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Abstract

The Dual Post Correspondence Problem asks, for a given word α, if there exists
a non-periodic morphism g and an arbitrary morphism h such that g(α) = h(α).
Thus α satisfies the Dual PCP if and only if it belongs to a non-trivial equality
set. Words which do not satisfy the Dual PCP are called periodicity forcing,
and are important to the study of word equations, equality sets and ambiguity
of morphisms. In this paper, a ‘prime’ subset of periodicity forcing words is
presented. It is shown that when combined with a particular type of morphism
it generates exactly the full set of periodicity forcing words. Furthermore, it
is shown that there exist examples of periodicity forcing words which contain
any given factor/prefix/suffix. Finally, an alternative class of mechanisms for
generating periodicity forcing words is developed, resulting in a class of examples
which contrast those known already.
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Periodicity forcing sets, Periodicity forcing words, Ambiguity of morphisms

1. Introduction

The Dual Post Correspondence Problem (Dual PCP) is a decidable variation
of the famous Post Correspondence Problem (see Post [12]). It was introduced
by Culik II and Karhumäki in [1], where the authors make progress towards a
characterisation of binary equality sets. A word is said to satisfy the Dual PCP
if it belongs to an equality set E(g, h) for two morphisms g, h where at least
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one morphism is non-periodic. For example, the word abba belongs to E(g, h)
where g, h : {a, b}∗ → {a, b}∗ are the morphisms given by:

g(x) :=

{
aba if x = a,

b if x = b,
and h(x) :=

{
a if x = a,

bab if x = b.

Thus abba satisfies the Dual PCP; in other words, it is a non-trivial equality
word. In contrast, the word abaab does not satisfy the Dual PCP, but this claim
is much harder to verify. The latter is called a periodicity forcing word since it
forces each pair of morphisms which agree on it to be periodic.

Identifying which words belong to non-trivial equality sets and which do
not is of immediate significance to the Post Correspondence Problem, which is
simply the emptiness problem for equality sets. It is well known that although
the PCP is undecidable in general, it is decidable even in polynomial time in the
binary case (see Halava, Holub [6]). It is therefore no surprise that, for binary
words, the Dual PCP is relatively well understood.

This is due to both the original research by Culik II and Karhumäki [1], and
from results on equality sets (e. g., Holub [7], Hadravova, Holub [5]) and word
equations (e. g., Czeizler et al. [2], Karhumäki, Petre [9]). Much less, however,
is known about the Dual PCP for larger alphabets.

One reason for this is that although the Dual PCP is known to be decidable,
the proof (given by Culik II and Karhumäki [1]) relies on Makanin’s algorithm
for solving word equations [11]. While this algorithm demonstrates that the
problem is computable in principle, the complexity is extremely high, and it
provides little insight into the nature of words which do/do not satisfy the Dual
PCP. It is worth noting that the decidability of the PCP for alphabet sizes 3
to 6 is a long-standing open problem, and therefore equality words over these
alphabets are of particular interest.

In the present paper, we investigate the Dual PCP in the general case,
specifically looking at periodicity forcing words. While examples of equality
words are easily found, deciding on whether a word is periodicity forcing can
be a particularly intricate task, and becomes even more so as the alphabet size
increases. In [3], we overcome this problem by employing the use of morphisms
to generate periodicity forcing words over arbitrary alphabets. Since it can be
shown that many simple morphisms (such as ϕ : {a, b}∗ → {a, b}∗ given by
ϕ(a) := a and ϕ(b) := ab) preserve the property of being periodicity forcing, it
is possible to span large parts of the set of periodicity forcing words (denoted
by DPCP¬) by applying such morphisms to existing examples.

In Section 3 of the present paper, we explore this phenomenon further.
Specifically, DPCP¬ is divided into those words which may be reached by a
non-trivial morphism from other elements of the set, and those which cannot.
The latter form a ‘prime’ subset of DPCP¬ from which all periodicity forcing
words may be generated using a specific class of morphisms characterised in [3].
In order to find examples of these prime words – therefore demonstrating that
the subset is non-empty – it makes sense to consider the shortest periodicity
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forcing words. Thus, we also give bounds on the length of the shortest period-
icity forcing words for any alphabet.

In Section 4, it is shown that there exist periodicity forcing words with
arbitrary factors. This not only further demonstrates the complexity of the Dual
PCP, but also provides another large, previously unknown class of periodicity
forcing words and with it, further insight into their structure.

Finally, motivated by Section 3, we employ some alternative techniques for
finding periodicity forcing words over larger alphabets, yielding insights into the
set of ‘prime’ words.

2. Notation and Preliminary Results

An alphabet Σ is a set of symbols, or letters. A word over Σ is a concate-
nation of symbols from Σ. The empty word consisting of no symbols is ε. We
denote by Σ∗ the set of all words over Σ (including ε). Σ+ is Σ∗\{ε}. Let Σ be
an alphabet. Let u, v ∈ Σ∗. Then v is a factor of u if there exist w1, w2 ∈ Σ∗

such that u = w1vw2. A word u ∈ Σ∗ is primitive if u = vn for some v ∈ Σ∗

implies n = 1, otherwise u is imprimitive. If u = vn for some n ∈ N and v
is primitive, then v is a primitive root of u; it is unique if and only if u 6= ε.
Two words u, v ∈ Σ∗ commute if uv = vu. More generally, a set of words
{u1, u2, · · · , un} commutes if for every i, j, uiuj = ujui. For a set X, the
notation |X| refers to the cardinality of X, and for a word u, |u| stands for
the length of u. By |u|a, we denote the number of occurrences of the letter a
in the word u. Let u ∈ {a1, a2, · · · , an}∗ be a word. The Parikh vector of u,
denoted by P(u), is the vector (|u|a1 , |u|a2 , · · · , |u|an). The result of dividing the
Parikh vector by the greatest common divisor of its components is called the
basic Parikh vector. A word u ∈ Σ∗ is ratio-imprimitive if there exist v, w ∈ Σ∗

such that u = vw and v, w have the same basic Parikh vector. Otherwise u is
ratio-primitive.

Let N := {1, 2, · · · } be the set of natural numbers, and let N0 := N∪{0}. We
often use N as an infinite alphabet of symbols. In order to distinguish between
a word over N and a word over a (possibly finite) alphabet Σ, we call the former
a pattern. Given a pattern α ∈ N∗, we call symbols occurring in α variables
and denote the set of variables in α by var(α). Hence, var(α) ⊆ N. Sometimes,
for convenience, we will also use {x1, x2, · · · } to denote (possibly unknown)
variables in N. We use the symbol · to separate the variables in a pattern, so
that, for instance, 1 · 1 · 2 is not confused with 11 · 2. Given patterns α and
α′, if α′ may be obtained from α by deleting all occurrences of some variables
in α, then α′ is a subpattern of α. If var(α) = {1, 2, · · · , n} and the leftmost
occurrence of each variable x ∈ N appears to the left of any variable y with
y > x, then α is in canonical form.

Given arbitrary alphabets A,B, a morphism is a mapping h : A∗ → B∗ that
is compatible with concatenation, i. e., for all v, w ∈ A∗, h(vw) = h(v)h(w).
Hence, h is fully defined for all v ∈ A∗ as soon as it is defined for all symbols
in A. A morphism h is called periodic if and only if there exists a v ∈ B∗ such
that h(a) ∈ {v}∗ for every a ∈ A. The morphisms g, h : A∗ → B∗ are distinct
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if and only if there exists an a ∈ A such that g(a) 6= h(a). For the composition
of two morphisms g, h : A∗ → A∗, we write g ◦ h, i. e., for every w ∈ A∗,
g ◦ h(w) = g(h(w)). If g(v) = h(v) for some v ∈ A+, then g and h agree on v.
The set of all words on which g and h agree is called the equality set of g and
h. A morphism g : A∗ → B∗ is called a renaming morphism if it is injective,
and |g(a)| = 1 for every a ∈ A. For words u, v ∈ A+, if there exists a renaming
morphism g such that v = g(u), then v is simply said to be a renaming of u.

Two words u ∈ A+, v ∈ B+ are morphically coincident if there exist mor-
phisms g : A∗ → B∗ and h : B∗ → A∗ such that g(u) = v and h(v) = u.
A pattern α ∈ N+ is morphically imprimitive if it is morphically coincident
to some pattern β with |β| < |α|. Otherwise α is morphically primitive. It
is shown in [13] that if two patterns are morphically coincident, then they are
either renamings of each other, or at least one is morphically imprimitive.

A morphism g is said to be ambiguous with respect to a pattern α if there
exists another morphism h such that g(α) = h(α) and g, h are distinct. Thus
a pattern α satisfies the Dual PCP (see Section 1) if there exists an ambiguous
non-periodic morphism with respect to α. In order to remain consistent with the
notation in [3], we will often use σ and τ to denote morphisms when considering
ambiguity and the Dual PCP, especially if they map patterns in N∗ to words in
Σ∗. We will normally use ϕ and ψ if we are mapping patterns to other patterns.

It is convenient, particularly in Section 3, to refer to the set of patterns which
satisfy the Dual PCP and its complement. Thus we define the set: DPCP :=
{α ∈ N+ | there exists a non-periodic morphism σ and an arbitrary morphism
τ such that σ(α) = τ(α) and σ(x) 6= τ(x) for some x ∈ var(α)}. We denote
the complement of DPCP by DPCP¬. Note that DPCP¬ is exactly the set of
periodicity forcing words (see Section 1).

We can extend periodicity forcing words to periodicity forcing sets in the
natural way: a set of patterns is periodicity forcing if, whenever two distinct
morphisms agree on all patterns in the set, they are periodic. A set of patterns
T is said to be a test set of another set of patterns S if any two morphisms which
agree on every pattern in T also agree on every pattern in S. Note that this
means any test set of a periodicity forcing set must also be periodicity forcing.

For a set of unknownsX := {x1, x2, · · · , xn}, a word equation is an equation
Φ = Ψ for some words Φ, Ψ ∈ X+. Its solutions, over some given alphabet Σ,
are words w1, w2, · · · , wn ∈ Σ∗ such that substituting each wi for xi resolves
the equation (it is equal on both sides). Thus solutions to the word equation
may be expressed as morphisms σ : X∗ → Σ∗ such that σ(Φ) and σ(Ψ) are
equal. Unless otherwise specified, X is usually a set of variables, while Σ is a
set of letters. As a result, word equations equate patterns, and their solutions
are substitutions to terminal words (words which are not patterns). We will say
that a set of words satisfies an equation if the associated substitution/morphism
is a solution. We will use the following well known and fundamental result on
word equations throughout the rest of the paper.

Lemma 1 (Lothaire [10]). Non-trivial word equations in two unknowns have
only periodic solutions.
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Thus, one obtains the following. For the third statement in the corollary to
hold, it must be assumed that every primitive word is a primitive root of the
empty word. Note that this fits with our definition given above.

Corollary 2. Let u, v be words. The following conditions are equivalent:

1. u and v satisfy a non-trivial equation,

2. u and v commute, and

3. u, v have the same primitive root.

In our investigation into the use of morphisms to generate periodicity forcing
words in [3], we provide the following criterion. Any morphism ϕ which satisfies
the criterion preserves the property of being periodicity forcing, and thus can
be used to obtain new periodicity forcing words from known ones.

Lemma 3 ([3]). Let ∆1, ∆2 be sets of variables. Let ϕ : ∆1
∗ → ∆2

∗ be
a morphism such that, for every x ∈ ∆2, there exists a y ∈ ∆1 satisfying
x ∈ var(ϕ(y)), and

(i) for every non-periodic morphism σ : ∆2
∗ → {a, b}∗, σ ◦ ϕ is non-periodic,

and

(ii) for all distinct morphisms σ, τ : ∆2
∗ → {a, b}∗, where at least one is

non-periodic, σ ◦ ϕ and τ ◦ ϕ are distinct.

Then, for any α /∈ DPCP with var(α) = ∆1, ϕ(α) /∈ DPCP.

Characterisations of morphisms which satisfy conditions (i) and (ii) of Lemma 3
are given in [3]. In particular, condition (ii) is satisfied if and only if the set
S := {ϕ(x) | x ∈ ∆1} is periodicity forcing.

Since a set of patterns commutes if and only if each pair of patterns in the set
commutes, by Corollary 2, the morphism σ ◦ϕ : ∆1 → {a, b}∗ is periodic if and
only if the set {σ(ϕ(x)) | x ∈ ∆1} commutes. Hence, condition (i) is satisfied
if and only if the set S is commutativity forcing, that is, for every morphism σ
for which the set {σ(β) | β ∈ S} commutes, all images σ(x), x ∈ ∆2

∗ commute.
This implies that σ is periodic.

Note that it follows from basic properties of morphisms that, for any pe-
riodicity forcing (resp. commutativity forcing) set {β1, β2, · · · , βn}, if a new
pattern βn+1 is added which does not contain any ‘new’ variables (i.e., variables
which do not appear in any βi, 1 ≤ i ≤ n), then the resulting set remains
periodicity forcing (resp. commutativity forcing).

3. A ‘Prime’ Generating Subset of DPCP¬

A method of obtaining periodicity forcing words as the morphic images of
previously known examples is developed in [3]. One consequence of the con-
structions given is the following:
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Corollary 4 ([3]). Let α ∈ DPCP¬. Then there exists a morphism ϕ : N∗ →
N∗ which is not a renaming morphism, such that ϕ(α) ∈ DPCP¬.

Although this statement is itself fairly easily obtained, and comes as no
surprise, it is worth noting the richness and variety in such morphisms ϕ (which
are characterised in [3]), and therefore also in the subsequent patterns ϕ(α)
which can be obtained through the application of morphisms. Thus an obvious
question arises: is every periodicity forcing word the morphic image of another?

Of course the answer is trivially affirmative if ϕ is permitted to be a renam-
ing morphism (such as the identity), or if α can be unary (every pattern is a
morphic image of α := 1). However, if we restrict α and ϕ to avoid these trivial
instances, the answer is no longer clear. In fact, a negative answer is provided
by Proposition 9 below. Hence, the partition of periodicity forcing words into
those which are morphic images of another, and those which are not, is non-
trivial. We will call the latter prime. Moreover, it is reasonable to expect that
these prime periodicity forcing words are sufficient, given the appropriate set of
morphisms, to generate the full set. This is confirmed later by Theorem 10.

The proofs of these results rely on a lower bound for the length of periodicity
forcing words, given relative to the alphabet size. This bound is achieved by
considering patterns belonging to the equality sets of (pairs of) “nearly periodic
morphisms” σ – of the form

σ(x) :=

{
ar bas if x = y,

apx otherwise,

where y is some fixed variable, and r, s, px ∈ N0. It is apparent that the equality
set of two morphisms σ1 and σ2 of this type is determined by a system of linear
Diophantine equations, and in the case that y is the same for both morphisms,
it is possible to infer a strong sufficient condition for a pattern to belong to such
an equality set. Since the morphisms are non-periodic, any such pattern is not
periodicity forcing.

Proposition 5. Let α be a pattern, and let n := |var(α)|. Suppose that |α|x < n
for some x ∈ var(α). Then α ∈ DPCP.

Proof. Consider a pattern α such that var(α) = {x1, x2, ..., xn}, and |α|xi
< n

for some i ≤ n. W. l. o. g. let i := n. Then there exists a k ∈ N such that
|α|xn

= n − k, and α can be written as β1 · xn · β2 · xn · ... · βn−k · xn · βn−k+1

for some patterns β1, β2, ..., βn−k+1 ∈ {x1, x2, ..., xn−1}∗.
Consider the morphisms σ, τ : {x1, x2, ..., xn}∗ → {a,b}∗ given by

σ(xi) :=

{
ar1 bas1 if i = n,

api otherwise,
and τ(xi) :=

{
ar2 bas2 if i = n,

aqi otherwise,

for some p1, p2, ..., pn, q1, q2, ..., qn, r1, r2, s1, s2 ∈ N0. Clearly, σ and τ
are non-periodic, provided pi 6= 0 and qj 6= 0 for some i, j respectively. For

6



1 ≤ i < n let ti := pi−qi, let r := r2−r1, and let s := s2−s1. Then σ(α) = τ(α)
if and only if the following system of equations is satisfied:

t1|β1|x1 + t2|β1|x2 + · · ·+ tn−1|β1|xn−1 = r

t1|β2|x1 + t2|β2|x2 + · · ·+ tn−1|β2|xn−1 = r + s

...

t1|βn−k|x1
+ t2|βn−k|x2

+ · · ·+ tn−1|βn−k|xn−1
= r + s

t1|βn−k+1|x1 + t2|βn−k+1|x2 + · · ·+ tn−1|βn−k+1|xn−1 = s.

Since r, s, t1, ..., tn−1 ∈ N0 depend on the definition of σ and τ , they may be
chosen freely, and |βi|xj

for 1 ≤ i ≤ n− k+ 1 and 1 ≤ j ≤ n− 1 depend on α so
they are fixed. Notice that σ and τ are distinct if and only if s 6= 0 or r 6= 0 or
there exists an i such that ti 6= 0. Thus, σ and τ can be chosen such that they
are distinct, non-periodic and agree on α if there exists a non-trivial solution
(t1, t2, ..., tn−1).

Let fi,j := |βi|xj
− |β1|xj

− |βn−k+1|xj
for 1 ≤ i < n and 2 ≤ n − k. Then

our system can be written as follows:

t1f2,1 + t2f2,2 + · · ·+ tn−1f2,n−1 = 0

t1f3,1 + t2f3,2 + · · ·+ tn−1f3,n−1 = 0

...

t1fn−k,1 + t2fn−k,2 + · · ·+ tn−1fn−k,n−1 = 0

This is a system of n − k − 1 homogeneous equations in n − 1 unknowns with
integer coefficients, k ≥ 1, and therefore there exists a non-trivial integer so-
lution (t1, t2, ... tn−1). Since r and s can be chosen freely, such a solution is
always a solution to the first system for some integers r, s. Thus σ and τ can be
chosen such that they are distinct, non-periodic and agree on α. Consequently,
α ∈ DPCP whenever |α|x < n for some x ∈ var(α). �

It follows that, for a periodicity forcing word with n variables, each variable
must occur at least n times, implying the next corollary which provides a lower
bound on the length of the shortest periodicity forcing word for any alphabet
size.

Corollary 6. Let α /∈ DPCP, and let n := |var(α)|. Then |α| ≥ n2.

Since periodicity forcing words can be obtained as concatenations of words
in a particular type of periodicity forcing set (see Section 5), it is possible
to infer a corresponding upper bound from results by Holub, Kortelainen [8].
The authors provide a concise test set (containing at most 5n words, each of
length n) for the set Sn consisting of all permutations of the word x1 ·x2 · · ·xn.
Although it is stated in [8] that Sn itself is not periodicity forcing, it can be
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verified using results from [8] and [1] that the augmented set Sn
′ := Sn ∪ {x1 ·

x1 · x2 · x2 · · ·xn · xn} is. Given a test set Tn for Sn, a test set for Sn
′ is clearly

Tn∪{x1 ·x1 ·x2 ·x2 · · ·xn ·xn}. Thus, there exists a test set for Sn
′ containing at

most 5n words of length n and one word of length 2n. The periodicity forcing
word resulting from concatenating these words is at most 5n2 + 2n letters long.

Proposition 7. Let αn be a shortest pattern not in DPCP such that |var(α)| =
n. Then n2 ≤ |α| ≤ 5n2 + 2n.

The lower bounds are particularly useful when considering prime elements
of DPCP¬, which we define formally below.

Definition 8. Let α ∈ DPCP¬ be a pattern with |var(α)| ≥ 2. Then α is
said to be a prime element of DPCP¬ (or simply prime) if for every pattern
β ∈ DPCP¬ with |var(β)| > 1, and every morphism ϕ : var(β)∗ → var(α)∗,
ϕ(β) = α implies that ϕ is a renaming morphism.

Showing that a pattern satisfies Definition 8 is, in general, a highly non-
trivial task, since all morphisms must be accounted for with respect to every
pattern β ∈ DPCP¬. However, due to Proposition 5, it is possible to provide a
relatively simple example:

Proposition 9. The pattern α := 1 · 2 · 1 · 1 · 2 is a prime element of DPCP¬.

Proof. It is known from Culik II, Karhumäki [1] that α is periodicity forcing.
Assume that β ∈ DPCP¬ is a pattern, and that ϕ : var(β)∗ → var(α)∗ is a mor-
phism such that ϕ(β) = α. Due to the fact that |α|2 = 2, there exists a variable
x ∈ var(β) such that |β|x ≤ 2. Hence, by Proposition 5, |var(β)| = 2. Since
α is primitive, ϕ is non-erasing and thus |β| ≤ 5. Furthermore, all periodicity
forcing words of length at most 5 are given by Culik II, Karhumäki [1], so it
is possible to determine by inspection that no non-renaming morphism exists
which maps any of these patterns to α, and thus Definition 8 is satisfied. �

By the same argument, the patterns 1 ·2 ·1 ·2 ·2, 1 ·1 ·2 ·1 ·2 and 1 ·2 ·2 ·1 ·2
are also prime.

As mentioned earlier, while Proposition 9 settles the question of whether
every periodicity forcing word is the morphic image of another in a non-trivial
way, the negative answer induces a second question: what is the smallest sub-
set of DPCP¬ required to span the full set via the application of morphisms?
Clearly such a subset is strict (this follows from Corollary 4), and must be a
superset of the set of prime elements of DPCP¬.

In order to answer this question, it is necessary to determine whether there
exist infinite chains of patterns

· · · → βi → βi+1 → βi+2 → · · · → βi+n → · · ·

where each βi is the morphic image of βi−1. By Corollary 4, all such chains can
continue indefinitely in one direction. Theorem 10 below confirms that any such
chain must terminate in the other. Note that for convenience when proving the
theorem, the order of the indices of the patterns βi has been reversed.
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Theorem 10. There does not exist an infinite sequence of periodicity forcing
words S := β0, β1, β2, · · · such that for every i > 1,

• there exists a morphism ϕi satisfying βi−1 = ϕi(βi) and

• ϕi is not a renaming morphism.

Proof. Assume to the contrary that a such a sequence S exists which is infinite.
For any i, j ∈ N0 with i > j, let ψi, j := ϕj+1◦ϕj+2◦· · ·◦ϕi, so that ψi, j(βi) = βj .
We will need to use the following results from [13]: firstly that if two patterns
are morphically coincident, then they are either the same (up to renaming) or at
least one is morphically imprimitive and therefore not periodicity forcing, and
secondly that if a pattern is fixed by a non-trivial morphism (not the identity),
it is morphically imprimitive. We now prove some further preliminary claims.

Claim 1: No patterns βi, βj , i 6= j, in the sequence S are renamings of each
other.

Proof (Claim 1). Assume to the contrary that, for some i, j ∈ N0 with i > j,
βi is a renaming of βj . Let σ be the renaming morphism such that σ(βj) = βi.
If i = j + 1, then ϕi(βi) = βj . Thus, σ ◦ ϕi(βi) = βi. However, since ϕi

is not a renaming morphism, σ ◦ ϕi is not the identity, and βi is morphically
imprimitive. If i > j + 1, then ϕi(βi) = βi−1, and ψi−1,j(βi−1) = βj . This
implies σ ◦ ψi−1,j(βi−1) = βi. Thus, at least one of βi, βi−1 is morphically
imprimitive. �(Claim 1)

Our second claim provides a bound on the number of variables occurring in
the patterns βi.

Claim 2: There exists n ∈ N such that every pattern in S has at most n
variables.

Proof (Claim 2). Let n := |β0|. Let i ∈ N be arbitrary and consider the
morphism ψi,0 mapping βi to β0. In particular, consider the subset of var(βi)
of variables which are not erased by ψi,0. Clearly the subset contains at least
one variable x. Furthermore, |βi|x ≤ n. By Proposition 5, it follows that
|var(βi)| ≤ n. �(Claim 2)

Note that we can replace any βi with one of its renamings, and S will still satisfy
the criteria of the theorem. Thus, by assuming that the patterns of the sequence
are in canonical form, we can assume that there exists a finite alphabet ∆ such
that each βi ∈ ∆∗. We now give our final preliminary claim.

Claim 3: Any infinite subsequence of S also satisfies the conditions of the the-
orem.

Proof (Claim 3). Let S′ = βp0 , βp1 , βp2 , . . . be an infinite subsequence of S.
Then, for every pi > 1, there exists a morphism ϕ′pi

satisfying βpi−1
= ϕ′pi

(βpi
)

(simply take ϕ′ = ψpi, pi−1
). Furthermore, by Claim 1, each ϕ′pi

cannot be a
renaming morphism. Thus S′ satisfies the conditions of the theorem.�(Claim 3)
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Figure 1: Depiction of the first 5 patterns of the sequence Sk. Each pattern β
(k)
i has its

subpatterns δ
(k)
j listed below. Solid arrows indicate the morphisms which are explicitly given

in the definition of the sequence, while the dashed arrows represent the implicit non-erasing
morphisms from the subpatterns. Note that for clarity, the dotted arrows are omitted for all

but the leftmost occurrence of each δ
(k)
i .

We are now ready to prove the theorem, which we do by deriving from S an
infinite subsequence Sk which satisfies the conditions for the theorem whenever
S does. Thus, by showing Sk does not satisfy the conditions, we obtain a
contradiction and our assumption that S is infinite cannot hold.

Let δi,0 be the subpattern of βi whose variables are not erased by ψi,0.
Since each δi,0 contains only variables from a finite alphabet ∆, and must have
length at most |β0|, the set {δi,0 | i ∈ N} contains only finitely many different
patterns. In particular, at least one such pattern δi,0 must occur as a subpattern
of infinitely many different patterns βj . Let this pattern be δ0. By Claim 3, the
sequence S0 obtained by removing all patterns after β0 which do not have δ0 as
a subpattern still satisfies the criteria of the theorem. Note that S0 is also still

infinite. We will call the patterns of the modified sequence β
(0)
0 , β

(0)
1 , β

(0)
2 etc.,

and define the morphisms ϕ
(0)
i and ψ

(0)
i, j accordingly.

Similarly let δ
(0)
i,1 be the subpattern of β

(0)
i whose variables are not erased

by ψ
(0)
i,1 . By the same reasoning as above, there exists some infinitely occurring

subpattern δ
(0)
1 , so we can produce an infinite subsequence S1 of S0 containing

only the patterns β
(0)
0 , β

(0)
1 and β

(0)
i with δ

(0)
1 as a subpattern when i > 1.

By repeating this process k > 2|∆+1| times, we have an infinite sequence Sk

for which each pattern β
(k)
i , i > k contains δ

(k)
0 , δ

(k)
1 , ..., δ

(k)
k as subpatterns (see

Figure 1). Note that by definition, each β
(k)
i is a (non-erasing) morphic image

of δ
(k)
i .

However, β
(k)
i can only have finitely many (at most 2|∆| − 1) different, non-

empty subpatterns. Thus there exist p, q, r such that δ
(k)
p = δ

(k)
r for some

p > q > r. Note that δ
(k)
r is a sub-pattern of β

(k)
q , since q ≥ r+ 1. Furthermore,

there exists a morphism ψ
(k)
p,q from β

(k)
p to β

(k)
q . However, since δ

(k)
r (= δ

(k)
p ) is

a subpattern of β
(k)
q , there exists a morphism from β

(k)
q to β

(k)
p (see Figure 2).

This implies they are morphically coincident, and since, by Claim 1, they are
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β
(k)
q β

(k)
p β

(k)
p+1

δ
(k)
pδ

(k)
r (= δ

(k)
p )

ϕ
(k)
pψ

(k)
p,q

Figure 2: Diagram showing morphic coincidence of β
(k)
p and β

(k)
q . Morphisms are indicated

by arrows, where the solid arrows indicate which morphisms responsible for the coincidence
‘loop’.

not renamings of each other, at least one must be morphically imprimitive. This
contradicts the assumption that all patterns are periodicity forcing, and thus
completes the proof. �

Consequently every periodicity forcing word is either a prime element of
DPCP¬ or the morphic image of a prime element of DPCP¬, and the set DPCP¬

is spanned by one-sided infinite chains of the form

β0 → β1 → · · ·βn → · · ·

where each βi is the morphic image of βi−1 and β0 is prime.

Corollary 11. Let α be a periodicity forcing word. Then α is either prime, or
the morphic image of a prime periodicity forcing word.

Since a characterisation of morphisms which map periodicity forcing words
to periodicity forcing words is given in [3], Theorem 10 provides a strong insight
into the structure of DPCP¬.

By definition, it is not possible to use morphisms to generate prime period-
icity forcing words, so alternative methods must be used to find them. This is
is investigated in Section 5, where some additional insights are gained.

4. Patterns in DPCP¬ with Arbitrary Factors

Section 3 and [3] present constructions for periodicity forcing words over
any given alphabet. An immediate consequence is that we are also able to
construct, for any pattern β, a periodicity forcing set containing β. For example,
if β′ ∈ DPCP¬ and var(β) = var(β′), then {β, β′} is periodicity forcing. More
generally, the addition of a periodicity forcing word over an appropriate alphabet
is sufficient to turn any finite set of patterns into a periodicity forcing set. Thus
we have a high degree of freedom when producing sets which are periodicity
forcing, and therefore also morphisms satisfying Lemma 3. In particular, we are
able to construct, for any given pattern β, a morphism ϕ and pre-image α′ such
that the pattern α := ϕ(α′) is periodicity forcing and contains β as a factor,
prefix or suffix.
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In order to guarantee that ϕ satisfies the conditions given in Lemma 3,
the set {ϕ(x) | x ∈ var(α)} must not only be periodicity forcing, but also
commutativity forcing – i. e. every morphism σ such that the words σ(ϕ(x)),
x ∈ var(α) commute is periodic. A construction satisfying this condition is
given in the next proposition.

Proposition 12. Let α0 be a pattern, and let n := dlog2(|var(α0)|)e. There
exist patterns α1, α2, ..., αn with P(α0) = P(α1) = · · · = P(αn) such that
{α0, α1, · · · , αn} is commutativity forcing.

Proof. Consider the case that |var(α0)| = 2n. The case that this is not true
may easily be adapted. W. l. o. g. let α0 be in canonical form, and note that
this implies that α0 can be expressed as γ1 · γ2 · · · γm where m = |var(α0)|, and
γi := i · βi for some pattern βi ∈ {1, 2,..., i}∗. For i ≤ k, let αi be the pattern
obtained from α0 by ‘swapping’ adjacent factors consisting of 2i−1 consecutive
patterns γj , i.e.,

α1 = γ2 · γ1 · γ4 · γ3 · · · γm−1 · γm
α2 = γ3 · γ4 · γ1 · γ2 · · · γm−1 · γm · γm−3 · γm−2

...

αk = γm
2 +1 · γm

2 +2 · · · γm · γ1 · γ2 · · · γm
2

Note that P(α0) = P(α1) = · · · = P(αk), so for any morphism σ, we have that

|σ(α0)| = |σ(α1)| = · · · = |σ(αn)|.

Thus, the system of word equations

αiαj = αjαi

for all i, j with 0 ≤ i < j ≤ n is equivalent to the simpler system

α0 = α1 = · · · = αn.

It is now shown that all solutions to the above system of word equations are
periodic. Let σ : {1, 2, ..., n}∗ → {a, b}∗ be an arbitrary solution, and consider
the equality α0 = α1. This is equivalent to

σ(γ1) · σ(γ2) · · ·σ(γm) = σ(γ2) · σ(γ1) · · ·σ(γm) · σ(γm−1).

By comparing the prefix of length |σ(γ1)|+ |σ(γ2)| on either side, σ(γ1)σ(γ2) =
σ(γ2)σ(γ1). By Corollary 2, it follows that there exists a primitive word w1 ∈
{a, b}∗ such that σ(γ1), σ(γ2) ∈ {w1}∗. A similar argument may be made for
the next, and indeed every pair of patterns γj , γj+1 where j < m is odd. Thus,
for 1 ≤ i ≤ m

2 , there exists a primitive word wi ∈ {a, b}∗ such that σ(γ2i−1),
σ(γ2i) ∈ {wi}∗. Moreover, by the equation α1 = α2, it is possible to employ the
same argument to determine that for 1 ≤ i ≤ m

4 , the words w2i−1 and w2i are
equal. By continuing this argument for each successive equality αj = αj+1, it
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follows that w1 = w2 = · · · = wm
2

, so there exists a primitive word w ∈ {a, b}∗
such that σ(γi) ∈ {w}∗ for all 1 ≤ i ≤ m.

Since γ1 ∈ 1+, this implies σ(1) ∈ {w}∗. Assume that σ(1), σ(2), ...,
σ(r) ∈ {w}∗ for some 1 ≤ r < m. Then since σ(γr+1) ∈ {w}∗ and γr+1 ∈ {1,
2, ..., r + 1}+ and r + 1 ∈ var(γr+1), by Lemma 1, σ(r + 1) ∈ {w}∗. Thus, by
induction, σ(x) ∈ {w}∗ for all 1 ≤ x ≤ m, and σ is periodic. �

It is now possible to show that for any given pattern β, there exists a peri-
odicity forcing word with β as a factor.

Theorem 13. For any pattern β ∈ N+, there exists a pattern α /∈ DPCP such
that β is a factor/prefix/suffix of α.

Proof. It is known from [3] that there exists a pattern β1 /∈ DPCP such
that var(β) = var(β1). By Proposition 12, there exist patterns β2, β3, ...,
βn with P(β) = P(β2) = · · · = P(βn) such that the set {β, β2, · · · , βn} is
commutativity forcing. Since var(β) = var(βi) for 1 ≤ i ≤ n, it follows that
the augmented set {β, β1, β2, · · · , βn} is commutativity forcing. Furthermore,
since β1 is periodicity forcing, the set is also periodicity forcing. Thus the
morphism ϕ : {1, 2, ..., n + 1}∗ → var(β)∗ given by ϕ(i) := βi for 1 ≤ i ≤ n
and ϕ(n+ 1) := β satisfies both conditions of Lemma 3. From [3], there exists
a pattern α′ /∈ DPCP such that var(α′) = {1, 2, ..., n + 1}, and by Lemma 3,
α := ϕ(α′) /∈ DPCP. Since β = ϕ(n+ 1) and n+ 1 ∈ var(α′), β is a factor of α
as required. The case that β is a prefix (resp. suffix) of α can be shown simply
by using renamings of α′ for which n+ 1 occurs at as a prefix (resp. suffix). �

Example 14 demonstrates how ϕ, and therefore α may be constructed in the
case that β = 1 · 1 · 2 · 3.

Example 14. Let β := 1 · 1 · 2 · 3. Let β1 := 1 · 2 · 1 · 1 · 2 · 1 · 3 · 1 · 1 · 3 · 2 ·
1 · 1 · 2 · 1 · 1 · 2 · 1 · 1 · 2 · 1 · 2 · 1 · 1 · 2 · 1 · 3 · 1 · 1 · 3 · 2 · 1 · 1 · 2 · 1. By [3]
(Proposition 32), β1 /∈ DPCP. By Proposition 12, there exist patterns β2, β3

such that P(β) = P(β2) = P(β3), and {β, β2, β3} is a commutativity forcing
set. In particular, using the construction given in the proof of Proposition 12 we
obtain β2 := 2 ·3 ·1 ·1, and β3 := 3 ·1 ·1 ·2. It is easy to verify that these patterns
satisfy the condition, as any morphism σ will map β, β2 and β3 to words of the
same length. Thus,

σ(311)σ(2) = σ(2)σ(311)

= σ(11)σ(23) = σ(23)σ(11)

= σ(112)σ(3) = σ(3)σ(112)

implying that σ(1), σ(2) and σ(3) commute, and hence σ is periodic. It fol-
lows that the extended set {β1, β, β2, β3} is commutativity forcing. Hence the
morphism ϕ : {1, 2, 3, 4}∗ → {1, 2, 3}∗ given by ϕ(i) := βi for 1 ≤ i ≤ 3
and ϕ(4) := β satisfies Condition (ii) of Lemma 3. Since β1 ∈ DPCP¬, the
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set of patterns {β, β1, β2, β3} is also periodicity forcing and thus ϕ satisfies
Condition (ii) of the Lemma.

Let α′ be a pattern in DPCP¬ with var(α) = {1, 2, 3, 4}. Then by Lemma 3,
α := ϕ(α) ∈ DPCP¬. Moreover it is clear that β appears as a factor of α.

5. An Alternative Means of Finding Patterns not in DPCP

While Section 3 provides motivation for the further study of generating pe-
riodicity forcing words with morphisms, it also demonstrates the need for other
methods, since prime patterns can clearly not be obtained in this way. In [1],
Culik II and Karhumäki show that this may be done using periodicity forcing
sets. Indeed, patterns not in DPCP are essentially periodicity forcing sets with
a cardinality of 1. However, it is generally easier to construct periodicity forc-
ing sets with higher cardinalities, as more patterns result in a more restricted
class of pairs of morphisms which agree on every pattern. This is precisely the
advantage gained when using morphisms to generate periodicity forcing words.

It follows from their basic properties that the agreement of two morphisms on
a ratio-imprimitive pattern can be reduced to the agreement of those morphisms
on a set of two (or more) shorter patterns. In particular, if α = β1 · β2 · ... · βn,
where P(β1) = P(β2) = · · · = P(βn), then α /∈ DPCP if and only if {β1, β2, ...,
βn} is a periodicity forcing set.

Hence, given a periodicity forcing set of patterns with the same basic Parikh
vector, it is possible to construct periodicity forcing words by concatenating
all the patterns in the set. It is the focus of the present section to investigate
periodicity forcing sets which have this additional property and use them to
obtain periodicity forcing words which may be prime.

We will give constructions (Theorem 17 and Theorem 21) which allow new
periodicity forcing sets to be formed from existing ones. In particular, since
strong sufficient conditions are known for a set of patterns over two variables to
be periodicity forcing (see, e.g., Holub [7]), we will provide constructions which
increase the alphabet size. We take the following concise example from [1] which
will be used later on.

Lemma 15 (Culik II, Karhumäki [1]). The set {1·2, 1·1·2·2} is periodicity
forcing.

Note that by the reasoning above, we can infer that the patterns 1·2·1·1·2·2
and 1 · 1 · 2 · 2 · 1 · 2 are periodicity forcing.

Our constructions are based on the substitution of individual variables with
patterns. For example, consider the set {α · β, α ·α · β · β} for some patterns α,
β. We can immediately conclude for any σ, τ which agree on both patterns of
the set, that they are either identical over α and β (i.e. σ(α) = τ(α) and σ(β) =
τ(β)), or they are periodic over α and β (i.e., σ(α), τ(α), σ(β), τ(β) ∈ {w}∗ for
some word w). Since any morphic image of α (resp. β) is also a morphic image
of 1 (resp. 2), the existence of σ and τ not adhering to one of these cases would
be in direct contradiction to Lemma 15.
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Note however that the set {α · β, α · α · β · β} is not necessarily periodicity
forcing. For example, it may be the case that a morphism σ is periodic over α
and β, but not their individual variables. In general, additional patterns will be
required in order to achieve to turn the original set into a periodicity forcing one.
These additional patterns will be formed by splitting a pattern γ = γ1 · γ2 and
inserting some other pattern δ, obtaining γ1 · δ · γ2. Thus in the case described
above, we have that σ(γ1 · δ ·γ2) is of the form wk1 ·u ·wq ·v ·wk2 where uv = w.
Thus, we will use the following technical lemma when considering the agreement
of two such morphisms on γ1 · δ · γ2.

Lemma 16. Let w be a primitive word, and let u, u′, v, v′ be words such that
u,v 6= ε and u · v = u′ · v′ = w. Then for any k1, k2, k3, k4, q1, q2 ∈ N0 with
q1 6= 0 or q2 6= 0, the equation

wk1 · u · wq1 · v · wk2 = wk3 · u′ · wq2 · v′ · wk4 (1)

only has solutions in the case that k1 = k3, k2 = k4, q1 = q2, u = u′ and v = v′.

Proof. Firstly, suppose that q1 = 0. Then equality (1) can be reduced to
w(k1+k2+1)−(k3+k4) = u′ · wq2 · v′. In this case is well known and easily proved
that u, v and w commute and thus that the statement of the Lemma holds.
Hence we assume q1 6= 0. Symmetrically, we can also assume that q2 6= 0, and
by the same reasoning, that u′, v′ 6= ε.

W. l. o. g. let |u| ≥ |u′|. Then since u · v = u′ · v′, there exist words c, d, e
such that u = cd, v = e, u′ = c and v′ = de. Note that this implies w = cde.
Hence equality (1) can be expressed as

(cde)k1 · cd · (cde)q1 · e · (cde)k2 = (cde)k3 · c · (cde)q2 · de · (cde)k4 .

If d = ε, then unless k1 = k3, k2 = k4 and q1 = q2, the equation is non-trivial
and in two unknowns – namely c and e, so by Lemma 1, c and e commute and
w is imprimitive. Hence c 6= ε, d 6= ε and e 6= ε.

The equation can be divided into three distinct cases, according to the sign
of k1 − k3. In each case, it is shown that whenever the equation is non-trivial,
w must be imprimitive, which is a contradiction.

If k1 > k3, by comparing the prefix of each side of length (k3 + 1)|cde|+ |c|,

(cde)k3 · (cde) · c = (cde)k3 · c · (cde).

Therefore
(cde) · c = c · (cde).

so c and cde commute. Since c, d, e 6= ε, |w| > |c|. Thus, w is imprimitive,
which is a contradiction.

If k1 < k3, by comparing the prefix of length (k3 + q2)|cde|+ |c|+ |d|, there
exist n, m ∈ N0 such that

(cde)k1 · cd · (cde)q1−n · (ecd)m = (cde)k3 · c · (cde)q2 · d,
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and therefore

cd · (cde)q1−n · (ecd)m = (cde)k3−k1 · c · (cde)q2 · d,

where m ≤ k2, 0 ≤ n < q1 and m = 0 if n 6= 0. Notice that k3 − k1 ≥ 1. If
m = 0 then by comparing the suffix of length |d| + |e| of either side, d and e
commute. By Corollary 2, equality (1) becomes a non-trivial equation in two
unknowns, so c, d, e commute. If m ≥ 2, then by comparing the suffix of length
2|d|+ |c|+ |e|, decd = cded. Thus dec = cde and de, c commute. If m = 1, then

cd · (cde)q1 · ec = (cde)k3−k1 · c · (cde)q2 ;

so q1 ≥ q2 (since k3 − k1 ≥ 1). It follows that

(cde)q2 · ec = ec · (cde)q2 ,

and hence cde, ec commute. Since |cde| > |ec|, it follows that cder = ecs for
some r > s > 0. Thus if k1 < k3, w is not primitive, which is a contradiction.

If k1 = k3, then

d · (cde)q1 · e · (cde)k2 = (cde)q2 · de · (cde)k4 ,

so w is imprimitive, providing a contradiction as required. �

We now present our first of two constructions for producing new periodicity
forcing sets from existing ones. Note that both constructions can easily be used
to produce sets of patterns which share the same basic Parikh vector. Thus we
can use the following theorems to generate periodicity forcing words which are
not necessarily obtainable using the methods from [3]. The construction relies
on ‘splitting’ one variable y into two (so each occurrence of y becomes, e. g., y1y2)
in each pattern. New patterns are then introduced to force the periodicity of y1

and y2. Although the theorem appears very technical, it is relatively simple to
apply, as Example 18 shall demonstrate.

Theorem 17. Let ∆ := {x1, x2, ..., xn} be a set of variables, and let y /∈ ∆
be a variable. Let Π := {α1, α2, ..., αm} be a periodicity forcing set such
that

⋃m
i=1 var(αm) = ∆. Let ϕ : ∆∗ → (∆ ∪ {y})∗ be the morphism given by

ϕ(xn) := xn · y and ϕ(xi) := xi for 1 ≤ i < n. Let t ∈ N, and for 1 ≤ i ≤ t, let
βi := xn ·γi ·y for some pattern γi. Let βt+1 := x1 ·x1 ·x2 ·x2 · · ·xn ·xn ·y ·y. If

(i) γ1, γ2, ..., γt are patterns such that var(γ1) = var(γ2) = · · · = var(γt) =
∆\{xn}, and

(ii) the set {γ1, γ2, · · · , γt} is commutativity forcing,

then the set {ϕ(α1), ϕ(α2), ..., ϕ(αm), β1, β2, ..., βt+1} is periodicity forcing.

Proof. Let σ, τ : (∆∪{y})∗ → {a, b}∗ be two distinct morphisms which agree
on the set ϕ(α2), ..., ϕ(αm)}. Then since {α1, α2, ..., αm} is a periodicity
forcing set, we have one of the following cases:
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(1) σ(ϕ(xi)) = τ(ϕ(xi)) for 1 ≤ i ≤ n, or

(2) there exists a primitive word w ∈ {a,b}∗ such that σ(ϕ(xi)), τ(ϕ(xi)) ∈
{w}∗ for 1 ≤ i ≤ n.

Consider first Case 1. It follows from the definition of ϕ that σ(xn ·y) = τ(xn ·y),
and σ(xi) = τ(xi) for 1 ≤ i < n. Furthermore, σ(βt+1) = τ(βt+1). Then σ and
τ must agree on xn · xn · y · y. However, by Lemma 15 {xn · y, xn · xn · y · y} is
a periodicity forcing set, so there exists a w ∈ {a,b}∗ and k1, k2, k3, k4 ∈ N0

such that σ(xn) = wk1 , τ(xn) = wk3 , σ(y) = wk2 , τ(y) = wk4 . Due to the fact
that σ(βi) = τ(βi) for 1 ≤ i ≤ t,

wk1 · σ(γ1) · wk2 = wk3 · τ(γ1) · wk4

wk1 · σ(γ2) · wk2 = wk3 · τ(γ2) · wk4

...

wk1 · σ(γt) · wk2 = wk3 · τ(γt) · wk4 .

Note that since σ(ϕ(xi)) = τ(ϕ(xi)) for 1 ≤ i ≤ n and γi ∈ {x1, x2, ..., xn−1}∗
for 1 ≤ i ≤ t, it follows that σ(γi) = τ(γi) for 1 ≤ i ≤ t. Unless k1 = k3, and
k2 = k4 (in which case σ and τ are not distinct), each equation is non-trivial and
in two variables (w and σ(γi)), so by Lemma 1, σ(γi) ∈ {w}∗ for 1 ≤ i ≤ t. Thus
the words σ(γi) commute. However, by Condition (ii) of the proposition, this
implies that there exists a primitive word w′ ∈ {a,b}∗ such that σ(xi) ∈ {w′}∗
for 1 ≤ i < n. It follows from Lemma 1 that w′ = w, so σ is periodic. The same
holds for τ .

Consider Case 2. Then there exist k1, k2, ... kn, l1, l2, ... ln ∈ N0 and a
word w ∈ {a,b}+ such that σ(xi) = wki and τ(xi) = wli for 1 ≤ i < n, and
σ(xn · y) = wkn , τ(xn · y) = wln . If kn = ln = 0, then σ and τ are periodic.
Otherwise there exist u, v, u′, v′ and q1, q2, q3, q4 ∈ N0 such that σ(xn) = wq1 ·u,
σ(y) = v · wq2 , τ(xn) = wq3 · u′ and τ(y) = v′ · wq4 , with uv = u′v′ = w. Note
that if u = ε or v = ε, σ is periodic. Since σ(β1) = τ(β1),

σ(xn) · σ(γ1) · σ(y) = τ(xn) · τ(γ1) · τ(y),

so
wq1 · u · ws1 · v · wq2 = wq3 · u′ · ws2 · v′ · wq4

for some s1, s2 ∈ N0. If s1 = s2 = 0, then σ(xn · y) = τ(xn · y), and if
σ(βt+1) = τ(βt+1), σ(xn ·xn · y · y) = τ(xn ·xn · y · y), so by Lemma 15, σ and τ
must be periodic over {xn, y} (i.e., σ(x), σ(y), τ(x), τ(y) ∈ {z}∗ for some word
z ∈ {a, b}∗). Since they are empty over all other variables, they are periodic
over ∆. Otherwise, by Lemma 16, u, v, u′, v′ ∈ {w}∗, which again implies that
σ and τ are periodic.

Thus, there exist no two non-periodic morphisms which agree on the set
{ϕ(α1), ..., ϕ(αm), β1, β2, ..., βt+1}. Hence it is periodicity forcing as required.
�
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Example 18. Let ∆ := {1, 2}, y := 3, and Π := {1 · 2, 1 · 1 · 2 · 2}. Then
ϕ : {1, 2}∗ → {1, 2, 3}∗ is the morphism given by ϕ(1) = 1 and ϕ(2) = 2 ·3. Let
γ1 := 1, β1 := 2 ·1 ·3 and β2 := 1 ·1 ·2 ·2 ·3 ·3. Then by Theorem 17, we have that
the set Π′ := {1 ·2 ·3, 1 ·1 ·2 ·3 ·2 ·3, 2 ·1 ·3, 1 ·1 ·2 ·2 ·3 ·3} is periodicity forcing.
Since all the patterns have the same basic Parikh vector, we can conclude that,
for example, the pattern 1 · 2 · 3 · 1 · 1 · 2 · 3 · 2 · 3 · 2 · 1 · 3 · 1 · 1 · 2 · 2 · 3 · 3 is
periodicity forcing.

We can then use Π′ to again apply the theorem. This time we have y := 4
and ∆ := {1, 2, 3}. By Proposition 12, possible choices for γ1 and γ2 are
1 · 2 and 2 · 1. Thus, by applying the theorem, we can conclude that the set
Π′′ := {1 · 2 · 3 · 4, 1 · 1 · 2 · 3 · 4 · 2 · 3 · 4, 2 · 1 · 3 · 4, 1 · 1 · 2 · 2 · 3 · 4 · 3 · 4, 3 · 1 ·
2 · 4, 3 · 2 · 1 · 4, 1 · 1 · 2 · 2 · 3 · 3 · 4 · 4} is periodicity forcing, and again we can
concatenate the patterns to form a periodicity forcing word.

Our second method relies on inserting a new variable repeatedly into occur-
rences of a single pattern not in DPCP. It is relatively simple to establish a set
of patterns with the same basic Parikh vectors in this way. The following defi-
nition is given to provide a notation for inserting a new variable x at a specified
place in a pattern α.

Definition 19. Let α be a pattern and let x ∈ var(α) be a variable. Let prex(α)
be the prefix of α up to, and including the first occurrence of x. Let sufx(α) be
the suffix of α starting after (not including) the first occurrence of x.

Note that prex(α) ·sufx(α) = α, so the pattern prex(α) ·y ·sufx(α) is the pattern
obtained by inserting the variable y into the pattern α directly after the first
occurrence of x.

The following lemma produces periodicity forcing sets which will form the
basis of our construction. Although the patterns in these sets do not have the
same basic Parikh vectors, it is expanded in Theorem 21 to provide a construc-
tion with patterns that do, and thus can be used to produce periodicity forcing
words.

Lemma 20. Let α /∈ DPCP be a pattern, and let x /∈ var(α) be a variable. Let
βz denote the pattern prez(α) · x · sufz(α) for any z ∈ var(α). Then the set
{α, x} ∪ {βy | y ∈ var(α)} is periodicity forcing.

Proof. Let σ, τ : (var(α) ∪ {x})∗ → {a,b}∗ be distinct morphisms, let y
be arbitrary, and consider the equation σ(βy) = τ(βy). If σ(α) = τ(α), by
properties of DPCP, there must exist a word w ∈ {a,b}∗ such that σ(z) ∈ {w}∗
for every z ∈ var(α). Therefore, there exist p, q, r, s ∈ N0 such that σ(βy) =
τ(βy) if and only if

wp · σ(x) · wq = wr · τ(x) · ws.

Note that y can be chosen such that p 6= r whenever σ, τ are distinct, by taking
the leftmost variable such that σ(y) 6= τ(y). Furthermore, because σ(x) =
τ(x) = u for some word u ∈ {a,b}∗, by Lemma 1, u and w must commute, so σ
and τ must be periodic to agree on every pattern in {α, x} ∪ {βy | y ∈ var(α)}
as required. �
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Note that in the following theorem, the set {x, α} from Lemma 20 is replaced
with a set containing patterns with the same basic Parikh vector as the others.
More specifically, the new set is formed by substituting the variables 1 and 2 in
the example from Lemma 15 for x and α. Using the set from Lemma 15 is not
the only possibility, however. The construction is easily generalised to use any
periodicity forcing set of patterns with the appropriate basic Parikh vector.

Theorem 21. Let α /∈ DPCP and let x /∈ var(α). Then the set Π := {x · α,
x · x · α · α} ∪ {prey(α) · x · sufy(α) | y ∈ var(α)} is periodicity forcing.

Proof. Let σ, τ : (var(α)∪{x})∗ → {a,b}∗ be distinct morphisms which agree
on every pattern in Π. Then they agree on x ·α and x ·x ·α ·α, so by Lemma 15,
either

(1) σ(x) = τ(x) and σ(α) = τ(α), or

(2) σ(x), τ(x), σ(α), τ(α) ∈ {w}∗ for some primitive word w.

If Case 1 holds, then σ and τ agree on Π∪{α, x}. Since this is a superset of the
set {x, α}∪{prey(α)·x·sufy(α) | y ∈ var(α)}, which by Lemma 20 is periodicity
forcing, σ and τ are periodic. Consider Case 2 and assume to the contrary that
σ is non-periodic. Then there exists a y ∈ var(α) such that σ(y) /∈ {w}∗. Let y
be the first such variable to occur in α, and consider the equation

σ(prey(α) · x · sufy(α)) = τ(prey(α) · x · sufy(α)).

Clearly, σ(prey(α)) = wk1 · u for some word u /∈ {w}∗ and k1 ∈ N0. It follows

that σ(sufy(α)) = v · wk2 for some word v /∈ {w}∗ and k2 ∈ N0 with u · v =
w. Furthermore, there exist words u′, v′ such that τ(prey(α)) = wk3 · u′ and

τ(sufy(α)) = v′ ·wk4 for some k3, k4 ∈ N0 with u′ · v′ = w. Let σ(x) = wq1 and
τ(x) = wq2 for some numbers q1, q2. Then

wk1 · u · wq1 · v · wk2 = wk3 · u′ · wq2 · v′ · wk4 .

Note that if both q1 and q2 are 0, then σ(x) = τ(x) = ε, meaning σ(α) = τ(α);
so σ must be periodic, which is a contradiction. Thus it is assumed that q1 > 0
or q2 > 0, and by Lemma 16, k1 = k3, k2 = k4, q1 = q2, u = u′, and v = v′.
Therefore σ and τ are not distinct, which is a contradiction. A symmetrical
argument can be made for when τ is non-periodic. Thus σ and τ must be
periodic to agree on every element in Π, so Π is a periodicity forcing set. �

By applying Theorem 21 to α := 1 · 2 · 1 · 1 · 2 and x := 3, and concatenating
the patterns in the resulting set, we obtain, for example, the periodicity forcing
word

3 · 1 · 2 · 1 · 1 · 2 · 3 · 3 · 1 · 2 · 1 · 1 · 2 · 1 · 2 · 1 · 1 · 2 · 1 · 3 · 2 · 1 · 1 · 2 · 1 · 2 · 3 · 1 · 1 · 2,

which appears to be a good candidate for being prime. We can also conclude
the following from Theorem 21:
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Proposition 22. Let β = αk for some pattern α and number k ≥ |var(α)|+ 3.
Then β is not a prime element of DPCP¬.

Proof. Let α be a pattern and let x /∈ var(α). By Theorem 21, the set Π :=
{x · α, x · x · α · α} ∪ {prey(α) · x · sufy(α) | y ∈ var(α)} is periodicity forcing.
Furthermore, every pattern in Π has the same basic Parikh vector. Thus any
concatenation of patterns in Π such that every pattern is included at least once
is not in DPCP. Let β = γ1·γ2·...·γk be such a pattern with γi ∈ Π for 1 ≤ i ≤ k.
Notice that k ≥ |Π|, and |Π| = 3 + |var(α)|. Let ϕ : (var(α) ∪ {x})∗ → var(α)∗

be the morphism given by ϕ(x) := ε and ϕ(y) := y for every y ∈ var(α). Clearly
ϕ(γi) = α for 1 ≤ i ≤ k, so ϕ(β) = αk, and β = αk is not prime as required. �

This is an interesting result since the properties associated with the Dual
PCP are, due to the nature of morphisms, generally consistent for repetitions
of the same word. It can also be interpreted that, as a result of the proposition,
the majority of periodicity forcing words are not prime.

6. Conclusion

In a recent paper [3], we began an analysis of the Dual PCP in the context
of larger alphabets, complementing the existing research which has so far been
focused on the better-understood binary case. In the present paper, we have
continued this analysis by focusing specifically on those words which do not
satisfy the Dual PCP.

In Section 3 we have introduced a prime subset of DPCP¬, allowing the set
to be described as chains of morphic images. We have shown that this subset
is non-empty, and thus that DPCP¬ can be exactly generated by the set of
prime periodicity forcing words. In Section 4, we have given a construction for
periodicity forcing words containing any given factor/prefix/suffix. This not
only produces a rich class of new examples, but demonstrates a previously un-
known level of generality within the seemingly very restrictive set. In Section 5,
motivated by the study of the prime periodicity forcing words introduced ear-
lier, we have examined alternative methods for generating periodicity forcing
words. The results give examples of periodicity forcing words which contrast
those known so far, and provide further insights into the prime words considered
earlier in the paper. As a by-product of results from this paper and existing
literature, it has been possible to give tight bounds on the length of the shortest
periodicity forcing word over a given alphabet.
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