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SYNOPSIS 

In this thesis, studies of flat or pancake type electromagnetic launcher systems are 

described. The studies involved the development of several numerical models, and 

are supported throughout by experimental investigation. The models were based on a 

coaxial filamentary division technique, and the results they provided were compared 

with those from a commercial electromagnetic finite element modelling package. 

They were used to investigate some of the many possible launcher structures and 

power supply arrangements, as part of a wide-ranging parametric study. The aim of 

this thesis was to gain an insight into the factors that affect the performance of the 

launchers. Several different techniques were implemented to reduce the computation 

time. 

Practical experimentation provided a clear demonstration of the launcher technology, 

and supplied valuable model validation data. To aid the experimental work new 

projectile speed and yaw measurement systems were developed, and these were 

supported by results from a high-speed camera. A novel dual projectile launcher was 

tested, and was shown to improve the launch efficiency and to operate at higher 

energies, due to the reduction in drive coil recoil. Projectile deformation was 

investigated in both solid discs and flat annular projectiles. 
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1. INTRODUCTION 

Although conventional guns, missiles, and rockets have been in use for hundreds of 

years, they have been continually developed, modified and improved. The 

development of the conventional gun is now nearing its optimum. In a conventional 

chemical gun, the muzzle velocity is limited to the speed of sound in the driving gas 

behind the projectile. Missiles and rockets do not suffer from this limitation, but their 

payloads are usually around only 1 % of their total ground weight. In addition, any 

chemically propelled projectile requires the movement and storage of hazardous and 

explosive chemicals. Electromagnetic launchers have the potential to increase the 

muzzle velocity and range, while removing the need for hazardous chemicals. With a 

. theoretical velocity limit of the speed of light, the use of electromagnetic launchers 

opens a whole new range of possibilities. 

However, the use of current electromagnetic launchers is severely limited by their low 

energy transfer ~fficiencies and large pulse power supply requirements. Although 

electrical energy is easily generated, it is much more difficult to generate the very high 

energies in the short pulsed bursts required by electromagnetic launchers. There are 

many different types of electromagnetic launchers, but this thesis considers a little 

studied type known as flat induction launcher or pancake coil launcher. 

To enable a wide range of theoretical studies to be undertaken, without the time and 

expense of practical experimentation, several computer models were used. Possible 

launcher arrangements were studied using both finite element and filamentary models. 

Since the topological nature of the launchers lends itself to a filamentary / circuit 

analysis approach, a dedicated filamentary modelling package was developed. By 

dividing the conducting regions into small filaments, it was possible to use classic 

circuit analysis methods, with the developments by Kron, Happ and others, to 

formulate an electrical equivalent circuit model. 

During the development ofthe filamentary models, several numerical techniques were 

employed. These fall into two areas, the solution of differential equations and that of 
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large sets of simultaneous equations. Both single-step and multi-step techniques were 

used to solve the differential equations. While the multi-step methods were fast, they 

required knowledge of the previous time steps. A single-step method was therefore 

used to generate the required data history, before the program switched to using a 

multi-step method. While several Gaussian methods for solving simultaneous 

equations were implemented, the triangular decomposition method was proven to be 

the most efficient. To reduce the amount of computer storage that was required by the 

filamentary model, two sparse matrix techniques were adopted. 

Analysing the utilisation of computer time led to a significant reduction in the time 

taken. In addition, the filamentary model was reformulated several times in an 

attempt to reduce further the solution time. The model contained both electrical and 

mechanical components of the system in an integrated manner, and allowed the speed 

of the launched projectiles to be accurately predicted. Also developed was a structural 

model ofthe projectile, which could be used to predict its deformation. In addition, a 

flexible method of modelling the power supply components was developed, to allow a 

variety of power supply arrangements to be studied. 

Optimum launcher arrangements were studied using the filamentary model. From 

these, it was shown that there was an optimum supply voltage for a given projectile 

mass. The effects of several parameters on the optimum launcher conditions were 

studied, including the projectile mass, relative projectile size, number of drive coil 

turns, supply voltage, inter-turn insulation, drive coil thickness and initial projectile 

displacement. In addition, several novel launcher structures were investigated, 

including two-layer drive coils and dual projectile launchers. 

The results from a series of practical experiments clearly validated the modelled 

results. From the practical work a new method of determining projectile yaw was 

developed. In addition, the effects of projectile deformation were investigated. 
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2. ELECTROMAGNETIC LAUNCHERS 

This chapter provides a historical overview of the main areas and subjects involved in 

electromagnetic launchers. Although launcher developments have been presented in 

many different journals, much of the development work, especially that in the US, has 

been presented at eight international symposia over the last 19 years. This chapter 

reviews the work presented at these symposia, together with other published work. 

2.1. INTRODUCTION TO ELECTROMAGNETIC LAUNCHERS 

The area of electromagnetic launchers covers a wide range of very different machines, 

but they all attempt to accelerate projectiles to very high velocities by using electrical 

energy. As the name implies, the projectiles is accelerated by the interaction between 

magnetic fields and current carrying conductors. 

Possible forms of electromagnetic launchers were conceived some time ago, but only 

in the last twenty years or so, have they been the focus of a major research effort. As 

related technologies advanced, the development of more useful and practical 

launchers with many different applications has become possible. Most of the research 

has been directed towards military applications, such as a replacement for the 

conventional artillery gun. However, other possible uses include the acceleration of 

hydrogen fuel pellets for fusion reactors, launching unmanned spacecraft, surface 

treatments by accelerated plasma pulses, magnetic levitation trains, pile drivers and 

many others. 

Many different types and groups of launchers have been developed. Unfortunately, 

due the rapid development of launcher technology, there is some confusion over their 

description and naming. This means that many launcher names have evolved along 

with the research, which has led to different terminology being used by different 

authors for very similar devices. The two most distinctly different types are railguns 

and coilguns. However, hybrid launchers have been invented which blur even this 

distinction. This distinction between the various types of coilgun is even more vague, 

3 



Chapter 2 Electromagnetic Launchers 

with some terms being used almost interchangeably. The launchers investigated in 

this thesis are all the pancake or flat coil type and will be generally called "launchers". 

2.2. EARLY HISTORY 

Linear electric motors have existed for almost as long as their rotary counterparts. 

The first such motor was a reluctance machine built by Charles Wheatstone in 1845. 

In 1889, Tesla and Ferraris published a description of a method of generating 

polyphase currents, and Tesla exhibited a crude type of three-phase induction motor at 

the Frankfurt Exhibition in 1891. This was soon followed by a patent for the first 

linear induction motor, submitted by the Mayor of Pittsburgh in 1895. A patent was 

granted to Jacquard, Weaver & Electric Shuttle Company in 1895 for a linear motor 

designed to propel a weaving shuttle at 50 ftlsec. In 1914, Bachelet demonstrated a 

true flying shuttle, which was both propelled and levitated electromagnetically. 

Although there was no lack of innovation in textile applications, the relatively high 

cost of the electrical apparatus required prevented its wide-spread use. 

The first electromagnetic launcher was the Birkeland Cannon of 1918 [I]. This was a 

reluctance type machine with a tubular construction and a row of DC coils energised 

in sequence. In 1920, Fauchon Villeplee published a book on the subject of 

electromagnetic launchers, called "Cannons Electrique". Many attempts at 

developing useful linear motors and launchers soon followed, and by the Second 

World War 45 patents had been issued [2]. After the war (1946) Westinghouse built a 

full size aircraft launcher called the "Electropult", which was fundamentally an 

induction motor with a moving primary. 

2.3. RECENT ELECTROMAGNETIC LAUNCHER HISTORY 

Although much research had been done, it had been performed in an individual and 

disjointed manner. The possible development of an electromagnetic launcher was 

producing some interest in the 1970s, because of independent developments in 

support technologies, such as high energy density storage devices and improvements 

4 
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in high current moving contacts. In 1978, the US Department of Defence set-up an 

advisory panel to focus the efforts of researchers. At a workshop held at the US Naval 

Academy in December 1978, sixty scientists and engineers discussed recent 

developments in the supporting technologies. From this workshop, it was evident that 

there were many practical possibilities for electromagnetic launcher technology. 

A US Department of Defence working group proposed the following list of six 

possible experiments [2]. 

~ Railgun to launch 0.3 kg mass up to 3km/s using a 15M] homopolar generator. 

~ Design and construction of a small (26in diameter, 11 in height) 5M] 11 OOkg 

homopolar generator. 

~ Gram size railgun with 10km/s launch speed using an explosive flux compressor 

supply. 

~ Railgun with a metal penetrator projectile. 

~ Design and testing of high efficiency (> 50%) accelerator concepts. 

~ Construction of a plasma pinch accelerator. 

This research effectively formed a new technical community with the aIm of 

developing electromagnetic launchers for a wide variety of uses. 

In 1980, a symposium was held at San Diego to present the results of the initial 

experiments and to focus future research efforts [3]. The increase in interest from the 

US military had, directly and indirectly, helped to initiate many projects throughout 

the world. It was clear from the outset that there were many different types of 

launchers, supplies and other support devices to be studied. However, most of the 

initial research work was directed at the development of the railgun type launchers, as 

these were relatively simple and could be scaled up to launch useful sized projectiles. 

A second symposium was held at Boston in 1983 [4], at which it was decided that 

successive symposia would be held biannually. In 1983 the president of the USA 

(Ronald Reagan) announced the launch of the Star Wars project. This allowed the 

electromagnetic launcher area to be widened, to provide both tactical and strategic 

weapons. Electromagnetic launchers able to launch guidable exo-atmospheric 
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projectiles with very high velocities (10 to 20 km/s) were now required [5J, and this 

led to the need for larger power supplies. To further the development of a tactical 

weapon, there was also a need to develop a small mobile launcher, capable of 

launching a projectile with 15MJ of kinetic energy. 

With disarmament talks between the US and Russia in the late 1980s, and the ever 

increasing costs of the Star Wars projects, the need for such weapons was being 

questioned. As the recently expanded US development program started to feel the 

effects of peace, by means of funding constraints, the research programs in other 

countries such as the UK, Japan, Netherlands, Germany and France were just starting. 

Many of these new programs presented their results from initial project proposals and 

feasibility studies at the fourth symposium in 1988 [6]. Over the next few years 

research continued at a steady pace, but by the end of the Cold War further reductions 

in military funding were looking increasingly inevitable. 

By the fifth symposium, the change in direction of the studies into electromagnetic 

launchers was becoming apparent [7J, with a shift in emphasis from large scale 

demonstration launchers to programs focused on gaining a greater understanding of 

concepts and technologies. As the military funding was withdrawn or reduced, the 

focus of the research moved towards less military applications. Research into 

alternative uses, such as the acceleration of hydrogen fuel pellets to re-supply fusion 

reactors and the treatment of surfaces using accelerated plasma pulses, gave rise to an 

increasing source of funds. The US Army however, was still very keen to develop the 

idea of a "wholly electric ground combat vehicle" [8J. 

The philosophy of the UK was to concentrate on the development and demonstration 

of the potential of electromagnetic gun technology, before producing a compact power 

supply. The development of an electrothermal gun in the UK initially started in the 

early 1980s as a small scale pilot study [9J, but by the early 1990s the level of funding 

had increased. The main aim of the initial research was to develop an understanding 

of the subject. With research spread across several locations and organisations, 

DERA (Defence Evaluation and Research Agency), Royal Ordnance, and 

6 
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Universities, the work was not directed towards one particular gun system, and many 

different methods were investigated [10]. Recent work in the UK has concentrated on 

the development of electromagnetic launchers for use as the main armament on a 

future battle tank [11], and this has centred on the development of 90mm and 40mm 

railgun launchers. Two main facilities were constructed, the first at Kirkcudbright in 

south Scotland [12], and the second at Fort Halstead in Kent. The Kirkcudbright site 

was developed to carry out all the free-flight testing, whereas the Fort Halstead site 

uses sand butts to stop projectiles, and focuses its attention on materials testing. 

Firings at the 2000m range at the Kirkcudbright facility have allowed the unexpected 

benefit of the recovery of intact armatures from high energy tests. 

2.4. RAILGUNS 

The rail gun is the simplest of the electromagnetic launchers initially studied. In its 

basic form it comprises two conducting rails mounted in parallel, with the projectile 

forming a circuit between them, as shown in Figure 2.1. When a supply is discharged 

into the railgun, current flows out along one rail, through the armature of the projectile 

and returns through the other rail. The projectile is driven by the Lorentz force 

generated by the interaction of the current flowing in the projectile with the magnetic 

fields generated by the currents flowing in the two rails. The initial work on rail guns 

was undertaken at the Australian National University, where they had the world's 

largest homopolar generator, and unique experience in high current moving contacts. 

They were able to build successfully and to demonstrate a railgun to accelerate a 3gm 

projectile to S.9km/s [2]. 

Due to their simple arrangement, railguns became the main focus of attention for 

electromagnetic launcher development. In early experiments, it was shown that the 

solid armatures could be replaced by plasma armatures [13]. Unfortunately, plasma 

armatures are much more complex and difficult to model. The Westinghouse 

Research and Development Centre produced a 20 steady-state model, to predict the 

current and magnetic field distributions in a rail gun [14]. A distributed energy store 

railgun was proposed by the Centre of Electromechanics at The University of Texas at 
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Austin (CEMUT). This used multiple power supplies to feed a single pair oflauncher 

rails, and it was hoped that the multiple supply would effectively maintain the 

maximum current flow through the projectile armature for longer periods. It was 

concluded from simulations that a significant improvement in the overall performance 

of the railgun could be achieved [15]. 

The great interest in railguns can be seen in the Increase in the number of papers 

presented at the second symposium [4]. These typically describe the use of different 

computer models, and the installation of test railgun launchers. The interest was 

widening, and included studies on structural and electromagnetic modelling, rail 

erosion and armature design. New areas were opened up with the development of 

several different launchers, such as the augmented railgun, shown in Figure 2.2. It 

was suggested by Rockwell International [16], that the use of augmenting rails would 

increase the magnetic field, which would generate an increased force on the projectile 

without increasing the rail/armature current. The conclusion was that the use of 

augmenting rails did produce an increased force for the same maximum current. 

However, it was also found that the increases in heating losses and system inductance 

reduced the overall efficiency of the launcher. With the increasing realisations of the 

limit of railguns, different types of hybrid launchers were proposed, which included 

chemical pre-launchers [17] and plasma injectors [18]. 

With an increase in the available supply energy, the forces and currents developed in 

railgun launchers became increasingly important. One of the main areas of interest 

was the erosion of the railgun rails and contacts, since with the increase in power the 

copper rails that were widely used were being so badly damaged by a single shot that 

they had to be replaced. In addition, the forces generated during a launch acted to 

blow the rails apart. Although there were no reports of railguns exploding, the 

structures required to hold them together were becoming increasingly complex. These 

two problems led to a study into how many different materials reacted under extreme 

conditions. To tackle the problem of rail erosion, a chemical vapour deposition 

coating was developed by a partnership between Ultramet and CEMUT [19]. 
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Chapter 2 Electromagnetic Launchers 

By the fourth symposium, improvements in armature design and understanding had 

lead to an increase in performance by a factor of two [6]. In addition, the 

developments achieved in railgun launchers were generating other possible uses for 

electromagnetic launcher technology, such as earth to space satellite launchers [20] 

and the possible generation of power from impact fusion reactors [21]. Modelling 

work at CEMUT investigated the use of multiple rail railguns; as shown in Figure 2.3, 

these were not augmented railguns, but instead had additional rails to reduce the rail 

current and hence the current per contact. Unfortunately, simulations showed a 40% 

reduction in the force on the projectile when the number of rails was increased from 

two to four [22]. In contrast, later work appeared to show an improvement in the 

performance of a four rail launcher over a two rail launcher [23]. Several papers 

presented at the fourth symposium described the construction and testing of high 

powered demonstration railgun launchers, while a number of studies outlined work on 

the study of armatures, plasmas and rail erosion. Others described the development of 

novel railgun launcher adaptations, such as the development of an exploding foil pre­

launch injector [24]. Two papers published by the Los Alamos National Laboratory 

showed that there were significant problems with plasma armatures, one of which was 

plasma restrike [25]. This is an effect in which a secondary arc is formed some way 

behind the main plasma armature, which dissipates energy without providing any 

useful work. To prevent plasma restrike, the team at Los Alamos segmented one of 

the rails and connected it to the supply via individual fuses. These isolated each 

section of the launcher after the projectile had passed through it, thereby increasing 

the armature front velocity by 30% [26]. 

The direction of research began to change by the fifth symposIUm [7], and the 

construction of even bigger power supplies and higher energy launchers was replaced 

by more detailed studies of the complex interrelated systems that make up an 

electromagnetic launcher. There was a continued effort to study different rail guns and 

their associated systems, and an increase in the number of papers describing different 

armature / plasma monitoring techniques. As the available computing power 

increased, so to did the complexity of the models used, with the introduction of 3D 
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modelling programs such as 3D MEGA developed at Bath University [27). The 

replacement of experiments by accurate models was becoming increasingly feasible. 

Railguns continued to dominate other launcher types at the sixth symposium held in 

1992 [28). As many railguns had been built and tested, work on their application 

became more prevalent. Launcher packages including sabots and other projectile 

components were studied. In addition, there was an increase in the number of projects 

studying hybrid launchers. The majority of these used a conventional gun to launch 

the projectile, before it was further accelerated by the railgun section. In addition, a 

novel multiphase railgun design was proposed by CEMUT [29). 

With the increasing cost of experimental work and the falling cost of computing 

power, computer models were becoming increasingly relied on. By the eighth 

symposium, the use of 3D models to model railguns was becoming wide-spread [30). 

Most notably, several papers compared different computer models, in an attempt to 

unify the development of future models [31), [32), [33). Many others described 

studies into the effects of rail erosion, but due to the shape of railguns this could not 

easily be measured or investigated. In a paper by lAP Research Inc., the building and 

testing of a rail erosion test rig was described [34). This used the edge of a rotating 

disc to mimic the surface of railgun rails, and made it possible to study the effects of 

both single and repetitive firings. 

2.5. COILGUN LAUNCHERS 

The efficiency of electromagnetic launchers can be of great importance. If a launcher 

is too inefficient, it will require a much larger power supply, which limits its 

usefulness and can increase its cost. Although coilgun launchers are theoretically 

much more efficient than railguns, they are also more complex. Due to this additional 

complexity most of the early research work was concentrated on railguns, however 

many research projects have studied coilgun launchers over the last twenty years. 

Coilgun launchers cover a wide diversity of arrangements, but they can be split into 

the two main types: synchronous and induction. Induction launchers can be split into 
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two further sub-types, travelling wave, and pulse segmented coil launchers. Both 

produce a travelling wave, with the distinction lying in the manner the travelling wave 

is produced. 

2.5.1. SYNCHRONOUS INDUCTION LAUNCHERS 

A synchronous launcher works in a very similar manner to a conventional 

synchronous machine. The armature current is usually maintained by either 

connecting rails or by a flyaway lead, although some launchers have used 

superconducting armatures with an impressed current. The travelling magnetic wave 

in the stator can be generated in many ways, as in an induction launcher, but it is 

synchronised to the location of the armature. 

An arc commutated launcher was proposed by the Massachusetts Institute of 

Technology (MIT) [35]. The projectile formed part of the stator circuit by means of 

arc contacts on the projectile, and the stator coils were hence automatically 

synchronised to the projectile. Several arrangements were suggested but no overall 

conclusions were drawn. Also developed at MIT was a helical rail launcher [36]. By 

using two brushes to connect the outer armature circuit to the helical stator coil, 

correct synchronisation between the armature and stator coils was assured. A hybrid 

launcher, proposed by Case Weatern Reserve University [37], had an armature fed by 

rails but a stator made from separate coils energised in sequence, in a manner similar 

to that of a pulsed induction launcher. 

At the second symposium, Electromagnetic Launch Research Inc. Cambridge MA 

presented their work on tubular multistage synchronous accelerators [38]. They 

proposed a helical brush commutated launcher, in which the inside of a helical drive 
~ 

coil was exposed, to allow contact with brushes on the armature. This provided a 

simple means of synchronising the fields of the drive and projectile coils, and from the 

analysis of the various inductively coupled systems they concluded that efficiencies of 

greater than 50% would be possible. 
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Researchers at the Polytechnic University Brooklyn (PUB) suggested that, with the 

correct launcher section parameters, it would be possible to produce an inductive 

commutated launcher [39]. An extension to the brush commutated launcher was 

proposed by researchers at the Jet Propulsion Laboratories (JPL) [40]. By producing 

the rising and falling of barrel currents by external voltages, it was suggested that 

higher magnetic fields could be generated for a given armature current. The work at 

Electromagnetic Launch Research Inc. continued with the publication of a set of 

design criteria for brush commutated launchers [41]. 

In a system suggested by Nalty and Driga of CEMUT, an induction launcher was 

supplied by a super-synchronous induction generator, with the launcher acting as a 

synchronous motor [42]. They proposed either to impress a current in the projectile 

before injecting it into the launcher, or to use sliding contacts to feed the required 

current into the projectile. An initial feasibility study was undertaken which did not 

model the transient operation of the launcher, and relied heavily on phasor analysis. 

Further work suggested included the development of a transient filamentary model of 

the launcher and a winding method that would produce well balanced bearing loads in 

the generator. 

A theoretical study of inductively commutated launchers was undertaken at CEMUT. 

The development of a model and results of initial simulation work were presented at 

the sixth symposium [43]. In a second paper, they described the development of 

another launcher, in which the stator coils are "charged" in series [44], by the 

discharge of a capacitor banle At maximum current the individual flywheel thyristors 

of each stator coil are fired simultaneously, and the stator current flows around. each of 

the individual stator flywheel circuits. This effectively trapped the current in the 

individual stator coils. The armature supply was then fired, with the armature 

connected to the supply by flyaway leads. 
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2.5.2. TRA YELLING W A YE INDUCTION LA UNCHERS 

A travelling wave induction launcher is a special form of linear induction motor, in 

which the magnetic field travels along the motor instead of rotating in it, as in a rotary 

machine. Like their rotary counterparts, travelling wave launchers are inherently 

constant speed machines. In some applications, such as magnetically levitated trains, 

this can be an advantage, but it poses problems when designing an electromagnetic 

launcher. However, a polyphase induction machine can be used as a launcher, if the 

effective supply frequency is increased as the projectile accelerates. The required 

change in effective frequency can be achieved either by using a controlled variable 

frequency supply or by varying the pole pitch of the stator. The stator pole pitch can 

be varied in two ways, either by graded slotting or by graded winding. Graded 

slotting allows conventional winding techniques to be used, but the slotting is more 

complex, as shown in Figure 2.4. A graded winding uses evenly spaces slots, with 

each coil split into groups so that a coil may occupy portions of several slots, as 

shown in Figure 2.5. Although the graded slotting method is simpler to construct and 

easy to analyse, it is not necessarily cheaper. 

The possibility of developing a travelling wave induction launcher was presented as 

far back as 1971 [45], and again in 1984 [46]. However the difficulty in producing a 

variable frequency supply of the type needed by a travelling wave induction launcher, 

led to very few research projects focusing on this particular type of launcher. With the 

invention of a rising frequency generator at CEMUT, it was hoped that a practical 

polyphase induction launcher would be possible. CEMUT described several possible 

structures at the third symposium [47]. A paper at the same symposium by 

Williamson and Leonard described the development and validation of a filamentary 

model of a travelling wave induction launcher [48]. The test launcher built for the 

model validation was supplied by a 3 phase 50Hz supply, but no details of the coil 

connections were given. It was later proposed by CEMUT that a distributed energy 

store could be used to supply a travelling wave induction launcher, by splitting the 

launcher into several different sections and supplying each of these from a separate 

rising frequency generator [49]. A paper presented by JPL at the forth symposium, 
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described the analysis of a travelling wave induction launcher [50). Whilst showing 

that a travelling wave launcher is feasible and efficient, it also pointed to the lack of 

any efficient supply to provide the required power for such a launcher. 

In a method developed at PUB, a series of capacitors were discharged in sequence to 

generate a transient three-phase supply [51). This allowed the frequency of the power 

supply to be controlled by altering the discharge timing of the capacitors. With a 

segmented launcher, the effective frequency could be raised, by supplying the 

sequential sections at increasing frequencies. To model the launcher, they produced a 

lumped parameter model of the system [52). This was developed in several papers at 

the fifth symposium, which described a current sheet model and its comparison with 

experimental work [53), [54), [55). CEMUT presented a parametric study at the fifth 

symposium, using a filamentary model [56), and in a later paper they suggested that 

although a travelling wave induction launcher could launch fast, small projectiles, it 

would be better suited to launching larger and slower projectiles, such as artillery 

shells [57). 

The model validation of a capacitor driven travelling wave induction launcher was 

presented jointly by Seoul National University and Kangwin National University, both 

from Korea [58). A study of the in-bore dynamics of tubular induction launchers was 

undertaken at PUB. From their analysis, the authors predicted that if the gap between 

the stator and armature was too large, the projectile might touch the barrel wall. 

However, if this gap was reduced, no signs of contact were evident [59), [60). Also 

studied at PUB was the effect of the transition between launcher sections. They 

concluded that, although the time of firing of each section effected a launch, the 

launcher was relative insensitive to this and the launcher sections operated relatively 

independently [61). 

In an expansion to the initial single-stage launcher developed in Korea, a sequential 

design method led to the development of a three stage launcher [62). Using a 

capacitor supply system, researchers at PUB launched a 13 7g projectile at a velocity 

of 476rn1s with a 60cm barrel [63). It was also predicted that 2kmls could be achieved 
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with an eight section launcher. A generator driven supply was also developed and 

modelled, and it was concluded that, although this would be more complex to control, 

it would be less bulky and heavy, especially as the power requirements of the 

launchers increased. 

2.5.3. PULSED INDUCTION LAUNCHERS 

Pulsed induction launchers are similar to the travelling wave induction launchers 

described in the previous section, with the main difference being the way in which the 

required travelling magnetic wave is generated. Pulsed launchers use a row of 

individually energised coils, with each coil fed by an individual supply or all the coils 

switched from a single supply. The coils are energised in sequence to provide the 

travelling wave, and they are often triggered by a projectile position sensing system. 

Figure 2.6 shows a typical five-stage pulsed induction launcher with individual 

supplies. 

One of the first pulsed induction launchers was a superconductively levitated train 

called "Magneplane", initially conceived at the Brookhaven National Laboratory but 

successfully demonstrated at MIT [2]. By the first symposium, a coaxial launcher was 

under construction at MIT to demonstrate the possibility of a lunar launcher [2]. 

Sandia National Laboratories presented their initial work on the theta gun (a pulsed 

induction launcher), including a finite difference model and some low power 

validation [64]. It was clear from very early work that the synchronisation of the 

projectile position and the firing of the corresponding stator coils would be difficult. 

A research team from Princeton University produced an experimental launcher and an 

energy transfer model, and using a superconducting projectile developed at MIT and a 

nominal design acceleration of 5000mls2 they hoped to achieve a final velocity of 

l12m1s. Most notably, they also proposed a system to slow the projectile, using an 

identical-Iauncher in reverse to recharge the capacitor supply [65]. 

At the second symposium, Sandia National Laboratories presented their study of 

multistage induction launchers, which included a magnetohydrodynamic model [66]. 
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By the second symposium, the construction of a multistage demonstration induction 

launcher at MIT was almost complete, and results from successful early experiments 

of both single and dual stage launchers were presented [67]. From initial low voltage 

single-stage tests, speeds of 150mls were achieved. However, from calculations they 

predicted that, at full voltage, projectiles would be able to achieve a speed of 325m1s. 

In a paper presented at the third symposium, plans for a 'Reconnection Gun' were 

discussed [68]. This was a pulsed induction launcher, but instead of the stator coils 

being wound around a central tube each stator segment had two rectangular coils, 

spaced by a small gap, through which a flat plate projectile was accelerated edge on. 

This unique arrangement was investigated experimentally with B dot and Rogowski 

search coils due to the complexity of the system. It was hoped that this unusual 

launcher would produce a greater axial force than a comparable tubular launcher. 

A design study of linear induction launchers was undertaken at CEMUT [69]. They 

use an iterative parametric approach to optimise the launcher design over a limited 

parameter space. The optimiser used a filamentary model to filter the possible 

solutions. However, this led to long run times, even when using a CRA Y XMP-24 

computer. By using standard linear optimisation techniques, an optimum design was 

produced, which showed that the best results were obtained when the drive coil and 

projectile were approximately the same length and the gap between the two coils was 

minimised. Also, but not so obvious, the optimisation also suggested that the 

projectile and drive coils should have a long thin shape. 

The development of the reconnection launcher at Sandia National Laboratories was 

outlined at the fifth symposium [70]. The development of a 14 stage flat projectile 

launcher was described, together with the ensuing development of 6 and 10 stage 

tubular launchers [71]. The development of a filamentary model, and its comparison 

to test results, were also presented, [72]. A 109 projectile was successfully launched 

by the 10 staged launcher, with a final velocity of 317m1s and an energy transfer 

efficiency of 9%. This low efficiency was achieved during a low energy test, and 
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similar low energy tests were used to provide model validation and component testing 

data. 

To reduce the concentration of current in the outside rear edge of the projectile, a 

wound projectile was developed at CEMUT [73]. Using a combination offilamentary 

and finite elements models, a projectile was successfully developed. Simulations 

established that multi-turn armatures have significant advantages over solid single 

turn projectiles, with an increase in efficiency from 15% to over 40%. The use of a 

reluctance accelerator was also proposed [74], but although this has the advantages of 

no projectile coil it is significantly more complex to study. In addition, it can only 

pull the projectile whereas other launchers can provide both push and pull, by 

choosing the relative polarity of the stator and armature windings. 

Using the knowledge gained from constructing several different types of launcher, 

CEMUT suggested that a near optimum design could be achieved by balancing the 

different practical limitations of a pulsed induction launcher [75]. The construction 

and initial testing of a demonstration launcher, built at the Sandia National 

Laboratories, was described at the sixth symposium [76]. During a half energy test, it 

was able to launch a 340g projectile to 406m1s. A study of synchronisation timing 

errors was undertaken at Cambridge University using a filamentary model [77]. From 

this study they concluded that the timing errors affected the performance of a 

launcher, and suggested that a worst case studies could be used as a design tool. A 

qualitative study of induction launcher operation was undertaken at Sandia National 

Laboratories, which led to a set of algebraic expressions to determine approximately 

the performance [78]. Although the expressions were somewhat crude, they were 

used to gain an initial insight into the size and type of launchers that would be 

required by different applications. A dynamic and transient finite element model of a 

pulsed coaxial launcher system developed at Bath University was presented at the 

sixth symposium [79]. 

Models were widely used to help in the design of pulsed induction launchers. 

However, most of the launchers were developed on a trail and error basis, and it was 
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suggested that general optimisation routines could be applied to electromagnetic 

launchers. To avoid the problem of local optima, it was further suggested that a 

global optimisation routine should be used [69). However, the use of most such 

routines would required a vast number of trail simulations but, by using a method 

called "very fast simulated re-annealing", it was hoped that good results would be 

obtained without too many simulations [80). 

The results of an initial model validation carried out at Loughborough University were 

also presented at the seventh symposium [81). The test launcher was of a single-stage 

tubular form, supplied by an ignitron / capacitor supply. Also proposed at the seventh 

symposium was the use of a "flux concentrator", as used in an experimental launcher 

at the French-German Research Institute of Saint Louis to improve the mechanical 

strength of a multi-turn stator coil [82). In a later paper, the use of flux concentrators 

was investigate by means of 3D finite element modelling [83). Although flux 

concentrators proved to be an attractive way of reducing the stressing in multi-turn 

stator coils, their efficiency is rather poor. From the investigation, it was concluded 

that both 2D and 3D models were accurate to within a few percent and suggested that 

a filamentary model may also be possible. 

2.5.4. FLAT COIL LAUNCHERS 

Flat coil launchers work on the same principles as tubular induction launchers. They 

use a disc shaped drive coil and projectile, with the projectile initially placed close to 

one side of the drive coil, as shown in Figure 2.7. Flat coil launchers are also known 

as pancake launchers or coilguns, and although they have been around for some years 

they have only been occasionally studied. It is this type of launcher that forms the 

topic of this thesis. Although many single segment induction launchers have been 

considered, most of these have been forerunners to multi-segmented launchers, and 

have been similar to tubular type launchers, with the projectile inside the stator coil, as 

shown in Figure 2.8. 

One of the first examples of a flat coil launcher was the ''jumping ring" experiment 

[84). Although the aim was to produce levitation by using an AC excited stator coil, 
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and not to launch the ring, it nevertheless provided a simple demonstration of the 

principles of electromagnetism. However, the transient nature of this simple 

experiment made it extremely difficult to analyse. The first use of a flat coil launcher 

was in a study of the effects of shock on different materials [85]. The launcher was 

mounted face down in a box of sawdust, with the projectile held against the drive coil 

by a light vacuum. The launcher coil was connected to a 120JlF 20kV capacitor 

discharge supply, which was switched and crowbared by two ignitrons. By varying 

the capacitor voltage, the magnitude of the impulse force applied to the sample was 

controlled, and the resulting acceleration was measured using an accelerometer. One 

of the first studies into flat coil launchers was carried out by Bondaletov and 

Goncharenko in 1971 [86], and a validated set of approximate relations for the 

velocity of their projectiles was proposed. Velocities of more than 1 km/s were 

obtained experimentally for 109 projectiles, with an overall electrostatic to kinetic 

energy efficiency of 43%. An alternative use of a flat coil launcher was proposed by 

Schmidt Harms in 1985 [87], who developed a high-speed linear actuator to draw a 

clean arc between two contacts, which could be used as a source for spectroscopic 

analysis equipment. A connecting rod passed through the drive coil to the centre of 

the projectile as shown in Figure 2.9. With two electrodes connected to the rod, a 

current was passed through the isolated part of the rod. When the launcher was fired, 

the rod moved between the electrodes, producing a gap across whic~ an arc was 

drawn, as shown in Figure 2.10. 

A flat coil launcher was developed at the Astronautical Institute of the Technical 

University Munich [88]. By varying the initial voltage of the supply capacitor, they 

demonstrated that the final velocity of the projectile could be controlled to within 1%. 

They also showed that a solid projectile curled up and away from the launcher if 

sufficient energy was provided. Further developments of this launcher were presented 

at the third symposium in 1986 [89], where the launching of both solid and ring 

shaped "driver plates" (projectiles) were described from a launcher developed for the 

calibration of space experiments. The driver plate was launched with the test material 

placed on it. The driver plate hit.a retaining plate, and a hole in the retaining plate 
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allowing the test material to be projected further downrange. A paper by Thornton 

and Seddon of British Aerospace reported the development of a single-turn flat coil 

launcher [90). By means of break wires and witness plates they were able to shown 

that a velocity of 4km1s was achieved at an efficiency of 39%, for a 0.75g projectile. 

The results from a parametric study of flat coil launchers were published by Sadedin 

in 1991 [91]. This determined the effects of projectile mass, initial coil separation, 

and coil aspect ratios on the variation of the "characteristic resistances". 

2.5.5. OTHER NOVEL LAUNCHERS 

The plasma pinch accelerator called MAID developed at GT Devices (Virginia) 

consisted of several plasma rings, which imploded onto a common axis. The 

projectile was initially launched into the accelerator by conventional means, with the 

plasma rings fired in sequence so that they pinched the rear end of the projectile, 

accelerating it as shown in Figure 2.11. Both conical and spherical projectiles were 

tested successfully [92). This launcher was developed as an initiator for an impact 

fusion reactor [93]. 

2.6. POWER SUPPLIES 

Whatever the launcher technology, a power supply is inevitably required. Capacitors 

provide a simple and easy method of delivering the required sharp pulses of electrical 

energy required in many types of electromagnetic launchers, although their size can be 

prohibitive. Initially the most widely used supply technology was the homopolar 

generator, but other supplies such as compulsators, flux compressors, and other even 

more novel forms have been developed and used in recent years. Nevertheless, the 

capacitor supply has found many uses, due to its simplicity and flexibility. There have 

been numerous developments in supply and switch technology over recent years, 

which have resulted in a new and almost independent field of research. Although the 

development of supply technology has had an impact on the development of 

electromagnetic launchers, it is beyond the scope of this thesis to include a detailed 
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review that would to do justice to the depth of this subject, so only a brief overview 

follows. 

2.6.1. CAPACITOR DISCHARGE SUPPLIES 

Capacitors are one of the oldest methods of electrical energy storage. Since the 

invention of the Leyden jar in about 1750, they have been developed for many 

particular applications. Although many different geometries are used for the 

conducting plates, the main variation between different types is in the dielectric 

materials that are use. Capacitors are available in voltages up to JOOkV, but it is the 

modular nature of a capacitor supply that makes it very versatile, and a popular choice 

for pulsed power experiments. A bank of capacitors can be connected in series to 

provide a very high voltage, in the order of megavolts. However, a bank of similar 

capacitors could be connected in parallel to provide a supply able to deliver tens of 

megamps of current at a more moderate voltage. 

2.6.2. HOMOPOLAR GENERATORS 

Homopolar generators are similar to conventionally commutated DC rotating 

machines, although they are simpler and usually have a much lower impedance. 

Invented by Michael Faraday as long ago as 1831, they have been developed 

specifically for pulsed power applications during recent years. 

One of the main limiting factors of conventional DC generators IS the brush / 

commutator system, which has to reverse the direction of current in a rotor winding as 

it passes from one pole to the next. The commutator limits the voltage that can be 

generated, because of the required tracking distances between adjacent conductors that 

operate at high voltages and in the presence of ionised air and carbon dust. The 

homo polar generator is the only DC rotating machine without a commutator. In the 

simplest form the rotor is a monolithic disc that rotates in an axial magnetic field, with 

the voltage generated between the shaft and the outer radius of the disc. Although 

homopolar generators do not have a commutator, they still require high-speed, high 

current moving contacts, which presents one of the main limiting factors in their 
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design. Homopolar generators with discharge times longer than around 50 ms usually 

have a steel rotor surrounded by a ferromagnetic stator to help reduce the magnetic 

reluctance. 

Homopolar generators have found particularly favour with railgun research groups, as 

they provide good high current / low voltage supplies. However they generate a 

relatively long output pulse, and to make the homopolar generator more suitable for 

pulse power applications an intermediate inductive energy store is often used, as 

shown in Figure 2.12. The homopolar generator charges the inductor via switch l. 

When the current reaches its maximum switch 2 is opened, diverting the current to the 

launcher. The high rate of change of current produced by opening switch 2, causes a 

high voltage pulse to be applied to the launcher. 

2.6.3. COMPULSATORS 

Compensated pulsed alternators (compulsators) have been used in many experiments, 

but they are particularly suited to rapid repetitive launchers. In their simplest form, 

compulsators are single-phase alternators with a low impedance and a high current 

capability. They combine an inertial energy store with voltage generation and power 

conditioning in one machine, with the idea for a compulsator being developed from 

conception to prototype testing at CEMUT during the late 1970s [94). The first 

machines included an active compensation system, but in later compulsators this was 

replaced by a passive form of compensation by attaching a highly conductive shield to 

the outside surface of the rotor. Housing the armature windings in the stator removed 

the need for high current moving contacts, and in addition the rotor did not need to be 

laminated, which enabled much higher operating speeds. To enable the construction 

of machines able to withstand a very high load torque several new construction 

techniques had to be developed [95). 

2.6.4. FLUX COMPRESSORS 

Flux compression generators have been used as the power source for many different 

experiments, but they found particular favour with the researchers conducting the 
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early railgun experiments. There are two main types of flux compressor, the strip 

generator and the helical generator. Flux compressors are explosively driven single 

shot devices, in which a magnetic flux is generated in a space between two 

conductors. As the explosives are detonated, the two conductors are forced together, 

working against the flux and converting the magnetic energy stored in the magnetic 

field into electrical energy. The obvious major disadvantages of flux compressors are 

the need for explosives and the single shot nature of their operation, but nonetheless 

they provide a compact high energy pulsed power supply which can be modified to 

match to requirements of individual experiments. 

The typical strip generator shown in Figure 2.13 consists of two parallel copper 

conductors, one of which has a backing of explosive. A small capacitor bank is 

connected to the input terminals to provide the initial magnetic flux. As the capacitor 

discharge current reaches its maximum, the explosives are triggered, shorting the 

input terminal and trapping the flux within the compressor. The detonation travels 

down the flux compressor pushing the flux into the load. 

The helical type generator usually consists of a tubular conductor (the armature) 

surrounded by an insulated helical winding (the stator), as shown in Figure 2.14. The 

explosives are packed into the armature, and they are detonated from the input end in 

a similar manor to the strip flux compressor. Once the capacitor supply has been 

triggered, and the magnetic field has reached it maximum, the explosives are 

detonated and the armature is forced to expand conically, shorting the input terminals 

and trapping the flux in the compressor. The detonation travels down the explosive, 

until the entire armature has been expanded and is in contact with the stator. The 

inductance of a helical flux compressor is much greater than a strip type compressor, 

and they generally have a higher gain. 

2.6.5. MHD GENERATORS 

Explosively driven magnetohydrodynamic (MHD) generators use the movement of a 

conductive plasma in a magnetic field to generate a pulse of electrical energy [135]. MHD 
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generators have been used in a variety of applications, in both research and 

commercial environments, but they have only found limited use in electromagnetic 

launcher experiments. The magnetic field in the generator is usually provided by the 

discharge of a capacitor bank, in a similar manner to that used in a flux compressor. 

A tubular block of explosive is used to generate the fast moving plasma. When the 

explosive is detonated, the tube is sealed at one end, as the detonation travels down 

the explosive, the air trapped in the centre of the tube is compressed and heated. This 

compressed air forms a conductive plasma, which is then fired into the generator. The 

motion of the plasma in the magnetic field induces a voltage that can be used to 

supply a load. 
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3. MODELLING TECHNIQUES 

As computing power increased, the use oJ numerical techniques Jor solving non-linear 

problems became possible, with the complexity oJ computer models growing in 

tandem with computer power. Over the last Jew years, some oJ the worlds largest 

computers such as the Cray XMP-24 have been used to model electromagnetic 

launchers [69]. This chapter describes the origins and uses oJ the most commonly 

used modelling techniques. 

3.1. FINITE DIFFERENCE ANALYSIS 

The finite difference approach was one of the first main methods used in the solution 

of non-linear problems. Although it was developed in the I 940s, it did not find wide­

spread use until the early 1960s, when computers became more widely available. 

Often, differential equations can be used to represent a physical system. Although 

simple differential equations can be solved analytically, equations modelling a 

physical system are often non-linear. To solve a non-linear problem, using the finite 

difference method, the area of the problem must be divided into equal sub-regions 

with the vertices of these regions being termed nodes. At each node, the derivatives in 

the differential equations are replaced by appropriate difference quotients. The order 

of the difference quotients are chosen to maintain a certain level of truncation error. 

Expanding the derivatives in the form of a Taylor polynomial, and using the 

intermediate value theorem [96), leads to a set of formulae that can be solved. 

Although the method leads to a simple system of equations, it does have some serious 

limitations. The main one of these is the fixed geometry which requires the region of 

interest to be divided up into equal squares and makes the modelling of circular and 

irregular shapes very difficult. The inclusion of varying sources and boundary 

conditions is also difficult. Any modelling of movement assumes that this is in 

discrete pixelated steps, of the same size as the sub-regions. 
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Although finite difference analysis has been used to model magnetic systems, this has 

been done using custom written software [97]. Any changes to the structure or 

boundary conditions of the model usually requires the modelling software to be 

rewritten, which is both time-consuming and error prone. 

3.2. FINITE ELEMENT ANALYSIS 

Finite element analysis has been applied to many types of problem rangmg from 

electromagnetics to building design. Initially, the use of the finite element models 

was limited to those institutions with the largest computers, but as computer power 

has increased finite element analysis has become a standard engineering tool. Over 

recent years it has been used to solve 20 and 3D models involving complex structures 

and non-linear materials, with the more advanced packages being able to model the 

movement of conductors and even transient events. 

Finite element analysis was born out of structural analysis during the mid 1950s. The 

technique is based on the concept of dividing a continuous material or surface into 

small finite components, termed elements. These elements are connected by their 

edges, with nodes at the vertices. The first attempts at determining the properties of 

the finite element method were carried out by Hrenikoff [98] and McHenry [99], who 

replaced a continuous system by an equivalent system of bars. The first true finite 

elements, of arbitrary shapes, were studied in the mid 1950s by Turner et al. [100]. 

Much of this early work was somewhat intuitive and guided by common sense. As 

new applications and more complex forms were being studied this approach failed, 

which produced the need for a more formal method to be developed. 

The principles of virtual work provided a powerful tool in the development of 

structural analysis. From classic structural theory, it can be shown that, if a set of 

stresses are in equilibrium at all points with a set of external forces, then the sum of 

the internal and external work done during any displacements must be zero. It was 

later recognised that the virtual work approach to the finite element method could also 

be represented as the minimisation of an equation (such as the potential energy of a 
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system). This led to recognition of the boundary nature of the solution [10 I], and to 

the extension of the method to other possible formulations. The variational approach 

was initially discovered by Pian [102], and later verified as being an application of the 

Hellinger-Reissner principle. This did not just extend the methodology to different 

possible solutions of elastic problems, but also expanded it into many other 

mathematical and physical problems. The variational approach allowed any problem, 

whose solution could be defined by the stationary value of a function, to be solved by 

a finite element approximation. 

Finite element analysis was first used in electrical engineering in 1967 [103], when 

first-order triangular elements were used to solve a comparatively simple waveguide 

problem. Since then, many different types and orders of shape functions have been 

derived, but the triangular and rectangular remain the most commonly used. The 

functions must produce a surface over the whole region of interest, that is continuous 

after integration and in the first and second derivative. Linear polynomials are usually 

chosen for triangular elements and bilinear polynomials for rectangular elements. 

When using finite element analysis the problem must be divided into elements. These 

are usually triangular but, unlike the finite difference method, they do not have to be 

of the same size or shape. The use of non-uniform elements allows much more 

complex and irregular shapes to be modelled than is possible using the finite 

difference method. In addition, the boundary conditions involving derivatives are 

incorporated as integrals in the function to be minimised, and hence the basic 

equations of a problem are independent of the particular boundary conditions of the 

problem. 

3.2.1. MODELLING SOFTWARE 

The finite element modelling in this thesis used a commercial modelling package 

called MEGA. MEGA was developed by Bath University Electrical Engineering 

Department in collaboration with the DERA at Fort Halstead. It was initially 

developed as a static 20 model to determine railgun current distributions. Later 
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versions of MEGA have included moving conductors and the ability to model 3D 

problems. In further collaborations with the DERA, link code was written that 

enabled the results from MEGA to be passed to a structural finite element package 

(DYAN3D) [104]. However, the results from the structural model are not yet used to 

change the location or shape of the conductors in the electromagnetic model. MEGA 

has been used to model successfully both rotary and linear machines, as well as 

transformers and other electromagnetic systems. 

MEGA can be used to solve several different formulations or problem types, but only 

one formulation was used in this thesis. Due to the highly axi-symmetrical form of 

the launcher coils, only the 2D axi-symmetric formulation was needed. Using this 

formulation, MEGA assumes that the current flow is in the circumferential direction 

only and that the flux density has no Be component. MEGA allowed the inclusion of 

the power supply components, by the definition of external circuit element (branches) 

and connecting ports (circuit nodes). Using these facilities, the power supply 

components were modelled simultaneously with the electromagnetic finite element 

model. The available version of MEGA only modelled static conductors and used a 

low frequency subset of Maxwell's equations, which limited its usefulness when 

modelling transient and dynamic systems. Nevertheless, it provided information not 

easily obtained from a filamentary model. 

3.3. FILAMENTARY ANALYSIS 

Filamentary analysis is based on an equivalent circuit approach, which in recent years 

has become increasingly popular in the study of coilguns. The filamentary method 

only models the conducting regions in a system, and splits these into circular 

filaments. The equivalent circuit is constructed from the individual equivalent circuit 

parameters of each filament, and the power supply circuit elements. Using general 

circuit theory methods, it is possible to determine the current flow in each of the 

filaments, and in addition other quantities such as temperature and force can be 

determined. 
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One of the first models of a launcher to use an equivalent circuit method was 

presented by Burgess et al [64). The drive coil was assumed to be an N turn solenoid 

with a uniform longitudinal current distribution. However, since the projectile was a 

single-turn tube, it was modelled by slitting it longitudinally into ten regions to enable 

the current distribution to be adequately represented. 

One of the first examples of the filamentary approach being used to model a launcher 

was presented by Williamson and Leonard in 1986 [48), when they described the 

development of a model and compared the results of simulations to those from a 

demonstration launcher. The filament inductances were calculated by a combination 

of Grover's [105) and Silvester's [106) methods. 

David Elliot of JPL presented a paper on a mesh matrix analysis method for launcher 

modelling at the fourth symposium in 1989 [107). By sub-dividing the conductors 

into filaments, and using functions to determine the flux linkage between filaments 

and the magnetic field at each filament, he was able to model a coilgun launcher. 

Wu and Sun of CEMUT developed Elliot's model, but calculated the inductance of 

the loop conductors using Grover's equations, and used this model to study the current 

distributions in homopolar generators [108). Since then many other models using 

filamentary analysis have been developed. 

3.4. CONCLUSIONS 

Historically, many different analyses and modelling techniques have been used to 

model electromagnetic launchers. In the early days, finite difference methods were 

often used but with the emergence of commercial finite element packages this began 

to fade. The complex and non-rectangular shapes often encountered severely limited 

the use of finite difference methods, and the most commonly used techniques are now 

based on either finite element or filamentary analysis. Whereas finite element analysis 

leads to much more general and flexible models, these are usually slower than 

filamentary models when implemented on the same computer [109). Although finite 

element packages are commercially available, they tend to be expensive and not easily 
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modified to suite a particular application. The 20 axi-symmetric formulation is most 

appropriate to model a flat coil induction launcher of the type studied in this thesis, 

and the MEGA software package was used for this purpose. 
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4. ANALYSIS OF FILAMENTARY NETWORKS 

This chapter develops the methods of analysis used in the filamentary model. 

Although the calculation of circuit parameters is highly dependent on the nature of 

the system being modelled, the methods of analysis are completely general. 

4.1. EQUIVALENT CIRCUIT ANALYSIS 

The analysis of the equivalent circuit of a launcher is based on Kirchhoffs first and 

second laws [110]. Implementing these leads to a system of equations in which there 

are as many equations as there are branches, and hence unknown currents, and which 

can be solved using standard matrix techniques [111]. However, a system proposed 

and developed by Maxwell reduced the number of equations to the number of 

branches that must be removed from a circuit to ensure that no closed paths remain in 

the circuit [112]. This node and mesh method was developed to form the modern 

closed circuit analysis widely used today, and it has been further refined by Kron and 

Happ to include open mesh as well as closed mesh methods [113], [114], [115]. 

Closed mesh currents are limited to loops that are wholly contained within the 

network being analysed. Open mesh currents may flow between any two different 

node points, with the current defined by a source external to the network being 

analysed. The orthogonal networks developed by Happ are completely general and 

include both open and closed meshes. However, networks that contain only open and 

closed meshes were called all mesh networks by Kron and were subsequently re­

named augmented all mesh networks by Happ [116]. 

4.2. MATRIX NOTATION 

The matrix notation employed in this thesis was originally developed by Happ [114], 

but has been slightly modified over recent years [117]. In this notation, the indices are 

used to indicate the reference frames associated with a matrix. The position dots are 

used to indicate which reference frame is associated with the primary index, or 
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columns in a normal two-dimensional matrix. Hence A ~ b is the transpose of A~c 

and can be shown in matrix form as 

A oc _ 
b -

b 

c 

[A] 
and 

b 

[A] 
{4.1 } 

This notation also preserves the Einstein summation convention and the transposition 

rule [113]. In addition, the position of the indices, i.e. whether they are subscript or 

superscript, indicates whether the associated reference frame is covariant or contra­

variant. This allows a simple index balance to be used to check the structure of an 

equation. 

Although determining the variant nature of an index may seem unnecessary and 

confusing, it does indicate the nature or behaviour of a vector. By convention, 

variables with contra-variant indices are used to represent flows or velocities, such as 

currents or speeds. 

If it is assumed that the current vector la can be transformed into the reference frame 

'b' by pre-multiplying it by the transformation matrix C~a then 

{4.2} 

Since the power in a system must be independent of any reference frame used to 

represent that system, the voltage vectors Ea and Eb in the a and b reference frames 

can be related by 

{4.3} 

from which it can be shown that 

{4.4 } 
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Hence, 

{4.5} 

In other words, although the current vector is transformed from reference frame 'a' to 

'b' by pre-multiplying by a transformation matrix C, the voltage vector must be pre­

multiplied by the inverse of the transpose of this matrix Hence, the very different 

manner in which covariant and contra-variant variables are transformed between two 

different reference frames can clearly be seen. 

4.3. ALL MESH NETWORKS 

The following analysis of mesh networks is based on that developed by Gregory [117) 

and is best described by an example. In the following section, a simple network is 

analysed but the methods described can be expanded to any definable electrical 

network. The direction of the branch currents and voltages are completely arbitrary, 

and are accounted for by the relative polarities of the results. Figure 4.1 shows the 

example network to be analysed. The structure of the network is independent of the 

individual branch characteristics, and it can be represented by the line diagram or 

directed graph shown in Figure 4.2. Although any directed graph can be analysed in a 

variety of ways, the total number of independent closed and open paths in any system 

will equal the number of branches in that system. The numbers of equations 

determines the number of independent closed and open meshes. 

Number of closed meshes = B - N + S {4.6} 

Number of open meshes = N - S {4.7} 

where B is the number of branches, N is the number of nodes, and S is the number of 

independent sub-networks. It should be noted that inductively coupled circuits, e.g. 

transformers, must be considered as independent sub-networks. Hence, for the 

example system there are three closed meshes and three open meshes. 
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Figure 4.3 shows one possible configuration of the meshes and branches in the 

example circuit. By using the mesh definition in Figure 4.3 and Kirchoff's voltage 

law, the required equations can be determined. Equating the sum of all the branch 

voltages around each mesh to zero, leads to the set of equations 

Vbl Zbl +Zb2 -Zb2 0 I 0 0 0 ·cl , I , 
0 -Zb2 Zb2 + Zb3 + Zb4 + Zb5 -Zb5 : Zb3 Zb5 Zb4 ·c2 

I , 
·c3 0 0 -Zb5 Zb5 +Zb6 I 0 -Zb5 0 I I 

= --------------------------------------,---------------
V04 0 Zb3 0 : Zb3 0 0 '04 

I 

V05 0 -Zb5 Zb5 0 -Zb5 0 '05 
I 

V06 0 Zb4 0 0 0 Zb4 '06 
I 

{4.8} 

Although the use of open mesh networks is not as wide-spread as that of their closed 

mesh cousins, they are often used implicitly when determining the voltages between 

nodes. If an open mesh impresses a current on a network, it can be considered as 

being closed externally by an ideal current source. If an open mesh impresses no 

current on a network, it can considered as closed by an infinite impedance. The 

voltage present across the terminals of the infinite impedance is that measured by an 

ideal voltmeter. Hence the concept of a zero current open mesh can be used to 

determine the voltage between two nodes of a circuit. 

4.3.1. BRANCH NETWORK EQUATIONS 

The mesh equation, shown in equation 4.8 can be expressed wholly in branch terms 

when the following argument is considered. If a branch is closed on itself via a 

hypothetical voltage source, and is replaced in the network by an identical voltage 

source, then the modified network will perform in the same manner as the original 

network. Applying this argument to the whole network enables it to be represented as 

a set of isolated meshes, as shoWn in Figure 4.4. Analysing the network of Figure 4.4 

in the same manner as the network of Figure 4.3 leads to 
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V bl ebl Zbl ·bl 
1 

eb2 Zb2 · b2 
1 

eb3 Zb3 · b3 
1 

{4.9} + = 
eb4 Zb4 ·b4 

1 

eb5 Zb5 · b5 
1 

eb6 Zb6 ·b6 
1 

Although equation 4.9 can easily be determined, even for large and complex 

networks, it cannot be solved because the Eb vector is unknown. Since both equations 

4.8 and 4.9 are determined from the same original network, it is possible to consider 

both the formulations as one equation expressed in two reference frames. In the 

example system developed here, equation 4.8 has three degrees of freedom, whereas 

equation 4.9 has six degrees offreedom. 

By considering the constraining network of hypothetical voltage sources, produced 

while transforming the original network into that expressed by equation 4.9, as shown 

by Figure 4.5, it is possible to define the Em vector in terms of the Eb vector as 

eml 1 ebl 

em2 -I 1 1 eb2 

em3 -I 1 eb3 = .... _--------------- {4.IO} 
em4 eb4 

em5 1 eb5 

em6 1 eb6 

Also, by studying the network of Figure 4.5 it is possible to determine Ib in terms of 

I m as 

·b! 1 
, ·m! 

1 1 1 

·b2 
1 .m2 I -I 1 1 1 1 1 

. b3 1 
·m3 1 1 1 1 1 1 

·b4 = 1 {4.l1 } 1 ·m4 
1 1 1 

. b5 1 
1 .m5 

1 -11 1 1 
·b6 1 1 ·m6 
1 1 1 
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By observation, it is clear that the coefficient matrix in equation 4.11 is the transpose 

of that in equation 4.10. This matrix is purely defined by the manner in which the 

branches are connected to form the network being analysed, and hence it is commonly 

termed the connection matrix. However, it can also be considered to transform a 

branch vector into the mesh reference frame, and hence is sometimes known as a 

transformation matrix. Using this matrix and the index notation described earlier, 

enables equations 4.8 to 4.11 to be expressed as 

{4.12 } 

{4.13 } 

{4.14 } 

{4.15} 

If equation 4.13 is rearranged and substituted into equation 4.14, Em this becomes 

E C obZ b Cob 
m = m bb I - m Vb {4.16} 

Substituting Ib from equation 4.15 gives 

E C obZ Cb m Cob 
m = m bb om I - m Vb { 4.17} 

If equation 4.17 is rearranged as shown in equation 4.18, a direct comparison of terms 

leads to the complete form of the mesh equation expressed by equation 4.19. 

C ob E Cob Cb m 
m Vb + m = m Zbb om I {4.18} 

{ 4.19} 

where 

{4.20} 
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and 

{4.21 } 

Equation 4.21 is the impedance transformation defined by Kron [113], and allows a 

mesh reference frame network to be defined from a branch network. 

4.4. CONCLUSIONS 

The techniques described in this chapter form the basis for many methods of circuit 

analysis. While the close mesh technique can be used in almost all circuit analysis, 

the use of open mesh networks is much more limited. However, open mesh networks 

are often used without being explicitly termed as such. The most common use of 

open mesh analysis is to determine the voltage between two nodes in a circuit, and it 

is used later in this thesis to determine the voltages present across switches when 

these are non-conducting. While the notation developed by Happ is very formal, it 

does allow a quick balance of the equations components to be used as a validation 

check. 
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5. NUMERICAL TECHNIQUES 

Analysing a launcher using filamentary analysis and applying mesh networking 

techniques leads to a large set of differential equations that must be solved. By 

considering the solution of a single initial value problem, numerical techniques can 

be developed, that are suitable for solving such equations. The first part of this 

chapter develops the numerical techniques to solve differential equations and the 

second part introduces the techniques used in the solution of large sets of 

simultaneous equations that are present in the filamentary model. 

5.1. SOLUTION OF DIFFERENTIAL EQUATIONS 

Often, in science and engineering, models are used to determine some variable with 

respect to another, and such models may require the solution of initial value 

differential equations. Ideally, the solution of a differential equation would be in an 

exact analytical form, but real life problems are normally much too complex and they 

must be solved by approximate numerical methods. Numerical techniques do not 

provide a continuous approximation to the real situation, but instead provide 

approximate solutions at a series of points, which are often evenly spaced. In this 

thesis, this series consists of sequential points in time, with the gap between two 

consecutive points being called a time step. 

The differential equations used in the filamentary model can be expressed in the form 

of the initial value problem 

dy = f(t, y) 
dt 

a:o;t:o;b y(a) = a {5.l } 

where f is a continuous function that can be evaluated between times a and b, and a is 

the initial value ofy, at time a. 

If the possibility of errors is included in the problem, the original statement of 

equation 5.1 is said to be transformed into the perturbed form of equation 5.2, where 

EO is the error in the initial condition and 8(t) is the additional error at time t. 
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dz - = f(t, z) + o(t) 
dt 

Nwnerical Techniques 

z(a) = et + &0 {5.2} 

When using numerical methods to solve a problem, the problem must be considered 

in the perturbed form due to the errors inherent in any numerical technique. 

When each point is evaluated an error is introduced into the approximation, which is 

called the local error. The global or final error of any time stepping technique is the 

sum of the initial error and all the local errors, but since these are not necessarily of 

the same sign, the global error is not simply their accumulated sum. Although the 

global error is usually the more important it cannot be calculated, and to ensure that it 

is minimised the local errors are usually minimised. However, in this thesis, the 

transient response of the launcher is one of the most important factors in its 

performance, and the local error is therefore considered to be more important than the 

global error. 

The different numerical methods for solving ordinary differential equations use either 

single-step or multi-step techniques. Single-step methods only require the value of the 

current variable to be known, while multi-step methods require information on the 

system over several previous time steps. However, multi-step methods usually have 

the advantage of requiring less computation than that of an equivalently accurate 

single-step method. 

5.2. RUNGE-KUTTA METHODS 

Runge-Kutta methods are widely used to solve ordinary differential equations for a 

broad spectrwn of applications. Although simpler methods, such as Euler or Taylor 

methods do exist, their accuracy is somewhat limited and they are seldom used in 

practice. Although Runge-Kutta methods are clearly distinct from the other two 

methods, there remains a close link, since Runge-Kutta methods are based on a Taylor 

expansion, and the Euler formula can be expressed as a special form of the Runge­

Kutta methods. 
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The classic Taylor series expansIOn of a function requires the derivatives of the 

function to be found, and if the function has two or more variables evaluation of the 

derivatives can become very complicated. Runge first proposed a method that 

removed the need to detennine the derivatives while still maintaining the accuracy, by 

detennining the values of the function at a series of intennediate points. The method 

was subsequently developed and fonnalised by Kutta, and became the Runge-Kutta 

method. 

The Runge-Kutta fonnulation used in this thesis is the fourth-order method shown in 

equation 5.3. Although there are many other possible fourth-order formulations, the 

one chosen here is widely used and frequently described [96], [118]. 

{5.3} 

where 

gl =f(xn,Yn) 

g2 =f(x n +.!:,yn +.!:gl) . 2 2 

g3 = f( xn + ~ ,yn + ~ g2 ) 

{5.4 } 

g4 =f(x n +h,yn +hg3) 

Although the Runge-Kutta method is often used in an incremental form, it was used in 

the gradient fonn shown above, since this slightly improves the perfonnance of the 

program. Since the solution of the filamentary model requires the solution of a large 

number of differential equations over the same time step, the fractions of the step­

length were pre-calculated to further improve the program perfonnance. 

5.2.1. LOCAL ERROR ESTIMATION IN THE RUNGE-KUTT A METHOD 

Although the Runge-Kutta method provides a relatively simple and accurate method 

of finding the solution of ordinary differential equations, evaluation of its associated 

local truncation error is far from simple. However, to enable the development of the 
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variable time step model implemented in Chapter 7, it was necessary to find a suitable 

method of determining the local truncation error. 

The Runge-Kutta method requires additional approximations to enable the local error 

to be predicted. The difficulty in explicitly estimating the local truncations in a 

Runge-Kutta formulation is the greatest weakness of this approach. However, the 

widespread use of these methods has led to the development of several methods of 

approximately determining the local truncation error, and two of these are considered 

here. 

5.2.2. RUNGE-KUTTA-FEHLBERG METHOD 

One method of assessing the accuracy of the computation at the end of a single-step is 

to compare it to the value that is obtained when the step-length is halved. If the 

difference in the results is too great, then the time step should be halved and the 

function re-evaluated. Although this method is simple to implement it greatly 

increases the computational time, with the fourth-order algorithm described above 

requiring eleven function evaluations as opposed to the original four. Alternatively, 

the results from two Runge-Kutta algorithms of different orders could be compared. 

If these are of fourth and fifth orders, four evaluations are required for the fourth-order 

method and a further six for the fifth-order method. However, a very popular method 

called the Runge-Kutta-Fehlberg method combines the calculation of both the fourth 

and fifth approximations, and yet requires only six evaluations. This technique uses 

the fourth and fifth-order approximations, as shown in equations 5.5 and 5.6, and 

calculates the local truncation error E by comparing them, which when simplified 

leads to equation 5.7. 

{5.5} 

{5.6} 
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{5.7} 

where 

{5.8} 

5.2.3. RUNGE-KUTTA-MERSON METHOD 

The Runge-Kutta-Merson method is based on a fourth-order Runge-Kutta method, but 

requires an addition evaluation that provides an additional degree of freedom. By 

using this extra degree of freedom, it is possible to derive two formulations of the 

method as given in equations 5.9 and 5.10. 

(1 2 I) Yn+l = Yn + -gl +-g4 +-gs h 
6 3 6 

{S.9} 

{5.10} 
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where 

{5.l1} 

Although only the first approximation (equation 5.9) is commonly used to estimate 

y n+ I, the second estimation allows the local truncation error to also be predicted. 

Merson showed that if f (x, y) is approximately linear at (xn, Yn), or h is sufficiently 

small, a good estimate of the error in Yn+1 can be found from equation 5.12. 

{5.12} 

Although equation 5.12 should only be applied when f(x, y) is linear, it can be used to 

provide a conservative estimation of the local truncation error, even when f (x, y) is 

non-linear. 

5.3. PREDICTOR-CORRECTOR METHODS 

While predictor-corrector methods have the advantage of requiring fewer function 

evaluations than equivalent Runge-Kutta methods, they require knowledge of 

previous values and sometimes previous gradient values. Predictor-corrector methods 

are based in general on equation 5.13. A predictor function is used to provide in 

initial prediction ofYn+l, but it has no known value ofy'n+1 and hence Po = O. The 

initial prediction is then used by the corrector, in which Po ;t 0, to refine the estimation 

ofYn+I' and so improve its accuracy. 
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yn+l =UlYn +U2Yn-l+K 

+h(~oY~+1 + ~ lY~ + ~2Y~-1 +K ) 
{5.13 } 

where un and ~n are the coefficients of the method being implemented. 

Although the step-length h does not have to remain constant, allowing it to change 

requires the coefficients Uj and ~j to change as functions of the current and previous 

step-lengths. Due to the addition complexity involved in implementing variable step­

length predictor-corrector methods they are rarely used, although there are published 

methods for producing the required variable coefficients [119]. Often a hybrid 

combination of predictor-corrector and single-step methods is used to implement a 

variable time step algorithm, as described in Chapter 7. 

There are many different possible formulations, but one of the most common is a 

combination of an Adams-Bashforth predictor and an Adams-Moulton corrector. 

Both of these are based on the integration of ordinary differential equations and both 

use the extrapolation and interpolation forms of Newton's backward formula. The 

Adams-Bashforth and Adams-Moulton formulae are expressed as 

{5.14} 

and 

{5.15} 

respectively, where the superscripts p and c represent the predictor and corrector 

respectively. 

The ordinary differential equation is solved by first using the Adams-Bashforth 

equation 5.14 to predict Yn+l, which is then evaluated to produce the required y'n+1 

term. The Adams-Moulton corrector (equation 5.15) is then used to improve the 

accuracy of the first estimation, before the function f (x, y) is finally re-evaluated. 

This method is able to produce results with the same order of accuracy as the Runge-
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Kutta method, but it requires only two function evaluations. The predictor-corrector 

method developed here has the additional advantage that this formulation lends itself 

elegantly to local error calculations. 

5.3.1. LOCAL ERROR ESTIMATION IN THE PREDICTOR-CORRECTOR 

METHOD 

All Runge-Kutta methods rely upon a comparison between two different methods of 

approximating Yn+l, which involve addition function evaluations. However, since the 

predictor-corrector approach is based on two such approximations, an estimation of 

the error can be found without the cost of addition evaluations. By assuming that all 

previous values of Yi (where i :5 n) are exact, the local errors can be expressed as 

251 h4 "'" 
720 y 

EC = Yn+l-ln+l =_~h4 '"'' 
h 720 Y 

{5.16} 

{5.17} 

Assuming that, for small values of h, the approximations of y'"'' are the same, 

subtracting equation 5.16 from 5.17, gives 

S C P 
If'"~ Y n+l-Y n+l 

y = 3 h5 
{5.1S} 

Hence, the corrector error can be expressed as 

{5.19} 

Equation 5.19 provides a good approximation to the local truncation error, and it is 

not limited to locally linear functions f (x, y), as in the case of the Runge-Kutta­

Merson method. 
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5.4. METHODS OF MATRIX FACTORISATION 

The analysis of any launcher system using the equations in Chapter 4 leads to a set of 

simultaneous equations having the form 

{5.20} 

Before the methods of solution described above can be implemented the required 

derivative of f (x, y) must be evaluated, which involves the solution of a large system 

of simultaneous equations. Equation 5.20 can be simplified to the form shown in 

equation 5.22, by the substitution of equation 5.21. Equation 5.21 fonns the basis for 

all the matrix factorisation methods described here. 

Ax=b {5.21 } 

{5.22} 

Many different methods can be used to solve sets of simultaneous equations. 

However, in general, it is possible to split the different methods into two groups, 

iterative and direct. Iterative methods use successive approximation until the result 

has been found to an adequate accuracy, but while requiring less computer memory 

than the equivalent direct methods they can become unstable and suffer from 

problems of convergence. Direct methods rely upon direct manipulation of the 

equations being solved, and while they may require more computer memory to 

implement, they are much simpler to formulate and are stable. The three direct 

methods examined below are all based on the Gaussian elimination method, but 

require significantly different amounts of computer resources. 

5.4.1. GAUSS-JORDAN METHOD 

The Gauss-Jordan method is the simplest of the three methods to be described, and it 

is a direct adaptation of Gaussian elimination [120]. It is also known as the explicit 

method, since the inverse matrix is found directly. The method is based on the 

elimination of each unknown until only one remains, when the last equation can 
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simply be solved and the result is inserted into the previous equation, which then can 

be solved. The use of each result in a previous equation is called back substitution, 

and allows all the results to be found. In the Gauss-Jordan method, all the elements 

above and below the leading diagonal are set to zero and those on the diagonal are set 

to one. Although the method finds the solution to a set of equation, it is often more 

useful to find the inverse of A. By augmenting A with a unit matrix of the same size 

and applying the above technique, the resultant matrix will contain the unit matrix, 

now on the left-hand side, and the inverse of A on the right-hand side, as shown 

below. 

{5.23} 

5.4.2. IMPLICIT FACTORlSATlON METHOD 

This is another formalised method based on Gaussian elimination. The product form 

of the inverse of A is also known as the implicit form [118], due to the result matrix 

only containing an implied inverse. The implied inverse produces the same result as 

the full inverse.matrix, when multiplied correctly by another matrix or a vector. 

As with the other methods described, the solution to equation 5.21 is found by 

considering the equation in the form of equation 5.22. However, the matrix A"I is not 

calculated explicitly but rather expressed as a product of a series of matrices 

{5.24} 

In Gaussian elimination, the first row of matrix A is divided by its diagonal element 

(all) and all the other rows then have appropriate multiples of the first row subtracted 

from them. However, it is possible to perform the same series of operations by pre­

multiplying the matrix A by a transformation matrix T I, where T 1 is defined by 
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I 
0 0 

all 

T I = a21 
I 0 

all 
a31 

0 
all 

Applying T I to A leads to the new matrix A', where 

[

I ai2 

A' = 0 a22 

o a32 

Numerical Techniques 

{5.25} 

{ 5.26} 

in which a'ij are the same coefficients that would be obtained after the first step of an 

ordinary Gauss-Jordan elimination. Hence equation 5.21 can be expressed as 

{5.27} 

This transformation process can be expanded to an nth order operation, leading to 

{5.28} 

If the process is continued until n = i, where i x i is the size of the original matrix A, 

then A <n> will have been reduced to a unit matrix, while the product of T n to T I will 

be the inverse of A. Although this inverse is now expressed as a set of i x i matrices, 

it can be shown that only the nth column of each transformation matrix is needed. The 

rest of the matrix is the same as a unit matrix, and can be included implicitly. If the 

original matrix A is not required after factorisation then the unit matrix created in A 

can also be implied, and the storage space can be used to store each subsequent 

column from the corresponding transformation matrix. 

Implicit factorisation does not produce the actual inverse of A. The use of modified 

pre- or post-multiplication routines allows equations, such as equation 5.21, to be 

solved with much less computational effect than is required by a corresponding 

Gauss-Jordan program. It should be noted that the inverse of A can be found by 
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multiplying together all the T matrices. However, the inverse of A is rarely needed on 

its own, and it is more commonly multiplied by another matrix or vector: 

5.4.3. TRIANGULAR DECOMPOSITION METHOD 

Triangular decomposition is widely used for solving large sets of simultaneous 

equations. It is often also termed LV factorisation, and the technique is again based 

on Gaussian elimination. Although there are several LV factorisation methods, the 

one considered here is the Crout and Cholesky method [118). Triangular 

decomposition is based on the concept that the original matrix A can be expressed as 

the product of two matrices 

A=LU {5.29} 

where the lower triangular matrix L has all zero elements above the leading diagonal, 

and the upper triangular matrix U has a unit leading diagonal and all the elements 

below the diagonal are zero. If it is possible to factorise A in this manner, equation 

5.21 can be expressed as 

LUx=b {5.30} 

where 

. [I u 12 
U= 0 I 

o 0 

{5.31 } 

If an addition vector b is defined, the solution of equation 5.21 can be considered as 

the two-part problem 

{5.32} 

and 

Lb=b {5.33} 

58 



Chapter 5 Numerical Teclmiques 

Since all the elements above the leading diagonal in the L matrix are zero, b can be 

found by a direct forward substitution. Once b has been determined, b can be found 

by backward substitution into the upper triangular matrix. Before any system can be 

solved using this method, the coefficients in both the L and U matrices must be found. 

It can be shown that Gaussian elimination applied to equation 5.21, and before the 

back substitution process, produces a set of equations in the form of equation 5.32. 

To find L, the step involved in transforming b into b must be reconstructed, as L can 

be considered as a transformation matrix that transform b into b as shown in equation 

5.33. By considering a (3x3) set of equations, L can be expressed as 

{5.34} 

where a <n>ij is the element at location (i, j) in the A matrix after the nth step of a 

Gaussian elimination. By modifying the Gaussian elimination process, it is possible 

to transform the matrix A into the matrix U, by replacing the elements after each step. 

With a slight modification to the backward substitution phase, it is possible to reduce 

the amount of computer storage required. If the leading unit diagonal and the zeroes 

in the L and U matrices are implied, both matrices can be stored in the original A 

matrix, which has the added benefit that both matrices can be calculated at the same 

time. 

5.5. CONCLUSIONS 

Although only one method of matrix factorisation and one method of solving ordinary 

differential equations are required at each time step, all the above methods have been 

implemented and tested during the development of the fiJamentary model. The 

development and testing of the different methods is discussed in chapter seven. 

All the methods of matrix factorisation considered here are based on Gaussian 

elimination, each has its own particular properties. The Gauss-Jordan method is the 
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simplest to use but it also the most computationally expensive. The implicit 

factorisation method is faster than the Gauss-Jordan method, but it requires special 

routines to perform either pre- or post-multiplication. The LU factorisation method is 

computationally the fastest, but it is only possible to perform an adapted post­

multiplication of the resultant matrix. 
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6. IMPLEMENTATION OF FILAMENTARY 

MODEL 

The first part of this chapter describes how the parameters of each filament are 

calculated in the branch reference frame. Later parts discusses how the mathematical 

methods developed in the previous two chapters were used, together with the branch 

parameters, to produce a working model. This model is compared with a finite 

element model at the end of the chapter. Although some of the methods developed in 

this chapter help to reduce the run time of a simulation, further development of the 

original model was undertaken, as detailed in chapter seven. 

6.1. ANALYSIS OF LAUNCHER PARAMETERS 

A filamentary model is based on the division of the launcher conductors into 

sufficiently small parts, to ensure that an equivalent circuit approach will produce 

sufficiently accurate results. It provides an elegant and direct method of modelling 

what would otherwise be a difficult electromagnetic field problem. By assuming that 

only circumferential currents flow in the launcher conductors, these can be 

represented by a series of independent circular elements. If the current flowing in each 

element is assumed to be concentrated at its centre, then the element can be thought of 

as an infinitely thin conductive filament. The launcher is then represented by a large 

collection of such filaments, the parameters of which can be determined individually. 

Once these are known, sets of electrical and mechanical equations can be assembled 

and solved using the procedures outlined in the previous chapters. 

6.1.1. METHOD OF FILAMENTARY DIVISION 

Both round and rectangular cross-sectional conductors are considered in this thesis. 

Each layer and turn of a coil can be considered to be made up from many strands of 

conductor. In turn, each strand will be made up from many filaments, as shown in 

Figure 6.1 and Figure 6.2. The filaments in each strand are modelled as electrically 

insulated loop conductors, connected in parallel at the end of each turn or layer. The 

61 



Chapter 6 Implementation of Filamentary Model 

turns and layers are then connected in series. The strands are considered as individual 

conductors wound together and connected in parallel at the coil terminals. The use of 

infinitely thin conducting filaments to model parts of a conductor inherently excludes 

the concept of a filament having any cross-sectional shape. However, some thought 

must be given as to how a conductor is divided into filaments. 

Rectangular cross-section conductors can easily be divided both horizontally and 

vertically, to produce approximately square filaments. The required dimensions for 

each filament can then be calculated. 

The division of a circular conductor can be achieved in various ways, and Figure 6.3 

shows three of these. The simplest is to divide the cross-sectional area segments, but 

this can lead to very tall and thin filaments. Since the theoretical filament would be 

located at the centre of each segment, this method of division would lead to a circle of 

elements at approximately half the radius of the original conductor. This distribution 

of filaments would hide any skin effect within the conductors, and could produce a 

misleading current distribution. 

Another method is to approximate the required circle from small square filaments, 

although if the conductor is already small this will lead to very small filaments. This 

will of course improve the accuracy of the model, but it will greatly increase the 

number of filaments required to model a system. This in turn can produce long 

solution times, and even a problem too big for the available computers to solve. 

The method used in this thesis for round conductors is a combination of the previous 

two methods. The conductors are divided into a number of shells, each containing a 

different number of filaments, and the filaments are connected in the same manner as 

for a rectangular conductor, as shown in Figure 6.4. The location of each conductor is 

calculated from dimensional data. The number and location of the filaments within the 

conductors is determined from the maximum allowable effective filament cross­

sectional area. 
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6.1.2. ELECTRICAL EQUATIONS 

The equations described below were used to determine the equivalent circuit 

parameters of the filaments being modelled. Due to the close link that exists between 

the resistance of a filament and its temperature, their calculation is considered 

together. 

6.1.2.1. INDUCTANCE CALCULATIONS 

By considering the vector potential and the magnetic field energy caused by currents 

flowing in two loop conductors of infinitely thin wire, it is possible to determine the 

mutual inductance between the loops. Assuming that the lower of the loop conductor 

shown in Figure 6.S lies in the plane z=O and that the current i is circumferential, the 

vector potential at the point P some distance from the loop is given by 

{6.1 } 

where 

{6.2} 

and z, ri' r2 and S are defined in Figure 6.6. Equation 6.1 can be rearranged as 

{6.3} 

Unfortunately equation 6.3 cannot be solved directly, but it can usefully be rearranged 

using the substitutions 

k= S = 1t - 2<p {6.4 } 

and 

cos(S) = -I + 2sin(<p)2 {6.S} 
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to give 

{6.6} 

where the functions K(k) and E(k) are elliptical integrals of the first and second kind 

respectively. Although these still cannot be solved analytically, numerical solutions 

exist in both tabular and functional forms [Appendix A]. 

If the loop is divided up into current elements i dI, the energy stored in the magnetic 

field ofa set ofN fine loop conductors can be found from [106] 

{6.7} 

and since each loop contributes to the magnetic vector potential at any point, the total 

energy may be expressed by 

{6.8} 

It can be see from equation 6.8 that the total energy stored is a combination of a sum 

of the loop currents and a geometrical expression defined as mutual inductance by 

Neumann's formula 

{6.9} 

Use of equation 6.9 for the two loop conductors shown in Figure 6.6 leads to 

and using the substitutions of equations 6.4 and 6.5 enables the mutual inductance to 

be expressed as 
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{6.ll } 

To determine the self inductance of an infinitely thin loop conductor using the above 

method requires both the contours of integration to be the same. However if this is 

attempted k= 1 and hence the resultant self inductance is infinite. To avoid this 

absurdity, the flux inside each filament is neglected, and the first contour of 

integration is taken as the centre of the filament and the second at its inner radius. 

Using these approximations the self inductance of the loop can be determined from 

{6.12} 

where Yn is the radius of the wire ofthe nth. conductor, and ks is defined by 

{6.l3 } 

Alternatively, the self inductance of a loop conductor can be found by using an 

approximation proposed by Silvester [106] such that 

{6.l4 } 

A comparison of calculations made by these the two methods, over a practical range 

of loop sizes, is shown in Figure 6.7. A theoretical examination of the methods of 

calculating the self inductance of a wire was undertaken by Graneau [121], who 

investigated the difficulties involved in calculating the self inductance of an infinitely 

thin conductor and concluded that there was no better methods of finding the required 

self inductance than those described above. 

The derivatives of equation 6.11 with respect to z and r were given by Garrett [122], 

and can be rearranged into the forms 
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The derivative of the self inductance of a loop conductor with r~spect to the loop 

radius was derived from equation 6.14 as 

{6.17} 

6.1.2.2. RESISTANCE AND THERMAL CALCULATIONS 

The filamentary resistance is considered, together with the filamentary temperature, 

since they are closely related. The resistance of each filament was determined from 

Rn= 
2rcPn (~)rn 

{6.18} 
xnzn 

where Rn = resistance of filament n 

Pn(~) = resistivity of filament n material at temperature ~ 

rn = mean radius of filament n 

xn = thickness of filament n in the radial direction 

zn = thickness of filament n in the axial direction 

The thermal equations assume that the heating of each filament is due to the power 

dissipated in that filament by the current flowing through it. Since the time period 

considered in a simulation was so short, it was also assumed that there is no thermal 

conduction or radiation into either adjacent filaments or the surroundings. Hence the 

rate of change of temperature of each filament can be determined from 

{ 6.19} 
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where In = current in filament n 

c($)n = specific heat capacity of the material of filament n at temperature $ 

$n = temperature of filament n 

mn = mass of filament n 

Since both the specific heat capacity and the material resistivity are dependent on the 

filament temperature, their values must be calculated for each filament at each time 

step. To prove a simple and fast calculation of these parameters, approximate 

functions were used. The development of these functions is described in Appendix B. 

6.1.3. MECHANICAL EQUATIONS 

Before any mechanical equations can be developed, the force acting on each filament 

must be determined. The force component of most interest is that due to the 

interaction between the current carried in a filament and field that surrounds it. 

Applying the conservation of energy principle, and assuming that the current in the 

filament remains constant throughout each time step, the electromagnetic force acting 

per circumferential meter on filament n in the radial direction is given by 

{6.20} 

and the force in the z direction on filamentary n is 

{6.21 } 

If it is assumed that the retarding force on the projectile can be modelled by the sum 

of a constant force and a force proportional to its velocity, then the motion of the 

projectile can be found from a force balance equation, if the projectile is considered as 

a whole. Thus 
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where 

N N 
" ,,1 .. BMnm 
L.... L.... -lmln 

m=1 n=1 2 ftz 

fe = constant retarding force 

f, = retarding force velocity coefficient 

{6.22} 

Equation 6.22 can be expanded to include aerodynamic drag and gravitational 

acceleration. Gravitational effect can be modelled by a constant retarding force, if the 

projectile is launched vertically. The inclusion of aerodynamic drag is discussed in the 

following section. 

6.1.4. AERODYNAMIC DRAG 

The effect of aerodynamic drag depends on the ratio of the projectile speed to that of 

sound waves in the medium of flight (i.e. air). The speed of the projectile is usually 

broken down into three regions; subsonic, transonic and supersonic. Since it was 

expected that the initial practical work would not produce transonic or supersonic 

speeds, the study of drag was limited to the subsonic region. 

At subsonic speeds the force due to aerodynamic drag can be calculated from 

where 

I 2 
fd =dxAx-erQu 

2 

d = drag coefficient 

A = projectile surface area = n(ro 2_ rj2) 

ero = density of air = 1.204 kg/m3 [123] 

{6.23 } 

The effect of the angle of attack of a square plate and a disc are shown in Figure 6.8, 

where the angle is measured from the direction of motion [124]. Figure 6.9 shows 

how the drag coefficient of a disc is affected by a hole at its centre [124]. The 

diameter ratio 0 represents a solid disc and the ratio 1 represents an extremely fine 
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disc. The sharp increase in the drag coefficient is due to the flow around the projectile 

changing from a three to a two dimensional pattern. 

Although some projectile yaw was expected, due to irregularities in the coil 

construction, this is unlikely to be more than 45° over the region of interest. Hence, it 

was assumed that the drag coefficient did not depend on the angle of attack. The effect 

of aerodynamic drag was modelled by the inclusion of a retarding force, which was 

proportional to the square of the velocity, so that the mechanical equation became 

{6.24 } 

where fd was calculated from equation 6.23 and where the drag coefficient d was 

found from Figure 6.9. 

6.2. SOLUTION OF FILAMENTARY MODEL 

Once the filamentary parameters have be determined, by usmg the equations 

developed in the previous section, they must be combined into a system of equations 

before being solved. Using standard coupled circuit theory and assuming the launcher 

to be magnetically linear, a system of simultaneous ordinary differential equations can 

be formed. The launcher circuit parameters can be expressed in the branch reference 

frame by equation 6.25, in which Lbb is a function ofthe projectile position and Rbb is 

a function of temperature. 

{6.25} 

The derivative term in equation 6.25 can be split into the translational and transformer 

components shown in equation 6.26. 

{6.26} 
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where Dbb is the derivative of the inductances Lbb with respect to the displacement in 

the direction of motion. The impressed voltage vector Vb is zero, except for the 

supply capacitor voltage and the forward voltage drop across the conducting switch 

branches. Although the elements of equation 6.26 are relatively easy to determine, the 

equation cannot be solved directly, since the contents of the vector Eb are unknown. 

By implementing the network analysis techniques described in Chapter 4, it is 

possible to transform equation 6.26 from the branch reference frame into the mesh 

reference frame to give 

( }lm d m 
Vm +Em = Rmm +Dmmu +Lmm- I 

dt 
{6.27} 

Although the parameters in equation 6.27 are not easily defined, it can be solved since 

Em must be zero in accordance with Kirchhoffs voltage law. Since the inductance and 

the rate of change of inductance terms are both functions of projectile displacement, 

and Rmm is a function of temperature, they must be determined each time equation 

6.27 is evaluated. 

Although the inductances cannot be defined easily in the mesh reference frame, they 

can be defined in the branch reference frame and transformed into the mesh reference 

frame before being used in equation 6.27. In addition, the resistance matrix Rmm is a 

function of the filament temperatures and it cannot be easily defined in the mesh 

reference frame. Hence Rmm was found by calculating Rbb and then transforming it 

into the mesh reference frame. All three transformations can be expressed in the form 

shown by equation 6.28, where the required branch matrix is substituted for Zt,b, and 

the required mesh matrix is represented by Zmm' 

{6.28} 

Since the launcher equations are non-linear and time varying, they must be solved 

using the numerical techniques developed in Chapter 5. The electrical and mechanical 

equations were solved simultaneously, using a combination of single-step and multi­

step methods. The basic model used a standard fourth-order Runge-Kutta algorithm to 

start a simulation. Once sufficient data have been generated, the model would switch 
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to using the more efficient Adams-Moulton and Adams-Bashforth, predictor-corrector 

combination. However, other numerical techniques were tested as described in 

Chapter 7. 

The thermal time constants of the launchers were much longer than their associated 

electrical and mechanical time constants, and experience showed that acceptable 

results could be obtained when a forward Euler method was used to solve the thermal 

equations. Since these equations are easily defined in the branch reference frame, they 

were solved in this frame. 

The capacitor and main switch are represented by a series combination of an ideal 

capacitor, resistor and inductor. The supply branches are considered to be electrically, 

but not magnetically, connected to the launcher. The capacitor voltage is found from 

equation 6.29, which is solved simultaneously with the electrical mesh equations, but 

in the branch reference frame, 

{ 6.29} 

where the value of ic is the value of the capacitor branch element in the Ib vector, 

which is found by transforming the I m vector from the mesh reference frame. The 

capacitor voltage is included in the model by substituting the value Vc into the Vb 

vector, before transforming into the mesh reference frame vector V m' 

By considering equation 6.24 in matrix form, the total force on a projectile can be 

found from 

{6.30} 

Transforming equation 6.30 into the mesh reference frame enables the left-hand side 

to be expressed as 

{6.31 } 

71 



Chapter 6 

so that 

6.3. SPARSITY 

Implementation of Filamentary Model 

1 om m f 2 du 
-I Dmml = c +fdu +m-
2 dt 

{ 6.32} 

Often problems involving the analysis of a physical system lead to a set of equations 

that are sparse, that is they have a large number of zero elements. Although such 

problems can be solved using conventional techniques, these are slow and are often 

limited by the size and speed of the available computers. However, it is possible to 

exploit the sparse nature of the matrices to greatly reduce the required computational 

power, without reducing the effectiveness of the model. Sparsity also has the added 

benefit of reducing the amount of computer storage required to hold a matrix, which 

in turn can also reduce the computation time required by a program. 

During the implementation of the filamentary model two different sparse techniques 

were used. The first of these is based on an indexed matrix representation, and the 

second on matrix partitioning. 

6.3.1. INDEXED MATRIX SPARSITY 

By storing only a representation of a matrix, and not the original matrix, it is possible 

to reduce the amount of computer memory required. One of the simplest methods of 

storing a sparse matrix is to use a co-ordinate system [125], in which the value and the 

row / column location of each of the non-zero elements are stored as three lists. Thus 

the example matrix A, in equation 6.33 can be stored in the three lists given in Table 

6.1. 

3 0 0 0 0 

0 2 0 0 0 

A= -1 0 2 0 0 {6.33 } 

0 0 0 -1 0 

0 0 5 0 0 
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Value 3 2 -I 2 -I 5 
Row I 2 3 3 4 5 

Column I 2 I I 4 3 
Table 6.1 SImple sparse form of A 

It will be seen from this table that the amount of data storage space required decreases 

from 25 to 18 elements. When this method is applied to much larger and more 

sparsely populated matrices, the reduction in the computer storage space required 

clearly outweighs the slight additional complexity of the necessary computer code. 

All the elements in the network connection matrices used in this thesis only need to 

contain one of three possible values, -I, 0, and I. If the locations of the positive and 

negative elements are stored separately, there is no need to store their values only their 

locations are required [117]. The example in equation 6.34 can be represented by the 

four lists shown in Table 6.2. 

!Positive 

~egative 

-I 

A= 

Row I 
Column I 
Row I 
Column 3 

-I 

I I -I 

I 

3 3 
~ l3 
~ l3 
I f4 

-I 

2 
4 
5 
5 

Table 6.2 Sparse form of A 

{6.34} 

4 5 
4 4 

Although this method reqUIres four lists to be stored, it provides a significant 

improvement in speed when considering matrix multiplication. Multiplication of other 

matrices by the connection matrix and its transpose are required each time a quantity 

is transformed from one reference frame to another, which must be completed several 

times during each time step. By using the connection matrix in the form described 

above, these large matrix multiplications can be replaced by a series of additions and 

subtractions of individual elements, much improving the speed of the program. 
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6.3.2. MATRIX PARTITIONING 

Matrix partitioning can reduce the computation time and the data storage required 

when handling large matrices, even when they are full. By splitting a matrix into 

separate sub-matrices, it is possible to take advantage of inherent symmetries and 

redundancies within the original matrix. If the block of ones in the middle of the 

matrix A in equation 6.35, and the diagonal symmetries in the sub-matrices a and b 

can be implied, then only 12 elements need to be stored, as opposed to the original 48 

elements. 

24 -4 6: I I: -3 2 8 
: : 

-4 15 7: I I: 2 6 -10 
i i 

A= 
6 7 36 i I I: 8 -10 7 , . 

'~3-- ----2-- -- -- -g- --;-"j-- --1- :-- 24----::."4-- -- -- -;S- { 6.35} 
: : 

2 6 -10: I I: -4 15 7 
: : 

8 -10 7 : I I: 6 7 36 

Matrix partitioning was used in the filamentary model to reduce the computation 

required when calculating both the inductance and the rate of change of inductance 

matrices_ The branch elements were collected into three groups; drive coil branches, 

projectile branches, and power supply branches, which leads to the branch matrices 

being sub-divided into the nine sections shown in equation 6.36. By taking advantage 

of the inherent symmetry in the Lbb and Dbb matrices, only half the calculations that 

would be needed for a full matrix are actually required. In addition, the large number 

of zero elements in the Dbb matrix allows it to be reduced, as shown in equation 6.3 7 . 

. If the connection matrix is correctly sub-divided into nine sections, in a manner 

similar to that used for the branch matrices, some of the matrix partitioning can be 

maintained when Dbb is transformed into Dmm using equation 6.28, as shown in 

equations 6.38 to 6.40. 

{ 6.36} 
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Dbb-[~T 
D 

~] 0 

0 

{6.37} 

[C
T 

cl 
D r Cm 1 

Dmm = : cT C p p 

C ds Cs 

{6.38} 

[C
T 

C}TC' 
DC p 

DTC&] Dmm = : cT 
p 

C ds 

{ 6.39} 

{ 6.40} 

Using this partitioned form ofDmrn can also reduce the amount of calculation required 

to determine the force acting on a projectile. Since Dmrn is post-multiplied by Irn and 

pre-multiplied by the transpose of Irn, the required factor of a half can by implemented 

by ignoring the non-zero elements below the leading diagonal in Drnrn, when equation 

6.32 can be rearranged as 

6.4. DISCONTINUITIES 

m 2 du 
I =fc+fdu +m­

dt 
{6.41 } 

To allow the action of the power supply switches to be modelled, it is necessary to 

ensure that the model is able to deal with discontinuities. The actions of both the main 

and crowbar switches were implemented by the addition and removal of appropriate 

meshes from the equations. The diode switches turn on when the voltage applied 
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across them in the forward bias direction is greater than the switch forward conducting 

voltage drop. The triggered switches only start conducting when triggered, which is 

usually at the beginning of a simulation. All the switches turn off when the current 

flowing through them either drops to zero or attempts to reverse. 

After each time step, the model checks to see if one or more of the switches has 

changed state during that step. Due to the nature of the equations that are being 

solved, the location of any discontinuity must be found reasonably accurately. If it not 

determined correctly the simulation may become unstable and the switch operation 

may become oscillatory. The linear interpolation routine used to estimate the location 

of a discontinuity is based on a single-stage of an iterative location technique 

developed for power system analysis [117]. Figure 6.10 shows an example of a switch 

turning off, as the current flowing through it attempts to reverse. The program 

integrates normally between A and B, and then again between B and C; however when 

the program reaches point C the discontinuity routine flags the fact that the switch 

state should have changed. Using linear interpolation between the values at the start 

and the end of the step, the time at which the switch should have stopped conducting 

is calculated. Once the point of discontinuity D has been determined, the model re­

integrates between the last time step B and the discontinuity, by using a single-step 

method. The switch mesh affected is then removed from the connection matrix, and 

the derivatives recalculated at point D. Due to the different conditions that can apply 

after a discontinuity, the step size is usually adjusted to maintain the required 

accuracy. Once the step size has been adjusted the simulation is restarted, by using a 

single-step method, until sufficient data has been acquired to allow the model to 

switch to a multi-step method of integration. 

6.5. INITIAL MODEL VALIDATION 

To check the validity of the filamentary model, results from a static model were 

compared with those from a finite element model. Using MEGA a finite element test 

model was constructed, and a filamentary model was developed for the same launcher 

arrangement [Appendix C]. Figure 6.11 and Figure 6.12 compare the drive coil 

currents and capacitor voltages respectively, and the two sets of results can be seen to 
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have the same general characteristics. MEGA also provided two methods of force 

calculation, and results from these are compared with the force calculated from the 

filamentary model in Figure 6.13. Figure 6.14 and Figure 6.15 show the current 

density and filamentary current respectively, over a series of time steps. From the 

above comparisons it was concluded that the filamentary modelling program worked 

as expected and that the equations used in this model produced similar results to those 

from the finite element model. 

6.6. CONCLUSIONS 

Using a filamentary approach it is possible to develop an equivalent circuit method of 

modelling what would otherwise be a complex electromagnetic field problem. 

Methods of dividing the conductors into filaments were developed for both 

rectangular and round conductors. Equations for the individual filament inductances 

were described. In addition, the rates of change of filament inductances were 

formulated, some of which have not previously been used in this application. 

Mechanical equations of motion were based on a simple force balance equation, 

which included the effect of aerodynamic drag on the projectile. While all the 

filamentary parameters were defined in a branch reference frame, the system was 

transformed into a mesh reference frame, to enable a solution to be obtained. To 

improve the computation speed of the model, and to reduce the amount of storage 

required, two sparse techniques were used. An indexed matrix method was developed 

that allowed the connection matrix to be stored, by storing only the location of the 

positive and negative elements. This allowed matrix additions and subtractions to be 

used to replace large matrix multiplications. The second sparse technique used matrix 

partitioning to reduce the computer storage and processing that the model required. A 

discontinuity system was developed to allow the model to simulate the switching 

action of the power supply switches. The equations developed and described form the 

basis of the filamentary model used in this thesis. By comparison with a finite element 

model it was shown that the filamentary model provided a fast and accurate method of 

simulating a launcher. 
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6.7. FIGURES 
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7. DEVELOPMENT OF FILAMENTARY 
MODEL 

The first part of this chapter describes several different techniques and methods 

developed to reduce the time required to solve the filamentary model equations. The 

second section describes the expansion of the filamentary model to include the 

mechanical deformation of the projectile, and to provide greater power supply 

flexibility. 

7.1. PROGRAM SPEED IMPROVEMENTS 

Before any attempt was made to improve the performance of the program, a study 

was undertaken to determine which areas of the program were the least efficient. The 

results of this showed a large proportion of the computer time was taken up by just a 

few subroutines, with the processor time distribution indicated in Figure 7.1. 

However, since the program was run on a multi-user computer the time to run a model 

was heavily dependent on the other tasks running at the same time. To allow useful 

comparisons to be made, each simulation was run ten times and the average results 

were used. Since the computer loads varied widely with the time of day, each of the 

ten simulations were run at different times during the day to produce a real average. 

Details ofthe test simulation used in these and later timing tests is shown in Appendix 

C. 

From Figure 7.1, it can be seen clearly that the explicit matrix inversion routine 

requires the greatest proportion of the processor time, and although some attempt was 

made to improve the performance of this routine, no significant improvement 

resulted. To reduce the time for the matrix inversions, other methods of matrix 

factorisation were tested, and the use of an implicit matrix inversion method reduced 

the processor time by 37%. Despite this reduction the factorisation routine still 

dominated the total processor time. Using LU matrix factorisation reduced the 

processor time by a further 23%. After some minor adjustments, it was decided that 

no further improvement in the matrix factorisation routine was possible. Attention 
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was then focused on the second transformation routine, used to transform the filament 

inductances from the branch to the mesh reference frame. Changes in the order of 

some operations and other minor changes lead to an improvement in the computer run 

time of 16%. Focused then moved to the system call routines, which in total were the 

third largest consumers of the computer time. The majority of these calls were to 

$$fill routines. It was found that they were caused by the use of the "$init on" 

directive, which instructs the compiler to fill all new matrices with zeros. Although it 

was necessary to blank some of the new matrices before they were used to store data, 

it was possible to achieve the same results with the addition of a few extra loops. 

Removing the need for the $$fill subroutine reduced the overall processor time by a 

further 12%. 

It appeared possible that calculating the branch inductances before the start of a 

simulation, instead of during each time step, would greatly improve the performance 

of the modelling program. The self inductance of a filament only changes if the 

filament size or shape is changed, hence the self inductances of all the filaments 

remained constant, as the coils were assumed to be rigid. The mutual inductance 

between two filaments changes if the filaments move with respect with each other, 

and with the coils assumed to be rigid there is only relative movement between the 

drive and projectile coils. Hence, the mutual inductance between two filaments in the 

same coil also remains unchanged. Calculating the fixed inductances before the start 

of a simulation reduced the time required for a simulation by about 7%. 

Although the elliptic integral functions, E and K required very little processor effort, 

the fact that they were called almost 19,000,000 times during the test simulation 

caused them to use a significant amount of processor time. However, the routines 

were very simple, and no speed improvement could be made. Fortunately, the 

introduction of some temporary variables into the inductance calculation routines 

reduced the number of calls to the functions to 9,500,000 and produced a 4% 

reduction in the overall processor time. Figure 7.2 shows how the improvements 

described above effected the average run time for the test simulation. 
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7.2. PRE-CALCULATED INDUCTANCE 

The self and mutual inductance of filaments in the same coil were calculated and 

stored in the branch reference frame, before the start of a simulation. It was proposed 

that if the mutual inductances between the moving filaments were also calculated 

before the start of a simulation, this would lead to an improvement in the 

performance. 

However, since the mutual inductance between relatively moving filaments changes 

with displacement, it was proposed that an interpolation function could be used to 

determine the required variations from a range of pre-calculated inductances. 

Although the radius of every filament was considered as fixed, it was not possible to 

produce a system in which only the relative displacements were interpolated, since 

this would require a different interpolation for each pair of filaments. A general 

interpolation function for all filaments, had to include both the filament radii and their 

relative displacements, and therefore a four dimensional interpolation was required. 

The first method of interpolation tested was a linear interpolation function, in which 

the mutual inductance was calculated over a range of steps in both radii and 

displacement before the start of a simulation. During the simulation, the interpolation 

function selected the values closest to the point of interest and interpolated between 

them, to calculate the required mutual inductance. A linear interpolation method was 

successfully implemented, but due to the limited stability of the model any small 

errors in the mutual inductance calculation led to the program becoming unstable, 

before most simulations ended. Increasing the number of points at which the mutual 

inductance was pre-calculated improved the stability of the program, but slowed it 

down greatly. 

The linear interpolation method showed that the desired speed improvements could be 

obtained if the accuracy of the interpolation routine was improved. It was thought 

that a cubic spline method might provide the required accuracy without too much 

computation. 
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7.2.1. CUBIC SPLlNE INTERPOLATION 

The cubic spline method fits a smooth curve to a set of data points. Although it is 

based on polynomials, it does not require a polynomial to be fitted over the whole 

region of interest, but rather it fits successive polynomials over small sub-regions. 

The simplest form of a spline interpolation is a single order polynomial, which is a 

linear interpolation, but this has the disadvantages that it is inaccurate and 

discontinuous at each data point. Spline curves with more than one degree of freedom 

have however a continuous slope. Since the mutual inductance between two coils is a 

smooth function, it was hoped that use of a smooth interpolation routine would 

improve the accuracy of the program. The most common piece-wise polynomial 

interpolation. method is the cubic spline method, which uses cubic polynomial 

approximations between successive pairs of data points. A general cubic polynomial 

is defined by four coefficients to ensure that the interpolant is continuous in both the 

first and second derivative and that it passes through all the original data points. The 

equation for a cubic spline in the ith interval, that is between the data points ( Xi, Yi ) 

and (xi+1> Yi+! ), can be expressed by 

{7.l } 

where a, b, c and d are the four coefficients of the ith interval, and g is the resultant 

approximate function. 

While the above equation defines the cubic spline for internal points, there are several 

methods of defining the boundary conditions. The one used here is the free or natural 

boundary condition, in which the second derivative of the cubic spline is set to zero at 

its end, as shown below. 

" " go (xO)=gn (xn)=O {7.2} 

The natural boundary condition was chosen, as this was the simplest to implement. 

With the original data points correctly chosen, the first and last approximations will 

never be needed and the boundary conditions will not affect the accuracy of the 

model. 
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A four dimensional cubic spline method was developed, using several standard cubic 

splines [96] combined to calculate the required mutual inductance. The spline 

coefficients were calculated from the pre-calculated mutual inductance data as 

required while the model was running. Direct comparison of some example mutual 

inductances shown that the cubic spline method was more accurate than the linear 

interpolation method, which meant that the model did not fail so often. Although the 

cubic spline method worked, it actually took longer than with the original model. It 

was decided therefore that pre-calculating the variable mutual inductances was 

unlikely to produce any improvement in the solution time. 

7.3. VARIABLE TIME STEPPING PROGRAM 

A variable time stepping program was written to reduce the computation time, and to 

improve the reliability of the program, with originally two possible step-lengths being 

used to prevent the program crashing during commutation of the main and crowbar 

switches. Although the .step-Iengths were set individually for each simulation, it was 

found from experience that values of I f.!S and 0.1 f.!s were adequate for most situations. 

Although it is a simple matter to reduce the step-length and to re-run a simulation 

should the solution become unstable, this can become time-consuming if a simulation 

has to be restarted several times. 

It was hoped that the use of a variable time step would allow more stable simulations 

to be achieved in a reduced number of steps, and thus reduce the need to re-run the 

more unstable simulations. To enable any time step varying model to operate, it is 

necessary to know the accuracy of the model. It is obviously impossible to compare a 

numerical model to an exact solution, in all but the simplest situations, to provide an 

indication of the global error in a simulation, most methods evaluate the local error at 

each time step. As previously mentioned, the original program used a combination of 

a fourth-order Runge-Kutta and a fourth-order Adams-Moulton / Adams-Bashforth 

predictor-corrector methods, while the local error of the Runge-Kutta method was 

found by using the Runge-Kutta-Fehlberg and Runge-Kutta-Merson methods as 

described in Chapter 5. These two methods were implemented to determine which of 

these required the least computational effort. After testing both methods on the test 
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simulation it was found that the Runge-Kutta-Merson approach was significantly 

faster. The local error of the predictor-corrector method was found directly from the 

original method, as described in Chapter 5. Although three different methods of 

estimating the local truncation error were implemented these were all used to vary the 

time step-length in the same manner. Since the coefficients of all three methods are 

dependent on the step-length h, then the local truncation error E for any of these 

methods can be approximated to equation 7.3 for a nth order system, 

E(h) = O(h") {7.3} 

where O(x) represents a number of the order x. 

Assuming that equation 7.3 can be re-written to given equation 7.4, and that the new 

step-length is defined by qh, then the new error can be expressed by equation 7.5. 

E(h) '" Kh
n {7.4} 

{7.5} 

Since the aim of a variable step-length algorithm is to ensure that the error remains 

within a given tolerance, the error must be bounded by a given error limit E. 

{7.6} 

hence 

n E 

q ::; E(h) {7.7} 

Since all the methods used in this thesis are fourth-order, q can be found from 

( 
E )X 

q = E(h) {7.8} 

To prevent the results of a singular time step changing the step-length to an 

unsustainable value, q is usually limited as shown below. 
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O.l~q~4 {7.9} 

Although the variable step-length can easily be calculated by the above method, care 

must be given to its implementation. When the program uses a single-step method it 

can simply change the step-length and continue with the next time step. If however 

the program uses a multi-step method, after each step-length change the program must 

switch to the more time-consuming single-step method. Only when the step-length 

has remained sufficiently constant to collect the required history data, could the 

program revert to using a multi-step method. Although many programs have been 

developed that use a variable time step approach, the filamentary model developed 

here has the added complication that the system being modelled changes due to the 

switching discontinuities. 

Figure 7.3 shows how the variable time step approach was integrated with the 

discontinuity routines to ensure the simulation remained stable. Since the accuracy of 

the time step after a discontinuity cannot be predicted, the time step was arbitrarily 

divided by ten, to prevent the program crashing after the discontinuity. Although the 

rate at which the step-length increases is limited by enforcing the inequality in 

equation 7.9, the step-length could still grow to an unreasonable size. To prevent the 

step-length becoming too large a maximum step-length was imposed, which greatly 

improved the reliability of the program. 

When the variable time step-length algorithm was implemented, it reduced the 

number of steps required to solve the test model from 493 to 265, and was able to 

solve simulations that repeatedly crashed when using the original model. Although 

the model worked in most situations, it was occasional possible that a simulation 

would cause the time step-length to change almost every step in an oscillatory 

manner. 

7.4. INSTANT CROWBAR TuRN ON 

When a discontinuity occurs, the size of the time step is often changed to ensure that 

the program remains stable. When both switches are conducting, the step-length is 

reduced to prevent the increased rates of change of current in the power supply circuit 
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making the program unstable. To achieve this, the step-length must often be reduced 

by more than an order of magnitude, but the use of very small time steps slows down 

the simulation dramatically. It was considered that if the main and crowbar switches 

were assumed to commutate instantaneously there would be no need for the smaller 

step-lengths. By implementing an instantaneous crowbar turn on, the number of steps 

required for the test simulation was in fact reduced from 493 to 400. It can be seen 

from Figure 7.4 that this instantaneous action leads the model to predict a slightly 

higher crowbar current. From Figure 7.5, it can also be seen that the capacitor voltage 

does not drop below the forward voltage drop of the crowbar switch, when the 

switches commutate instantly. There is no significant negative voltage build up on 

the capacitor bank, since the main switch ceases conduction as soon as the crowbar 

switch starts to conduct. This idealised situation is obviously more efficient, since no 

significant energy is returned to the capacitor, as is the case in the more realistic 

model. Although a slight improvement in the maximum velocity can be seen in 

Figure 7.6, it is apparent from Figure 7.7 to Figure 7.9 that the instantaneous crowbar 

turn on does not greatly affect the mechanical results. 

Although modelling a system with an instantaneous crowbar turn on reduces the 

accuracy, it provides a much faster solution. The faster program could be used to find 

an area of interest during an investigation, before using the original program to 

investigate the area in more detail. 

7.5. SINUSOIDAL APPROXIMATION 

After adopting the program speed improvements described above, it was thought 

unlikely that any further improvements to the original program could be made. It was 

therefore decided that an alternative approach to the solution of the model equations 

was required, and the first approach investigated was the sinusoidal approximation 

method. 

It was observed that the majority of the projectile acceleration occurred before the 

main switch ceased conduction. A method for producing a quick comparison between 

simulations seemed possible, if it was assumed that the crowbar current had only a 
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limited effect. Under this assumption, there would be no difference in the 

performance of a system if it were allowed to oscillate. The main switch current in an 

oscillatory system can then be represented by 

i(t) = Be-at sin(IDt) {7.l0} 

where B, a and ID are constants. 

By simplifying the system a step further, the main current can be considered to be part 

of a simple sine wave function. Figure 7.10 shows a comparison between the main 

switch current predicted by the original filamentary model, an exponentially decaying 

sine wave, and a sine wave. Although the exponential function provides a very close 

fit to the current predicted by a full filamentary model, the use of this function did not 

lead to the required simplification in the problem. The simple sine wave system was 

therefore investigated, and it was hoped that a fast approximate solution would be 

possible. When a finite element model was tested using the sinusoidal steady-state 

solver built into MEGA, the encouraging initial results led to the development of a 

filamentary sinusoidal model. Using the complex notation that is part of the Fortran 

language, the filament inductances and resistances were calculated in the branch 

reference frame. The complex branch parameters were transformed and combined to 

produce the complex mesh impedance matrix Zmm' The solutions of the electrical 

equations were found by solving 

{7.lI} 

If the supply is considered to be an ideal voltage source, the coefficient values in V m 

require setting. If however the power supply is considered as an ideal current source, 

the electrical system of equations can be re-written as 

{7.12} 

Unfortunately, using equation 7.12 requires the whole model to be re-formulated. To 

enable the formation shown in equation 7.11 to be used, and to allow both ideal 

current and voltage sources to be modelled in the same simulation, the ideal current 
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sources were first transformed into equivalent ideal voltage sources, by applying 

equation 7.12 to only the meshes that included the ideal currents. The resultant 

voltages were subsequently added to the ideal voltage sources, before solving 

equation 7.11. Once the electrical equations had been solved, the force on the 

projectile was found from 

{7.13} 

where Dmm is the rate of change of mutual inductances when they have been 

transformed into the mesh reference frame, in a manner similar to Zmm. Since the 

sinusoidal approximation model was not solved transiently, it had to be assumed that 

the projectile remained static. Since the force is the product of two out of phase sine 

waves, it can expressed as the sum of a continuous and a double frequency sinusoidal 

component. Thus if the force is considered as the product of the two sinusoidal 

components a and b 

and {7.14} 

then 

f{t} = IAIIBI{cos{rot + a} - cos{rot + ~}} {7.1S} 

f{t} = IAIIBI cos{a _ ~}+ IAIIBI cos{2rot + a +~} 
2 2 

{7.16} 

where A, B, a, ~ and ro are constants. 

The first term in equation 7.16 is independent of time and is the continuous 

component that provides the average force. The sinusoidal approximation model was 

implement with a limited amount of success, due to the various assumptions that were 

made during its development. The results from this model are presented and 

discussed in Chapter 8. 
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7.6. REDUCED PARAMETERS 

A lumped parameter model was considered as an approximation to a particular 

launcher arrangement, but although lumped parameter models can easily be solved, 

their parameters must be carefully chosen. It was decided that the values for the 

lumped parameter model could be obtained by a matrix reduction of the filamentary 

parameters calculated in a full filamentary model. 

A similar matrix reduction to that developed by Kron [113] that was used to reduce 

the number of equations in an oscillatory system defined by equation 7.17, was 

proposed. 

V=ZI {7.17} 

After rearranging the original system of equations into groups, depending on whether 

or not they have any impressed voltages, the system can be expressed in the 

compound matrix form 

{7.1S} 

Separating the equations in this way allows them to be considered as two independent 

sets. The sub-vector 12 can then be defined in terms of the sub-vector 1 I from 

{7.19} 

hence 

{7.20} 

Substituting the first set of equations into equation 7 .IS gives 

{7.21} 

which can be simplified to 

{7.22} 

96 



Chapter 7 Development of Filamentary Model 

where ZI' is the reduced impedance matrix, defined as 

{7.23} 

A similar reduction technique was attempted for use with the filamentary model. By 

using reductions similar to those in equation 7.23, it was anticipated that the actual 

number of the equations to be solved could be reduced to three. Since the full matrix 

problem was reduced before it was solved, the projectile was considered to be static. 

Although there was no difficulty in reducing both the required inductance and 

resistance matrices, reducing the rate of change of inductance matrix D proved to be 

more complicated. If D is reduced in the same manner as the resistance and 

inductance matrices, then 

{7.24} 

but, since D has a zero leading diagonal, it is impossible to define D 4 -I. An 

alternative method of determining D' is therefore required. By considering the matrix 

D in the same partitioned form as the other reducible matrices, the D matrix can be 

expressed by equation 7.25. By also considering, the current vector in it partitioned 

form, as shown in equation 7.18, the force can be found from equation 7.26. 

{7.25} 

{7.26} 

{7.27} 

Since 12 can be defined in terms ofl l , as shown in equation 7.20, 1/ can be defined 

as 

{7.28} 
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By substituting equations 7.20 and 7.28 into equation 7.27, and collecting like terms, 

the force on the projectile can be expressed as 

{7.29} 

Since Z4 is symmetrical Z4-1 = (Z4 T) -I and equation 7.29 can be re-written as 

{7.30} 

If the force is defined in the form shown below, and Z4-IZ3 is replaced by Zs, 

reduction of matrix D leads to D' as expressed in equation 7.32. 

{7.31 } 

{7.32} 

Since D is also symmetrical, D' can be written as 

{7.33 } 

Before writing a reduced parameter modelling program, the concept was tested on a 

small model using the commercial mathematical package MathCad. The test model 

simulated the system shown in Figure 7.11, and there was no noticeable difference in 

the results from the reduced and full models. A second test simulation was run, which 

modelled the system shown in Figure 7.12. As shown in Figure 7.13, there was again 

no noticeable difference between the sets of results. After these limited test 

simulations, a reduced parameter modelling program was written. Figure 7.14 

presents a comparison between results from a full model, a full model with a static 

projectile and results from the reduced model. It can be seen that, as expected, there 

is a noticeable difference between the full model and the static model results. 

However, there is also a marked difference between the static model results and those 

from the reduced model. After checking the program code, and re-assessing the 
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mathematics of the reduced model, it was found that the different between the static 

and reduced model results was due to a flaw in the mathematics of the reduced model. 

Although the Kron's reduced model was based on equation 7.18, the reduced model 

was based only on a similar reduction of equation 7.24. This in turn leads to 

[V] = [Rll 
o R21 

{7.34} 

Since 12 was defined in terms of I' by equation 7.20, this implied that equation 7.35 

must be valid for this definition to be true. 

did 2 0=L 21 -I +L 22 -I 
dt dt 

{7.35} 

However, it can easily be shown that equation 7.35 cannot be assumed, and hence the 

reduced model does not work. 

7.7.· CONSTRAINED BRANCH SOLUTION 

After the failure of the reduced parameter model to improve the speed of the program, 

it was hoped that improvements would be obtained by applying Kirchhoffs second 

law directly to the launcher equations in the branch reference frame. Using the 

branch parameters developed in the first part of chapter six, the electrical system of 

equations can be expressed as 

{7.36} 

As previously mentioned, equation 7.36 cannot be solved immediately, since the 

vector Eb is unknown. In the original model, this problem was overcome by 

transforming the whole problem into the mesh reference frame, to give 

{7.37} 
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effectively constraining the problem to comply with Kirchhoffs second law .. This 

constraint can be expressed by 

{7.38} 

Applying this constraint to equation 7.36 and re-arranging leads to 

{7.39} 

{7.40} 

obL d b Cob Cob(R )Ib Cm bb- I = m Vb - m bb+Dbbu 
dt 

{7.41 } 

Since C~Lbb is not square it cannot be inverted. However, if the rate of change of 

current is transformed into the mesh reference frame, equation 7.41 can be re-written 

as 

{7.42} 

The inductance product is now a square matrix and can be inverted, enabling the rate 

of change of current to be found in the mesh reference frame, from 

{7.43} 

By transforming this expression into the branch reference frame, the rate of change of 

current can be found from 

{7.44 } 
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Where C~m[c;gLbbC~mtl c;g can be considered as the inverse of the constrained 

branch inductance matrix, and assembled in the following sequence. 

It was expected that the constrained branch solution would improve the speed of the 

program, without introducing any additional assumptions, and therefore without any 

loss in accuracy. The constrained branch model was compared with the mesh 

reference frame model and there was no discernible difference between results from 

the two models, even when comparing large dynamic simulations. However, the 

constrained solution was slower than the original model when it was implemented 

using an explicit inversion method. This was later replaced by the triangular 

decomposition method described in Chapter 5, which significantly improved the 

performance of the model, but it remained slower than the original model. However, 

by considering the part of equation 7.44 shown below, it was found that the number of 

multiplications and additions required could be reduced. 

{7.45} 

The initial approach multiplied the Rbb and Ib terms, before simultaneously 

multiplying the Dbb, u and Ib terms and adding the results. The second method took 

advantage of the partitioned nature of the matrices, by multiplying Dbb by Ib to 

produce a vector, before multiplying the results by u. The Rbb and Ib terms were then 

multiplied and added io the previous results, as shown below. 

If D is a (m x m) matrix, and there are n branches in total, the first method requires 

2n2+n multiplications and n2+n additions, but the second requires only (2m2+ 2m+n) 

multiplications and (2m2+2m) additions. Table 7.1 shows that method two requires 
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less than a quarter of the multiplications, and less than half the additions of method 

one. 

Method I Method 2 

m n multiplications additions multiplications additions 

10 23 1081 552 243 220 

lOO 203 82621 41412 20403 20200 

1000 2003 8026021 4014012 2004003 2002000 

Table 7.1 Companson of processmg effort reqUired by both methods 

After implementing method two and the earlier improvements, the constrained branch 

model was almost as fast as the original model. Nevertheless much greater speed 

improvements were possible if the branch inductances were considered to be fixed. 

Since all the matrix transformations are associated with branch inductance 

calculations, the model speed was improved by 94% when the projectile was 

considered to be static and the inductance matrix was only recalculated whenever a 

discontinuity occurred. This improvement in the branch model was much greater than 

would have been achieved if the same assmnptions had been applied to the original 

program. A further 54% improvement was achieved by assmning that the rates of 

change of inductances were also fixed. Figure 7.15 to Figure 7.20 present a 

comparison between results from the dynamic branch model and those from a fixed 

inductance model, with both fixed inductance and Dbb terms. Although it can be seen 

that the results are significantly affected, the large reduction in the time taken to 

model a system might justify the use of this method as an initial design tool. 

7.S. MESH GENERATION 

Although much time was spent trying to reduce the run time for a simulation, other 

developments were also considered. The first planned expansion of the original 

model was to increase the flexibility and complexity of the supply circuits that could 

be modelled. The original model developed used a rigid meshing technique. The 

meshes that were wholly internal to the drive coil were geaerated first; this was 
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followed in turn by the meshes that were internal to the first and second projectiles. 

The main and crowbar circuit meshes were added as necessary, depending on the state 

of the switches. Although the power supply meshes were added last, this is not a 

requirement to enable the removal and addition of the switching meshes, as the 

connection matrix is stored in a sparse form. Figure 7.21 shows how the internal coil 

meshes generated by a simple counting algorithm are defined. A set of nested loops is 

used to count through the filaments and connect them to the appropriate meshes. The 

meshes between strands are added next by a second set of nested loops. The terminal 

mesh (number nine in this example) is calculated last. This partial mesh could be 

closed on itself, by not adding any further branches to the mesh, as would the case for 

a projectile coil. On the other hand, this mesh could include some or all of the power 

supply branches, as would the case of a drive coil. 

Although the rigid method of defining the meshes worked well, it limited the possible 

launcher and supply arrangements that could be studied. Since other power supply 

and launcher topologies might improve the efficiency, or provide increased insight 

into its operation, a more flexible mesh generation technique was required to widen 

the possible configuration that could be studied. Since the underlining equations of 

the original filamentary model do not depend on the supply circuit, any change to this 

only required changes to the connection matrix and some modification of the switch 

discontinuity routines. The automatic mesh generation routine developed here does 

not require the branches to be in any particular order, or to be consecutively 

numbered. However, each branch must have defined start and end nodes, and the 

circuit that is constructed must be realistic. Due to the way in which switch 

discontinuities are processed, each mesh can only contain a maximum of one switch. 

This is to allow a particular mesh to be added or removed from the problem when its 

associated switch either starts or stops conducting. 

The routine generates each mesh by "walking" through the circuit. The routine is 

based on three lists; the current mesh branch list, the deleted branch list and the node 

list. The best way to describe how the routine works is by considering the example 

circuit shown in Figure 7.22. The routine starts at the lowest available branch number 

(b I). The current node is set as the end node of the first branch, and both start and 
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end nodes of the first branch are added to the node list. The program then tries to find 

the lowest branch at the current node (n2), and although 'bl' is the lowest branch 

found it is also the last branch, so that branch 'b2' is selected as the current branch. 

After checking that 'b2' is valid, it is added to the branch list and node (n6) is set as 

the current node, and added to the node list. The routine continues to "walk" around 

the circuit, until branch b9 is added and node n6 is selected as the current node again. 

At this point, the three lists contain the data shown in Table 7.2. 

Current mesh branch list bl b2 b5 b6 b9 
1N0de list nl n2 n6 n7 n3 n6 

lDeleted branch list 
Table 7.2 ConnectIOn lists when error IS flagged 

Since all the branches at the node n6 have been added to the current mesh, and n6 was 

not the start node, an error is flagged and the routine "walks" backwards until an 

alternative path is found. If the routine walks all the way back to the start, it assumes 

that the start branch is shorted on itself. Table 7.3 shows the state of the three lists 

after the first mesh has been completed. 

mesh branch list 
list nl 

branch list 

The negative sign for branch b7 indicates that the branch has been connected into the 

mesh in the opposite direction to its definition. The mesh generation routine is 

described in more detail by the flowchart shown in Figure 7.23. Table 7.4 shows the 

completed mesh / branch table for the example circuit. 

Mesh I Mesh 2 Mesh 3 
bl b3 b5 
b2 -b4 b6 

b5 -b8 b9 
-b7 

Table 7.4 Completed mesh branch table' 
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7.9. PROJECTD...E DEFORMATION 

It is assumed that the direction of flight is perpendicular to the drive coil, and that the 

projectile will remain parallel to the drive coil. To calculate the general motion of the 

projectile, only the total force in the expected direction of motion is required, if the 

projectile is assumed to be rigid. However, if this is not assumed the force 

distributions in both the axial and radial directions are required. Although not 

implemented, a set of equations for the internal stresses and strains within a projectile 

have been developed. 

A paper by Clifton and Mongeau [126], proposed a structural model ofa set of pulsed 

coaxial coils using lumped parameter analysis and formulated equation 7.46 to define 

the motion of a finite number of sub-elements. The sub-elements that they describe 

have a great similarity to the filaments used in this thesis. Thus 

{7.46} 

where mbb is the diagonal mass matrix, ub is the branch displacement vector, ab is the 

branch acceleration vector, Kbb is the stiffness coefficient matrix, and rb is the branch 

force vector, in one direction. By resolving the branch forces and displacements in 

two directions and solving equation 7.46 simultaneously for both directions, the full 

motion of the filaments can be predicted. The force in both the radial and axial 

directions to be found from equations 6.20 and 6.21 respectively. 

To determine the values of the required stiffness coefficients, only radial movement 

was initially considered, as shown in Figure 7.24. The stiffness matrix for the four 

filaments shown in Figure 7.24 can be defined as 

Khl + Kn13 + Kpl2 -Kpl2 -Knl3 0 

-Kpl2 Kh2 + Kn24 + Kpl2 0 -Kn24 
Kbb= 

-Knl3 0 Kh3 + Kn13 + Kp34 -Kp34 

0 -Kn24 -Kp34 Kh4 + Kn24 + Kp34 

{7.47} 
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where Kh is the hoop stiffness of a filament, and Kn and Kp are the normal and 

parallel stiffnesses. All the stiffness coefficients can be considered to be defined by 

f=K8 {7.4S} 

where f is the force required to move an element a small distance 8 from its location if 

the projectile was assumed to be rigid. The first coefficient considered is the hoop 

stiffness, based on the hoop stress calculation for thin walled pressure vessels, and use 

of the dimensions given in Figure 7.25 and the equation of hoop stress [127], enables 

it to be expressed as 

{7.49} 

where E is the modulus of elasticity of the projectile material. The normal stiffness 

component is developed by considering Figure 7.26. The shear stress in the shaded 

region is given by 

where G is the shear modulus of elasticity and is defined by 

G= E 
2(1 + u) 

{7.50} 

{7.51} 

in which u is Poisson's ratio and E is the modulus of elasticity. If the bottom filament 

is considered to be stationary, the shear stress "t can be found from 

f 
"t=-

A 
{7.52} 

where the force f is the force that must be applied to the top element to cause it to be 

displaced by 8, and A is the interface area between the two elements. Assuming the 

displacement 8 is small, the sheer strain y can be found from 

{7.53} 
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where a is the displacement between the filament centres as shown in Figure 7.26. 

Combining equations 7.50, 7.52 and 7.53 leads to equation 7.54, which when 

rearranged as equation 7.55 gives Kn. 

/) 
f=1l2rxG­

a 
{7.54} 

{7.55} 

The parallel stiffness can be found by considering the two elements shown in Figure 

7.27. There are however two formulations for the parallel" stiffness, depending on 

which element the force is considered to be acting. Both formulations are based on 

the calculation of stresses in thick walled cylinders, when either internal or external 

loads are applied. In the first, the inner filament is considered to be fixed, and the 

force to be acting on the outer filament. By regarding the shaded area as a thick 

walled pressure vessel, the force can be assumed to be an external force, and Aa can 

be expressed by equation 7.56 [128]. 

{7.56} 

where q is the outward external force per unit area. Rearrange equation 7.56 leads to 

K 
_ 21lzE 

le -

( r2~ +rl~ uJ 
r2 -rl 

{7.57} 

The second formulation considers the outer filament to be fixed and the shaded area to 

be a thick walled pressure vessel. The force on the pressure vessel is assumed to an 

outward internal force, and the second stiffness coefficient Kt; can be found from 

{7.58} 
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When all the stiffness coefficients in the radial direction have been formulated, the 

coefficients in the axial direction must be considered. Although the stiffness matrix in 

the axial direction can also be spilt into parallel and normal components, these are not 

the same components that were developed above and are defined in Figure 7.28. 

Since the projectile is free to move in the axial direction, there is no equivalent hoop 

stiffness. The displacements in the u vector are those relative to the locations of the 

filaments within the projectile, and are not relative to the displacement of the 

projectile from the drive coil. 

The parallel components IS> can be derived from the calculation of the change in 

height of a thin walled cylinder when a uniform axial load is applied [128]. If the 

shaded region in Figure 7.29 is regarded as a thin walled cylinder, Kp can be found 

from equation 7.59, where the dimension are taken from Figure 7.29. 

2mEx 

a 
{7.59} 

The normal component in the z direction Kn can be found by considering the shaded 

area shown in Figure 7.30. If the inner filament is fixed the force on the outer 

filament, which is required to produce the displacement 8 can be found from 

{7.60} 

where equation 7.60 is derived by considering equations 7.50, 7.52 and 7.53 in terms 

of the dimensions shown in Figure 7.30. The normal stiffness coefficient can be 

found be rearranging equation 7.60 as 
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{7.63} 

7.10. CONCLUSIONS 

The study into the usage of computer processor time indicated that a few routines 

dominated the use of the processor. Using different methods of matrix inversion led 

to a major reduction in the time taken to solve a test simulation, while changing the 

order of operation of some algorithms also improved the program performance. A 

further improvement was achieved by removal of some unneeded system calls. Pre­

calculating the inductance of the self and fixed mutual inductances improved the 

program performance even further. However, the use of interpolation routines to 

enable the pre-calculation of variable mutual inductances did not offer any 

advantages. A variable time stepping program was written to reduce the number of 

steps required to solve a simulation, and during its development two single-step 

methods were implemented. By a direct comparison, it was shown that the Runge­

Kutta-Merson method was the faster. While a variable time stepping program 

improved the performance of the program for some simulations, it also made it worse 

for others. However, the variable time stepping program enabled previously unstable 

simulations to be completed. 

While the instant crowbar model does not represent the launcher with the same 

accuracy as the normal model, it provides a good approximation and significant 

reduction in processing effort. To further improve the speed of the program a 

sinusoidal approximation was developed, in which the drive coil current was 

approximated by part of a sine wave. Although a sinusoidal approximation model 

was successfully implemented, it proved to be too inaccurate to provide a usable 

analysis tool. 

After showing that approximate methods were unlikely to provide accurate results, it 

was thought that reformulating the model would improve the program speed. The 

first attempt at this was based on a matrix reduction of the original model but, 

although initial tests suggested that this method would provide an accurate and fast 
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approach, it was later shown to be flawed. A second reformulation based on applying 

Kirchhoffs second law in the branch reference frame was successfully implemented, 

but this was no faster than the original model when simulating dynamic systems. 

However, when the constrained branch solution was used to model static systems, this 

was significantly faster than the original program when modelling the same system. 

In addition to the developments that reduced the processing time, other development 

expanded the scope of the original model. To allow more flexible power supply and 

launcher topologies to be studied a flexible mesh generation routine was developed. 

Although the new mesh generation routine allowed any combination of launcher coils 

and power supply components to be simulated, the mesh generation routines were not 

fully integrated into the program. 

Another expansion to the original model was the development of a detailed structural 

model of the launcher based on the same filamentary division as the electrical model. 

Equations were developed for the stress and stains in both the axial and radial 

directions, and were formulated to produce a set of differential equations that could be 

solved simultaneously with the electrical equations. The inclusion of the structural 

model within the simulation program would allow the examination of the effects of 

coil deformation in a coherent manner. Although the structural equations are based 

on published pressure vessel equations, their application to magnetic launchers is 

thought to be new. 
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7.11. FIGURES 

Figure 7. I Typical computer processor activity distribution 
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Figure 7.2 Improvements in average processor time 
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Figure 7.24 Definition of radial stiffness coefficients 

Figure 7.25 Hoop stiffness 

Figure 7.26 Normal radial stiffness 
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Figure 7.27 Tangential radial stiffness 
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8. DESIGN STUDIES 

Using the modelling programs developed earlier, a series of simulated experiments 

were conducted. The aim was to design an optimal launcher within given parameters, 

and to gain a more general understanding of how a launcher works. 

8.1. PROJECTILE MAss 

The first design study undertaken was to determine the affect of projectile mass on the 

operation of the launcher [Appendix C], when the mass was varied within practical 

limits. Figure 8.1 shows how the maximum velocity is effected by the change in 

projectile mass. The launcher efficiency is defined as the percentage of the initial 

electrical energy stored in the capacitor bank that is converted into the kinetic energy 

of the projectile. Figure 8.2 shows that the efficiency is affected by the projectile 

mass in a non-linear manner. Results indicate that reducing the mass of the projectile 

increases both the maximum velocity and efficiency of the launcher; however, if this 

is extrapolated too far it leads to the absurd situation of an optimal launcher having no 

mass. Clearly since, the end application of any launcher is to launch a given payload, 

reducing the projectile mass might also reduce its effectiveness. 

8.2. PROJECTILE RAnD 

Previous studies into tubular induction launchers suggested that the difference 

between the radii of the projectile and drive coil would greatly effect the launcher 

performance [80]. To investigate this, the outside radius of the projectile was varied 

while all other factors remained constant. This was repeated with three different drive 

coil radii. The inside radius of the projectile was then varied, while the inside radius 

of the drive coil was set at three different values. The results from these tests are 

shown in Figure 8.3, and the dimensions of the three drive coils are shown below. 
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Inside radius Outside radius 

Drive coil 1 15 mm 40 mm 

Drive coil 2 25 mm 50mm 

Drive coil 3 35 mm 60 mm 

Table 8.1 DimensIOns of the three dnve cOils 

The maximum velocities from the above study were normalised with respect to the 

maximum achieved in each set of tests and were plotted against the differences 

between the radii. A positive difference indicates that the projectile is larger than the 

drive coil. It can be from Figure 8.4 that, although the maximum velocity rapidly 

reduces when the projectile is undersize, it does not significantly increase when the 

projectile is oversize. It was thought that the reduction in the maximum velocity 

could be due to an increase in radial crushing forces, as weB as the reduction in the 

projectile volume. Three example launchers were therefore studied using the finite 

element model. Magnetic vector potential contours and force vectors plots for 

oversized, normal and undersized projectiles, are shown in Figure 8.5, Figure 8.6, and 

Figure 8.7 and the total axial and radial forces in Figure 8.8 and Figure 8.9 

respectively. Figure 8.8 shows that there is only a very slight improvement in the 

maximum axial force between the normal and oversized projectile. Whereas there is a 

marked reduction in the force applied to the under sized projectile, confirming the 

results from the filamentary study. While the axial forces on the normal and oversized 

coils are similar, the radial forces are significantly different. Although the reduction 

in radial force applied to the oversized projectile does not improve the performance of 

the launcher, it might help to prevent the unwanted deformation of soft projectiles. 

However, it should be noted that in these studies the mass of the projectile remained 

constant, whereas in reality the additional mass of the oversized projectile would 

reduce its maximum velocity and might off-set the structural advantages. Although 

the oversized projectile arrangement was very slightly faster then the normal 

projectile, it was decided that the normal projectile would be used in future studies, 

due to its simplicity. 
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It can be seen in Figure 8.3 that the maximum velocity achieved increases with the 

mean launcher radius. To see if this was a general pattern, a further three launchers 

with different mean radii were modelled. Figure 8.10 shows how the maximum 

velocity varied with launcher mean radius and while the increase in launcher 

performance diminishes with increased radii, the improvement seems to be 

continuous. 

8.3. OPTIMUM NUMBER OF DRIVE COIL TURNS 

Another factor often investigated during studies into other types of electromagnetic 

launchers, is the number of stator or drive coil turns [129]. Although most recently 

published papers on launchers involve single-turn drive coils [90], some earlier 

launcher systems were based on multi-turn drive coils [89] and therefore a study of 

these coils was undertaken. To prevent the amount of copper in the drive coil varying, 

the inter-turn insulation was assumed to be infinitely thin during this study, with the 

width of each turn calculated to ensure that the overall coil dimensions remained 

constant. From Figure 8.11 it can be seen that the maximum velocity increased with 

the number of turns. Other studies have often optimised the number of drive coil 

turns [62], but no optima appears to be present in the previous results. To see if an 

optimum launcher could be found, the investigations described below were therefore 

undertaken. 

8.3.1. SINUSOIDAL MODEL INVESTIGATION 

The sinusoidal approximation model was used to determine if there was an optimum 

supply discharge frequency. An initial study was undertaken using a finite element 

model, with a fixed magnitude sinusoidal current, which was implemented using 

MEGA. The force components are plotted individually in Figure 8.12, because it was 

noticed that the quadrature component approached zero as the resultant force reached 

its maximum and this could be used to find the maximum force much more quickly. 

A similar study undertaken using a fixed magnitude voltage source gave the results 

shown in Figure 8.13. Since the sinusoidal approximation could be solved much 
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faster than the transient model, a filamentary sinusoidal model was written. Figure 

8.14 and Figure 8.1S show results provided by this model. The study was repeated for 

several projectile thicknesses and a number of drive coil turns, with the results 

obtained being shown below. 

Turns Thickness (mm) Maximum force (N) Optimum frequency 
(Hz) 

12 3 1889 27000 

12 I.S 1926 26000 

12 1 1933 14000 

17 3 2342 2S000 

17 1.5 2344 2S000 

17 1 2360 13000 

24 3 S008 18000 

24 I.S S014 18000 

24 1 S031 10000 

Table 8.2 Effects of dnve cOli turns and projectIle thickness on the optimum supply 

frequency and maximum force. 

The sinusoidal model showed that increasing the number of turns, or reducing the 

projectile thickness improved the launcher performance. The improvement in 

performance due to the reduction of the projectile thickness was caused by the current 

being concentrated closer to the drive coil. 

8.3.2. RE-INVESTIGATION OF OPTIMUM DRIVE COIL TURNS 

Although an optimum supply frequency had been found, there was still no indication 

of any optimum number of drive coil turns. The voltage used in the initial studies had 

been limited to the maximum achievable with the supply and auxiliary systems 

available (as described in Chapter 9). However, earlier launchers studies investigated 

systems that worked at much higher voltages [90). To investigate this a series of high 

voltage simulation were undertake, and from the results shown in Figure 8.16 it can 

been seen that an optimum number of turns was found. While the optimum number 
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can clearly be seen at higher voltages, it is not as obvious at low voltages. Although 

the SkV results seem to be a straight line, an optimum was found at 26 turns and 

hence no other simulations were required. The optimum number can be approximated 

by the trend line shown in Figure 8.17. 

At 2kV no optimum was found below 4S turns and unfortunately the very large 

number of filaments required to model a drive coil having over 45 turns, made 

simulation very difficult. However, it was concluded from the trend line in Figure 

8.17 that the optimum number of turns at 2kV was approximately 48. 

In addition, it was noticed that the maximum velocity achieved with the optimum 

number of turns varied almost linearly with supply voltage, as shown in Figure 8.18. 

Plotting the efficiencies of the optimal launchers, as shown in Figure 8.19, indicated 

that a maximum efficiency occurs at a supply voltage of 10kV with a 18 turn drive 

coil. 

During the above study, the inter-turn insulation was assumed to be infinitely thin. To 

investigate the effects of this assumption the study was repeated with the inter-turn 

insulation fixed at O.OSmm and O.Smm, while the overall dimensions of the coil were 

kept constant. Figure 8.20 shows that the introduction of O.OSmm thick insulation had 

little effect on the optimum numbers of turns. It was also seen that the introduction of 

O.Smm thick insulation has little effect at high voltages, but the difference is obvious 

at lower voltages. The increasing effect of the insulation is not directly attributable to 

the decrease in voltage, since the increase in the resistance of the drive coil might 

have been the limiting factor. Despite the effects of the insulation thickness and the 

increase in resistance, Figure 8.21 shows that the maximum velocities achieved were 

only slightly reduced. 

One way of achieving the optimum number of turns, even at low voltages, might be 

by dividing the drive coil into two layers. Undertaking a similar study to the previous 

investigation, the optimum number of turns for a two-layer drive coil was determined 

at several voltages. Figure 8.22 shows there was a slight increase in the optimum 

number of turns, and although the optimum number of turns at 2kV is only just 
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practical an optimum can nevertheless be found for low voltage launchers. From the 

comparison of the maximum velocities shown in Figure 8.23, it can be seen that the 

two-layer drive coil does not affect the launcher performance at low voltages, and 

only slightly reduces its performance at high voltages. 

8.4. DUAL PROJECTILE STUDIES 

A novel dual projectile launcher was also studied, with a second projectile, identical 

to the first, placed close to the "back" of the drive coil. The second projectile was 

driven in the same way as the first, but in the opposite direction. The main reason for 

investigating this structure was as an aid to later experimental work. During previous 

experimental work [81] some problems were experienced in obtaining clear results 

from high-energy experiments, it was thought that some of the problems were caused 

be the recoil of the launcher. It was hoped that using a second projectile would reduce 

these effects and provide clearer results. 

To investigate the effects of a second projectile, a series of studies similar to those in 

the previous section were undertaken. A single layer drive coil was investigated 

initially, and although the difficulty of constructing a single layer dual projectile 

launcher was recognised, it was nevertheless considered a to be good starting point. 

From these initial tests the optimum number of drive coil turns were determined for a 

range of supply voltages. The comparison shows in Figure 8.24 between the optimum 

number of drive coil turns for both dual and single projectile launchers shows that the 

optimum number of turns is increased for the dual projectile arrangement. It was 

proposed that the addition of the second projectile reduces the effective inductance of 

the launcher, which is then restored to its optimum by the addition of extra turns. 

It can be seen in Figure 8.25 that the maximum velocities of the dual projectile 

launcher are lower than the single projectile launcher. However, since twice the mass 

is being accelerated the dual projectile system is more efficient, as shown by Figure 

8.26. However, it can also be seen that the efficiency declines much more rapidly at 

low voltage. The theoretical maximum efficiency is the subject of some discussion, 
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with some believing that the theoretical limit is 50%, and by others, including 

researchers at Loughborough, that the limit is 100% [130]. For the dual projectile 

launcher, calculations from simulated results gave an optimum efficiency of 51.4% at 

an initial voltage of 10kV. 

The consequences of multiple coil layers were predicted to affect the dual projectile 

launcher in a similar manner to the single projectile launcher. To test this proposition, 

a study of a dual projectile launcher with a two-layer drive coil was undertaken. The 

results obtained are compared with results from the previous study in Figure 8.27, and 

it can be seen that the two-layer drive coil only slightly increases the optimum number 

of turns. 

8.5. LAUNCHER RADII 

Although it was shown in previous studies that the optimum number of drive coil 

tums was affected by several factors, the projectile and drive coil radii remained 

constant throughout these studies. In addition, it was shown in the first study that the 

launcher is near an optimum when the drive coil and projectile radii are the same. A 

study was undertaken to investigate the effect of varying both the projectile and drive 

coil radii simultaneously on the optimum number of drive coil turn. To determine to 

effect of increasing the outside radii they were varied between 40 and 90mm, while 

the inside radii were maintained at 25mm. It can be seen from Figure 8.28 that the 

maximum velocity appears to increase mono tonically as the outside radii increases. 

The inside radii were then varied between 30mm and 5mm, with the outside radii set 

at 50mm. From Figure 8.29, it can be seen that the maximum velocity reaches a 

limited maximum before falling, as the inside radius is reduced. Both Figure 8.30 and 

Figure 8.31 show that the optimum number of turns varies in an almost linear manner. 

The slight deviation that can be seen in both figures is caused by the integer nature of 

the number of turns. 

Since the optimum number of tums varies almost linearly with the launcher radii, it 

might allow an approximate optimum number of turns to be determined for a launcher 
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of any size, if other factors remain constant. Since the optimum number of turns only 

increases slowly with launcher size, this study could be used to find a coil size at 

which it is practical to wind a coil with the optimum number of turns. 

8.6. DRIVE COIL THICKNESS 

During all the above studies, it was assumed that the drive coil was 5mm thick, as this 

is a readily available size of copper strip. Since the coil thickness was arbitrarily 

chosen, and other factors had been optimised, the possibility exists that there might be 

an optimum drive coil thickness. It was thought that reducing the thickness of the 

drive coil would increase its resistance, and hence reduce its performance. However, 

it was also thought that reducing the thickness of the drive coil would force the 

current to be concentrated closer to the projectile, and hence would improve its 

performance. Although the optimum shown in Figure 8.32 seems to be clear, it 

should be noted that all the results are within 98% of the maximum. The results from 

this study confirm that concentrating the drive coil current closer to the projectile does 

improve the effective coupling, but the increased resistance has a limiting effect. 

8.7. INITIAL PROJECTILE DISPLACEMENT 

Intuitively it seemed obvious that reducing the initial distance between the projectile 

and drive coil will improve the magnetic coupling, and hence improve the 

performance. A previous study by Bondaletov and Gonchareko found that both the 

maximum velocity and efficiency both fell rapidly as the minimum initial 

displacement was increased [86). With the initial displacement defined as the 

distance between the drive coil and the projectile, an optimum arrangement would 

have a zero initial displacement. However practical limitations prevent the initial 

displacement from being reduced to zero, and a study was undertaken to quantify the 

effects of this limitation. 

In this study, the initial displacement was varied between 0 and 2mm, with the supply 

voltage set at various levels and the number of drive coil turns kept at 18. However, 
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some unexpected results were obtained, as shown in Figure 8.33. The 2kV and IOkV 

results intersect at a displacement of 1.2Smm, and the predicted optimum 

displacements for the 20kV and 40kV experiments were not zero. It was thought that 

this might be caused by the fixed number of drive coil turns and the 40kV test was re­

run with its optimum number of drive coil turns (8). Figure 8.33 shows that the 

optimum initial distance for the second 40kV test was zero, as initially expected. 

However, when the results from this study are compared with those obtained by 

Bondaletov and Gonchareko, further differences are found. They predicted that the 

rate at which the launcher performance declined would be highest at the minimum 

displacement, and would reduce as the displacement increased. However, Figure 8.33 

shows that the minimum gradient occurs at the minimum displacement, and that the 

gradient increases with displacement. 

The results from both studies show that the performance of a launcher decreases as the 

initial projectile displacement is increased. The optimum initial displacement is 

affected by the number of drive coil turns and the supply voltage, demonstrating the 

existence of some relationship between the turns / voltage optima and the initial 

displacement optimum. Although the nature of the relationship is unclear, the 

optimum initial displacement is zero when the other launcher parameters are close to 

their optima. 

8.8. RE-INVESTIGATION OF PROJECTILE MASS 

During the first investigation of the effect of projectile mass, it was found that the 

efficiency of the launcher increased as the projectile mass was reduced. This was in 

contrast to the work of Bondaletov and Gonchareko [86] who found that the launcher 

efficiency peaked and then reduced, as the projectile mass was reduced. An important 

difference between the two studies was the range of projectile masses studied. 

To provide a better comparison between the two studies, a series of simulations were 

undertaken with the projectile mass varied over a wider range than previously studied. 

Figure 8.34 shows that the maximum velocity increases in a similar manner to that 
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shown in Figure 8.1 over the extended range of masses, but Figure 8.35 shows that the 

efficiency falls-off in the manner described by Bondaletov and Gonchareko. 

While the results of the study into the effects of projectile mass produced the expected 

results, the drive coil current waveforms were not as expected. Figure 8.36 shows the 

presence of a second hump in the drive coil current waveform that is initially 

undetectable, but becomes the dominant feature as the projectile mass is reduced. 

Comparison of Figure 8.35 and Figure 8.36 shows that the maximum launcher 

efficiency occurs when the second hump becomes noticeable. The second hump 

could be caused by the translational voltage components of the launcher equations, 

since a lightweight projectile can gain a very high velocity almost instantaneously. In 

effect, the high speeds possible with a light-weight projectile may mean that the 

translational EMF induced in the drive coil is sufficient to affect the discharge of the 

supply capacitor. This EMF effectively delays the discharge of the supply until the 

projectile has moved away from the drive coil, making the launcher much less 

efficient. In previous launchers, with single turn drive coils and thin projectiles, this 

second hump might have completely hidden the first, and could in turn have led to 

incorrect calculation of the power supply parameters. 

8.9. UNUSUAL LAUNCHER ARRANGEMENTS 

Since, in its most basic form, an induction launcher can be considered as two 

opposing electromagnets, the performance might be improved if the projectile is 

"magnetised" prior to the discharge of the supply. The simplest method of achieving 

this would be to make the projectile from a permanent magnet, but this would of 

course be depolarised by the very high magnetic fields present in the launchers [46]. 

Alternatively, if a current was circulating in on the projectile prior to its launch, the 

magnetic field generated might improve the launcher performance. 

An initial projectile current could be obtained by connecting it to the main or an 

auxiliary supply. Unfortunately, these both require the projectile to be open circuit 

prior to launch, and to instantly close when the launch coil is energised. It was shown 
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by a static finite element model, that the maxImum axial force on the projectile 

increased by 11 % when it was connected in series with the drive coil. Although this 

improvement might seem significant, it would be almost impossible to reproduce in 

practice. Supplying the projectile from a second IkV DC source improved the 

performance by 31 %, this again could not be made in practice. 

It was decided that the use of an additional pre-exciter coil was the only practical 

method of producing a current in the projectile prior to the discharge of the main 

supply, and two possible locations considered. Locating the exciter coil behind the 

drive coil would cause a significant voltage to be induced in the drive coil and only a 

small current flow in the projectile. Placing the exciter coil in front of the projectile 

would increase the mass of the projectile, but is the most likely modification to 

succeed. The exciter coil would be a low voltage coil supplied by a continuous AC 

supply. This exciter coil would have many turns of thin wire, to produce large 

currents in the main projectile, which would act as a shorted single-turn transformer 

secondary. The exciter would be connected to its supply by thin break wire leads and 

the main supply would be discharged at the point on the exciter supply waveform that 

maximised its effect. To determine what improvements in performance could be 

achieved, an exciter coil was designed to maximise the current flow in the projectile. 

Figure 8.37 shows that a 200Hz exciter supply produces the maximum total current in 

the projectile for a given exciter current and Figure 8.38 shows the current distribution 

through the exciter coil and launcher, prior it the main supply discharge. Although 

Figure 8.39 clearly shows that the maximum axial force on the projectile increases 

with exciter current, the increase in launcher performance is only moderate. 

8.10. CONCLUSIONS 

The initial study of projectile mass suggested that both the velocity and efficiency 

tended to increase as the proj ectile mass was reduced, but a later study showed that 

the efficiency began to decrease once the mass was below 100gm. This helps 

reconcile the idea that a projectile of zero mass will have zero kinetic energy, and 

hence the efficiency must fall to zero as the mass is reduced. 
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The study into the effects of projectile radius relative to the drive coil radius showed a 

slight improvement in the performance was obtained when the projectile overhung the 

drive coil. However, this was so small that it was ignored, and the projectile and drive 

coil radii were maintained the same in all other testes. 

The initial study of drive coil turns showed that performance improvements were 

possible, but the expected optimum did not materialise. While the sinusoidal 

approximation demonstrated that optimum launcher conditions existed, the 

conclusions that could be drawn from the results were limited. It later become 

apparent that the lack of an optimum condition in the first study was due to the supply 

voltage range considered. A second study showed that the optimum number of drive 

coil turns was dependent on the power supply voltage. The maximum velocity 

increased almost linearly with the supply voltage, and the optimum efficiency 

occurred at JOkY. 

The study of drive coil turns was expanded to investigate the effects of insulation 

thickness and of winding the drive coil in two layers. The use of a two-layer drive 

coil meant that an opiimum number became practical, for even moderate supply 

voltages. 

A similar series of studies performed on a dual projectile launcher showed that the 

optimum number of drive coil turns was increased. This was probably due to the 

second projectile reducing the effective inductance of the launcher. It was also shown 

that while the velocities were lower, the overall efficiency was higher than that of a 

single projectile arrangement. Simulated results showed that a dual projectile 

launcher could have an efficiency exceeding 50%. 

The study of launcher radii showed that the launcher performance improved as the 

launcher outside radii were increased, suggesting that the outside radii should be 

maximised within practical limitations. It was also shown that the inside radii could 

be optimised for a particular outside radius, and that the optimum number of drive coil 

turns increased only slowly with launcher size. This suggests that scaling the launcher 
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size could allow a practical low voltage launcher to be made with their optimum 

number of drive coil turns. 

The study of drive coil thickness showed that the effective coupling of the drive coil 

and projectile could be improved by forcing the drive coil current to flow nearer to the 

projectile. However, this study also showed that reducing the drive coil thickness 

increased the resistance and hence reduced the launcher performance. While some 

unexpected results were produced at the start of the study into the effects of initial 

projectile displacement, it was clear that the optimum launcher performance occurs 

with the minimum initial displacement. 

The second study of projectile mass confirmed the results found by Bondaletov and 

Gonchareko, and in addition established that the projectile mass affected the shape of 

the current discharge waveform. Light projectiles accelerate so quickly that the 

motion of the projectile induces large EMFs in the drive coil, which act to limit the 

peak discharge current and hence the launcher performance. 

Several unusual launcher arrangements were investigated, to see if pre-exciting the 

launcher would improve its performance. While significant theoretical improvements 

were achieved these, they would be very difficult to reproduce in practice. A practical 

system used a second wound coil to produce a current in the projectile prior to its 

launch, but the improvements in performance were offset by the additional 

complexity. 
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Figure 8.6 Force vector and field contour plot for a normal projectile 
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Figure 8.7 Force vector and field contour plot for an under sized projectile 

14 

12 

10 

Z' 8 e 
~ 

.$2 
6 

:m 4 :t 
2 

0 

·2 
0 50 100 150 

Time (~.) 

200 

--U.-oized 
__ Flush 

--Ove<hangng 

250 

Figure 8.8 Effects of projectile size on total axial force 

140 

300 



Chapter 8 Design Studies 

40 

'" 0 

·20 

~ ... 
j -eo 
~ ... 
11 

· '00 ,. 
· '20 

~ · '40 

·,eo 
.,,. 

0 50 100 '50 200 250 300 

T~(J4) 

Figure 8.9 Effects of projectile size on total radial force 

,.0 

320 

1300 

f 280 

~ 260 
E 

:i 2<0 

220 

200 
0 '0 20 30 40 50 60 70 80 

Mean leuncher RadIUS (mm) 

Figure 8.10 Effect of the mean launcher radius on maximum velocity 

350 

300 

1 250 

f 200 

E '50 , 
E 

I '00 

50 

0 
0 

N .. mber 0' turns 

Figure 8.11 Effect of number oftums on maximum velocity 

141 



Chapter 8 

1500 

1000 

~ 
500 

g 
u. 0 

.50() 

-1000 

--*""" lnphase AC component 

.......-auadrature AC component 

Frequency (HI) 

Design Studies 

Figure 8_12 Effect of supply frequency on the components of force 

occ,-----------------------------------, 
800 

_700 
::1i 
'E 600 

§500 
o 

~400 

g300 
u. 200 

100 

10 100 1000 

Frequency (HI) 

~Foroe 

~ Drive coil current 
......... Projedlle current 

10000 100000 

Figure 8_13 Effects of voltage source frequency on currents and maximum force 

3,------------------------------, 

2.5 

~ 2 

g 
u. 15 § . 
. ~ 
; 1 

'" 
0.5 

O~~~~~~--_+_+~~~--_r~~~~ 

1000 100000 1000000 

Frequency (Hz) 

Figure 8_14 Effect of current source frequency on maximum force 

142 



Chapter 8 

600.-------------------------------------~ 

500 

~ 400 

~ 
o 
~ 300 
~ 
E 
o 
~ 200 

100 

O~----~----_+----~--~~ 
10 100 

Frequency (Hz) 

1000 10000 

Design Studies 

Figure 8.15 Effect of ideal voltage supply frequency on maximum force 

1200 

1000 

i 800 -+-2kV 

f -a-5kV 
-6-10kV 

~ 600 
~15kV E , 
--+-20kV E 

'0 400 ........... 40kV • 
" 

200 
[}----eEl 

0 
0 10 20 30 40 

Turns 

Figure 8.16 Effect of drive coil turns on maximum velocity 

60.------------------------------------, 

50 

• 40 

~ 
5 30 
E 
"a 
o 20 

10 

y = 73.672x..oIl13l 

O+-----_+------~----_+------+_-----" 
o 10 20 30 40 50 

Voltage (kV) 

Figure 8.17 Optimum number of turns against initial capacitor voltage 

143 



Chapter 8 Design Studies 

1200 

1000 

! 800 
~ 

~ 
~ 600 
E 
" .~ 400 

'" 200 

0 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.18 Maximum velocity against initial capacitor voltage 

45 

40 

l35 
1; 
c 
.~ 
,,30 
w 

25 

20 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.19 How launcher efficiency varies with capacitor voltage 

60 

X None 

50 .O.05mm 
.O,5mm 

40 • E a 
E 30 
" i 
0 

20 
.......... 

10 

0 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.20 Optimum number oftums with different insulation thickness 

144 



Chapter 8 Design Studies 

1200 

1000 .. 
S 800 
~ 
~ 

~ 800 > 
E , 
E 400 .. 

~Non8 • " -+-O.05mm 
200 .......-O.5mm 

0 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.21 Maximum velocity with different insulation thickness 

60 

50 

• 40 
E 

" § 30 

:[ 
o 20 

10 

0 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.22 Optimum number of turns for two-layer coils 

1200 

1000 

I 800 
~ 
~ 

g 
!i 800 
E , 
.~ 400 

" 
200 

0 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.23 Comparison of maximum velocities with one and two layer drive coils 

145 



Chapter 8 Design Studies 

70 

60 I~O",' ,I • Single 

50 

• 
~ 40 
E , 
i 30 
0 

20 

10 

0 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.24 Optimum number of turns for dual projectile launchers 

1200 

1000 

i 800 

j 
~ 600 
E , 
.~ 400 

'" 
200 

0 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.25 Maximum velocities for dual projectile launchers 

60 

50 

-+ 
40 17 l --,.; g 30 ; • ·0 

" w 
20 

10 I:--Ou.' ,I 
""""*"""Single 

0 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.26 Effect of supply voltage on dual projectile launcher efficiency 

146 



Chapter 8 Design Studies 

80 

70 • 
80 

E 50 

" § 40 
.!O 
8- 30 

20 

10 

0 
0 10 20 30 40 50 

Voltage (kV) 

Figure 8.27 Optimum number of turn for a two-layer dual projectile launcher 

330 

320 

~ 310 

~ 
-300 

i 
~ 290 
E , 
E 280 
.~ 

:E 270 

280 

280+---~-----r----+-----~---+-----r--~ 

30 40 80 60 70 80 90 100 

Launcher outside radius (mm) 

Figure 8.28 How maximum velocity varies with outside radius 

292 

290 

~ 268 

~ g 286 .. 
> 
§ 284 

.~ 
~ 282 

280 

278 

0 5 10 15 20 25 30 35 

launcher inside radius (mm) 

Figure 8.29 How maximum velocity varies with inside radius 

147 



Chapter 8 Design Studies 

30 

25 

• E 
.a 20 
1; 

.8 
~ 15 
0 

E , 
~ 10 

0 

5 

0 
30 40 50 60 70 80 90 100 

Launcher outside radius (mm) 

Figure 8.30 Optimum number of turns at various outside radius 

30,-------------------------------~ 

25 

• E 
.a 20 
1; 

.8 
~ 15 

~ 10 a 
o 

5 

O+-----r---~----~----__ ----~--~----~ 
o 5 10 15 20 25 35 

Launcher inside radius (mm) 

Figure 8.31 Optimum number of turns at various inside radius 

290 

289 

i 288 

f287 
i: 
§ 286 

•• ~ 285 

284 

283 

0 2 3 4 5 S 

Drive coil thiCkness (mm) 

Figure 8.32 Optimum drive coil thickness 

148 



Chapter 8 

1.01 

099 

li 1 0.98 

E 097 

E 0.96 

~ 0.95 
i 
~ 094 

j 093 

0 _92 

0.91 

09+-------~----_+------~----~ 

o 05 15 2 

Initial projectile displacement (mm) 

-B-2kV18 

-+-SkV 18 
""""* lQkV 18 
--e-20kY 18 

40kV 18 

40kV8 

Design Studies 

Figure 8.33 How maximum velocity varies with initial projectile d isplacement 

4500 

4000 

3500 

~ 3000 
~ 
.l! 2500 
~ 
E 2000 , 
E 

·0 1500 
!11 

1000 

500 

0 
001 0.1 10 100 1000 

Mass (g) 

Figure 8.34 How maximum velocity varies with a wide range of projectile masses 

45 

40 

35 

30 

i: 
- 25 g-
o 
~ 20 
w 

15 

10 

5 

0 
001 01 10 100 1000 

Mass (gl 

Figure 8.35 How projectile mass effects launcher efficiency 

149 



Chapter 8 

! 
C 
~ 
~ 
~ 
u 

'8 
~ 
8 

! 
~ 
~ 

<> 
J! 

i 
It 
1i 
li .... 

Design Studies 

20 

18 

16 

14 --10oog 

12 (\, 100g 

- 50g --10 "- -- - - - -":: --20g 

8 7 
' ~ 10g 

---.:::::.: 1- 19 
6 

4 

2 

0 
0 100 200 300 400 

Time (~.) 

Figure 8.36 How projectile mass affects drive coil current 

7.5 

7 

6.5 

6 

5.5 

5 
0 200 400 600 

Frequency (Hz) 

800 1000 1200 

Figure 8.37 Effect of exciter supply frequency on total projectile current 

150 



, , , , 
<i. 

Chapter 8 Design Studies 

Figure 8.38 Pre-Iaunch exciter and launch current distribution 
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9. EXPERIMENTAL EQUIPMENT 

This chapter discusses the development and construction of the launcher, power 

supply, test rig, and associated components. Also discussed are the methods of data 

collection and the instrumentation produced to support the experimental work carried 

out. The development of an improved speed measurement system led to the ability to 

measure the yaw of a projectile without effecting its flight. Comparisons between 

different methods of speed and yaw measurements are also described. 

9.1. TIlE TEST RIG 

Previous launcher work by Williamson [129] used a horizontal launcher arrangement, 

with the launcher mounted several feet off the floor and a large sandbox was used as a 

reaction mass to absorb the recoil. However, when launchers were first studied at 

Loughborough [81] it was decided that a vertical launcher arrangement would enable 

the floor to be used as the reaction mass. During the initial investigations the speed 

sensors were mounted on the same frame is the launcher, but this caused problems as 

the launch energies were increased, and in later experiments the sensors were mounted 

on separate free standing frames. The sizes of the forces involved soon became clear, 

and it was possible that the sensors might be affected by recoil forces transmitted 

through the floor. To try to eliminate this problem and to allow easy construction of a 

dual projectile launcher, it was decided that the present launchers would be mounted 

horizontally. 

The launcher structure developed is shown in Figure 9.1, and this allowed the 

experiments to be safely contained in a relatively small space. During single 

projectile launches a set of ballast bricks were used as a reaction mass, with the whole 

frame mounted on a rubber mat to allow slight horizontal movement, the sensors were 

mounted on separate stands. This meant that even if the recoil forces moved the 

launcher the sensors would accurately measure the projectile position relative to the 

initial position. 
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One problem with horizontal launchers is the question of how to hold the projectiles 

against a flat drive coil. Initially two strands of lightweight fishing line were used, but 

this took a long time to set-up for each shot. Another idea tested was to glue the 

projectile to the drive coil with a low strength adhesive, but experimental results 

indicated some deviation in the speeds that were measured. It was thought that this 

was probably due to variations in the cure time allowed between the application of the 

glue and the positioning of the projectile. With the cure time kept constant at two 

minutes, there was an improvement in the relative standard deviation of the measured 

speeds but this remained quite high, as Table 9.1 shows. 

Glued projectile Glue with a fixed Retaining plate 
cure time 

Max (m/s) 14.025 14.471 13.661 

Mean (m/s) 12.959 13.591 12.886 

Min (m/s) 10.593 12.788 12.063 

Standard deviation (m/s) 1.172 0.593 0.489 

Relative standard 9.047 4.361 3.801 
deviation (%) 

Table 9.1 DeViatIOns m measured speed due to different proJectlle mountmg methods. 

This deviation was attributed to the build up of glue on both the projectile and drive 

coil surfaces. Although the glue could be removed, the time taken to remove the old 

glue, and re-glue the projectile would be comparable to the fishing line method. The 

effects of a plastic retaining plate bolted to the drive coil were also investigated. The 

retaining plate was a sheet PVC of approximately the same thickness as the projectile 

with a hole slightly bigger than the projectile in the centre. This reduced the relative 

standard deviation of the measured speeds even further, and since it was less messy, 

and much faster to use than the other methods, it was used for all future experiments. 

9.2. VOLTAGE MEASUREMENT 

Various different types of voltage measurement systems were considered, including 

the use of a Pockel cell, or an optical link system. However, since the maximum 
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voltage used would not exceed 10kV it was thought unnecessary to develop an optical 

system. A 1000: 1 voltage divider was therefore constructed using a 200Mn resistor 

in series with a 200kn adjustable resistor chain, across which the voltage was 

measured. Although this provided accurate readings when the voltage was constant or 

varying slowly, such as during charging, it was greatly affected by noise during a 

launch. A second 100Mn resistor stack that had had been used in previous projects 

was also tested this was placed some distance from the power supply to reduce the 

effects of noise. Although the affects of noise were much reduced, it was unable to 

provide a clear transient voltage profile. In addition, the low resistance discharged the 

capacitor too rapidly to allow accurate firing of the supply. A third voltage divider 

was therefore constructed using a chain of resistors to produce a similar voltage 

divider to the first, with shielding provided by a grounded mu-metal box. A simple 

capacitive compensator was used to improve the transient response of the voltage 

divider, and a low voltage spark gap and a surge arrestor to protect the oscilloscope 

from possible fault conditions. Figure 9.2 shows a comparison between results from 

the three voltage dividers when measuring the same test discharge. This was 

generated by charging the power supply to 500V and discharging it through the drive 

coil without a projectile. 

9.3. CURRENT MEASUREMENT 

A Rogowski coil provides a simple yet effective method of measuring current, and it 

was decided to produce a set of coils and to calibrate these using a commercially 

available probe. 

Several published papers were found on the subject [131], [132]. Using a 

construction method similar to that described in reference [13 3], a clean M3 nut was 

used to produce a helical groove in the inner insulation of a length of URM76 cable. 

A fine wire was then wound into the groove and the assembly was covered by heat 

shrink tubing for protection. A Rogowski coil produces a voltage that is proportional 

to the rate of change of current in the conductor passing through the coil. The voltage 

must therefore be integrated to obtain a current and the following methods were tested 
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>- Passive Integrator 

>- Active Integrator 

>- Numerical Integrator 

Experimental Equipment 

Figure 9.3 shows a passive integrator, which operates satisfactorily if Vout is 

connected to a very high resistance load and Vout « V ill' which was achieved by 

keeping the RC product large. A passive integrator was tested with limited success; 

the signal was integrated but was also distorted due to noise. An active integrator is a 

complex circuit, and to produce an accurate and reliable circuit could have been an 

expensive and time-consuming exercise. Numerical integration of the Rogowski coil 

output, when captured by a digital storage oscilloscope, was therefore thought to be 

the best option. 

The stored signal can be easily integrated using a basic trapezoidal integration routine. 

Initial tests showed a large drift when comparing the commercial current probe signal 

to the signal integrated using the oscilloscope's onboard numerical integrator. It was 

thought that limiting the oscilloscope input bandwidth might reduce the drift, and 

some improvement can been seen when Figure 9.4 is compared with Figure 9.5. 

However, the majority of the error is caused by the zero offset, and any error in the 

zero offset is added incrementally to the integrated signal. Hence, even a small zero 

offset error can cause the large errors seen in Figure 9.4 and Figure 9.5. This error 

was removed by subtracting a linearly incremented amount from the numerically 

integrated signal. It can be seen from Figure 9.4, that the full bandwidth setting 

produces better results than the limited bandwidth setting when the zero offset error is 

removed. Figure 9.6 shows that all three Rogowski coils compare well with the 

commercial probe when calibrated. 

9.4. SPEED MEASUREMENT 

Many different methods of projectile speed measurement have been developed and 

used in the study of electromagnetic launchers over recent years. Ideal measurement 

systems determine the speed of a projectile directly and do not interfere with its flight, 
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but in practice .the speed is usually deduced from position and time measurements. 

The most commonly used position sensors are direct electrical contact, induced 

electrical and optical. 

Direct electrical contact sensors rely on the projectile hitting a set of wires or 

conducting foils, and either breaking or making a circuit depending on the 

configuration. If the circuit is broken, the projectile interrupts the current in a circuit 

by cutting though a thin wire, but if the projectile is itself conductive, this may not 

occur until the whole of the projectile has cleared the wires. If a circuit is made, the 

projectile either pierces the insulation between two conductors or directly shorts the 

conductors. The advantage of this system is that it will detect the front of a projectile. 

However, if it is used with an induction launcher the very high magnetic fields 

generated during a launch can mask the real signal. Both systems have the additional 

drawback of making a direct contact with the projectile, if it is delicate then its flight 

might be affected. If the projectile is launched by an induction launcher large currents 

may be flowing in it, and hence safety precautions are required to prevent dangerously 

high voltages being applied to the monitoring equipment. 

Inductive sensors can only work with conductive projectiles, but they are 

commercially available and have been widely used to detect bullets and arrows. They 

work by detecting the disruption caused to a magnetic field when a conductor passes 

through it. Although commercial sensors cost as little as £250 and can measure speeds 

of up to 3000 mls, they are unsuitable for detecting projectiles launched by 

electromagnetic systems, since the pulsed magnetic fields generated by the launcher 

and the high projectile currents could damage or interfere with an inductive sensor. 

Optical sensors are popular in the electromagnetic launcher community because of 

their inherent noise immunity and voltage isolation. Usually a laser is placed at one 

side of the anticipated flight path, illuminating an optical fibre or an electro-optical 

sensor on the other side. As the projectile passes through the laser beam, the drop in 

light is detected by the sensor. 
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Previous laser position sensing systems used at Loughborough had separate lasers for 

each beam, and were used in conjunction with a timer which was triggered when the 

power supply was discharged, to determine the time / position of the projectile. 

However this system is costly, and triggering the timer from the same trigger as the 

supply introduces inaccuracies. Later systems used a laser beam close to the drive coil 

to trigger the timer, but this was difficult to set up. The current system measures the 

time between the projectile braking two laser beams, and inherently assumes that the 

speed remains constant between the two sensors. Hence, the closer the beams are 

together, the more accurately the speed can be calculated. The system described here 

uses a single class 3a laser and two beam splitters to produce two pairs of lasers 

beams, as shown in Figure 9.7. Using these pairs of beams and two timers it was 

possible to calculate the projectile speed at two locations using only one laser. The 

beam splitters were thin pieces of Perspex set at 45° to the beam, with reflections off 

both surfaces providing a pair of beams that were perpendicular to the source beam. 

The beams provided adequate illumination of the optical sensors at a range of over 

half a meter. Using Figure 9.8 and equation 9.1, the distance between a pair of laser 

beams can be determined from the thickness of the Perspex sheet. 

b=.J2ttana {9.1 } 

The position sensing and speed calculation methods were calibrated over a wide range 

of speeds. The system was tested initially by dropping weights from a given height, 

with the mid-range speeds calibrated using a synchronous motor with a bar attached to 

its shaft. By locating the laser beams at various positions along the bar, a range of 

speeds were obtained. A high-speed camera was also used to validate the measured 

velocities during actual launches. Figure 9.9 shows a comparison between the speeds 

measured by the laser gates and that calculated from the high-speed camera images. 

During testing and calibration of the laser system, it was noticed that occasionally two 

pulses were produced by the photo-detectors, probably caused by light travelling 

through the hole in the centre of the projectile. If this were the case, it would suggest 

that the projectiles were yawing during flight, and this possibility was therefore 

investigated. 
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9.5. MEASUREMENT OF PROJECTILE YAW 

The need to measure the yaw of a projectile is much less common than the need to 

measure its speed. The simplest method is from photographs taken in flight using a 

high-speed camera, but a much less costly method is by means of a witness plate. If 

the shape of the projectile is known, the imprint it leaves on the witness plate can be 

used to determine the angle of the projectile at the moment of impact. However, a 

witness plate usually disrupts the flight of the projectile, and prevents any useful 

measurements from being made further down range. In addition, the material used for 

the witness plate must be chosen carefully, to ensure that the yaw is not masked by the 

damage caused on impact with the witness plate. 

The two pulses noticed during the speed calibration tests suggested that there might be 

a third method of determining projectile yaw. When launching annular plate 

projectiles, two possible situations arise depending on whether or not a gap is 

detected. The situation when a gap is detected can be considered as shown in Figure 

9.10. Expressing the pulse and gap lengths by equations 9.2 and 9.4 respectively, 

enables the angle ofyaw to be found from equation 9.4. 

Pulse length = p = a sin 8 + c cos 8 {9.2} 

Gap length = g = b sin 8 - c cos 8 {9.3 } 

8 . -I(p+g) =sm --
a+b 

{9.4 } 

If the projectile has not rotated sufficiently to produce a gap, its geometry can be 

considered as shown in Figure 9.11. From Figure 9.11 the pulse length can be 

expressed as 

p = (2a + b )sin 8 + c cos 8 {9.5} 

or 

p = A sin (8 + a) {9.6} 
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where 

and 

a=tan-1( c ) 
2a+ b 

Experimental Equipment 

{9.7} 

{9.8} 

The yaw is then found by substituting ~ = 8 + a into equation 9.6. 

A high-speed camera was used to validate the results obtained from the laser gates and 

witness plates. By setting the projectiles at a slight angle prior to launching, large yaw 

angles were achieved. The witness plates were made from heavy weight paper, and to 

ensure a clear mark was made on the witness plates the projectiles were painted with 

blue ink before launching. The yaw was calculated from the amount that the image on 

the witness plate deviated from the circular shape of the projectile. Figure 9.12 

compares the results from the camera images and witness plates for test three shots. 

The camera images of shot three can be seen in Figure 9.13 and the resultant witness 

plate in Figure 9.14. The results for this series of tests demonstrate that witness plates 

can be used to measure the yaw of a projectile. However, they also highlight the 

limitation of the witness plates being able to determine the yaw of a projectile at only 

one point. 

Initially setting the projectile at a slight angle enabled the high-speed camera to be 

used to validate the results from the laser gates. Figure 9.15 compares the yaw 

calculated from the laser gate signals with the angles measured from the camera 

images. The yaw angle of a projectile was determined from the camera images in two 

ways, by either measuring it directly from an image or from the relative displacements 

of the top and bottom of the projectile in the image. Figure 9.16 and Figure 9.17 show 

the signals from the first and second pair of laser gates. Figure 9.17 shows clearly the 

two pulses that were seen initially in the early laser calibration test. The results in 

Figure 9.15 and Figure 9.16 confirm that the yaw of a projectile can be determined 

even when there is no gap in the signals. 
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9.6. POWER SUPPLY 

Although various power supplies and switching techniques were used, the basic 

circuit of Figure 9.18 remained the same throughout. The capacitor was charged via 

the current limiting resistor to the required voltage. The capacitor then discharged 

through the drive coil, when the main switch was closed. When the voltage across the 

crowbar switch reversed, it became forward biased and started to conduct. The 

. crowbar protects the capacitor from the large reverse voltage that it would otherwise 

experience due to the ringing nature of the main circuit. After each launch, the dump 

switch was closed to ensure that no energy remained in the capacitor, and the wand 

resistor was used to ensure that no energy remained in any other part of the circuit. In 

addition, a shorting link was placed across the capacitor terminals after it had been 

discharged, to ensure that no residual charge built up on the capacitor. 

The supply was remotely controlled via an optical fibre and protected signal cables. 

The control unit was protected from possibly lethal fault conditions by low voltage 

spark gaps, and surge arrestors. A standard CCD camera and monitor were used to 

monitor the status of the launcher and supply without entering the test chamber. 

9.7. DETERMINATION OF POWER SUPPLY PARAMETERS 

To enable accurate models of the test launchers to be compiled, the power supply 

parameters must be determined. Some of these were found from manufacturer's data 

sheets, but since many are affected by the construction and layout of the power supply, 

it was decided that most of these needed to be measured. 

The power supply was first tested with a short circuit at the load end and the crowbar 

diodes were removed to allow the system to ring. The supply was charged to a few 

hundred volts and discharged into the short, producing the current waveform shown in 

Figure 9.19. Simple calculations enabled the total resistance and inductance of the 

main switch circuit to be determined [134]. 
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The crowbar diodes were replaced, and the test repeated. Figure 9.20 compares the 

discharge current with that predicted using parameters determined above. Figure 9.21 

shows a similar comparison between measured and predicted capacitor voltages. The 

effect of the crowbar switch can be seen clearly, with the negative voltage that 

remains on the capacitor being caused by the forward conduction drop of the crowbar. 

Since the leads were made from parallel coaxial cables, their inductance could be 

accurately calculated. Using this value and the measured cable and short resistances, 

enabled the main switch parameters to be separated from the total circuit parameters. 

The electrical time constant of the crowbar circuit was found from the decay of the 

current once the main switch had stopped conducting. Although the LlR value of the 

crowbar circuit had been found, there is no easy method of measuring either the 

resistance or the inductance of the crowbar switch. It was therefore assumed that the 

crowbar diode resistance was the maximum figure quoted in the data sheets, with the 

corresponding inductance found from the circuit time constant. Similar techniques to 

those described here were used to determine the characteristics of all the supplies used 

during this project. 

9.S. CONCLUSIONS 

The launcher structure was designed to reduce the effects of launcher recoil on the 

position sensors, using past experience a horizontal launcher was chosen. After 

testing several methods of holding a projectile against the drive coil, a PVC retaining 

plate was chosen because it was quick, easy to use and produced the most consistent 

results. 

Three possible voltage dividers were tested, with the arrangement finally chosen using 

a mu-metal box to shield the resistor chain from the effects of the power supply 

discharge. A set of Rogowski coils was used to measure the discharge current 

produced by the supply. Numerically integrating the signal from the Rogowski coils 

after the signal had been captured by a digital oscilloscope produced the most accurate 

results. 
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A laser beam position sensing system allowed the projectile speed to be accurately 

determined. The system was calibrated over a wide range of speeds, and the results 

were compared with measurements taken from a high-speed camera. The laser beam 

sensors could also be used to determine the yaw of a projectile, and results obtained 

were compared with results from both a high-speed camera and witness plates. 

A power supply and control system were successfully developed and tested. A series 

of tests were also developed to characterise the power supply equivalent circuit 

parameters to enable the supply to be accurately modelled. 

9.9. FIGURES 

Ballast Bricks Connector Block Side Boards 
(Only for single Drai.,etil. launchers) 

Stop 

One pair of side board not shown 

Figure 9.1 Rig frame set -up and arrangement 
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Shot 3 at 3.6ms after launch 

Figure 9.13 Example of a projectile flying at an increasing angle (cont.) 
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10. EXPERIMENTAL WORK 

This chapter describes the construction of the launcher drive coils, and provides a 

chronological account of the experiment work undertaken. 

10.1. LAUNCHER CONSTRUCTION 

The two main parts of any launcher are the drive and projectile coils, and due to the 

large stress exerted on the projectile it was impractical for this to be anything but a 

solid single-turn coil. The projectiles used for most experiments were cut from 3mm 

thick Aluminium plates, with the sizes of both the projectiles and drive coils chosen 

with the availability of materials in mind. Since the aim of the experimental 

launchers was to validate the model or sensory systems, the dimensions of the coils 

were not critical. 

From early simulations, it was obvious that the drive coil had to be of a multi-turn 

construction to ensure the projectiles would reach a manageable velocity. The coil 

itself was hand wound onto a central disc and coated in epoxy adhesive. To support 

the coil while in use, a coil housing was made from two sheets of Tufnol, one 

supported the back of the drive coil and the other the outer edge. Once the drive coil 

had been mounted in its housing, it was held in place by an epoxy resin. The plastic 

retaining plate was mounted on the front and the whole assembly was then mounted 

on a thick plywood back plate. The connections of a single side drive coil protruded 

from the back of the drive coil and were fed by the supply cables behind the back 

plate, as shown in Figure 10.1. 

The two-layer drive coils were constructed in a similar way to a single layered coil. 

Once the first layer had been wound, the lead from the centre of the coil was wound to 

produce the second layer, so that both of the coil leads came out of the side of the 

drive coil. For the dual projectile launcher, only the outer supporting Tufnol housing 

was used, together with two projectile retaining plates. The drive coil was again 

mounted on a plywood base plate, but with a hole in it to clear the second projectile, 

as shown in Figure 10.2. 

172 



Chapter 10 Experimental Work 

10.2. INITIAL EXPERIMENTS 

After the initial projectile tests the first drive coil, which had been made to test the 

coil manufacture techniques, was replaced by a new 2S-turn rectangular cross-section 

coil. When the capacitor voltage was increased above 2kV the projectile was 

regularly being bent when it hit the end stop. To reduce the damage several methods 

of slowing the projectile more gently were tested. The simplest and most effective of 

these was to hang a thick paper pad immediately in front of the target. The additional 

air resistance and mass of the paper slowed the projectile down before it hit the end 

stop and, in addition, the paper helped to soften the impact. 

A series of validation experiments were carried out with the second drive coil, 

although some damage to the drive coil and power supply was noticed. After 

repeated flrings, one of the drive coil leads broke, as shown in Figure 10.3. This 

failure was attributed to the high levels of mechanical shock applied to the coil, and to 

prevent further failures, both coil leads were extended to allow for a slight movement. 

During the following tests one of the Tufnol rods used to clamp the diode / thyristor 

stack broke, after replacing the rods with insulated steel rods the supply was rebuilt. 

To validate models of coils constructed from round cross-section wire a single-layer 

12-turn drive coil was constructed. After re-characterising the supply, it was used to 

test the launcher at different capacitor voltages. However, while the supply was being 

charged up to 3kV it failed and no current or voltage measurements were captured. 

After dismantling the diode / thyristor stack, it became apparent that all the thyristors 

had failed to short-circuit. It was suggest that the insulation used on the steel rods had 

failed, causing too greater voltage to be applied to one of the thyristors. If one 

thyristor failed, while the others were not conducting, this would have led to all the 

devices being exposed to too high a voltage and would account for all the devices 

failing. To test the insulation of the steel tie rods, the stack was re-built with the 

thyristors replaced by an insulating block, and even when the capacitor bank was 

charged to 4.SkV no break down occurred. In the absence of the actual current and 

voltage waveforms, the round wire launcher was simulated and compared to the 

rectangular wire launcher, as shown in Figure 10.4 and Figure 10.5. Although, 
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it can be seen that the round wire coil drew a larger current it was still well within the 

thyristor capabilities, listed in Table 10.1. 

Device Limits Rectangular Wire Round Wire 
Coil Maximum Coil Maximum 

JTSM 8320 A 5490 A 6888 A 

di/dt tOOO AI~s 650 AI~s 417A1~s 

IZt 316 kAzs 2.453 kAzs 1.209 kAzs 

IZ"t 3160 kAz"s 2770 kAz..Js 2706 kAz"s 

Table I O. I Comparison between deVice parameters and predicted test conditions 

It was decided that this thyristor failure was most likely caused by the age of the 

devices, although the previous failures might have contributed. All the thyristors had 

previously been extensively used in other pulsed power supplies, and had possibly 

reached the end of their normal working life. 

After attempting to obtain direct replacement thyristors, it was apparent that this was 

not possible due to their high cost and long delivery times. Alternative thyristors 

were therefore used, with the number of thyristors required reduced from five to three 

due to the increased voltage stand-off capabilities of the new devices. 

The high-speed camera provided clear results for both projectile yaw and deformation 

experiments. However, before the end of the projectile deformation tests the supply 

again failed, but fortunately both current and voltage traces of the failure were 

obtained, as shown in Figure 10.6. Again, all the thyristors in the stack were 

damaged, although they were used well within their working limits, shown in Table 

10.2. Since they were also new, the failure could not be blamed on fatigue. 

Device Limit Actual Maximum 

JTSM 9882A 4550A 

dildt 1000 AI~s 304 AI~s 

JZt 430 kAzs 1.951 kAzs 

Table 10.2 Comparison between deVice parameter and test conditions 

174 



Chapter 10 Experimental Work 

The damage to the thyristors suggested that they had failed due to a voltage overload, 

but the supply failed when the voltage was only 3.2kV, well below the 4.8kV 

blocking voltage capability of the thyristor stack. This suggested that the capacitor 

voltage was not equally shared amongst the three thyristors, and since the supply 

voltage was being ramped up slowly when the breakdown occurred, it was unlikely 

that this was due to transient conditions. The most obvious cause of the thyristor 

failure is a failure of the voltage sharing resistors, but these were within their normal 

operating tolerances. Another possible cause was the failure of one the leads that 

connected the diode / thyristor stack to the voltage sharing resistors. Figure 10.7 

shows a simplified circuit diagram of the power supply, and with the circuit prior to 

the failure being regarded as quasi-steady-state, the different possible lead failures 

could be studied. Since the resistance of the drive coil was low in comparison with 

the voltage sharing resistors, a failure of leads five, six, or seven would not have 

caused the supply to fail during charging. The possible fault current paths, caused by 

the failure of one of the leads, are shown in Figure 10.8. It can be seen that if lead 

four had failed, only the bottom thyristor would have been damaged, as the other 

thyristors would have switched on normally due to the cascade nature of the firing 

circuit. If lead three had failed, the voltage across the bottom two devices might not 

have been evenly shared, due to manufacturing differences. However, the top 

thyristor would have turned on normally and would not have been damaged. If the 

second lead failed, the top two devices might have failed due to uneven voltage 

sharing. If the top two thyristors failed, the whole capacitor bank voltage would have 

been applied to the bottom device, which would have failed. If lead one had failed, 

the top device would have failed when the capacitor voltage exceeded 1.6kV. 

However, this would have meant the full capacitor bank voltage would have been 

shared between the bottom two thyristors, which would have failed when the bank 

voltage exceeded 3.2kV. 

Unfortunately, any evidence of a broken lead or bad connection was destroyed when 

the stack was dismantled to test the thyristors. However, from the analysis above it 

seems most likely that the power supply failure was caused by the failure or bad 

connection of lead one. Although the previous power supply failure was attributed to 
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the age of the devices, it too could have been caused by poorly connected leads. 

Unfortunately, the project budget could not cover the costs of another set ofthyristors, 

so a cheaper alternative switch had to be found. 

The switch chosen was a nail switch, which is very simple and robust, and works by 

using a small nail to puncture the insulation between two conductors. The nail is 

forced through the top conductor and the insulation below causing a localised break 

down between the two conductors. To hit the nail, a weight was dropped down a 

guide tube on to the head of the nail. Initially, the weight was held up by a solenoid, 

which when energised released the weight. 

Although the nail switch method had been used in previous pulse power supplies, it 

had been thought to be too inconsistent for use in model validation experiments. 

However, the results showed that the nail switch was surprisingly repeatable, and with 

the slightly modified power supply, the experimentation continued. 

After completing a large number of medium voltage experiments the supply voltage 

was increased until the drive coil failed. Due to the 5kV limit of the first power 

supplies, a new power supply was required. A previously constructed supply capable 

of operating up to 20k V was used. This supply used ignitrons for the main and 

crowbar switches and, although these were known to have poor low voltage 

repeatability, they operated well at and above 3kV. 

10.3. CONCLUSIONS 

The drive coils used in this thesis were hand wound and set in Tufnol housing using 

epoxy adhesive. The first failure of the launcher was in the drive coil connection and 

was caused by mechanical shock; this was later overcome by increasing the length of 

the connecting leads. The next failure occurred when one of the Tufnol clamping 

rods in the diode / thyristor stack broke. The third failure occurred in the thyristor 

stack while the supply was being charged up and although the previous mechanical 

failure might have caused this fault, it was decided that the age of the components was 

the most likely cause. The thyristor stack was replaced with higher rated components 

to try and prevent any further problems, but during the projectile deformation 
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experiments the supply again failed. The voltage and current traces were captured 

and it was decided that the supply probably failed due to a lose connection. The 

thyristor stack was replaced by a nail switch, which was shown to be both simple and 

effective. 

While the power supply developed during for this project was used for tests up to 

4.SkV, a previously constructed ignitron supply was used to test the launcher at higher 

voltages. 

10.4. FIGURES 
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Figure 10.1 Exploded diagram of the single projectile launcher arrangement 
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Figure 10.3 Location of the first coil failure 

178 



Chapter 10 Experimental Work 

~ 
" Cl .. 
"" ~ 
0 
'" u 
~ 
~ 

8 ,-______________________________ --, 

7 

6 

2 

0 +-------~------~------_,--------4 
o 100 200 

Time (~o) 

300 

---Rectangul. (25 11.,,0) 
__ Round (12 11.,,0) 

Figure 10.4 Drive coil currents for rectangular and roood wire coils 

3.5 

3 

~ 2.5 

2 

1.5 
1---Rectangul. (25 turno) 

--Round (12 turns) 

\ 0.5 

0 

-0.5 
0 100 200 300 400 

Time(~) 

Figure 10.5 Capacitor voltages for rectangular and roood wire coils 

179 



Chapter 10 

I-
~~ 

'\ 
~ 

"""" 

Experimental Work 

Time Base : 100us I Div 

Scale : 1000A I Div 

Scale : 2000V I Div 

Figure 10.6 Current and voltage traces of supply failure 

Main 
Capacitor 

lead 1 

lead 7 

lead 2 

lead 3 

lead 4 

lead 5 

lead 6 

Drive 
Coil 

Figure 10.7 Simplified power supply circuit diagram 

180 



Chapter 10 

Main 
Capacitor 

Failure 1 & 2 

Failure 3 

Failure 4 

Figure 10.8 Possible fault current paths 

181 

---------

Experimental Work 

Drive 
Coil 



11. RESULTS 

This chapter presents the experimental results that were obtained. 

11.1. MODEL VALIDATION 

To validate the filamentary models developed in this thesis a series of experiments 

were carried out. These were split into three groups, with each group being intended 

to validate a particular part of the models. The first group was designed to validate 

the model of a single layer / single projectile launcher, in which the drive coil was 

wound from rectangular cross-section wire. The second set of tests highlighted the 

difference between round wire and equivalent area rectangular wire models. These 

tests helped to prove that the round wire model adequately represents drive coils 

wound from round wire. The third series of experiments was conducted as part of the 

two-layer / dual projectile launcher investigation. 

11.1.1. RECTANGULAR WIRE MODEL 

To test the validity of the rectangular wire model, a single layer 25 turn drive coil was 

constructed from rectangular enamelled copper strip of 5xO.9mm cross-section 

[Appendix C]. The launcher was fired ten times at each voltage using the standard 

aluminium projectile, and this sequence was repeated with the laser gate in three 

different positions. From initial experimental results there was no noticeable 

deceleration of the projectile, and to check this the laser gate locations were 

randomised. After a full series of test launches, it was apparent that the projectile 

velocity varied little from its maximum over the range of locations it was measured at. 

Figure 1 J.l shows that the rectangular wire model accurately predicted the maximum 

velocity of the projectile. Figure 11.2 shows how the experimental and simulated 

launcher efficiencies vary with the supply voltage. 

A second series of tests was carried out using the same coil, but with the higher 

energy ignitron power supply. Since the drive coil was not expected to survive many 

high-energy shots, only two firings were made at each voltage, with the laser gates in 

the same locations. Figure 11.3 shows that the experimental results closely follow the 

values predicted by the model. Figure 11.4 shows the calculated launcher efficiencies 
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for the high voltage tests and although there is some discrepancy between the 

predicted and experimental results, this is due to the highly sensitive nature of the 

efficiency calculations. Any errors in either the capacitor voltage or projectile speed 

measurement are squared, hence the resultant efficiency can be greatly affected by 

minor errors. In the comparison of current traces shown in Figure 11.5 it can be seen 

that the predicted current closely matches the measured current, with the secondary 

oscillations caused by the crowbar ignitron triggering. Some of this interference was 

picked up by the Rogowski coil although the majority was picked by the cable 

between the sensing coil and the oscilloscope. 

Although the drive coil remained almost intact after the high-energy tests, the increase 

in the recoil forces caused significant damage to the back plate and terminal block, as 

shown in Figure 11.6. Although some of the damage can be attributed to the recoil 

forces, it is likely that the interaction between the currents flowing in the terminals 

and the magnetic field of the drive coil produced forces that increased the damage. 

During the second 7kV firing a large flash was observed on the monitoring camera. 

The supply voltage was then increased to 8kV and the flash was captured by the high­

speed camera. Figure 11.7 and Figure 11.8 show the breakdown at 3.01ms and 

3.51ms after the launcher was fired. Previous frames were captured, but the intensity 

of the light overpowered the camera and the pictures were devoid of detail. The 

remains of an arc between the projectile and the drive coil can clearly be seen. On 

closer inspection of the drive coil, two breakdown sites were noticed. The breakdown 

on the left of Figure 11.9 was probably caused by an insulation breakdown between 

adjacent turns of the coil. The breakdown on the right of Figure 11.9 was the most 

likely site of a drive coil to projectile arc, which produced the damage to the projectile 

shown in Figure 11.1 O. 

Additional insulating lacquer was added to the breakdown sites on the drive coil and a 

sheet of Melonex was placed between the projectile and drive coil. Once this had 

been done a second 8kV launch was made successfully, but when the voltage was 

increased to 9kV the whole drive coil housing failed and no further results were 

obtained. The damage to the drive coil can be seen in Figure 11.11. 
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11.1.2. ROUND WIRE MODEL 

To test the validity of the round wire model a two-layer 24 turn drive coil was 

constructed from 2mrn diameter enamelled copper wire [Appendix Cl. The first layer 

was wound and set in adhesive and the lead from the centre of the first layer was 

wound to form the second layer. The layers of the drive coil were oriented to ensure 

that the current flowed in the same direction around the layers of the coil. The 

launcher was again fired ten times at each voltage, and this was repeated with the 

laser gates at three different positions. The results from the low voltage test shown in 

Figure 11.12 again demonstrate good agreement with the predicted results. Figure 

11.13 shows a comparison between the experimental efficiencies and those found 

from the round wire model. To provide a comparison, the launcher was modelled 

again using the rectangular wire model. The models were set-up so that the centres of 

the conductors were in the same locations and they had the same cross-sectional area. 

Figure 11.14 shows a comparison between the predicted velocities of the two models 

when simulating the same system and Figure 11.15 gives a comparison between 

experimental and rectangular wire model results. Both Figure 11.14 and Figure 11.15 

show that the rectangular wire model tends to predict low projectile velocities when 

modelling a round wire arrangement 

Once the low voltage tests were completed, the power supply was replaced by the 

high voltage ignitron supply and the results shown in Figure 11.16 were obtained. It 

can be seen that there is a large difference between the predicted and measured 

velocities, which was attributed to the damaged condition of the launcher during these 

tests. During the low voltage tests, the drive coil had shown signs of damage and it 

was twice re-potted to help it survive. As the voltage was increased, the side of the 

drive coil closest to the projectile started to unravel. By the time the voltage reached 

skV the drive coil was so badly damaged that the projectile had to be held against the 

drive coil by sticky tape. Unexpectedly, the damaged drive coil seemed to perform 

better than expected, but this was probably due to small parts of the drive coil casing 

and potting been launched at high speed by the violent movement of the drive coil 

windings. However, the use of a badly damaged drive coil weakens any conclusions 
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that can be drawn from these results. Figure 11.17 shows the condition of the drive 

coil after a 6kV test. 

Despite the damage, the predicted drive coil currents and voltages show good 

correlation with measured results. Figure 11.18 and Figure 11.19 show current traces 

from low and high voltage tests respectively, and these show that the low voltage 

supply does not interfere with the Rogowski coil as much as the ignitron supply. 

Figure 11.20 presents a comparison between the predicted and measured capacitor 

voltage for several example launches. 

11.1.3. DUAL PROJECTILE MODEL V ALIDA nON 

The dual projectile launcher used a two-layer drive coil to allow easier connection of 

the power supply leads. A 24 turn, round wire coil was constructed due to the 

availability of materials; it could have equally well been wound from rectangular 

cross-section wire [Appendix C]. 

To validate the dual projectile model, a series of test were undertaken in a similar 

manner to the two previous sets of experiments. Figure 11.21 and Figure 11.22 show 

that the model results agree very well with the measured results and it can be seen 

from Figure 11.22 that the launcher was tested up to I OkV. Whilst the ignitron supply 

was designed to operate at up to 20k V, it had not been recently tested and I Ok V was 

thought to be a reasonable safety limit. As Figure 11.23 shows the damage to the 

drive coil was minimal, with the slight damage to the left-hand side of the coil 

probably due to unevenness in the coil construction. The additional insulation (black 

heat shrink tubing) was added because the enamel insulation had become damaged 

during construction. It would not be unreasonable to expect a similar coil to survive 

without any signs of damage if it was constructed more evenly. 

Figure 11.24 and Figure 11.25 show the launcher efficiencies for the low voltage and 

high voltage test respectively. The results of the high voltage tests show a close 

agreement with predicted results, as do the high voltage current traces in Figure 11.26. 

The maximum efficiency calculated from practical results was 47% and since the 
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dimension and materials used for the practical launcher were arbitrarily chosen, this 

suggests that the maximum possible efficiency is likely to be greater than 50%. 

11.2. STUDY OF PROJECTILE YA W 

To investigate the yaw of the projectiles detailed timing measurements were recorded 

during the first set of model validation experiments. The timing measurements were 

made by using the cursor feature on a pair of digital oscilloscopes connected to the 

outputs from the photo-detectors, enabling the yaw of the projectile to be calculated at 

two locations during each launch. 

The calculated yaws of the projectiles are shown in Figure 11.27, where the calculated 

angle is that between the projectile and a plane parallel with the drive coil. Figure 

11.27 shows that the yaw is not significantly affected by the launch energy. The 

projectiles were carefully placed flat against the drive coil, and the yaw appears to be 

random. However, it was noticed that if a projectile was not placed flat it would yaw 

in a particular direction, increasing the angle of the original misalignment. 

11.3. STUDY OF PROJECTILE RIFLING 

After studying the yaw of a projectile during flight, consideration was given to the 

possibility of the projectile rotating or rifling during flight. Using the painted 

projectile, shown on the left in Figure 11.28, several launches were photographed. 

Figure 11.29 shows the images from one of the launches, and it can clearly be seen 

from Figure 11.29 that the projectile does not rotate in flight. 

11.4. STUDY OF THE EFFECTS OF RE-USING A PROJECTILE 

Due to the large number of launches undertaken during the model validation 

experiments, it was not practical or economical to launch a projectile only once. A 

study was therefore undertaken to determine if flattening and re-using a projectile that 

had been damaged affected its performance. Figure 11.30 shows the average 

measured velocity of each launch in the first set of validation experiments. It can be 

seen that the number of times the projectile required flattening increased with the 
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capacitor voltage, and that the re-use of flattened projectiles had no noticeable effects 

on the average measured velocity. 

11.5. PROJECTILE DEFORMATION 

It had been noticed that during the high-energy experiments the projectiles were being 

deformed. In order to prove that this was due to the launch forces, and not caused by 

impact with the target, a study into projectile deformation was undertaken. Since only 

very slight deformation occurred during the highest energy test, it was obvious that 

thinner or softer projectiles should be used to study how the launch forces deform 

projectiles. 

A series of experiments were undertaken usmg a variety of different materials, 

projectile thickness and shapes, over a range of voltages. Initially a batch of solid 

discs made from 0.25mm thick copper sheet, and were annealed and rolled flat before 

being used. A series of experiments was carried out over a range of supply voltages, 

deforming the projectiles as shown the Figure 11.31. It can be seen that the 

projectiles have been deformed into a bowl shape with the edge bent back and 

wrinkled, while the bowl part remained almost smooth. What was unexpected was 

that the bottom of the bowl was pointing towards the drive coil, as can be seen from 

the sequence of photographs in Figure 11.32. Figure 11.31 shows how the depth of 

the bowl that is formed increases with the supply voltage, suggesting that the 

projectiles were behaving in an almost fluid manner. The direction of the projectile 

motion shows that the bowl shape was not caused by air resistance. If the projectiles 

were considered to be in a soft plastic state, the bowl shape could have been caused 

by the inertia ofthe central region of the projectile. 

Tests on un-annealed copper projectiles showed that these deformed in a very similar 

manner to annealed copper projectiles. However, O.5mm thick aluminium projectiles 

were not so deformed and it could be seen that the wrinkles were evenly spaced 

around the edge. All deformed projectiles were measured using the heights of their 

centres above a flat surface, this measurement was then used as an indicator of the 

projectile deformation. Figure 11.33 shows a comparison of the projectile 
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deformations for different voltages and materials. It can be seen that annealing the 

copper projectile only slightly increased the resulting deformation. Although the 

aluminium projectiles provided some comparison between different materials, no 

direct comparison tests could be carried out due to a lack of 0.25mm thick aluminium 

sheet. However, thin aluminium projectiles manufactured from 0.1 mm sheet were 

launched at IkV and 3kV. Although those launched at I kV suffered only minor 

deformation, those launched at 3kV were excessively deformed. Figure 11.34 and 

Figure 11.35 show a projectile from a 3kV test, and although this is deformed into a 

bowl shape, the centre is slightly domed forward. The small hole in the centre of the 

projectile was made during manufacture. It is thought that the centre of the projectile 

was domed forward due to the extreme deformation of the surround projectile and not 

by any special effect. 

Since the projectiles used and modelled were normally annular rings, it was decided 

that a number of 0.25mm annular copper ring projectiles should be tested. The 

deformation of these was not as dramatic as the solid discs, but their deformation was 

measured in a similar way. The outside edges of the projectiles were bent back, as 

were the inside edges to a lesser extent, giving the projectiles an unevenly curved 

cross-section, as seen in Figure 11.36. Figure 11.37 shows that the projectile 

deformation varies almost linearly with the supply voltage. 

Although both round disc and annular projectiles were made, even these shapes could 

become difficult to manufacture when using some materials. To investigate the 

effects of simpler projectile shapes a number of octagonal projectiles were 

manufactured from a combination of O.25mm copper sheet and O.5mm aluminium 

sheet. These deformed in a similar manner to the round disc projectile, as shown in 

Figure 11.38. However, the corners on the octagonal projectile seemed to increase the 

wrinkles both in the severity and in the distance that they penetrated into the 

projectile. The increase in the wrinkles slightly reduced the depth of the bowl, when 

compared with a round projectile launched at the same voltage and made from the 

same material. 
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A number of square projectiles were made from 0.25mm copper and 0.5mm 

aluminium sheet. Although, these were launched by the same drive coil as the round 

projectiles the results are clearly different. Figure 11.39 and Figure 11.40 show the 

deformation of square aluminium and copper projectiles respectively, in both figures 

the projectiles on the left were launched at 2kV and those on the right at 3kV. It can 

be seen that the corners fold back on the projectile while their tips remain pointing 

outwards. Figure 11.41 clearly shows the corners of a square projectile being bent 

backwards during its launch, and closer inspection reveals that the tips of the corners 

were pointing outward in the initial stages of the launch. This shows that the tips are 

not bent outwards due to impacting on the central section of the projectile. 

Considering the projectile as a plastic sheet that is hit with a ring shaped hammer, it 

would be expected that the tips would follow the corners and not be bent outwards. 

However, if the projectile is only in a plastic state for a short time, the tips might not 

have started to move before the rest of the projectile has become stiff again. Since 

little current would flow through the tips of the projectile, it is likely that little force 

would be applied to them. 

The corners of a square copper projectile launched at 3kV must have been moving so 

fast that when they hit the centre of the projectile it was deformed by the impact, with 

impressions evident in Figure 11.42. What cannot be seen in Figure 11.42 are the 

impressions made by the corners of the projectile launched at IkV. However, the 

corners were not in contact with the main body after the launch, this suggests that the 

corners rebounded or relaxed to the positions shown in Figure 11.40. Since the 

impact of the corners with the main projectile body was enough to deform the body, it 

suggests that the central part of the projectile was still reasonably soft, when the 

impact took place. 

11.6. CONCLUSIONS 

The results from the rectangular wire launcher clearly showed good collation between 

measured and predicted results, for both the low and high voltage tests. While the 

drive coil remained almost completely intact even during the high voltage test, 

significant damage occurred around the lead connections, probably caused by 
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launcher recoil and electromagnetic repulsive forces acting on the connectors. The 

use of the monitoring and high-speed cameras allowed insulation failures to be 

detected and repaired before the launcher was significant damaged. 

Results from the round wire launcher showed good collation with the round wire 

model results, whilst highlighting the inaccuracy of using a rectangular wire model to 

simulate a round wire coil. However, the drive coil was seriously damaged during 

testing, even at low voltages. This was due to the recoil forces and the difficulty of 

gluing round conductors together. Although predicted and calculated low voltage 

launcher efficiencies again show a good correlation the damaged caused to the drive 

coil invalidated any results that could have been drawn from the high voltage tests. 

The reduction in recoil forces achieved in the dual projectile launcher was clearly 

demonstrated in the lack of damage to the drive coil, despite it been almost identical 

to the drive coil used in the round wire tests. The results from the dual projectile 

launcher confirm the accuracy of the model up to the safety limit of the power 

supplies. From the results of the high voltage test, a maximum efficiency of 47% was 

calculated, however this figure was obtained from only a single result. 

A study of projectile yaw was undertaken using timing measurements taken during 

low voltage testing of the rectangular wire launcher. From this study, it was found 

that the yaw of the projectile was not related to the supply voltage. It was also found 

that projectile yaw increased steadily as the projectile travelled down range. From 

practical experience and the results of this study, it was concluded that the projectile 

yaw was determined by the accuracy of its location against the drive coil prior to 

launch. 

The study of projectile rifling clearly showed that the projectile did not rifle during its 

flight, as expected. The study into the effects of re-using projectiles, showed that re­

using a projectile that had been flattened, had little effect on its performance. 

The projectile deformation tests demonstrated that a projectile could be significantly 

deformed by launch forces, and that not all previously noticed deformation could be 

explained by impact damage alone. The solid disc projectiles clearly showed that 
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projectile deformation is almost proportional to the supply voltage. The deformation 

test suggested that the projectile is in a plastic state during the early stages of the 

launch cycle. Since the projectile appears to become plastic very rapidly, it suggests 

this is due to the large forces present, and not due to the projectile heating. The 

octagonal and square projectiles showed that changing the projectile shape could 

significantly affect the manner and magnitude of the projectile deformation. 

11.7. FIGURES 
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Figure I 1.6 Photograph of damage to the drive terminal and support structure 

Figure 11 .7 Photograph of the drive coil break down after 3.0 I ms 

Figure 11 .8 Photograph of the drive coil break down after 3.51 ms 
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Figure 11.9 A close-up of the breakdown sites on the drive coil 

Figure 11 .10 A close-up of the damage to the projectile cause by an arc. 

Figure 11.11 The final condition of the rectangular wire drive coil 
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Figure 11.17 The final condition of the round wire drive coil 
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Figure 11.22 Results of high voltage dual projectile model validation tests 

Figure 11 .23 Photograph of damage to the dual projectile launcher drive coil. 
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Figure 11 .28 Normal and painted projectiles 
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Figure 11 .29 High-speed photographs of painted projectile in flight 
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After 300>lS 

Figure 11.32 High-speed photographs of the example projectile (cont.) 
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Figure 11.33 Disc projectile deformation against voltage 

Figure 11 .34 Front view of the thin aluminium projectile after a 3kV launch 
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Figure 11 .35 Rear view of the thin aluminium projectile after a 3kV launch 
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Figure 11.40 Square copper projectiles after launch 
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After 150llS 

After 350llS 

Figure 11.41 High-speed photographs of a square projectile during launch 
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. ., ... 

Figure 11.42 Front view of square copper projectiles after launch 
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12. CONCLUSIONS AND FURTHER WORK 

This chapter presents the overall conclusions draw from the work presented in this 

thesis and makes suggestion for its continuation. 

12.1. CONCLUSIONS 

This thesis has described the development and testing of several different launchers, 

together with the numerical models required to accurately predict their performance. 

Filamentary analysis was chosen, as it provided a direct method for modelling the 

circular topology of a launcher, without the need to model the space around the 

launcher. Although a finite element model was used, this was limited to a low 

frequency and static formulation, which limited its use in modelling a transient and 

dynamic system. 

The filamentary parameters were defined in a series of equations presented in Chapter 

6. The filamentary inductances were formulated from the magnetic vector potential at 

a point some distance from a circular conductor. While the inductance equations had 

been formulated previously, some of them had not been used in earlier launcher 

models. These additional inductance calculations allowed the individual filamentary 

forces in both the radial and axial directions to be determined. 

Filamentary resistance and thermal equations were developed, by using approximate 

functions to describe the material characteristics. These functions were derived from 

published experimental data, and were used to model successfully the material 

characteristics. 

While the mechanical equation used was a simply force balance equation, it included 

the affects of aerodynamic resistance, which had not previously been included in 

models for this type of launcher. However, it was shown that the aerodynamic drag 

had little effect on the performance of a launcher, due to the very large 

electromagnetic forces. 
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To improve the performance of the modelling program a study of processor usage was 

undertaken. This led to several significant reductions in simulation run time and 

several approximations were tested to see how they would affect programme 

performance and accuracy. While all the approximations tested reduced the 

processing time, some of them produced unacceptably inaccurate solutions. In 

addition, a variable step-length model was implemented, which reduced the 

processing time for some simulations. Its greatest benefit was that it enabled 

simulations that had previously become unstable, to be modelled successfully. 

The study of the effects of projectile mass on launcher performance showed that the 

projectile velocity increases as the mass is reduced. This study initially showed that 

the launcher efficiency also increases as the mass is reduced. However, expanding 

the range of the study showed that the launcher efficiency reached a maximum of 

39%, with a mass of 100g, before rapidly decreasing. From the results obtained, it 

was concluded that the lighter projectiles were accelerated so fast that their movement 

induced large translational EMFs in the drive coil. These acted to oppose the supply 

current and hence impaired the launcher performance. The performance of the test 

launcher fell to 1.5% when the projectile mass was reduced to 0.01 gm. 

In a study of the effects of the relative radii of the projectile and drive coil, it was 

shown that a slight projectile overhang was the optimum arrangement. However, the 

difference between the optimum arrangement and an arrangement with equal drive 

coil and projectile radii was so small that it was concluded that the radii should be the 

same. The effects of varying both the projectile and drive coil radii simultaneously 

showed that increasing the outside radius would improve the launcher performance 

and that the inside radius could be optimised for a given outside radius. During this 

study, the number of drive coil turns was optimised for each launcher arrangement, 

and the optimum number of turn increased slowly with launcher size. This suggested 

that scaling of the launcher could be used to design practical low voltage launchers 

with the optimum number ofturns. 
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Several studies into the affects of varying the number of drive coil turns indicated that 

the optimum number of turns varied with the supply voltage. Also investigated was 

the effect of the inter-turn insulation thickness on the optimum turn / voltage 

relationship. While the insulation thickness did not effect the optimum at high supply 

voltages, it did at lower voltages. It was concluded that the lower voltage optima 

were affected most since they required a greater number of turns, and hence a greater 

amount of the available space was occupied by insulation. It was shown that the 

optimum number of turn only increased slightly when the drive coil was divided into 

two layers. This form of coil has the advantage that the connecting leads are on the 

outside edge, and it enabled more turns to be wound in a given coil size. This allows 

the optimum number of drive coil turns to be practical at lower supply voltages. 

Similar sets of simulations undertaken on a dual projectile launcher showed that the 

dual projectile launcher behaved in a similar manner to the single projectile launcher. 

Most interestingly, they also showed that a launcher could have an efficiency 

exceeding 50%. 

Several novel launcher structures were tested to see if any improvement in launcher 

performance could be achieved by "magnetising" the projectile before it was 

launched. Although some improvements were possible, the complexity of the 

launcher was significantly increased. It was concluded that the most practical 

arrangement for pre-exciting the projectile was to place a low voltage disposable coil 

on the outside of the projectile. This would act as a current transformer, producing 

the required "magnetising" current in the projectile before launch. 

To enable practical investigations to be undertaken, a range of sensing and control 

equipment were developed, including a laser beam position sensing and speed 

measuring system. It was shown that the laser beam sensing system could also be 

used to determine the yaw of a projectile in flight. 

Predicted results show a good collation with the experimental results, for all the 

launchers tested. In addition, it was shown that the dual projectile launcher greatly 

reduces the recoil effects on the drive coil. The practical work also showed that the 
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yaw of a projectile does not depend on the supply voltage, but is determined by the 

initial positioning of the projectile with respect to the drive coil. 

The study of projectile deformation shows clearly the extreme forces that acted on the 

projectile during a launch, with the projectile acted in a plastic manner due to the 

large forces present and not due to heating. It also showed that the projectile 

deformation was almost proportional to the supply voltage and that the projectile 

geometry could significantly effect the amount of deformation. 

12.2. FuRTHER WORK 

This thesis has described the development of several models, and has included results 

from several theoretical studies and practical experiments. There are however a 

number of areas that might warrant further investigation and areas that future 

investigations into flat electromagnetic launchers may wish to include are given 

below. 

It was established that the launcher performance increased with an increase in the 

outside radius of the launcher. While this was true for the launchers studied, can this 

conclusion be generalised to cover any size of launcher? If so would including the 

associated increase in launcher mass limit the increase in performance? What effect 

does scaling have on the launcher performance and the optimum conditions studied in 

this thesis? 

Studies of both single and dual projectile launchers showed that the introduction of a 

second layer in the drive coil allowed a greater number of turns, without greatly 

affecting the launcher performance. Could the introduction of a third layer in the 

drive coil produce a further improvement? In addition, could the same affect be 

achieved by increasing the supply inductance? If the optimum number of turns could 

be varied easily, without any noticeable degradation in the launcher performance, 

would this allow the launcher and power supply to be tuned to a practical optimum? 

While the study of unusual launcher arrangements, predicted an improvement in 

launcher performance when the projectile was pre-excited, these were only 

theoretical, could a practical pre-excited test launcher be constructed, and would any 

increase in performance still be noticeable? 
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The methods and equations were developed to expand the filamentary model to 

include a flexible power supply configuration. While· only single supply 

arrangements were considered it was suggested that an increase in the duration of the 

discharge pulse, by using multiple supplies, might improve the launcher performance. 

Would a study of multi-supply launcher predict any improvement in efficiency? 

Could the discharge times be controlled sufficiently accurately, or would practical 

limitations prevent the construction of a multi-supply launcher? 

Other future work could include the implementation and validation of the projectile 

deformation model. In addition, a better method of describing and quantifying the 

amount of projectile deformation could be developed. 
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A. CALCULATION OF COMPLETE 
ELLIPTIC INTEGRALS 

The elliptic integral of the first and second kind are required for the definition of the 

filament self and mutual inductances, and their rates of change. The complete elliptic 

integrals of the first and second kind are defined as [A I]. 

Exact solutions of elliptic integrals cannot be found, however there are many methods 

of approximation. The methods of approximation used in this thesis are fourth-order 

polynomial approximations [A2, A3] 

234 K(k)=(aO +alml +a2ml +a3ml +a4ml )+ 

2 3 4 1 
(bO + blml + b2ml + b3ml + b4ml )In-

ml 

where ao = 1.38629436112 ba = 0.50000000000 

al 0.09666344259 bl = 0.12498593597 

a2 = 0.03590092383 b2 = 0.06880248576 

a3 = 0.03742563713 b3 = 0.03328355346 

a4 = 0.01451196212 b4 = 0.00441787012 

and m I is the complementary parameter and is defined as m I = l_k2 

where k is the modulus as defined in Chapter 6 

234 E(k)=(i+alml +a2ml +a3 ml +a4ml )+ 

2 3 4 I 
(blml + b2ml + b3ml + b4ml )In­

ml 
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Appendix A 

wh\!re a] = 0.44325141463 

a2 = 0.06260601220 

a3 = 0.04757383546 

a4 = 0.01736506451 

and m] is defined as above. 

A.I. REFERENCES 

Calculation of Complete Elliptic Integrals 

b] = 0.24998368310 

b2 = 0.09200180037 

b3 = 0.04069697526 

b4 = 0.00526449639 

[AI] Kom, G.A. and Kom, T.M., Mathematical handbookfor scientists and 

engineers, McGraw-Hill, 1961 

[A2] Hastings, C., Approximationsfor digital computers, Princeton University 

Press, 1955 

[A3] Abramowitz, M. and Stegun, I.A. (Eds.), Handbook of mathematical functions 
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B. MATERIAL CHARACTERISTICS 

To correctly determine the temperature and resistance of each filament in a model, the 

material characteristics must be known. The thermal characteristics of four metals 

were determined and approximated to a series of functions. The functions were 

determined by fitting an approximate function to sets of experiment results available 

in several different sources [B 1-B6]. The approximate functions are limited to the 

temperature ranges plotted below. 

B.t. COPPER 

cCu (Ijl)= 170.9 + 4.923 x 1O-21jl' + 161.5(1- e -1.928xW-' <J>')+ 

66.54(I_e-4.67X W-'<J>') J/kg/K 

where Ijl' = Ijl - 70 

These functions are compared with measured data in Figure B.I and Figure B.2 

B.2. ALUMINIUM 

where Ijl' = 1jl-70 

These functions are compared with measured data in Figure B.3 and Figure BA 
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Appendix B Material Characteristics 

B.3. TUNGSTEN 

Cw (~)= -92.11 + O.0251~ + 217.7(1- e -O.0165~) J I kg/K {B.6} 

These functions are compared with measured data in Figure B.5 and Figure B.6 

B.4. TITANIUM 

PTi(~)=74.736+1.01~+2.72xIO-3~2 _3xIO-6~3 + 

8xIO-lO~4 x10-9 Qm 

cTi (~)= -345.4 + O.3014~ + 787.12(1- e -O.015~) J Ikg/K 

These functions are compared with measured data in Figure 8. 7 and Figure 8.8 
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c. LAUNCHER DIMENSIONAL DATA 

The launcher used in the initial model validation test had the following dimensions. 

Projectile : 
Material 
Inside radius 
Outside radius 
Thickness 
Vertical offset 

Drive Coil : 
Material 
Inside radius 
Turns 
Turn Height 
Turn Width 
Inter-turn space 
Vertical offset 

Aluminium 
24.5mm 
50.5mm 
1.5mm 
0.5mm 

Copper 
25mm 
17 
2.5mm 
lmm 
0.5mm 
-2.5mm 

The following launcher and simulation details were used during the model speed 
comparison tests and as the basis for all the later launcher design studies. 

General Details: 
Large step length le-6 seconds 
Small step length le-7 seconds 
Simulation run length 0.0004 seconds 
Constant retarding force 0 N 
Drag coefficient 0 
Total projectile mass 0.05 kg 
Drive coil temperature 20 C 
Projectile temperature 20 C 

Power Supply Details: 
Main branch resistance 0.012 ohms 
Main branch inductance 3.8e-7 H 
Main branch capacitance 0.000'1 F 
Main forward voltage drop 10 V 
Crowbar branch resistance 0.00255 ohms 
Crowbar branch inductance 2.8e-8 H 
Crowbar forward voltage drop 10 V 
Cable resistance 0.018 ohms 
Cable inductance 4.2e-7 H 
Initial capacitor voltage 2000 V 

Drive Coil Details: 
Number of turns 1 
Number of layers per turn 25 
Material copper 
Inside radius [yOJ 25 mm 
Vertical displacement [zO] -5 mm 
Conductor width [ylJ 1 mm 
Conductor height [zlJ 5 mm 
Horizontal conductor separation [y2J 0 mm 
Vertical conductor separation [z2J 0 mm 
Number of horizontal filaments 1 
Number of vertical filaments 5 
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Appendix C Launcher Dimensional Data 

Projectile Details: 
Number of turns 1 
Number of layers per turn 1 
Material aluminium 
Inside radius [yO] 25 mm 
Vertical displacement [zO] 1 mm 
Conductor width [y1] 25 mm 
Conductor height [zl] 3 mm 
Horizontal conductor separation [y2] 0 mm 
Vertical conductor separation [z2] 0 mm 
Number of horizontal filaments 25 
Number of vertical filaments 3 

The dimensions referred to in the square brackets are shown in Figure C.I. 

The following table shows the approximate dimensions of the experiment launchers 

used in this thesis. 

Rectangular First round Second round Dual 
wire wire launcher wire launcher projectile 

launcher launcher 
Material Copper strip Copper wire Copper wire Copper wire 
Wire dimensions 5 x O.9mm 2mm diameter 2mm diameter 2mm diameter 
Inside radius 25mm 25mm 25mm 25mm 
Outside radius 50mm 50mm 50mm 50mm 
Layers 1 1 2 2 
Turns 25 12 24 24 

The projectile used in all but the deformation test had the following dimensions. 

Material 
Inside radius 
Outside radius 
Thickness 

Aluminium 
25mm 
50mm 
3mm 
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