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Abstract: This paper investigates worst-case analysis of a moving obstacle avoidance 

algorithm for unmanned vehicles in a dynamic environment in the presence of uncertainties 

and variations. Automatic worst-case search algorithms are developed based on optimization 

techniques,  illustrated by a Pioneer robot with a moving obstacle avoidance algorithm 

developed using the potential field method. The uncertainties in physical parameters, sensor 

measurements and even the model structure of the robot are taken into account in the worst-

case analysis. The minimum distance to a moving obstacle is considered as the objective 

function in the automatic search process. It is demonstrated that a local nonlinear 

optimization method may be not adequate, and global optimization techniques are necessary 

to provide reliable worst-case analysis. Monte Carlo simulation is carried out to demonstrate 

that the proposed automatic search methods provide a significant advantage over random 

sampling approaches. 

 

Keywords— Collision avoidance, Optimization, Potential field method, Monte Carlo 

simulation,  Robustness analysis. 

 
 
1. Introduction 

 

Safety of motion planning is an important issue in mobile robotics applications. Path planning 

and navigation schemes aim at guiding unmanned vehicles reaching a goal safely while 
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avoiding collision in a known/unknown environments. In dynamic environments, motions of 

moving obstacles are not known beforehand. The planner has to find immediate future 

trajectories using current sensor information of the identified moving obstacles. To this end, 

many collision avoidance algorithms have been proposed and tried on various applications. 

However, it is still far away to prove that those algorithms are reliable and always provide 

adequate performance under all the possible events in real operation. In addition to offering 

better performance, a key practical concern related to any new method is to reduce the risk of 

collisions in the presence of all possible parameter variations and various failure conditions. 

Therefore, all proposed collision avoidance algorithms have to be verified under all 

operational conditions and variations that may be experienced during the life of unmanned 

vehicles. The objective of this paper is to develop advanced algorithms to support the 

deployment of safety-critical moving obstacle avoidance systems (OAS) for unmanned 

vehicles.  

 

Before the first vehicle maneuver can be executed, the clearance of control laws and collision 

avoidance algorithm must be performed to prove that the controlled vehicle meets all the 

clearance criteria. For this purpose, extensive computer simulations and robustness 

assessment are performed. This verification approach provides much useful information, for 

example worst-case parameters combinations, which can serve to increase the performance of 

the vehicle or to redesign the control laws and collision avoidance algorithms. Therefore, 

verification of OAS would potentially contribute to reduce the global costs of collision 

avoidance algorithm testing and controller tuning assessment. To a large extent, the difference 

between the simulation based worst-case analysis (or Monte Carlo simulations) and real 

applications (experimental tests) depends on the fidelity of the model used in the verification 

process.   
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Depending on the operation scenarios, several collision avoidance algorithms have been 

developed for mobile robot path planning in the presence of unknown obstacles. Ge and Cui 

proposed a potential field method for motion planning of mobile robots in a dynamic 

environment where both the target and the obstacles are moving [1]. Raja et al. [2] introduced 

the Waiting Time Concept algorithm to resolve the problem of motion planning for a robot. A 

Conflict Detection and Resolution method was described by using geometric approach for 

unmanned aerial vehicles in a dynamic environment [3], while the survey in [4] reveals that 

the potential field method has been applied to various robot motion planning in the last three 

decades. Therefore, in this paper, the artificial potential field method is chosen as a candidate 

technique of path planning and moving obstacle avoidance for the verification study as it is 

simple and widely used. The verification technique proposed in this paper may be applicable 

for other moving obstacle avoidance algorithms after appropriate  modifications. 

Fault Tree Analysis was also applied to the TCAS (Traffic Alert and Collision Avoidance 

Systems) for the safety analysis in [5]. The reachable sets were computed in [6] to verify the 

safety of autonomous cars in a dynamic environment. This method has been developed for 

hybrid systems. Fraichard proposed three safety criteria for the safety analysis of mobile 

robotics systems, and a number of existing collision avoidance schemes are evaluated with 

respect to these three safety criteria [7].  It has been established that, in all cases, Nearness 

Diagram, Dynamic Window, and Velocity Obstacle violated one or several of the safety 

criteria. Motion safety of these approaches, especially in the presence of moving objects, 

could not be guaranteed. The safety analysis also shows that only the Inevitable Collision 

States method satisfies those three safety criteria. 
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1.1 Sources of Uncertainties 

 

In the development of collision avoidance algorithms, only a simple kinematic model of the 

vehicle is normally used.  This greatly simplifies the analysis and design of the collision 

avoidance algorithms. However, the model in the verification stage must be as close to the 

real world as possible, which demands a much more complicated model.  

Particularly three types of uncertainties are considered in this study: structural uncertainty, 

parameter uncertainty, and also data uncertainty in obstacle detection sensors. In general, a 

simplified model of a vehicle and its operational environment is used in the algorithm 

development process. However, the real vehicle and its operational environment are much 

more complicated, with possibly a much high order of dynamics, nonlinearity and much more 

complicated operation scenarios. This causes structural uncertainties in the verification of 

collision avoidance algorithms.  

 

The parameter uncertainties represent the variations of parameters that capture the changes of 

the vehicle dynamics and its operational environment. The variations of the autonomous 

vehicle dynamics in operation may arise due to the changes of the vehicle itself (e.g. the 

change of mass or the centre of gravity) or the change of the operation environment (e.g. tyre 

friction for different road surfaces).  

 
In the online motion planning, unmanned vehicles must be able to sense obstacles, determine 

the obstacles positions and velocities, and reach the target position. However, there are 

inevitably uncertainty in the sensor data due to the limited accuracy of the robot’s sensors and 

environmental noises. Therefore, it is necessary to verify whether or not an obstacle 

avoidance system under question is able to avoid moving obstacles with uncertain sensor 

data.  To this end, sensor data uncertainty in an unknown environment is also considered in 
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this study.  First it is assumed that there is no error in sensor data at the nominal parameters, 

i.e., the sensors work as 100% correctly at the nominal case. Then, uncertainties are 

introduced in sensor data by adding the nominal value with errors within prescribed upper 

and lower bounds. 

Optimization-based verification algorithm is applied to the moving OAS in the presence of 

all these uncertainties. The offline verification process is to prove that the vehicle is safe 

under all the conditions and variations. This is particularly important for safety critical 

functions such as collision avoidance. 

  

1.2  Anti-collision condition for moving obstacle avoidance  

 
The motion planning of a mobile robot in a dynamic environment is to plan and control the 

robot motion from the starting position to the goal position while avoiding moving obstacles. 

A dynamic obstacle avoidance algorithm in 2D is investigated in this study where a potential 

field based dynamic obstacle avoidance algorithm for non-cooperative robots is selected.  

 

As shown in Fig.1, ρ0 is a positive constant describing the potential field influence range of 

the obstacle. In general, one robot is considered as an ‘intruder’ (robot-B) whereas the other 

one (robot-A) is assumed to be equipped with an OAS which is capable of detecting and 

avoiding the intruder without knowing its intention. 
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Fig. 1  Moving obstacle avoidance clearance criterion 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Relative velocity between the robot and the obstacle 

 

In Fig.2, the relative velocity between the robot and the obstacles in the direction from the 

robot to the obstacle is defined as:  

𝑣𝑅𝑅(𝑡) = [𝑣(𝑡) − 𝑣𝑜𝑜𝑜(𝑡)]𝑇𝑛𝑅𝑅 

 



7 
 

where nRO is a unit vector pointing from the robot to the obstacle; v(t) and vobs (t) are the robot 

and obstacle velocities, respectively.  If vRO(t) ≤  0, then the robot is moving away from the 

obstacle. Therefore, no avoidance maneuver is needed. If vRO(t) > 0, the robot is moving 

close to the obstacle and avoidance maneuver  must be activated when the distance between 

the vehicle and the obstacle is predicted to be below a certain threshold. 

 
The minimum distance from the vehicle to an obstacle (dmin) during a collision avoidance 

maneuver is chosen as the criterion for the performance assessment. Having an acceptable 

safe margin during all the operation conditions is a widely used criterion to assess the safety 

of a moving vehicle. This essentially creates a safety bubble around a moving vehicle [8]. So 

it is nature and intuitive to select the minimum distance between the vehicle and any moving 

obstacle during all maneuvers including collision avoidance for the performance assessment.    

The robot-A can detect the moving obstacles shape, positions, orientation and velocity where 

a moving obstacle is considered as a circular object. For a moving OAS safety analysis, an 

intruder is defined with a radius of r0 and a safety margin of rsafe (See. Fig.1). The intruder 

radius and safety margin can be chosen according to the dimensions of the robots. Pioneer 3-

DX robots are considered in this case study [9]. Letting r = r0 + rsafe, the anti-collision 

condition is defined as dmin>r. 

In the moving OAS process, all violations of the minimum distance to the obstacle must be 

found and the corresponding worst-case combination of the uncertain parameters must also 

be computed. It shall be mentioned that this paper does not aim to develop a worst-case 

analysis approach providing explicit conditions which influence the minimum distance 

between the vehicle and the obstacle. Instead, it tries to answer the following question: given 

a designed collision avoidance algorithm, whether or not it fulfills the anti-collision 

conditions under all the possible described variations so is safe for operation.   
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1.3  The contributions of this paper 

 

The worst-case analysis approach advocated in this paper is to combine optimization 

techniques with simulation. To make the worst-case analysis results reliable, the analysis 

shall be performed based on a much more detailed model which not only captures factors 

ignored in the design stage but also represents realistic operational environments. Due to the 

complexity of the model, it is unlikely to find analytic expressions. Therefore, simulation is 

essential for providing numerical solutions. This work is an extension of the work presented 

in [10], where the optimization based verification process has been proposed for a small scale 

unmanned aircraft. In addition to looking into a different application, there are two main 

extensions in this paper: first the moving object avoidance is considered in this paper which 

makes the prediction of the possible worst-cases more complicated and challenging; secondly 

the uncertainty in sensor measurements are considered in this paper.   

The proposed approach in this paper is demonstrated by a unicycle-like mobile robot with 

collision avoidance algorithms developed using the potential field method. To this end, a 

complete unicycle mobile robot model is employed in the worst-case analysis, consisting of 

the kinematic and dynamic model, the speed control loop, external forces and wheel sliding. 

All possible variations in the vehicle and its operational conditions are then taken into 

account in the study. The worst-case analysis for collision avoidance algorithms is treated as 

a constrained nonlinear optimization problem with simulation being involved in each 

iteration. The worst-case analysis in the presence of all the possible uncertainties is cast as a 

problem of finding the combinations of the variations where the minimum of the minimum 

distance to the obstacle (dmin) appears. Monte Carlo simulation is carried out to provide a 

benchmark comparison of the proposed automatic worst case search methods. 
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The rest of the paper is organized as follows. As a benchmark, the kinematic and dynamic 

model of a commercial unicycle mobile robot is introduced in Section 2. A moving OAS is 

developed using the potential field method. Simulation results at the nominal parameters are 

provided to show the collision avoidance system functioning appropriately. Initial robustness 

analysis of the collision avoidance algorithm is carried out in Section 3. Optimization-based 

verification is introduced in Section 4, where local and global optimization algorithms are 

studied. Stochastic global optimization algorithms including GA and GLOBAL algorithms 

are considered to find the global minimum of the minimum distance to the obstacle. 

However, these methods cannot guarantee the global minima. Therefore, the deterministic 

global algorithm of DIRECT (Dividing RECTangles) method is further studied in the context 

of the verification of the moving OAS. Monte Carlo simulation is carried out for the purpose 

of comparison. Finally, Section 5 concludes the paper.  

 

2. Moving Obstacle Avoidance System Setup  

 
A motion planning and collision avoidance algorithm is designed in this section using the 

potential filed method. Although this is not the contribution of this paper, it is necessary for 

demonstrating the mismatching between the model used in the algorithm development and 

the vehicle itself, and for presenting the proposed verification process.  

 
 2.1 Unicycle Mobile Robot Model  

  
 
Pioneer 3-DX (See Fig.3) is an intelligent mobile robot. It can carry loads more robustly.  P3-

DX has been used in many applications including automating highway maintenance and 

constructions. The robot mass is 9kg with the payload  of 25kg. A schematic figure of a 

unicycle-like mobile robot is shown in Fig.4 [9]. 
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Fig.3   Pioneer 3-DXmobile robots [9] or cite where these pictures were took from as 
they not produced by you 

  

 

 

 

 

 

 

 

 

 

 

Fig. 4   Parameters of the unicycle-like mobile robot [9]  
 

 

where G is the centre of mass; h=[x y]T  the point that is required to tracks a trajectory; u  the 

longitudinal velocity of the centre of mass; ω and ѱ  the angular velocity and heading of the 

robot, respectively; D, b, a, e and c  various distances as defined in the figure; C  the position 

of the caster wheel; Fcx’ and Fcy’  the longitudinal and lateral force exerted on C by the caster 

wheel; E  the location of a tool on-board the robot; Fex’ and Fey’ the longitudinal and lateral 

force exerted on E by the tool, respectively. 
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In the robotic industry, most robots have low level PID velocity controllers to track input 

reference velocities and  the motor voltage (Vu ,Vω)  is not driven directly. Therefore, linear 

and angular reference velocities are considered as control signals [9]. In order to express 

these control signals, the robot servos have PD controllers to control the velocities of each 

moto. The corresponding proportional gains kPT   and   kPR ,  and derivative gains kDT  and kDR   

are described in Eq.2. These PD controllers are included in the model structure which is 

shown in Fig.5.  

�𝑉𝑢𝑉𝜔
� = �

𝑘𝑃𝑃�𝑢𝑟𝑟𝑟 − 𝑢� − 𝑘𝐷𝐷𝑢̇
𝑘𝑃𝑃�𝜔𝑟𝑟𝑟 − 𝜔� − 𝑘𝐷𝐷𝜔̇

� 

The complete mathematical model [9] is written as  
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where u and ω are the current robot linear and angular velocities. uref  and ωref  are the linear 

and angular reference velocities. θ = [θ1 θ2 θ3 θ4 θ5 θ6]T is the vector of model parameters 

which are given below:  
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δun = [δx  δy  0  δu  δω]T  is the uncertainty vector associated to the mobile robot:  
 

𝛿𝑥 = −𝑢�𝑠 sin𝜓 

𝛿𝑦 = 𝑢�𝑠 cos𝜓 

𝛿𝑢 =

𝑚𝑚𝑢�𝑠 + 𝐹𝑒𝑥′ + 𝐹𝑐𝑥′
𝐼𝑒
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𝑅𝑡𝑟𝐼𝑒
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𝐼𝑒𝑑
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𝑒𝐹𝑒𝑒′+𝑐𝑐𝑐𝑦′+𝜏𝑒

𝐼𝑒𝑑
𝑑

2𝑅𝑡𝑟
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𝐼𝑒𝑑
+𝑘𝐷𝐷𝑘𝑎𝑅𝑡𝑅𝑎𝐼𝑒

 

where  m is the  robot mass; Iz is the robot moment of inertia about vertical axis located in G; 

r is the  right and left wheel radius; ur
s  and  ul

s  are the longitudinal slip speeds of the right 

and left wheel; ūs  is the lateral slip speed of the wheels; ka is  the torque constant multiplied 

by the gear ratio; kb  is the voltage constant multiplied by the gear ratio; kt is the  nominal 

radius of the tire; Ra is the electric resistance constant; Rt is the radius of the tire; τe is the  

moment exerted on E by the tool; Ie and Be are the moment of inertia and the viscous friction 

coefficient of the combined motor  rotor, gearbox, and wheel. 

 

2.2  Motion Control and Obstacle Avoidance 

 
The control system involves two control loops (inner and outer) as shown in Fig.5. The outer-

loop is the motion controller which generates the desired linear velocity ud and angular 

velocity ωd. The inner-loop is chosen as a Proportional-Integral (PI) controller because the 

robot servos already have built-in PD controllers to control the velocities of each motor. The 

inner-loop PI control law is responsible to compute the linear and angular reference velocities 

signals (uref  and  ωref). True and desired velocities are saturated without exceeding given 

limits. 

(5) 
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Fig. 5  Mobile robot motion planning control systems 

 

A.  Inner-Loop Controller 
 

A PI control law with anti-windup is proposed as speed controllers which are given below. 

The goal of the inner loop is to achieve and maintain the desired linear velocity ud and 

desired angular velocity ωd.  

𝑢𝑟𝑟𝑟 = 𝐾1𝑒𝑢 + 𝐾3 ∫ 𝑒𝑢
𝑡
𝑜 (𝜏)𝑑𝑑 

𝜔𝑟𝑟𝑟 = 𝐾2𝑒𝜔+𝐾4 � 𝑒𝜔
𝑡

𝑜
(𝜏)𝑑𝑑 

where K1 and K2 are proportional controller gains, and K3 and K4 are integral controller gains. 

eu= ud- u and eω = ωd - ω  are the linear and angular velocity errors, respectively. 

 

B.  Outer-Loop Motion Controller 

 

The kinematic model of the vehicle is considered for the collision avoidance algorithm 

development stage. In general, the kinematic model of the wheeled mobile robot is described 

as  

𝑋̇ = 𝐺(𝑋)𝑈 

where 𝑋 ∈  ℝ𝑛  is the vector of generalized coordinates, and 𝑢 ∈  ℝ𝑚 (𝑚 < 𝑛) is the control input 

vector [11]. Given any desired smooth trajectory (start, goal and obstacle positions) Xd, a 

(6) 

(7) 
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(8) 

(9) 

(10) 

(11) 

(12) (12) 

straight-forward approach is to design the input command U using the pseudo-inverse control 

law  

𝑈 = 𝐺#(𝑋)𝑋̇𝑑 

 
where  G# (X) = [GT(X)G(X)]-1GT(X) is the pseudo-inverse of G(X).  
 

For the unicycle robot,  X =(x, y , ѱ)   is the configuration vector. Comparing Eq.3 and Eq.8 
gives [11] 

𝐺(𝑋) = �
𝑐𝑐𝑐𝑐 −𝑎𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎

0 1
� 

 
It follows from Eq.8 that the pseudo-inverse of G(X) takes the form  
 

𝐺#(𝑋) = 1
(𝑎2+1)

�(𝑎
2 + 1)𝑐𝑐𝑐𝑐 (𝑎2 + 1)𝑠𝑠𝑠𝑠 0
−𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 1� 

 

With U=[ud ωd]T , the feedback law Eq.8 for tracking a desired trajectory Xd= (xd , yd , ѱd)   
becomes [11] 

 

𝑢𝑑 = 𝑘𝑝(𝑥̇𝑑𝑐𝑐𝑐𝑐 + 𝑦̇𝑑𝑠𝑠𝑠𝑠) 

𝜔𝑑 = 𝑘𝑞
(𝑎2+1) (−𝑎𝑥̇𝑑𝑠𝑠𝑠𝜓 + 𝑎𝑦̇𝑑𝑐𝑐𝑐𝜓 + 𝜓̇𝑑)  

 

where gains  kp and  kq  are introduced to allow for additional freedom in weighting the two 

input commands. In order to apply the control law Eq.11 and Eq.12, the desired velocities 

have to be specified. These desired values can be determined using with the potential field 

method as described in the next section. 

C. Potential Field Method  

 

Potential field methods are widely used in path planning, but mostly in a static environment. 

However, the environents in real-time applications are dynamic. In [1], the potential field 
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(14) 

(15) 

(13) 

method for motion planning of a mobile robot in a dynamic environment was proposed. This 

moving obstacle avoidance algorithm is applied to the robots to verify the algorithm in the 

presence of uncertainties. The attractive potential field is defined as a function of the robot 

position to the goal position. The repulsive potential is defined as the function of the relative 

position and velocity of the robot with respect to the moving obstacles. The virtual forces are 

defined as the negative gradient of the potential field. The assumption is made as the 

obstacles shapes, positions and velocities can be measured on-line.  

 

Attractive Potential Function: The attractive potential field is defined as a function of the 

robot position to the target position where the target is a fixed point in space. The attractive 

potential field is defined as follows: 

𝑈𝑎𝑎𝑎(ℎ) = 𝛼𝑝‖𝑝𝑡𝑡𝑡 − ℎ‖2 

The corresponding attractive force is defined as : 

𝐹𝑎𝑎𝑎(ℎ) =   𝑘𝑎𝑎𝑎(𝑝𝑡𝑡𝑡 − ℎ ) 

where αp and katt are the positive constants; ptar is the goal position; h is the robot position. 

 

Repulsive Potential Function: A repulsive potential function is defined as the relative 

positions and velocities between the robot and the obstacles.  

If a maximum deceleration magnitude Amax is applied to the robot to reduce its velocity, the 

distance travelled by the robot before vRO defined in Eq.(1) reduces to zero is  

𝜌𝑚(𝑣𝑅𝑅) = 𝑣𝑅𝑅2(𝑡)
2𝐴𝑚𝑚𝑚

 

The velocity component perpendicular to vRO(t)nRO (See. Fig.2) is given in the following 

equation  

𝑣𝑅𝑅⊥𝑛𝑅𝑅⊥ = 𝑣(𝑡) − 𝑣𝑜𝑜𝑜 (𝑡) − 𝑣𝑅𝑅(𝑡)𝑛𝑅𝑅 (16) 
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The corresponding repulsive force (See.Fig.7) is defined as the negative gradient of the 

repulsive potential in terms of both the position and velocity  

𝐹𝑟𝑟𝑟(ℎ, 𝑣) = �
0,    𝑖𝑖 𝜌𝑠(ℎ, 𝑝𝑜𝑜𝑜) − 𝜌𝑚(𝑣𝑅𝑅) ≥ 𝜌0 𝑜𝑜  𝑣𝑅𝑅  ≤ 0

𝐹𝑟𝑟𝑟1 + 𝐹𝑟𝑟𝑟2,    𝑖𝑖 0 < 𝜌𝑠(ℎ, 𝑝𝑜𝑜𝑜) − 𝜌𝑚(𝑣𝑅𝑅) < 𝜌0 𝑎𝑎𝑎  𝑣𝑅𝑅 > 0
𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑,   𝑖𝑖 𝑣𝑅𝑅 > 0  𝑎𝑎𝑎  𝜌𝑠(ℎ,𝑝𝑜𝑜𝑜) < 𝜌𝑚(𝑣𝑅𝑅)

 

where 

𝐹𝑟𝑟𝑟1 = − 𝜂
(𝜌𝑠(ℎ,𝑝𝑜𝑜𝑜)−𝜌𝑚(𝑣𝑅𝑅))2

(1 + 𝑣𝑅𝑅
𝐴𝑚𝑚𝑚

)𝑛𝑅𝑅 

and 

𝐹𝑟𝑟𝑟2 = 𝜂𝑣𝑅𝑅𝑣𝑅𝑅⊥
𝜌𝑠(ℎ,𝑝𝑜𝑜𝑜)𝐴𝑚𝑚𝑚(𝜌𝑠(ℎ,𝑝𝑜𝑜𝑜)−𝜌𝑚(𝑣𝑅𝑅))2

𝑛𝑅𝑅⊥ 

 

where ρ0 is a positive constant describing the influence range of the obstacle; η is a positive 

constant; and  ρs  is the shortest distance between the robot and the body of the obstacle. 

 

 

 

 

 

 

 

 

 

 

Fig.6 Repulsive forces 

The total force FTotal is the combination of attractive force and repulsive forces. The total 

virtual force is used for motion planning. More details can be found in [1]. 

Therefore, 

(17) 

(18) 

(19) 



17 
 

(20) �𝑥̇𝑑𝑦̇𝑑
� = 𝐹𝑎𝑎𝑎 + 𝐹𝑟𝑟𝑟(ℎ, 𝑣) 

𝜓̇𝑑 = 𝑎𝑎𝑎𝑎2 �
𝑦̇𝑑
𝑥̇𝑑
� − 𝜓 

By defining atan2{0,0}=0, the above function remains continuous along any approaching 

direction to the goal. The resulting command ud and ωd are determined by Eq. (11), (12), and 

(20).  

2.3 Simulation Results at Nominal Parameters 

 

Simulation is carried out to confirm that a desirable performance is achieved at the nominal 

case under the design described in the previous sections. The nominal parameter values of the 

robot are given in Table.1. The uncertainty vector δun is considered as [-0.05sinѱ    0.05cosѱ   

0   0.2   0.5]T. The PI controller gains and motion planner parameters for potential field force 

are also tuned and set to fixed values for the verification process. Proportional gains kPT  and 

kPR  are set to 11 and derivative gains kDT and kDR are set to 0.1. The saturation limits of the 

true and desired values of linear and angular speeds of the mobile robot used in the 

simulations are [0, 1.6](m/s) and [-3.5, 3.5](rad/s) respectively. The safety radius including 

safe margin is chosen as 5m. The simulation results at 10, 15, 20, and 40 seconds are shown 

in Fig.7 to 10. The intruder moves to the goal position without any avoiding maneuvers while 

robot avoids the intruder and reaches to the goal position. The minimum distance to the 

obstacle is obtained as 7.668m which is greater than the safety radius (dmin> r). Therefore, the 

moving obstacle avoidance algorithm functions correctly at the nominal parameters.  

 

 

TABLE 1 
UNICYCLE MODE, NOMINAL PARAMETERS   

 
Symbol Parameters Values 
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m Robot mass and payload  18  (kg) 

IZ Robot moment of inertia  20 kg.m2 

Rt Radius of the tire 0.14  (m) 

r Right and left wheel radius 0.0977  (m) 

ka Torque constant multiplied by the gear ratio 0.8808 (N.m/A) 

Ra Electric resistance constant 0.71 (Ω) 

Ie Moment of inertia of the combined motor rotor, 
gearbox, and wheel 

2  kg.m2 

Be Viscous friction of the combined motor rotor, gearbox, 
and wheel 

0.8 

kb Voltage constant multiplied by the gear ratio 0.8808 (V.s/rad)  

d Width of the robot  0.395 (m) 

a Distance to the point h 0.25 (m) 

b Position of center of mass  0.1 (m) 

   

 

 

 

 

 

 

 

 

 

 

Fig. 7 Simulation response at t=10 sec 
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Fig.8 Simulation response at t=15 sec 

 

 

 

 

 

 

 

 

Fig.9  Simulation response at t=20 sec 

 

 

 

 

 

 

 

 

 

Fig.10  Simulation response at t=40 sec 

3. Initial Robustness Analysis 
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Initial robustness analysis of the proposed algorithm is carried out in this Section. 

Uncertainties are introduced in sensor data as follows: x position of the obstacle: Px0 = x0 + 

Δx; y position of the obstacle: Py0 = y0 + Δy; Obstacle orientation : Pѱ0 = ѱ0 +Δѱ ; Obstacle 

velocity : Vv0=vobs + Δv, where pobs =(x0 , y0 , ѱ0) is the true obstacle reading at the nominal 

case.  Δx, Δy, and Δѱ are sensor data errors in x0, y0 , and ѱ0 respectively. In the similar 

fashion, vobs is the true obstacle velocity, and Δv is the velocity error. After analyzing the 

infulence of obstacle detection sensor data uncertainties,  the most significant r uncertainties 

are found to be  x and y position ( i.e. Δx and Δy), which are chosen within the bounds to find 

the worst-case condition.  

 

Eight uncertain parameters are considered in this case study. Lower and upper bounds of each 

uncertain parameter are given in Table.2. The structural uncertainty of δx, δy ,δu and δω are 

considered in this study. Variation in lateral slip speed (ūs ) is applied within the range for the 

uncertainty of δx and δy. All the possible dynamic model parameters variations are 

considered, and most significant are selected for the optimization search process to find the 

worst-case.  Fig.11 to Fig.18 show the variations of the minimum distance to the obstacle 

with respect to the parameter variations. It clearly shows that for different uncertain 

parameters, the influence on the minimum distance to the obstacle could be quite different. 

The minimum distance almost linearly depends on the variations of each papameter. The 

minimum distance to the obstacle decreases with the increase of Ie, m, δu, Δx. 

 

 

 

 

 

TABLE 2 
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UNICYCLE MODEL, UNCERTAIN PARAMETERS 
 

Parameter Description  Bounds 

Δx Variation in sensor data, x (m) [-0.5, 0.5] 

Δy Variation in sensor data, y (m) [-0.5, 0.5] 

m Variation in robot mass  and payload(kg) [9, 34] 

Be Variation in viscous friction of the combined motor 
rotor, gearbox, and wheel  

[0.48, 1.12] 

δu Variation in uncertainty in the linear acceleration  (m/s2) [0.1, 0.9] 

δω Variation in uncertainty in the angular acceleration (rad/s2) [0.1, 0.9] 

Ie Variation in moment of inertia of the combined motor 
rotor, gearbox, and wheel (kg.m2) 

[0.2, 3.8]   

ūs Variation in lateral slip speed (m/s) [0.02,0.08] 

   

 

 

 

 

 

 

 

 

 

 

 

Fig. 11   Variation in robot mass and payload, m 
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Fig. 12    Variation in the moment of inertia, Ie 

 

 

 

 

 

 

 

 

 

 

Fig.13  Variation in viscous friction, Be 

 

 

 

 

 

 

 

 

 

 

Fig.14  Variation in uncertainty in the linear acceleration, δu 
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Fig.15   Variation in uncertainty in the angular acceleration, δω 
 

 

 

 

 

 

 

 

 

 

 

Fig.16  Variation  in lateral slip speed of the wheels, u-s 

 

 

 

 

 

 

 

 

 

 

 

Fig.17  Variation in the sensor data, Δx 
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Fig.18  Variation in the sensor data, Δy 

 

 

4. Optimization-based worst-case analysis  Approach 

 
The verification of collision avoidance systems can be stated as a robustness analysis 

problem, where a suitably defined anti-collision condition must be checked within the most 

significant variations of robot parameter and sensor uncertainties. In order to find the worst-

case parameters and the worst-case condition, the efficient verification process developed 

based on optimization algorithm is applied to the moving obstacle avoidance system. This 

optimization-based verification method can be applied to linear and nonlinear robustness 

analysis, and also to different static and moving obstacle avoidance algorithms.  Therefore, it 

is a very flexible and efficient method for the robustness analysis of collision avoidance 

systems.  

 

Different algorithms for solving nonlinear optimization problems with bounds on the 

variables are applied to the moving obstacle avoidance system to find the worst-case. The 

parameters set is chosen within the bound range because they are uncertain or they may vary 

during operation. A non-linear optimization problem is difficult to solve because the 

nonlinear constraints form feasible regions that are difficult to find, and also the nonlinear 
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(21) 

objective may contain many local minima that traps the search process. Nonlinear 

optimization methods can be classified as local optimization and global optimization 

methods. Local optimization methods may fail to find the optimal solutions. Therefore, these 

methods may miss an unsafe point. To overcome the local minima problem, global 

optimization methods are applied to find the worst-case. Finding the global minimum of a 

nonlinear constrained optimization problem is a challenging task. A number of global 

optimization algorithms have been developed  to find the globally optimal solutions. 

However, in many engineering applications,  finding the global minima is a very time 

consuming process due to its computational complexity. The mechanism of escaping from 

local minima determines the efficiency of a global optimization algorithm. Global 

optimization methods can be classified as either stochastic or deterministic. Stochastic 

methods evaluate the objective function at randomly sampled points from the solution space. 

These stochastic global optimization methods depend on probability conditions to make 

decisions. Therefore, these algorithms cannot guarantee the global minima.  On the other 

hand, the deterministic methods do not involve any elements of randomness, and these 

methods evaluate the objective function satisfies certain conditions, such as Lipschitz 

condition.  Therefore, these algorithms can guarantee the optimal solution.  

 

The objective function in the optimization is chosen as the minimum distance from the 

vehicle to the obstacle during the maneuver, i,e.  

dmin = min(d(t))  for t ≤ T  (sec) 

 s.t PL ≤ P≤ PU 

where T is the time period of the collision avoidance maneuver and the distance to the 

obstacle d(t) is calculated using simulation with the completed model of the vehicle in Fig.5. 

The optimization problem is formulated as to finding the minimum of the objective function 
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in Eq.(21) subject to PL ≤ P≤ PU where P is the uncertain parameters set.  PL and PU are the 

lower and upper bounds of P.  It shall be highlighted that in the development of the collision 

avoidance algorithms described in Section 2.2, the dynamics and the inner loop controller of 

the vehicle as shown in Fig.5 has been ignored.  The other factors such as saturation are also 

ignored. This causes substantial differences in the complexity between the model used in  the 

collision avoidance algorithm development and the model used in the simulation embedded 

in the automatic worst case searching process.  

 

In the optimization-based moving obstacle avoidance verification process, the first step is 

initialization where an anti-collision condition is defined and the ranges of uncertain 

parameters are determined. Before applying an optimization algorithm, the anti-collision 

condition is checked at the nominal case. If it is satisfied, an optimization method is applied 

to identify the worst-case conditions and the worst-case parameters. The moving obstacle 

avoidance algorithm passes the verification process if the minimum distance to the obstacle at 

the identified worst cases satisfy the anti-collision condition. Otherwise, the obstacle 

avoidance algorithm and controller have to be redefined to satisfy the anti-collision condition 

[10]. Several optimization algorithms are investigated for the verification of the obstacle 

avoidance algorithms in this paper.  

4.1  Local Optimization  
  
 
Local optimization method is a very efficient method when the objective function is quasi-

convex and the feasible region is convex. In linear optimization problems, they converge to a 

local minimum from some starting points. However, in nonlinear optimization problems, 

local search methods depend on the starting points, and converge to the local minima. 

Sequential Quadratic Programming (SQP) methods are a standard general purpose algorithm 

for solving smooth and well-scaled nonlinear optimization problems when functions and 
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gradients can be evaluated with high precision [12]. It is an iterative method starting from an 

initial point and converging to a local minimum. The function fmincon is a MATLAB 

implementation. The local optimization method is applied with different starting points to the 

problem of evaluating a clearance criterion for the moving obstacle avoidance systems.  Eight 

uncertain parameters are chosen for the robustness analysis. Lower and upper bounds of 

parameters are given to determine the worst-case parameters. The fmincon tries to find 

iteratively a minimum at an initial estimate. Therefore, different starting points are specified 

and compared the results. The iteration is repeated until a specified termination criterion 

(either maximum number of function evaluations or convergence accuracy) is met.   

 

In Table.3, the results of the minimum distance to the obstacle and the worst case parameters 

with different starting points are given. At case-1, it converges to the minimum distance of 

6.8164m while it is 5.8722m at case-2. More noticeably, it can be seen that there are huge 

differences in the converging parameters set.  Therefore, the results clearly show that fmincon 

does not give the same solutions with the different starting points because a local 

optimization solution quality depends heavily on the initial points picked. Local optimization-

based methods are  not suitable for this study. Because of this worst-case violation of the 

optimal solution, the global optimization methods are considered to find the true worst-case.  

 

TABLE.3. LOCAL OPTIMIZATION RESULTS 

Algorithm Starting point 

[m,Be,δu, δω,Ie,ūs, Δx, Δy] 

Convergent point 

[m,Be,δu, δω,Ie,ūs, Δx, Δy] 

dmin(m) 

Fmincon-case 1 [20,  1.0, 0.2, 0.2,   

0.6, 0.03, 0, 0] 

[18.271, 0.48, 0.9, 0.1,  

0.204, 0.02, 0.5, - 0.5] 

6.8164 
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4.2 Stochastic Global Optimization 
 

A. Genetic  Algorithms  
  
Genetic Algorithms (GA’s) are general purpose stochastic search and optimization 

algorithms, based on genetic and evolutionary principles. The theory and practice of the GA 

was originally invented by John Holland in 1960s and was fully elaborated in his book 

Adaption in Natural and Artificial Systems published in 1975 [13]. The basic idea of the 

approach is to start with a set of designs, randomly generated using the allowable values for 

each design variable. Each design is also assigned a fitness value. The process is continued 

until a stopping criterion is satisfied or the number of iterations exceeds  a specified limit. 

Three genetic operators are used to accomplish this task: Selection, Crossover, and Mutation. 

Selection is an operator where an old design is copied into the new population according to 

the design’s fitness. There are many different strategies to implement this selection operator 

including roulette wheel selection, tournament selection and stochastic universal sampling. 

The crossover operator corresponds to allowing selected members of the new population to 

exchange characteristics of their designs among themselves. Crossover entails the selection of 

starting and ending positions on a pair of randomly selected strings, and simply exchanging 

the string of 0’s and 1’s between these positions. Mutation is the third step that safeguards the 

process from a complete premature loss of valuable genetic material during selection and 

crossover. The foregoing three steps are repeated for successive generations of the population 

until no further improvement in fitness is attainable [14, 15, 16]. 

B. GLOBAL  Algorithm 
 

Fmincon-case2 [30, 1.0,  0.8,  0.8,  

3.0, 0.07, 0.4, 0.4] 

[34, 0.48, 0.9, 0.1 ,  

 3.8, 0.02, 0.5, - 0.5] 

5.8722 
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GLOBAL algorithm was developed by Csendes in 1988. It is a modified version of the 

stochastic algorithm by Boender et al (1982) implemented in FORTRAN [17]. The new 

implementation GLOBAL.m has been written in MATLAB. It is a multistart clustering 

algorithm. It has two phases i.e. a global and a local one. The global phase consists of 

sampling and clustering, while the local phase is based on local searches. A general clustering 

method starts with the generation of a uniform sample in the search space (the region defined 

by lower and upper bounds). After transforming the sample (by selecting a user set 

percentage of the sample points with the lowest function values), the clustering procedure is 

applied. Then, the local search starts from those points which have not been assigned to a 

cluster. GLOBAL uses the Single Linkage clustering rule [17]. GLOBAL.m is the bound 

constrained global optimization problems with a black-box type objective function. 

GLOBALm has different local optimization methods that are capable of handling constraints. 

The UNIRANDI local search method is part of the GLOBAL package while the BFGS 

(Broyden-Fletcher-Goldfarb-Shanno) local search is part of the MATLAB package. 

GLOBAL has six parameters to set: the number of sample points, the number of best points 

selected, the stopping criterion parameter for local search, the maximum number of function 

evaluations for local search, the maximum number of local minima to explore, and the used 

local method. All these parameters have a default value.  

 

4.3 Deterministic Global Optimization 
 

Both GA and GLOBAL algorithms are stochastic global optimization methods and cannot 

guarantee the worst case is found, which is vital for ensuring the safety of unmanned 

vehicles. Therefore,  a deterministic global optimization method is investigated and applied to 

the moving obstacle avoidance system. DIRECT algorithm (DIviding RECTangles) is a kind 

of deterministic global optimization algorithms that is guaranteed to converge to the globally 
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optimal if the objective function is continuous or at least continuous in the neighborhood of 

the global optimum.  DIRECT algorithm was developed by Jones et al in 1993 [18]. The 

DIRECT algorithm was created in order to solve difficult global optimization problems with 

bound constrained and a real-valued objective function. DIRECT method does not require 

any derivative information. It is a modification of standard Lipschitzian optimization 

methods. The DIRECT algorithm will globally converge to the minimal value of the 

objective function. This global convergence may come at the expense of a large and 

exhaustive search over the domain. This global search algorithm can be very useful when the 

objective function is a “black-box” function. More details of the DIRECT algorithm can be 

found in [18, 19, 20] 

 

4.4 Global Optimization Results 

 

Stochastic algorithms including GA and GLOBAL and deterministic algorithms such as 

DIRECT are applied to the moving OAS to find the worst-case condition and the worst-case 

parameters set. The design optimization results and the performance of these optimization 

algorithms are compared. The iteration process is repeated until the specified stopping criteria 

for the optimization process is reached. And also, eight design variables are restricted within 

a lower and an upper bound during this process. In GA, the selection function of roulette 

wheel is used for this study. The population size and crossover fraction are selected as default 

value of 20 and 0.8 respectively. The GA optimization is terminated after given iterations 

(100). The GLOBAL optimization with UNIRANDI as the local search method is applied to 

find the global solution for the moving obstacle avoidance systems. The DIRECT algorithm 

terminates as soon as it exceeds the given iterations of 200. 
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A comparison of the minimum distance to obstacle before and after the optimization is given 

in Table.4. A significant change in the minimum distance to obstacle is seen after the 

optimization. All the optimization algorithms are performed in MATLAB 2011b and Intel 

(R) Core(TM) 2 Duo CPU (3.16GHz). The minimum distances to the obstacle with the 

DIRECT , GA and GLOBAL algorithms are very closer. GLOBAL took 1112 functions 

evaluation with 200 sampling points while DIRECT took 8751 function evaluations. GA took 

2 hours and 26 minutes to converge to the global minimum while GLOBAL and DIRECT 

algorithms took around 5 hours and 20 minutes, respectively. GA performs faster than other 

two algorithms; however, DIRECT algorithm can guarantee the global minimum. 

TABLE.4. COMPARISON OF WORST-CASE CONDITION, dmin(m) 

    Before optimization  dmin (m) After Optimization  dmin (m) 
Norminal Case DIRECT GLOBAL GA 

7.6668 
   

5.8726 5.8719 5.8758 

   
 

Final values of eight design variables after optimization are shown in Table.5. It can be seen 

that the mass is greatly increased from 18 to 34 kg. And also, there are huge differences in 

other parameters. All the three global algorithms are converged to nearly same values. The 

history of iteration versus fitness value for the DIRECT algorithm is shown in Fig.19. This 

figure shows that the fitness value of dmin is almost same from iteration 50 to 200. 
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Fig.19  DIRECT algorithm- Iteration vs. Fitness value 
TABLE.5. COMPARISON OF WORST-CASE PARAMETERS VALUES 

 
 

Design Variable Initial Value 
Final Value 

DIRECT GLOBAL GA 

M 18 33.994 34 33.989 
Be 0.8 0.48 0.48 0.4806 

δu 0.2 0.8999 0. 90 0.8997 

δω 0.5 0.1 0.1 0.1 

Ie 2 3.7975 3.7998 3.7978 

ūs 0.05 0.02 0.02 0.02 

Δx 0 0.4999 0. 5 0.4993 

Δy 0 -0.5 - 0. 5 - 0.5 
 

 

 

4.5 Validate the worst-case Results 

 

Applying the optimization-based verification methods, the optimized minimum distance to 

the obstacle dmin is decreased from 7.6668 to 5.8727m. The performance of the moving 

obstacle avoidance algorithm at the worst-case parameters is checked with simulation 

response  as shown in Fig.20. The worst-case minimum distance to the obstacle dmin is 

5.8727m which is greater than the specified safety radius of the obstacle. This concludes that 

the moving obstacle avoidance algorithm and the controller provide adequate performance at 

the worst-case parameters. Furthermore, in the presence of all the described variations and 

uncertainties, the safety margin for anti-collision is respected. The time versus distance to the 

obstacle at the nominal and worst-case parameters is shown in Fig.21. It clearly shows that 
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there is a significant difference in the minimum distance to the obstacle at the nominal and 

worst-case parameters during the maneuver.  

 

 

 

 

 

 

 

 

 

Fig.20  Simulation results at worst-case parameters, t = 40 sec 

 

 

 

 

 

 

 

 

 

 

 
Fig.21   Time vs distance to the obstacle at nominal and worst-case parameters 
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To verify the proposed worst case analysis methods and benchmark their performance, the 

most widely used Monte Carlo method (MCM) is applied to the case study [21]. A 

rectangular uniform distribution is assigned to the eight uncertain parameters within their 

corresponding lower and upper bounds.  Monte Carlo simulation is executed with 5,000 runs 

to find the worst case scenario and the results are shown in Fig.22. The minimum distance to 

the obstacle dmin at the worst case obtained by MCM is 6.43m while that identified by the 

optimization based automatic search methods proposed in this paper is 5.87m. The worst-case 

condition obtained from the MCM is not the true worst-case and there is a high chance of 

missing the true worst-case solution in this approach. Therefore, the proposed automatic 

worst-case analysis approach provided a more efficient and reliable verification method for 

the collision avoidance systems.  

 

 

 

 

 

 

 

 

Fig.22   Monte Carlo simulations results 

5 Conclusions 

Safety is a paramount consideration in developing unmanned vehicles. In this paper, the 

safety analysis of moving obstacle avoidance systems is presented where optimization-based 
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methods have been developed to automatically search the worst cases. The key idea in this 

approach is that in optimization, it is not necessary to evaluate a cost function over all 

possible solutions to find the optimal solution. However different from many optimization 

problems, it is important to find all the possible worst cases in the worst case analysis of 

safety critical functions like obstacle avoidance. This requires as an optimization algorithm 

that may guarantee the global optimal solution. To demonstrate the challenges of the problem 

and the effectiveness of the proposed optimization bases verification process, a Pioneer 

unicycle robot is chosen for the benchmark study. Kinematic and dynamic equations of the 

unicycle robot are introduced and the controllers are introduced based on these equations. An 

inner-outer-loop control architecture is used for path planning, tracking and collision 

avoidance where a local planner in the outer-loop is developed using the artificial potential 

field method. 

An optimization based automatic search approach is proposed to find the worst-cases and 

check whether the safety criterion is satisfied under all possible uncertainties. Parametric 

uncertainties, sensor uncertainties and structural mismatching between the model used for 

collision avoidance algorithm design and the real vehicle have been addressed. Eight 

uncertain parameters including the changes of mass, inertia, friction coefficients, side slip and 

sensor data are considered in this case study. For local optimization methods, different worst-

cases have been identified when the optimization started from different initial conditions 

therefore the optimization solutions do not converge to the global minimum. This implies that 

the local optimization is not suitable for the verification of collision avoidance algorithms in  

this case study. Stochastic global optimization algorithms including GA and GLOBAL 

methods have been applied to the problem. However, as they are stochastic global 

optimization algorithms, they cannot guarantee the optimization process converge to the 

global solutions, i.e. the worst-cases. To overcome this drawback, a deterministic global 
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optimization algorithm, DIRECT method, has been investigated for the worst-case analysis. 

Compared with other global optimization algorithms in this study, DIRECT algorithm can 

guarantee the worst-cases are found. The results show that it provides a most promising 

candidate for the optimization based verification process. Furthermore, the Monte Carlo 

simulations are carried out to verify the proposed methods. The study clearly demonstrates 

that the optimization based worst-case analysis methods achieve a better performance than 

the Monte Carlo approach.  
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