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Abstract

In the one-way trading problem, a seller has L units of product to be sold to a sequence
σ of buyers u1, u2, . . . , uσ arriving online and he needs to decide, for each ui, the amount of
product to be sold to ui at the then-prevailing market price pi. The objective is to maximize
the seller’s revenue. We note that all previous algorithms for the problem need to impose
some artificial upper bound M and lower bound m on the market prices, and the seller needs
to know either the values of M and m, or their ratio M/m, at the outset.

This paper gives a one-way trading algorithm that does not impose any bounds on
market prices and whose performance guarantee depends directly on the input. In par-
ticular, we give a class of one-way trading algorithms such that for any positive inte-
ger h and any positive number ϵ, we have an algorithm Ah,ϵ that has competitive ratio

O(log r∗(log(2) r∗) . . . (log(h−1) r∗)(log(h) r∗)1+ϵ) if the value of r∗ = p∗/p1, the ratio of the

highest market price p∗ = maxi pi and the first price p1, is large and satisfies log(h) r∗ > 1,
where log(i) x denotes the application of the logarithm function i times to x ; otherwise, Ah,ϵ

has a constant competitive ratio Γh. We also show that our algorithms are near optimal
by showing that given any positive integer h and any one-way trading algorithm A, we can
construct a sequence of buyers σ with log(h) r∗ > 1 such that the ratio between the optimal
revenue and the revenue obtained by A is Ω(log r∗(log(2) r∗) . . . (log(h−1) r∗)(log(h) r∗)). A
special case of the one-way trading is also studied, in which the L units of product is com-
prised of L items, each of which must be sold atomically (or equivalently, the amount of
product sold to each buyer must be an integer).

Furthermore, a complementary problem to the one-way trading problem, say, the one-
way buying problem, is studied in this paper. In the one-way buying problem, a buyer wants
to purchase one unit of product through a sequence of n sellers v1, v2, . . . , vn arriving online,
and she needs to decide the fraction to purchase from each vi at the then-prevailing market
price pi. Her objective is to minimize the cost. The optimal competitive algorithms whose
performance guarantees depend only on the lowest market price p∗ = mini pi, and one of M
and φ, the price fluctuation ratio, are presented.

1 Introduction

The one-way trading problem, which was introduced by El-Yaniv et al. [9, 10], involves selling a
fixed amount of a product to a sequence of buyers, with the objective of maximizing the seller’s
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revenue. A major difference between this problem and other general revenue maximization
problems commonly studied in economics and computer science is that for the general problems,
the seller has some control of the prices; he can determine the amount and the price of product
to be sold to each buyer. However, for the one-way trading problem, a seller has no control of
the prices, and when a buyer arrives, he can only determine the amount of the product to be
sold at the then-prevailing market price. There are many applications that can be modeled as a
one-way trading problem. One example is money-exchange1, in which a seller has some initial
asset, say US dollars, and he wants to sell them at the price of some target asset, say yen. The
exchange rate fluctuates everyday. To maximize the amount of yen gained, the seller needs to
decide, for each day, the right amount of US dollars to be changed at the exchange rate used
on that day. Other applications such as stock selling in a stock market and electricity selling in
a power grid can also be modeled naturally as one-way trading problem.

It is easy to solve the offline version of the problem; if the seller knows all the future prices,
he can simply wait for the highest price and then sell all his product at that price. However,
our problem is online in nature, and without knowledge of future prices, a player cannot be sure
whether the current price is the highest. More formally, in our one-way trading problem, there
is a seller who has L units of product to be sold, and there is a sequence of buyers u1, u2, . . . , uσ
arriving. When a buyer ui arrives, the then-prevailing unit price pi is revealed and the seller
needs to decide the amount xi of product to be sold to ui at price pi, and the objective is to
maximize

∑
i pixi subject to

∑
i xi ≤ L. The main features of the problem that make it difficult

and interesting include: (1) he does not have any knowledge about the future prices, i.e., when
ui arrives, he does not know any price pj where j > i, and (2) he needs to decide the amount
of product to be sold to a buyer ui as soon as ui arrives.

Previous results.
After introducing the one-way trading problem, El-Yaniv et al. gave in [10] an algorithm for the
problem that works under the assumption that there are a lower bound m and an upper bound
M on the market prices such that pi ∈ [m,M ] for all pi, and that these bounds m and M are
known to the algorithm. They proved that their algorithm has competitive ratio O(log(M/m)),
and showed that it is optimal by deriving a matching lower bound. They also studied the
case when only the ratio M/m is known, and gave an optimal algorithm for this case. More
recently, Fujiwara et al. [11] have studied the one-way trading problem under the assumption
that the input prices follow some given probability distribution. In [8], Chen et al. introduced
the planning game problem, which is similar to the one-way trading problem, and they gave
an algorithm for their problem which imposes some different constraint on the prices: instead
of assuming that pi ∈ [m,M ] for some price range [m,M ], their algorithm assumes that the
difference between any two consecutive prices pi and pi+1 is not too large, or more precisely,
they assumed that for any i, pi/β ≤ pi+1 ≤ αpi for some fixed α, β > 1. They showed that if

there are n buyers, their algorithm has competitive ratio nαβ−(n−1)(α+β)+(n−2)
αβ−1 .

In [10], El-Yaniv et al. also studied another problem similar to the one-way trading problem,
namely the 1-max-search problem, in which there is a sequence of prices coming online, and
when a price arrives, we have to decide immediately whether we accept the price or not. The
objective is to accept the highest price. By assuming that all prices fall in the range [m,M ] and
these bounds m and M are known, they gave an algorithm for this problem with competitive
ratio O(

√
M/m), i.e., the ratio of the highest price and the price accepted by the algorithm

is O(
√

M/m). In [14], Lorenz et al. generalized the 1-max-search problem to the k-max-search
problem, in which the objective is to accept the k highest prices. By requiring that the bounds
m and M are known, they gave an optimal algorithm for the problem, which has competitive
ratio k+1

√
kk(M/m).

1In fact, the one-way trading problem is formulated as an money exchange problem in [9].
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For recent related research on revenue maximization that allows price setting, we mention
the auction problem [4, 13] and the pricing problem [1–3, 5–7]. For the auction problem, there
are bidders competing for the products by sending their bids to the auctioneer, and the auction-
eer chooses some bidders, and determines the price and amount of products to be sold to each
chosen bidder. For the pricing problem, Zhang et al. have studied an interesting version in [16]
in which the seller has m units of products to sell and each buyer has a valuation (i.e., price at
which he is willing to buy) represented by a function v(x), which gives the valuation per unit
if x units are purchased. When the highest valuation v∗ is known, we gave an algorithm with
competitive ratio O(log v∗). Moreover, this algorithm was shown to be asymptotically optimal
by giving a matching lower bound. Zhang et al. also studied in [17] an extension of this problem,
in which there are multiple types of products and each user is interested in a particular bundle
of products.

Our Contribution.
We note that previous work on the one-way trading problem needed to impose some constraints
on how the prices fluctuate, e.g., there are a lower bound m and an upper bound M on the
market prices such that pi ∈ [m,M ] for all prices. Furthermore, existing algorithms for the
problem need to know some information about these constraints, such as the values of m and
M , or their ratio, in order to work correctly, (for example, the reservation price policy [10]
accepts the first price ≥

√
Mm). In this paper, we give a one-way trading algorithm that

does not need to impose any constraint on the market prices, and we derive a bound on its
competitive ratio that depends directly on the input, or more precisely, depends on r∗ = p∗/p1,
the ratio of the highest price p∗ = maxi pi and the first price p1 (in fact, our algorithm will treat
p1 as the lowest price and ignore any prices lower than p1). Furthermore, the algorithm does
not make any assumption on the number of prices pi in the input sequence and an adversary
can terminate the sequence at any time by sending buyers with extremely low prices. In fact, we
propose a generic one-way trading algorithm whose behavior depends on some given function
f(x), which can be any function satisfying the following conditions: (i) It is non-increasing, and
(ii)

∫∞
1 f(t)dt is bounded. Roughly speaking, f(x) helps us determine the amount of products

the seller should sell at price x. We show that by using f(x) in our generic algorithm, we have a
one-way trading algorithm with competitive ratio O( 1

r∗f(r∗)). Thus, to get a small competitive

ratio, it suffices to find a f(x) that satisfies (i) and (ii), and f(x) is as large as possible. We
observe that the following class of functions satisfies our requirements:

1

x log x(log(2) x) . . . (log(h−1) x)(log(h) x)1+ϵ
,

where h is any positive integer and ϵ is any positive real number, and where log(k) x denotes
the function log log . . . log x, which applies the logarithm function k times to x. Based on these
functions, (a different function for each different value of h and ϵ) our generic algorithm gives
us a class of one-way trading algorithms such that for any fixed positive integer h and positive
number ϵ, we have an algorithm Ah,ϵ such that when log(h) r∗ > 1, Ah,ϵ has competitive ratio

O((log r∗) . . . (log(h−1) r∗)(log(h) r∗)1+ϵ); otherwise, its competitive ratio is bounded by some
constant Γh depending only on h. We also show that the bounds are almost tight by employing
the divergence of the same class of function when ϵ = 0 to design an adversary such that, given
any online algorithm A for the problem, the adversary gives a sequence of buyers σ such that
the ratio between the revenue obtained by an optimal offline algorithm on σ and that obtained
by A is Ω((log r∗) . . . (log(h−1) r∗)(log(h) r∗)) for any positive integer h. Moreover, we show that
our results still hold if the amount of products sold to each buyer is constrained to be at most
a maximum amount specified by the buyer.

We also study a variant of the one-way trading problem in which the L units of product
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are comprised of L items, each of which must be sold atomically (in other words, the number
of products the seller can sell must be an integer). We show that no online algorithm has
competitive ratio less than (r∗)1−δ for any 0 < δ < 1. We also show that for any integer h > 0
and real number ϵ > 0 we have an algorithm Bh,ϵ for this atomic one-way trading problem
that has competitive ratio O(r∗). Besides being near optimal, Bh,ϵ is interesting in that, as
long as the seller does not sell all his products, Bh,ϵ guarantees that the ratio between the
maximum offline revenue and the current revenue of the seller up to that moment is no more
than O((log r∗) . . . (log(h−1) r∗)(log(h) r∗)1+ϵ) if log(h) r∗ ≥ 1, and has constant competitive ratio
otherwise. This means that whenever the seller has products to sell and thus can still participate
in the market, he is still competitive. Furthermore, we show that if the seller knows an upper
bound U of r∗, we have an online algorithm with competitive ratio (U)1/LL if L < logU , and
O(logU) otherwise, where L is the total number of products that the seller can sell; and we
derive a lower bound of ((U)1/L − 1))L. Note that when L is sufficiently large, the algorithm
can achieve an optimal bound of O(logU).

The complementary problem to the one-way trading problem is the one-way buying prob-
lem, in which a buyer wants to purchase one unit of product through a sequence of n sellers
v1, v2, . . . , vn arriving online, and she needs to decide the fraction to purchase from each vi at
the then-prevailing market price pi. Her objective is to minimize the cost. The one-way buying
problem is a special case of the inventory problem, which has also a rich literature. Among oth-
ers, Golabi [12] investigated the case where the purchase prices are from a known distribution.
Note that different from the one-way trading problem, in which the seller gains no revenue if
doing nothing, the buyer in the one-way buying problem will be penalized for the un-purchased
amount, at the highest marker price. Therefore, either the price upper bound M or the price
fluctuation ratio φ must be known ahead. We present optimal competitive algorithms whose
performance guarantees depend only on the lowest market price p∗ = mini pi, and one of M and
φ.

2 Fractional Products

2.1 Upper bound

Since products could be sold fractionally, we may assume, without loss of generality, that the
seller has one unit of product to sell. The offline version is easy to solve: the whole product is
assigned to the buyer with the highest market price. However, for the online version, we have
no information about the future prices, including the bound of the highest market price. If the
whole amount of product has been sold at some time, and then a buyer with very high market
price arrives, the performance will be poor. Thus, we must keep or reserve some amount in
case there is a future buyer with a higher market price. On the other hand, if we reserve too
much for the possible buyer with higher market price and assign very little to the buyers who
have come already, the performance will be also poor since the possible buyer with higher price
may not come. Thus, to have a good performance, the amount sold and the amount remaining
should be balanced nicely.

For the purposes of illustrating the main ideas of our algorithm only, consider the case when
all prices are non-negative integers; in general, our algorithm is not restricted to integer prices.
We make the following observations.

• Our algorithm should only sell products when the price is strictly higher than the max-
imum price that we have seen so far. For example, suppose the input sequence of prices
is 1, 4, 2, 3, 6, 5, 12. We can ignore the prices 2, 3, 5 and do not sell any at these prices
because the optimal offline algorithm will ignore these prices anyway; if our solution is
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competitive for the input 1, 4, 6, 12, it will also be competitive for the input 1, 4, 2, 3, 6,
5, 12. Therefore, we can focus on handling price sequences that are strictly increasing.

• If we have a good solution for a sequence of strictly increasing and consecutive prices, i.e.,
for the price sequence 1, 2, 3, ..., p∗, then we can easily modify it to get a good solution for
any price sequences that are strictly increasingly with the highest price p∗. For example,
suppose that for the prices 1, 2, 3, 4, our algorithm sells an amount δ1, δ2, δ3, δ4 of products
at prices 1, 2, 3, 4, respectively and thus obtains a revenue of R = δ1+2δ2+3δ3+4δ4. Then,
for the strictly increasing price sequence 1, 3, 4, we can sell an amount of δ1 at price 1,
δ2+δ3 at price 3, and δ4 at price 4. Then, the revenue we obtain is δ1+3(δ2+δ3)+4δ4 ≥ R.

Therefore, our algorithm can focus on strictly increasing and consecutive price sequences.
For these sequences, we only need to determine the amount δi of products to be sold at price
pi. Since there is only one unit of product, we must have

∑+∞
i=1 δi ≤ 1. Another property

that is desirable is that the δis should be decreasing, i.e., δ1 > δ2 > δ3 > ...2; the leading δis
should be large so that we can sell enough products if the market crashes very early, i.e., the
adversary declares immediately that there are no more buyers, or buyers with extremely low
market prices. Then, for any input price sequence with highest value p∗, our algorithm will have
revenue at least δ1 + 2δ2 + ...+ p∗δ∗ ≥ (p∗)2δ∗/2, and since no algorithm (including the offline
optimal algorithm) can have revenue higher than p∗, the competitive ratio of this algorithm is
O(1/(p∗δ∗)) (Lemma 1).

Now we give the algorithm. The algorithm assigns amounts based on a non-increasing
function f(x), which computes the value of δi such that

∫ +∞
0 f(x)dx = 1,

∫ 1
0 f(x)dx = δ1,∫ 2

1 f(x)dx = δ2, ...,
∫ i
i−1 f(x)dx = δi.

Let (p1, p2, ..., p
∗) be the sequence of strictly increasing transacted prices, i.e. prices at which

the seller sells some (non-zero) amount to the buyer. For ease of analysis, we can normalize
this sequence to be (r1, r2, ..., r

∗) = (1, p2/p1, ..., p
∗/p1) where the first price r1 is 1 and the

normalized maximum r∗ is the ratio of the highest transacted price p∗ to the lowest transacted
price p1. Any buyers with market price less than p1 will be ignored. For the sake of simplicity,
we shall denote ri as the normalized price of the i-th buyer and r∗ as the highest normalized
price. The online selling strategy is described below as Algorithm 1. Note that Algorithm 1 can
handle non-integer prices.

Algorithm 1 : Online Selling

Initially, let cr∗ ← 0. ◃ cr∗ is the current highest normalized price.
repeat

when a buyer with normalized market price r comes
if r > cr∗ then

Assign
∫ r
cr∗ f(x)dx products to this buyer.

cr∗ ← r
end if

until no buyer comes

Lemma 1. Suppose r∗ is the highest normalized market price, if f(.) is a non-increasing func-
tion, the competitive ratio is at most O( 1

r∗·f(r∗)).

Proof. The revenue received from Algorithm 1 is r1
∫ r1
0 f(r)dr+r2

∫ r2
r1

f(r)dr+...+r∗
∫ r∗

r∗− f(r)dr ≥∫ r∗

0 r · f(r)dr where r∗− is the second highest normalized market price in the sequence.

2The decreasing of δi can be argued easily. WLOG, assume that p1 < p2 and δ1 ≤ δ2, we can show that the
competitive ratio can be decreased by moving a small amount from δ2 to δ1. This process can continue until
δ1 > δ2.
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Since f(r) is non-increasing, the revenue received from Algorithm 1 is at least
∫ r∗

0 r ·f(r)dr ≥
f(r∗)

∫ r∗

0 rdr = f(r∗) · (r
∗)2

2 . Note that the maximum revenue is r∗ given that the seller has only

one unit to sell, and therefore, the competitive ratio is at most r∗∫ r∗
0 r·f(r)dr

= O( 1
r∗·f(r∗)).

In order to get a good performance, we need to find a non-increasing function f(x) such
that

∫∞
0 f(x)dx converges to 1, or more simply,

∫∞
0 f(x)dx = c for some constant c (as we can

normalize it to 1 later), and for any x > 1, f(x) is as large as possible. After assuming the first
market price is 1, we may just analyze the property of

∫∞
1 f(x)dx. It is well known that

∫∞
1

1
xdx

diverges and thus f(x) = 1/x is too large. Similarly as
∫∞
1

1
x1+ϵdx converges for any ϵ > 0,

f(x) = 1/(x · xϵ) is too small. This suggests that f(x) = 1/(xξ(x)) where ξ(x) is an increasing
function and ξ(x) = o(xϵ) for any ϵ > 0. A good candidate for ξ(x) is a poly-log function of
x. This motivates us to focus on the class of functions f(x) = 1/(x log x log(2) x . . . (log(i) x)1+ϵ)
where ϵ > 0 and log(i) x denotes the application of the logarithm function i times to x, where
i ≥ 0. Now we define the class of functions formally.

Definition 1. Assume real number ϵ ≥ 0, integer i ≥ 0, b0 = 1, and bi+1 = ebi, define function
qi,ϵ(x) for x ≥ bi as follows.

qi,ϵ(x) =

{
x1+ϵ if i = 0
x · qi−1,ϵ(lnx) if i > 0

Thus, q1,ϵ(x) = x · (lnx)1+ϵ, q2,ϵ(x) = x · (lnx) · (ln(2) x)1+ϵ, and qi,ϵ(x) = x · (lnx) · (ln(2) x) ·
... · (ln(i) x)1+ϵ. The following lemma gives the condition when

∫ +∞
bi

1
qi,ϵ(x)

dx converges.

Lemma 2. For each integer i ≥ 0,
∫ +∞
bi

1
qi,ϵ(x)

dx converges if and only if ϵ > 0, in particular,∫ +∞
bi

1
qi,0(x)

dx diverges.

Proof. By induction on i. When i = 0, b0 = 1, it is easy to see that
∫ +∞
b0

1
q0,ϵ(x)

dx =
∫ +∞
1

1
x1+ϵdx

converges if and only if ϵ > 0. Assume that the hypothesis is true for i − 1. As bi = ebi−1 , we
have

∫ +∞
bi

1
qi,ϵ(x)

dx =
∫ +∞
ebi−1

1
x·qi−1,ϵ(lnx)dx =

∫ +∞
bi−1

1
qi−1,ϵ(y)

dy, where y = lnx. Thus,
∫ +∞
bi

1
qi,ϵ(x)

dx

converges if and only if ϵ > 0.

The following theorem shows the competitive ratio of Algorithm 1 by constructing f(x) from
qi,ϵ(x), i.e., proving that the area under f(x) when x > 0 is bounded and f(x) is non-increasing
and defined for all x > 0.

Theorem 1. Suppose r∗ is the highest normalized market price, there exists an online algorithm
Ah,ϵ for the unbounded one-way trading problem with competitive ratio O(1) if r∗ < bh and
O(qh−1,ϵ(log r

∗)) if r∗ ≥ bh for any fixed positive integer h and any real number ϵ > 0.

Proof. For any fixed positive integer h, bh is a constant such that ln(h) bh = 1. From Lemma 2,
for any real number ϵ > 0, suppose

∫ +∞
bh

1
qh,ϵ(x)

dx converges to a constant c. As ln(h)(x) ≥ 1

when x ≥ bh, we define function fh,ϵ(x) as follows.

fh,ϵ(x) =

{ 1
bh+c·qh,ϵ(bh) if 0 < x < bh

qh,ϵ(bh)
bh+c·qh,ϵ(bh) ·

1
qh,ϵ(x)

if x ≥ bh

It can be verified that
∫ +∞
0 fh,ϵ(x)dx = 1 and fh,ϵ(x) is non-increasing (since fh,ϵ(x) =

fh,ϵ(bh) is a constant when 0 < x < bh and fh,ϵ(x) is decreasing when x ≥ bh), i.e., fh,ϵ(x),
which depends on h and ϵ, satisfies the requirement of Algorithm 1, which gives Ah,ϵ. By
Lemma 1, we can analyze the competitive ratio w.r.t. the highest market price r∗.
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• If r∗ < bh, the competitive ratio is O(
bh+c·qh,ϵ(bh)

r∗ ), which is O(1).

• If r∗ ≥ bh, the competitive ratio is O( 1
r∗·fh,ϵ(r∗)), which is O(qh−1,ϵ(log r

∗)), i.e.,

O(log r∗ log(2) r∗...(log(h) r∗)1+ϵ).

2.2 Lower bound

In this part, we present a lower bound for the competitive ratio of the unbounded one-way
trading problem. We will show that the lower bound and the upper bound given in Section 2.1
are almost match; in other words, Algorithm 1 is near optimal.

To derive a lower bound on the competitive ratio, we give an adversary that determines the
sequence of prices p1, p2, p3 . . . , and whenever the seller has sold some products, the adversary
checks the total revenue the seller has accumulated so far, and if it is not competitive, the
adversary declares immediately that there are no more buyers, or buyers with extremely low
market price, i.e., the market “crashes”. The prices pi’s grow exponentially, i.e., pi = Θ(ei). The
adversary also determines for each i a bound ∆i, which is the minimum amount of product sold
during the first i prices in order to prevent the market crashes. In other words, if the amount
of product sold at price p1, p2, . . . , pk are s1, s2, . . . , sk, respectively, and s1 ≥ ∆1, s1 + s2 ≥
∆2, . . . ,

∑j−1
k=1 sk ≥ ∆j−1, and

∑j
k=1 sk < ∆j , the market crashes immediately at price pj . Note

that in such case, the seller has sold at most ∆j−∆j−1 unit of product at pj , and since pj is much
larger than all previous prices, we would be able to show that the total revenue obtained by the
seller will be dominated by the last transaction and is O((∆j −∆j−1)pj). On the other hand,
an offline algorithm can sell the whole unit of product at pj and gets the maximum revenue
pj . Thus the competitive ratio of the algorithm is Ω( 1

∆j−∆j−1
) if the adversary “crashes” the

market after pj . The challenge for getting a large lower bound is to decide the ∆′
is such that

(i) they are unbounded (i.e., ∆i → ∞ when i → ∞) so that the seller will fail eventually to
meet the requirement on the minimum amount of product sold, and (ii) ∆i−∆i−1 is as small as
possible. The bound ∆i =

1
e+1 +

1
e+2 + · · ·+

1
e+i can be considered as a good candidate, which

will lead us to a lower bound of Ω(i) or Ω(log pi) when the highest price pi = O(ei). Below, we
describe some other ∆i’s that will lead us to a substantially larger bound.

From Lemma 2, we know that qh,0(x) is a good candidate such that there is a bh > 0

causing
∫ +∞
bh

1
qh,0(x)

dx to diverge, where ln(h) bh = 1. The adversary in Algorithm 2 uses∑j
k=1

1
qh,0(bh+k−1) as a candidate for ∆j as mentioned before and sj is the amount of prod-

ucts assigned to buyer uj . Since 1/qh,0(x) is monotone decreasing and
∫ +∞
bh

1
qh,0(x)

dx diverges

for any fixed integer h > 0, the sum
∑∞

k=1
1

qh,0(bh+k−1) diverges. Therefore, Algorithm 2 must

be terminated on some buyer since the seller has only one unit of product.

Algorithm 2 : Adversary for online selling

Assume that the seller has one unit of product to sell.
Let j ← 0.
repeat

Let j ← j + 1.
Send buyer uj with market price ebh+j−1 to the seller.
The seller sells sj product to buyer uj .

until
∑j

k=1 sk ≤
∑j

k=1
1

qh,0(bh+k−1)

Assume the adversary stops sending buyers after the arrival of buyer uj . From Algorithm 2,
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the total revenue received is
∑j

k=1 sk · e
bh+k−1, while the maximum offline revenue is ebh+j−1.

The following lemma estimates the total revenue received from Algorithm 2.

Lemma 3.
∑j

k=1 sk · e
bh+k−1 = O( ebh+j−1

qh,0(bh+j−1))

Proof. From the adversary’s strategy, at any step j′ < j,
∑j′

k=1 sk >
∑j′

k=1
1

qh,0(bh+k−1) , and in

the last step j,
∑j

k=1 sk ≤
∑j

k=0
1

qh,0(bh+k−1) . Therefore,
∑j

k=1 sk ·e
bh+k−1 ≤

∑j
k=1

ebh+k−1

qh,0(bh+k−1) .

In Lemma 5 (see Appendix), we show that ebh+k

qh,0(bh+k) ·
qh,0(bh+k−1)

ebh+k−1 =
e·qh,0(bh+k−1)

qh,0(bh+k) ≥ c

for some constant c > 1 and any k ≥ 1. Thus,
∑j

k=1
ebh+k−1

qh,0(bh+k−1) ≤
ebh+j−1

qh,0(bh+j−1) ·
1

1−1/c =

O( ebh+j−1

qh,0(bh+j−1)).

Based on the above analysis, Theorem 2 gives the lower bound on the competitive ratio of
the unbounded one-way trading problem.

Theorem 2. The competitive ratio of the unbounded one-way trading problem is at least
Ω(qh,0(log r

∗)) = Ω(log r∗ · log(2) r∗ · ... · log(h+1) r∗) where r∗ is the highest normalized market
price and h > 0 is any fixed integer.

Proof. Assume that Algorithm 2 terminates on some buyer uj . As mentioned before, the rev-

enue received from Algorithm 2 is
∑j

k=1 sk · e
bh+k−1 = O( ebh+j−1

qh,0(bh+j−1)) (Lemma 3), and the

maximum offline revenue is ebh+j−1 by assigning the whole product to buyer uj with the mar-
ket price ebi+j−1. As pj = ebh+j−1, the performance ratio is at least Ω(qh,0(bh + j − 1)) =

Ω(log pj log
(2) pj ... log

(h+1) pj)) = Ω(log r∗ log(2) r∗... log(h+1) r∗)) since bh can be regarded as a
constant and r∗ = pj/p1 = ej−1.

2.3 Buyers with Bounded Quotas

Now we consider the case where each buyer has a maximum amount of products he wants
to buy at the market price. This variant can be regarded as an extension of the previous
part. Algorithm 1 assigns products only based on the buyer’s market price with no regard for
how much the buyer is able to buy, i.e., the buyer’s quota. Algorithm 3 is a modification of
Algorithm 1 taking into consideration the buyer’s quota. The assigned amount is the amount
the buyer’s quota or the amount the seller wants to sell, whichever is less. After assignment, we

modify the value r′ such that
∫ r′

0 f(x)dx is the current total amount of products sold to buyers.

Algorithm 3 : Online Selling with Bounded Quotas

Initially, let r′ ← 0.
repeat

when a buyer comes with market price r and quota q
if r > r′ then

Assign δ = min{
∫ r
r′ f(x)dx, q} products to this buyer.

r′ ← argy
∫ y
0 f(x)dx =

∫ r′

0 f(x)dx+ δ
end if

until no buyer comes

Lemma 4. The total revenue received using Algorithm 3 is no less than
∫ r′

0 xf(x)dx.

Proof. Let
∫ r′i
r′i−1

f(x)dx be the amount of products sold to buyers ui with market price ri, where

r′0 = 0. As ri ≥ r′i, the total revenue achieved by Algorithm 3 is at least r1 ·
∫ r′1
0 f(x)dx + r2 ·∫ r′2

r′1
f(x)dx+ ... ≥

∫ r′

0 xf(x)dx.
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Theorem 3. For the unbounded one-way trading problem, if each buyer has a maximum amount
of products he wants to buy at the market price, there is an online selling strategy with compet-
itive ratio O(1) if r∗ < bh and O(qh−1,ϵ(log r

∗)) if r∗ ≥ bh for any fixed integer h and any real
number ϵ > 0, where r∗ is the highest normalized market price.

Proof. After all buyers have been considered, we have r′ and r∗ such that the total amount

of sold products is
∫ r′

0 f(x)dx and r∗ is the highest normalized market price among all buyers.
Since each buyer has a quota, the optimal offline revenue OPT might not have all products sold
at the highest market price r∗ and some products might be sold with price less than r∗ or even
r′.

Partition the optimum revenue OPT into two parts: OPT1 and OPT2 denote the total
revenues received from buyers whose market prices are no higher than r′ and higher than r′

respectively. Let ALG be the total revenue received from Algorithm 3, and the competitive
ratio is OPT

ALG = OPT1
ALG + OPT2

ALG .

As ALG ≥
∫ r′

0 xf(x)dx (by Lemma 4) and OPT1 ≤ r′ (since buyers’ market prices w.r.t.
OPT1 are no more than r′), from previous analysis as given in Theorem 1, by letting f(x) =
qh,ϵ(x) for a fixed h and ϵ > 0,

• if r′ < bh,
OPT1
ALG is a constant,

• if r′ ≥ bh,
OPT1
ALG is at most O(qh−1,ϵ(log r

′)), which is upper bounded by O(qh−1,ϵ(log r
∗))

as r′ ≤ r∗.

For any buyer with market price r higher than r′ and with quota q, Algorithm 3 assigns q
products with price r to this buyer. Those buyers whose market prices are between r′ and r∗

would take the maximum amount they want to buy. Otherwise, the assigned amount less than
q leads to a contradiction from the value of r′. Thus, OPT2 ≤ ALG.

Given the above analysis, the competitive ratio of Algorithm 3 for the unbounded one-way
trading problem with bounded quotas is at most O(qh−1,ϵ(log r

∗)) if r∗ ≥ bh for any fixed integer
h > 0 and ϵ > 0, or O(1) if r∗ < bh.

3 Atomic Products

In this section, we consider the case where the seller has L products (i.e., L items of a product),
which must be sold atomically, i.e., the product cannot be sold fractionally.

3.1 The Highest Normalized Price r∗ is Unbounded

Since the products cannot be sold fractionally and the amount L is fixed, no algorithm can
guarantee that every buyer with a higher market price will be sold a non-zero number of prod-
ucts. Note that the highest market price r∗ is unknown and the difference in market prices
between buyers can be arbitrarily large. Therefore, when the seller does not satisfy a buyer
or exhausts all his products, the performance ratio can be arbitrarily large. However, before
the seller exhausts all his L products, especially when L is large enough, we still have a selling
strategy with good competitive ratio. This selling strategy is similar to Algorithm 1 as given in
Section 2.1 by approximating the function fh,ϵ(x) as defined in Theorem 1,

fh,ϵ(x) =

{ 1
bh+c·qh,ϵ(bh) if 0 < x < bh

qh,ϵ(bh)
bh+c·qh,ϵ(bh) ·

1
qh,ϵ(x)

if x ≥ bh

where ln(h) bh = 1, c =
∫ +∞
bh

1
qh,ϵ(x)

dx, and qh,ϵ(bh) is defined in Definition 1. From previous

analysis as given in Theorem 1, we know
∫∞
0 fh,ϵ(x)dx = 1 and fh,ϵ(x) is non-increasing when
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x > 0. The algorithm is described as follows. Again, in the following algorithm and analysis,
the market prices are normalized as in Algorithm 1, i.e., r1 = 1, ..., r∗ = p∗/p1 for actual prices
p1, ..., p

∗.

Algorithm 4 (Bh,ϵ) : Online Atomic Selling

Let cr∗ ← 0. ◃ cr∗ is the current highest normalized market price.
Let R← L ◃ R is the amount of remaining products.
repeat

When a buyer with normalized market price r comes,
if r > cr∗ then

Sell min{R, ⌈L ·
∫ r
cr∗ fh,ϵ(x)dx⌉} with price r to the buyer.

cr∗ ← r
R← R−min{R, ⌈L ·

∫ r
cr∗ fh,ϵ(x)dx⌉}

end if
until no buyer comes

In Theorem 4, we show that before the seller has exhausted all his products, Algorithm Bh,ϵ

has a good competitive ratio and it is at most r∗ under all circumstances.

Theorem 4. (Upper bound) The unbounded one-way trading problem admits an online algo-
rithm with competitive ratio O(qh,ϵ(log r

∗)) (when r∗ ≥ bh) or O(1) (when r∗ < bh) before the
seller has sold all his products, and its competitive ratio is at most r∗ under all circumstances.

Proof. Before the seller has sold all his products, Algorithm Bh,ϵ will sell ⌈L ·
∫ r
r∗ fh,ϵ(y)dy⌉

products, which is at least
∫ r
r∗ fh,ϵ(y)dy of his holdings, to a buyer with market price r. Thus,

the competitive ratio O(qh,ϵ(log r
∗)) or O(1) as given in Theorem 1 still holds.

On the other hand, if the seller has exhausted all his products, he cannot satisfy the next
buyer with market price r∗, which can be arbitrarily large. In this case, the maximum offline
revenue is Lr∗ while the revenue received from the algorithm is at least L, and thus, the
competitive ratio is at most r∗.

Theorem 5. (Lower bound) The unbounded one-way trading problem does not admit any online
algorithm with competitive ratio less than (r∗)1−δ for any 0 < δ < 1 if the products are atomic.

Proof. We use an adversary argument. Let δ be a real number, 0 < δ < 1. The adversary sends
at most L + 1 buyers sequentially. For i = 1, 2, . . ., the market price of the i-th buyer ui is ri.

Specifically, r1 = 1, and for i ≥ 2 we have ri = r
1/δ
i−1 such that ri/ri−1 = r1−δ

i . As long as the
seller sells at least one product to ui, the adversary continues to send the next buyer ui+1 with
an increased price. Otherwise, if nothing is sold to ui, the adversary stops sending more buyers.

Let ul+1, 1 ≤ l ≤ L, be the last buyer (who is unsatisfied) sent by the adversary, i.e.,
r∗ = rl+1. Then the revenue of the optimal offline strategy is Lrl+1 while the revenue received
by the seller is at most Lrl. The ratio is at least rl+1/rl = r1−δ

l+1 = (r∗)1−δ.

3.2 The Highest Normalized Price r∗ is Bounded

If the seller has some extra information about the market price such as the ratio between
the highest market price and the first market price is upper bounded by U , we can have selling
strategies with better performance. Thus, we may assume that the normalized market prices are
in the range of [1, U ]. Here we still assume that the highest market price is unknown; otherwise,
the seller would exactly know the highest market price and will wait until the arrival of the
buyer with the highest market price and then assign all products to this buyer. For this variant,
El-Yaniv et al. [10] and Zhang et. al. [16] gave O(logU)-competitive algorithms for fractionally
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selling products, and proved that the lower bound of the fractional case is Ω(logU). Intuitively,
when the number L of products is sufficiently large, the atomic variant of the problem becomes
equivalent to the fractional variant. In this part, we prove a lower bound on the competitive
ratio for the atomic version and show that it is consistent with Ω(logU), the bound for the
fractional case, when L is large enough. Furthermore, we give an online selling strategy for the
atomic version, whose competitive ratio is almost tight w.r.t. the lower bound and is consistent
with the upper bound logU of the fractional version when L is sufficiently large.

Theorem 6. (Lower Bound) When products are atomic and the market price for a single
product is in the range of [1, U ], the bounded one-way trading problem does not admit any
online algorithms with competitive ratio less than ((U)1/L − 1)L, which is consistent with the
lower bound of Ω(logU) for the fractional version when L is sufficiently large.

Proof. We use an adversary argument. Let Û = (U)1/L. The adversary sends at most L + 1
buyers sequentially. For i = 1, 2, . . . , L, the market price of the i-th buyer ui is ri = ÛNi , where
Ni is the total number of products sold to buyers before the arrival of buyer ui, in particular,
N1 = 0 and r1 = 1. As long as the seller sells at least one product to ui, the adversary continues
to send the next buyer ui+1 with an increased price. Otherwise, if nothing is sold to ui, the
adversary stops sending more buyers.

Let ul+1, 1 ≤ l ≤ L, be the last buyer (who is unsatisfied) sent by the adversary. Let ni,
1 ≤ i ≤ l, be the number of products sold to buyer ui, N be the total number of sold products
such that N = Nl+1 =

∑
1≤i≤l ni ≤ L, and ri = ÛNi . As the seller’s revenue is

∑
1≤i≤l niri,

the maximum revenue is N − (l− 1) + ÛN−(l−1) + ÛN−2 + · · ·+ ÛN−1 when n1 = N − (l− 1),
n2 = · · · = nl = 1, which is bounded by Û0 + Û1 + · · ·+ ÛN−1 = (ÛN − 1)/(Û − 1).

On the other hand, the optimal offline strategy would sell all L products to ul+1 at market
price rl+1 = ÛN . Thus the competitive ratio is at least ÛNL/((ÛN − 1)/(Û − 1)) ≥ (Û − 1)L
= ((U)1/L − 1)L. When L is sufficiently large, limL→∞((U)1/L − 1)L = limx→0((U)x − 1)/x =
limx→0(e

x lnU − 1)/x = lnU.

Now we give an online selling strategy to show the upper bound of the atomic variant, which
is consistent with the upper bound O(logU) of the fractional variant when L is large enough.

• Partition Phase:

– If L < logU , partition the price range [1, U ] into L levels [Û0, Û1), [Û1, Û2), . . . ,
[ÛL−1, ÛL], and associate each level with a product, where Û = (U)1/L.

– If L ≥ logU , partition the price range [1, U ] into ⌊logU⌋ levels [20, 21), [21, 22), . . . ,
[2⌊logU⌋−1, U ] and distribute L products into these levels as uniform as possible.

• Assignment Phase: Sell all products in a level to the first buyer whose market price falls
within that level.

Theorem 7. When the products are atomic and the market price for a single product is in the
range of [1, U ], the bounded one-way trading problem admits an online algorithm with competitive
ratio at most (U)1/LL if L < logU , and O(logU) otherwise, which is consistent with the upper
bound of the fractional version.

Proof. No matter the highest market price r ≤ U falls into any price level, we can ensure that
all products associated with this price level in the partition will be sold with price no less than
r/Û (when L < logU) or r/2 (when L ≥ logU). Consider the following two cases.

• When L < logU , the competitive ratio of the algorithm is at most (U)1/LL, i.e., in the
worst case, at least 1 of the L products is sold at a price at least 1/(U)1/L of the maximum
price of the highest level attained.
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• When L ≥ logU , these L atomic products are almost uniformly distributed into ⌊logU⌋
levels, there is at least ⌊ L

⌊logU⌋⌋ products in each level. The maximum offline revenue is at

most L ·r while the revenue received from the above online strategy is at least ⌊ L
⌊logU⌋⌋ ·

r
2 .

Thus, the upper bound of the competitive ratio in this case is at most O(logU).

4 One-Way Buying Problem

Note that the one-way buying problem is an online optimization problem. One easily sees that
the offline counterpart can be fairly straightforward solved: since the buyer knows all the future
prices, she simply waits for the lowest price and buys the whole unit at that price.

Analogously as in the one-way trading problem, we assume for the sequence of n sellers
v1, v2, . . . , vn arriving online, the corresponding market prices are strictly decreasing, i.e. p1 >
p2 > . . . > pn ≥ 0. In practice, if there comes a higher price than the last price, the buyer
simply purchase nothing. Therefore, p∗ = mini pi = pn, and the highest possible market price is
either M if M is given or M = φpn if φ is given. Note that we have an ideal case where pn = 0,
and the buyer simply purchases the remaining capacity at 0 cost.

The design of an optimal online algorithm for the one-way buying problem follows the same
for the one-way trading problem. We distinguish two cases: M is given or φ is given.

4.1 Known maximum price M

Note that if the lowest price m is also provided, then we may normalize m to be arbitrarily
close to 0, and thus we consider in this case the price range is (0,M ]. We further normalize
the price range to be the half-closed interval (0, 1]. Let f(x) : (0, 1]→ R∗ be a density function
representing the limit of fraction product to be purchased at price x ∈ (0, 1]. (R∗ is the set of
non-negative real numbers.) Then ∫ 1

0
f(x)dx = 1,

and letting p0 = 1, the purchase amount from seller vi at price pi is

δi =

∫ pi−1

pi

f(x)dx, for i = 1, 2, . . ..

Let g(x) = 1
x2 f(

1
x), then g(x) maps from [1,+∞) to R∗ and it is a density function in [1,+∞).

That is, ∫ +∞

1
g(x)dx = 1; (1)

and the purchase amount from seller vi at price pi is

δi =

∫ 1
pi

1
pi−1

g(x)dx, for i = 1, 2, . . .. (2)

It follows that the purchase cost by Algorithm 5 is

p1

∫ 1
p1

1
g(x)dx+ p2

∫ 1
p2

1
p1

g(x)dx+ . . .+ pn

∫ 1
pn

1
pn−1

g(x)dx+

∫ +∞

1
pn

g(x)dx

= 1− (1− p1)

∫ 1
p1

1
g(x)dx− (1− p2)

∫ 1
p2

1
p1

g(x)dx− . . .− (1− pn)

∫ 1
pn

1
pn−1

g(x)dx.
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On the other hand, given the price sequence p1 > p2 > . . . > pn, an optimal offline algorithm
purchases the whole unit of product at the lowest price pn, incurring a total cost of pn only.

We next try to find a function g(x), or equivalently f(x), that minimizes the competitive
ratio. When n = 1, the competitive ratio ρ(p1) is

ρ(p1) =
1− (1− p1)

∫ 1
p1
1 g(x)dx

p1
;

and thus limp1→1 ρ(p1) = 1 and limp1→0 ρ(p1) ≥ 1, with

ρ′(p1) =
(1− p1)g(

1
p1
)− p1 + p1

∫ 1
p1
1 g(x)dx

p31
.

Setting ρ′(p1) = 0, we have

g(x) =
1

(x− 1)2
, and a primary function G(x) = 1− 1

x− 1
.

Therefore, we can set the density function to be

g(x) =

{
0, if 1 ≤ x ≤ 2;

1
(x−1)2

, if x > 2,
(3)

which results in ∫ x

1
g(t)dt =

{
0, if 1 ≤ x ≤ 2;
1− 1

x−1 , if x > 2.
(4)

The competitive ratio ρ(p1) becomes

ρ(p1) =

{ 1
p1
, if 1 ≥ p1 ≥ 1

2 ;

2, if p1 <
1
2 .

(5)

When n = 2, the competitive ratio ρ(p1, p2) is

ρ(p1, p2) =

1− (1− p1)
∫ 1

p1
1 g(x)dx− (1− p2)

∫ 1
p2
1
p1

g(x)dx

p2
;

and assuming p1 <
1
2 , the same optimization process gives that

ρ(p1, p2) =
1

p2

(
2p1 −

p1 − p2
1− p1

)
. (6)

In general, we assume the first price p1 <
1
2 , then the purchase amount δi from seller vi at price

pi is

δi =

∫ 1
pi

1
pi−1

g(x)dx =
1

1− pi−1
− 1

1− pi
, for i = 1, 2, . . . , n,

using the density function g(x) in Eq. (3), and the achieved competitive ratio ρ(p1, p2, . . . , pn)
is

ρ(p1, p2, . . . , pn) =
1

pn

(
2p1 −

n−1∑
i=1

pi − pi+1

1− pi

)
.

We therefore have proved the following theorem:

Theorem 8. When the maximum price M is known, the one-way buying problem admits an

optimal online algorithm with competitive ratio 1
pn

(
2p1 −

∑n−1
i=1

pi−pi+1

1−pi

)
, where 1

2 > p1 > p2 >

. . . > pn is the price sequence and the maximum price M is normalized to 1. If the minimum
price pn ≥ 1

2 , then the optimal online algorithm has competitive ratio 1
pn
.
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4.2 Known price fluctuation ratio φ

With known φ, given the current minimum price pi we have p1 ≤M ≤ piφ, and thus we consider
in this case the price range is [p1/φ, p1φ]. The difference from the case of known maximum price
is that, here the maximum possible price changes whenever a new market price is revealed. Let
f(x) : [p1/φ, p1φ]→ R∗ be a density function. Then∫ p1φ

p1/φ
f(x)dx = 1, (7)

and letting p0 = p1φ, the purchase amount from seller vi at price pi is

δi =

∫ pi−1

pi

f(x)dx, for i = 1, 2, . . ..

The purchase cost therefore is

p1

∫ p1φ

p1

f(x)dx+ p2

∫ p1

p2

f(x)dx+ . . .+ pn

∫ pn−1

pn

f(x)dx+ pnφ

∫ pn

p1/φ
f(x)dx

On the other hand, given the price sequence p1 > p2 > . . . > pn, an optimal offline algorithm
purchases the whole unit of product at the lowest price pn, incurring a total cost of pn only.

When n = 1, the competitive ratio ρ(p1) is

ρ(p1) =
p1
∫ p1φ
p1

f(x)dx+ p1φ
∫ p1
p1/φ

f(x)dx

p1
= 1 + (φ− 1)

∫ p1

p1/φ
f(x)dx;

and
ρ′(p1) = (φ− 1) (f(p1)− f(p1/φ)/φ) .

Setting ρ′(p1) = 0, from Eq. (7) we have

f(x) =
1

2 lnφ
· 1
x
, and δ1 =

∫ p1φ

p1

f(x)dx =
1

2 lnφ
(ln p1 + lnφ− ln p1) =

1

2
.

Therefore, the competitive ratio ρ(p1) becomes

ρ(p1) = 1 + (φ− 1)
1

2
=

φ+ 1

2
. (8)

When n = 2, the competitive ratio ρ(p1, p2) is

ρ(p1, p2) =
p1δ1 + p2

∫ p1
p2

f(x)dx+ p2φ
∫ p2
p1/φ

f(x)dx

p2
=

p1
2p2

+
1

2
+ (φ− 1)

∫ p2

p1/φ
f(x)dx;

and
∂

∂p2
ρ(p1, p2) = −

p1
2p22

+ (φ− 1)f(p2).

Setting ∂
∂p2

ρ(p1, p2) = 0, we have

f(x) =
p1

2(φ− 1)x2
, and δ2 =

∫ p1

p2

f(x)dx =
p1

2(φ− 1)

(
1

p2
− 1

p1

)
.
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In general, for i ≥ 2, the purchase amount δi from seller vi at price pi is

δi =

∫ pi−1

pi

f(x)dx =
p1

2(φ− 1)

(
1

pi
− 1

pi−1

)
,

and the achieved competitive ratio ρ(p1, p2, . . . , pn) is

ρ(p1, p2, . . . , pn) =
1

2(φ− 1)pn

(
(pnφ

2 − p1) + p1

n∑
i=2

(
1− pi

pi−1

))
.

We therefore have proved the following theorem:

Theorem 9. When the fluctuation ratio φ is known, the one-way buying problem admits an

optimal online algorithm with competitive ratio 1
2(φ−1)pn

(
(pnφ

2 − p1) + p1
∑n

i=2

(
1− pi

pi−1

))
,

where p1 > p2 > . . . > pn ≥ p1/φ is the price sequence.

5 Conclusions

There are many real applications where the market price fluctuates and cannot be controlled
by the seller. It is a problem of practical interest to find a good revenue-maximizing (or profit-
maximizing) selling strategy for the seller in such a situation. This paper has made an attempt
towards this direction. However, the strategy prescribed in this paper may not be too practical
in the sense that, for example, products are not sold when the market price decreases. The
reality is that, in practice, the seller may have a fixed time-frame to sell and cannot wait forever
for the buyer with the highest price to arrive, and price movements from one moment to the next
may not be drastic or arbitrary. Additional assumptions and/or constraints to the unbounded
one-way trading problem to reflect such practical realities will be studied in our next attempt
and hopefully could lead to more practical selling strategies.
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Appendix

Lemma 5. For any integer h ≥ 1 and k ≥ 1, there exist a constant c > 1, such that

e · qh,0(bh + k − 1)

qh,0(bh + k)
≥ c

Proof. Based on the logarithmic characteristic of qh,0(x),
qh,0(bh+k−1)
qh,0(bh+k) achieves the lowest value

when k = 1. Thus, it is sufficient to prove the following inequality for any integer h ≥ 1.

e · qh,0(bh)
qh,0(bh + 1)

≥ c > 1

We prove Inequality (9) by induction on h.

Basis step: h = 1. As bh = e,

e · q1,0(b1)
q1,0(b1 + 1)

=
e · b1 · ln b1

(b1 + 1) · ln(b1 + 1)
≈ 1.513 > 1

Induction step: Assume Inequality (9) is true for h,

e · qh,0(bh)
qh,0(bh + 1)

=
e · bh · ln bh · ... · ln(h) bh

(bh + 1) · ln(bh + 1) · ... · ln(h)(bh + 1)

=
e · bh
bh + 1

h∏
h′=1

ln(h
′) bh

ln(h
′)(bh + 1)

≥ c > 1 (9)

Then for h+ 1,

e · qh+1,0(bh+1)

qh+1,0(bh+1 + 1)
=

e · bh+1 · ln bh+1 · ... · ln(h+1) bh+1

(bh+1 + 1) · ln(bh+1 + 1) · ... · ln(h+1)(bh+1 + 1)

=
e · bh+1

bh+1 + 1

h+1∏
h′=1

ln(h
′) bh+1

ln(h
′)(bh+1 + 1)

(10)

We shall prove that
e·bh+1

bh+1+1

∏h+1
h′=1

ln(h
′) bh+1

ln(h
′)(bh+1+1)

as given in Equation (10) is larger than

e·bh
bh+1

∏h
h′=1

ln(h
′) bh

ln(h
′)(bh+1)

as given in Equation (9) term by term. Since ln bh+1 = bh, we have

ln(bh+1 + 1) < bh + 1. Thus, for any 2 ≤ h′ ≤ h+ 1,

ln(h
′) bh+1

ln(h
′)(bh+1 + 1)

>
ln(h

′−1) bh

ln(h
′−1)(bh + 1)

As for the first few terms, because ln bh+1 = bh and ln(bh+1 + 1) = bh + δ, where δ ≪ 1, we
have

bh+1 · ln bh+1

(bh+1 + 1) · ln(bh+1 + 1)
≥ bh

bh + 1

Thus, we have shown that
e · qh,0(bh + k)

qh,0(bh + k + 1)
≥ c > 1.
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