average temperatures in the tool when considering tool 
wear [8]. In this work, a non-contact sensing approach based 
on infrared temperature data acquisition and processing, is 
proposed for tool wear state assessment during milling of 
aluminium. An experimental procedure is described, along 
with processing of collected data aimed at extracting statistical 
features [9] which are inputted into a fuzzy c-mean clustering 
(FCM) [10] decision making support system to assess tool 
wear state. The applicability of this procedure for industrial 
applications is discussed.

2. Experimental procedure

2.1. Milling tests

An experimental campaign of milling tests (see Fig. 1)
under dry conditions was carried out on a XYZ SMX2000 
CNC Three-axis vertical milling machining, with a 2.25 kW 
drive motor, and a maximum spindle speed of 4200 RPM.

The cutting tools used were two M2 High Speed Steel 
(HSS) Sherwood four-toothed, 12mm diameter end mills. The 
workpiece used for the cutting tests was a 51 x 51 x 610 mm
square stock made of 6068 Aluminium, which has Temper 
Code T6, which means that aluminium is solution heat treated 
then artificially aged [11]. Milling operation was performed 
over the full stock length.

For the design of experiments (see Table 1) two cutting 
parameters were taken into account: spindle speed (RPM) and 
feed rate (mm/min). Three different values were adopted for 
both parameters, resulting in 9 different cutting combinations. 

Each cutting test was performed under two tool state 
conditions: fresh tool and worn tool. Two repetitions for each 
test were carried out, i.e. 9 cutting conditions x 2 tool 
conditions x 2 repetitions, resulting in 36 total milling tests.

Fig.2. 11x36 pixel ROI within the IR video screenshot

2.2. Infrared temperature measurement

Infrared temperature data acquisition was performed using 
a Cedip Infrared Systems Silver 450M InSb type infrared 
camera, and the sampling frequency was 383 frames per 
second; considering the rotational speeds involved (ranging 
from 15 to 25 rev/s) this results to be a suitable value 
according to Nyquist Sampling theorem [12]. An IR video 
was recorded for each milling test. Using FLIR’s 
“ResearchIR” software, temperature data was generated by 
defining a rectangular 11 x 36 pixels Region Of Interest (ROI) 
within the IR video as shown in Fig. 2. The ROI shape and 
size were chosen in order to encompass the entire surface 
projection of the milling tool and its interface with the 
workpiece, which is equivalent to 12 mm x 40 mm = 480 
mm2 for this setup.

Table 1. Experimental Programme of milling tests

Feed Rate
(mm / min)

Cutting Speed
(RPM)

Test ID
Fresh Tool

Test ID
Worn Tool

254 900 T_1_F T_1_W
T_1_FR T_1_WR

254 1200 T_2_F T_2_W
T_2_FR T_2_WR

254 1500 T_3_F T_3_W
T_3_FR T_3_WR

508 900 T_4_F T_4_W
T_4_FR T_4_WR

508 1200 T_5_F T_5_W
T_5_FR T_5_WR

508 1500 T_6_F T_6_W
T_6_FR T_6_WR

762 900 T_7_F T_7_W
T_7_FR T_7_WR

762 1200 T_8_F T_8_W
T_8_FR T_8_WR

762 1500 T_9_F T_9_W
T_9_FR T_9_WR

Table 2. IR thermography parameters and emissivity coefficient

IR thermography parameters
Tool-camera distance 0.91 m
Atmospheric temperature
Reflected temperature
Tool emissivity coefficient 0.393

Fig. 1. Experimental setup
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Fig. 3. Raw temperature data for test T2_F. The area within the patch 
indicates the actual milling time

Fig. 4. Segmented temperature data for test T2_F (intense yellow patch in 
Fig. 3), the signal-to-noise ratio [13] for this signal instance is 7.65

In this way the temperature data recorded was an average over 
the ROI, avoiding temperature peaks due to the chip 
formation [7] and minimising dazzles at the tool chip 
interface [8][14] which could affect the results.

3. Data processing and features extraction

3.1. Pre-processing

A fundamental parameter in infrared temperature data 
acquisition is the emissivity. It depends on a several factors 
such as environment temperature, materials and surface finish 
of the workpiece [15]. Emissivity calibration procedure was 
carried out by matching the IR camera temperature data to the 
temperature data recorded using a k-type thermocouple
mounted on the milling tool. A k-type was used taking into 
account the expected temperature range and the materials 
involved. The fitting was computed using linear regression 
analysis and the relevant parameters values are reported in 
Table 2. The raw data (Fig. 3) was pre-processed by 
implementing data segmentation [17] in order to get 10000 
samplings comprised in tool-material contact phase (Fig. 4.).

In Fig. 3 the temperature reaches a steady state value 
towards the end of the test, this is due to the fact that the heat 
flux rate generated at the interface reaches a constant 
value [16]. This data segmentation procedure was applied to 
all the cutting tests. Hence, a dataset of segmented 

temperature data (36 tests x 10000 samplings) was obtained 
and reported in Table 3.

3.2. Features extraction

From the sensing unit data, signal features need to be 
derived that can describe the data adequately and maintain the 
relevant information about the process or tool conditions [17].

The technique used to extract features from temperature 
data provides for the calculation of four statistical parameters: 
Mean, Variance, Skewness and Kurtosis [18].

Table 3. Segmented data (36 x 10000)

Test 
#

Test ID
Samplings

1 2 … 10000
1 T1_F 29.3920 29.4689 … 34.5353
2 T2_F 29.1241 29.1734 … 32.7792

… … … … … …
36 T9_WR 29.2139 30.4664 … 54.1582

Table 4. Statistical features

Test # Test ID Mean Variance Skewness Kurtosis
1 T1_F 32.1536 1.9977 -0.1702 1.8806

2 T2_F 31.2110 1.0783 -0.1633 1.8825

… … … … … …
36 T9_WR 52.5492 50.3544 -0.4070 2.1811

In this way, an input feature matrix, i.e. a dataset of 36 
(milling tests) x 4 (features) was built as shown in Table 4.

4. Fuzzy c-means clustering algorithm

4.1. Theoretical background 

Fuzzy clustering is a branch in clustering analysis and it is 
widely used in the pattern recognition field [19]. The aim in 
clustering is to determine the cluster centres, which are 
representative values of features corresponding to the 
classified categories [20]. Fuzzy clustering algorithms are 
partitioning methods that can be utilised to assign data points 
to their clusters. These algorithms can handle uncertainty in 
the data by providing a degree of membership when 
associating a data point to a cluster.

The fuzzy c-means (FCM) is the best known and most 
widely used algorithm. The FCM algorithm is used to find a 
fuzzy partition of the data set into fuzzy subsets. Each 
partition is described by a membership function [21].

Objective function approach is utilised for clustering n
data points to c clusters. The main aim of the objective 
function is to minimise the Euclidian distance between each 
data point in the cluster i and its cluster centre, and maximise
the Euclidian distance among cluster centres [22].

The algorithm is an iterative clustering method that 
produces an optimal c partition by minimising the weighted
within group sum of squared error objective function :

= ( ) ( , )
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Where = { , , … , } is the dataset in the p-
dimensional vector space, is the number of data items, is

the number of clusters with 2 < , k is the degree 
of membership of in the cluster, is a weighting 
exponent on each fuzzy membership, v is the prototype of the 
centre of cluster i, d (x , v ) is a distance measure between 
object x and cluster centre v .

A solution of the objective function J can be obtained 
via an iterative process, which is carried out as follows [23]:

1. Set values for , , and .
2. Initialise the fuzzy partition matrix = [ ]
3. Set the loop counter = 0
4. Calculate the cluster centres ( ) with ( ):

( ) = ( )( )
5. Calculate the membership ( ). For = 1 to ,

calculate the following: = { |1 , = = 0}, / ; for the 
column of the matrix, compute new membership 

values:
a. If = , then ( ) = ( ),
b. Else ( ) = 0 for all and ( ) = 1; next 

6. If ( ) ( ) < , stop; else, set = + 1 and 
go to step 4.

4.2. Fuzzy c-means clustering algorithm application

In this research work the following parameters were set up

Number of clusters c = 2, representing fresh and worn 
tool state respectively;
Maximum number of iterations: 100;
Minimum improvement : 1x10-6;
For the choice of weighting exponent q, several values of 
q, ranging from 1.4 to 2.4 were utilised [24][25] and 
compared as shown in Fig. 5.

The initial fuzzy partition matrix [10] is generated and the 
initial fuzzy cluster centres (light font numbers in Fig. 5) are 
calculated with the parameters described above. In each step 
of the iteration, the cluster centres and the membership grade 
point are updated and the objective function is minimised to 
find the best location for the clusters [26].

5. Results and discussion

5.1. Choice of exponent q

It has been chosen q = 1.6 because it minimises the objective 
function amongst the several configurations yielding to one 

single misclassification. Choosing a higher coefficient q
appears to lead to a higher number of misclassification (Fig. 
6), while choosing a lower one yields to a higher value of the 
objective function [24][25].

5.2. Membership and objective functions

A membership function describes the relationship between
a variable and the degree of membership of the fuzzy set that 
correspond to particular values of that variable. This degree of 
membership is usually defined in terms of a number between 
0 and 1, inclusive, where 0 implies total absence of 
membership, 1 implies complete membership, and any value 
in between implies partial membership of the fuzzy set [27].

Fig. 5. Data features mutual influence plot. The figure shows the initial and 
final fuzzy cluster centres. The bold numbers represent the final fuzzy cluster 
centres obtained by updating them iteratively. Blue points represent fresh tool 

state tests (Cluster 1), red points represent worn tool state tests (Cluster 2).
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Fig. 6. Misclassifications vs exponent q

Table 5. Membership degrees and classification results

Test #
Membership degree Classification

Fresh Worn Actual Computed
1 0.9966 0.0034 Fresh Fresh
2 0.9945 0.0055 Fresh Fresh
3 0.9956 0.0044 Fresh Fresh
4 0.9999 0.0001 Fresh Fresh
5 0.9997 0.0003 Fresh Fresh
6 0.9995 0.0005 Fresh Fresh
7 0.9999 0.0001 Fresh Fresh
8 0.9877 0.0123 Fresh Fresh
9 0.9899 0.0101 Fresh Fresh

10 0.9990 0.0010 Fresh Fresh
11 0.9996 0.0004 Fresh Fresh
12 0.9994 0.0006 Fresh Fresh
13 0.9993 0.0007 Fresh Fresh
14 0.9999 0.0001 Fresh Fresh
15 0.9992 0.0008 Fresh Fresh
16 0.9971 0.0029 Fresh Fresh
17 1.0000 0.0000 Fresh Fresh
18 0.9997 0.0003 Fresh Fresh
19 0.7955 0.2045 Worn Fresh
20 0.0375 0.9625 Worn Worn
21 0.1874 0.8126 Worn Worn
22 0.4912 0.5088 Worn Worn
23 0.0115 0.9885 Worn Worn
24 0.0002 0.9998 Worn Worn
25 0.0211 0.9789 Worn Worn
26 0.0505 0.9495 Worn Worn
27 0.0116 0.9884 Worn Worn
28 0.1363 0.8637 Worn Worn
29 0.0883 0.9117 Worn Worn
30 0.0059 0.9941 Worn Worn
31 0.3584 0.6416 Worn Worn
32 0.0000 1.0000 Worn Worn
33 0.0217 0.9783 Worn Worn
34 0.0003 0.9997 Worn Worn
35 0.0118 0.9882 Worn Worn
36 0.0354 0.9646 Worn Worn

The membership function plot (Fig. 7) shows the 
membership degree of each milling test to the two clusters.

The first 18 tests, relative to fresh tool condition, are 
correctly classified presenting a degree membership very 
close to 1. A misclassification occurs for test #19, i.e. T1_W, 
which is erroneously classified as fresh tool with a quite high 
degree of membership (0.7955) (see Table 5.).

Test #22, i.e. T4_W can be considered ambiguous as its 
membership function degree to “worn” cluster is 0.5088, 
although it is still correctly classified.

No misclassifications occur for the rest of milling tests.
One single misclassification over 36 tests results in a success 
rate (i.e. ratio of correct classification over the total number of 
tests) equal to 97.22%.

The iterative algorithm converged to an objective function 
(Fig. 8) value equal to 2078.543 after 15 iterations; the 
elapsed time to reach the minimum is 0.0780 seconds, 
demonstrating a good suitability for real-time applications.

5.3. Mutual influence plot

Fig. 5 shows the centres clusters for the six combinations
of features, both at the initialisation step (light font) and at the 
end of the clustering algorithm (bold). It is possible to notice 
how the algorithm iterations move the cluster centres from the 
centre of data to the final spots corresponding to the centres of 
the two data clusters. In the plot, some features present a clear 
distinction between the points belonging to the two clusters, 
this happens for skewness vs variance and kurtosis vs 
variance, indicating a better suitability of these features for 
the proposed clustering purpose.

A data overlapping occurs for other pairs of features (i.e. 
mean vs variance, mean vs skewness and mean vs kurtosis)
visible by the presence of one red (worn tool) data point 
among the blue points, which correspond to the misclassified 
test. Skewness vs kurtosis plot present more overlapped points 
within both clusters. Finally, Fuzzy c-means algorithm has 
shown to successfully cluster data into two groups,
representing fresh and worn tool states, utilising the statistical 
features calculated over a dataset made of 10000 samplings,
corresponding to 26 seconds of milling time.

6. Conclusions

As sensing and processing monitoring techniques evolve, 
there is the potential to better managed production activities. 
One such example explored in this paper is tool condition 
monitoring, which has the potential to improve productivity 

Fig. 7. Membership function for q = 1.6

Fig. 8. Objective function value vs iteration count
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and thus reduce the number of parts rejected and total energy 
used to machine a part. Reducing the number of defects by 
optimising tool life enhances process utilisation for ‘good’ 
parts. Since a large component of energy used by a facility is 
not directly consumed by the processes, such advancements 
increase overall energy efficiency per part.

In this work it has been demonstrated that the use of an IR 
camera in combination with fuzzy c-means clustering 
algorithm can accurately determine tool wear state and thus 
allow better maintenance scheduling, reduce the risks of 
catastrophic failure and maximise utilisation of individual tool 
bits. A comprehensive experimental programme of milling 
tests on aluminium was carried out, acquiring IR temperature 
data using an IR camera. This temperature data was then
processed in order to extract statistical features, which were 
inputted in a fuzzy c-means decision making algorithm to 
assess the tool wear state in two clusters, namely fresh and 
worn tools. Future work will involve the utilisation of other 
low cost sensing techniques for temperature data acquisition 
in order to extend the scope and industrial applicability, in 
particular in cases with cutting fluid and high vibration rates.
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