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Abstract 

Mechanical stimulation, in combination with biochemical factors, is likely to be essential to the 

appropriate function of stem cells and the development of tissue engineered constructs for orthopaedic 

and other uses. A multi-axial bioreactor was designed and built by Bose ElectroForce to simulate 

physiologically relevant loading conditions of the intervertebral disc (IVD), including axial 

compression, hydrostatic pressure and perfusion flow to multiple constructs under the control of a 

software program. This research optimises the design and configuration of the perfusion system of the 

bioreactor and presents results of preliminary experimental work on the combined effects of axial 

compression and perfusion on the viability of mesenchymal stem cells encapsulated in alginate 

hydrogels and the ability of the cells to produce extracellular matrix (ECM).  

 

The results of this thesis illustrated the power of a design of experiments (DOE) approach as a 

troubleshooting quality tool. With a modest amount of effort, we have gained a better understanding 

of the perfusion process of the tri-axial bioreactor, improved operational procedures and reduced 

variation in the process. Furthermore, removing unnecessary tubing lengths, equipment and fittings 

has made cost savings. The steady flow energy equation (SFEE) was used to develop a numerical 

analysis framework that provides an insight into the balance between velocity, elevation and friction 

in the flow system. The pressure predictions agreed well with experimental data, thus validating the 

SFEE for fluid analysis in the bioreactor system. The numerical predictions can be used to estimate 

the pressures around the three-dimensional constructs with a given arrangement of the tubing and 

components of the bioreactor.  

 

The system can potentially support long-term cultures of cell-seeded constructs in controlled 

environmental conditions found in vivo to study the mechanobiology of nucleus pulposus tissue 

engineering and the aetiology of IVD degeneration. However, dynamic compression and perfusion 

with associated hydrostatic pressurization of culture medium resulted in significant loss of cell 

viability compared to the unstimulated controls. Due to a large number of factors affecting cell 

behaviour in the tri-axial bioreactor system, it is difficult to identify the exact parameters influencing 

the observed cell response. A strategy that could help to distinguish the effects of mechanical stimuli 

and specific physiochemical factors should combine experiments with mathematical modelling 

approaches, and use the sensing incorporated in the bioreactor design and process-control systems to 

monitor and control specific culture parameters. Optimisation of the cell passage and cell seeding 

density were identified as key areas to improve the production of GAG in future studies; since the 

production of ECM was not observed in both static and dynamic cultures. Further studies could also 

attempt to use other hydrogel scaffolds, such as agarose, which has been widely used in cartilage 

tissue engineering studies and hyaluronic acid - a component of the nucleus pulposus ECM. 
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G'          Storage modulus 

G''         Loss modulus 

|G*|                       Complex shear modulus  

GAG                     Glycosaminoglycan 

GDL                     D-glucono-d-lactone 

HMSCs                Human mesenchymal stem cells 

HP          Hydrostatic pressure 

I.D          Inner diameter of tubing 
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IVD                      Intervertebral disc 

L          Length of a flow channel  

LVER                   Linear viscoelastic region 

LBP                      Low back pain  

MMPs         Matrix Metalloprotenaises 

MSCs                   Mesenchymal stem cells 

Na
+             

Sodium 

NP                        Nucleus pulposus 

PBS           Phosphate buffered saline 

pCO2             Dissolved carbondioxide in a liquid 

P           Static pressure of a fluid 

Patm                 Atmospheric pressure 

PL                 Pressure loss due to frictional forces between 2 points along a streamline 

pO2            Dissolved oxygen in a liquid 

Q           Volumetric flow rate 

R         Platen hole diameter 

Re         Reynolds number 

RGD         Arginine-glycine-aspartic acid 

SFEE                   Steady flow energy equation 

sGAG                  Sulphated glycosaminoglycan 

T       Pitch between the centres of the holes in a platen 

TE    Tissue Engineering 

TGF-β    Transforming growth factor-β 

TIMPs Tissue inhibitors of MMPs 

V                          Fluid Velocity in a tubing or fluid velocity/hole in a platen  

Vo                         Superficial (or empty tube) fluid velocity in a platen 
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Chapter 1 Introduction 

 

Low back pain (LBP) represents a major health problem that affects about 70% of the population at 

some point during their life (Mwale, Roughley & Antoniou 2004). It imposes significant economic 

losses in terms of direct costs for treatment and indirect costs due to the number of work days lost, 

disability benefits and insurance (Maniadakis, Gray 2000, Urban, Roberts 2003). The main cause of 

LBP is associated with the degenerative and mechanical changes in the intervertebral disc (IVD), 

although problems in any of the structures and tissues of the lower back can result in pain. It is often 

difficult for physicians to pinpoint the exact cause of pain due to the complex structure of the human 

spine (Cheung, Al Ghazi 2008). Current treatment strategies include non-surgical approaches such as 

exercises, weight reduction, electrical stimulation acupuncture and medication and surgical 

interventions (e.g. spinal fusion and disc arthroplasty) to remove the damaged discs (O'Halloran, 

Pandit 2007, Slade, Keating 2007). There is a growing requirement for a new way to treat the disease, 

as current therapies do not restore the functional properties of the native disc.  

 

Tissue engineering (TE) is a promising therapeutic approach, which can offer many advantages in the 

treatment of disc degeneration (O'Halloran, Pandit 2007, Brisby et al. 2004, Richardson et al. 2007). 

Three components are required to reconstruct a new tissue via TE: cells, which are harvested from a 

donor or a patient’s own tissue; scaffolds to which cells can be attached and cultured; and biochemical 

and mechanical signals to promote cell adhesion, proliferation, migration and differentiation 

(O'Halloran, Pandit 2007, Langer 2000). Most IVD TE studies in literature are steered towards the 

regeneration of the central nucleus pulposus (NP) because disc degeneration is believed to start in the 

region as the NP loses its water-retention ability leading to disc height reduction and damage to the 

adjacent spinal structures with the progression of degeneration in time (Yang, Li 2009).  

 

The application of mechanical stimulation has been identified as a critical component in tissue 

engineering of nucleus pulposus. In a healthy NP tissue, compressive loading of the extracellular 

matrix exposes the cells to osmotic pressure, hydrostatic pressure, stress, strain, and fluid flow. The 

natural tissue responds to the mechanical loads through changes in cell metabolism, which is 

associated with changes at the protein level and ultimately structural changes (Iatridis et al. 2006). 

This has motivated the development of bioreactor systems to regulate cell growth and differentiation 

in vitro by exposing the tissue engineered constructs to physiologically relevant stimuli. Without the 

appropriate biomechanical cues, the newly formed tissue engineered would lack the necessary 

structural organisation for sufficient load-bearing capacity. The development of such technologies not 

only provide tissue engineering solutions, but also provide important in vitro model systems for the 

improvement of understanding of the aetiology of disc degeneration. However, most of the current 

studies presented in the literature review (section 2.3.4) are limited to the application of isolated 
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loading conditions, which do not accurately represent the true in vivo situation, where a number of 

forces are acting simultaneously. Additionally, many of the bioreactor systems used do not allow for 

the real-time monitoring of cell growth. Monitoring of growth during culture is necessary to reduce 

batch-to-batch variation and to ensure that the harvest time is optimal for each batch.   

 

This thesis will focus on the optimisation and validation of a tri-axial bioreactor that simultaneously 

applies uniaxial compression, perfusion flow and hydrostatic pressure to four three-dimensional 

constructs to more closely mimic the in vivo loading environment of NP. Each construct has its own 

load cell as well as two pressure transducers, one upstream (fluid flow inlet) and one downstream 

(fluid flow outlet) of each sample while an additional pressure transducer measures hydrostatic 

pressure in the sample chamber. Cellular metabolic activity is monitored non-invasively using pH, 

CO2 and O2 sensors in the fluid flow perfusion loop to monitor tissue growth real-time. This thesis 

will also investigate the suitability of alginate as a medium for maintaining cell viability/proliferation 

and for transmitting loads and nutrients to encapsulated cells cultured in the tri-axial bioreactor as a 

method for long-term physical stimulation of ECM production by the encapsulated cells. Chapter 2 

evaluates available literature on IVD degeneration and NP tissue engineering – Information gathered 

will inform our experimental design process with the appropriate biochemical and mechanical 

conditions to induce a normal cellular response in the synthesis and breakdown of extracellular 

matrix. The experimental work is divided into five chapters, as described below. 

 

Optimisation of the perfusion system of the tri-axial bioreactor: Although the tri-axial bioreactor 

can apply simultaneous loads and also provide real-time characterisation, it’s has not been without 

limitations and difficulties. Proper functionality of the perfusion system has been limited by non-

uniformity in the fluid flow environment and the inability to regulate pressures at low flow rates. A 

design of experiments methodology will be used to troubleshoot the perfusion issues and make 

operational or design modifications accordingly to reduce variability in the flow environment and 

improve the pressure control process.  

 

Flow analysis using the steady flow energy equation: The steady flow energy equation (SFEE) will 

be used to analyse the behaviour of fluid flow in different parts of the bioreactor in order to provide an 

insight into the balance between the elevation of a fluid, its velocity and the frictional losses in a 

system with a given tubing configuration and arrangement of components. The SFEE can be used as a 

predictive tool to estimate pressures and design a rig so that the pressures are roughly known before 

putting everything together. The numerical predictions will be combined with experimental studies to 

determine the validity of the SFEE. 
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Optimisation of alginate rheological properties: This chapter presents a detailed design of 

experiments study of the influence of different alginate concentrations and calcium crosslinking 

densities on the viscoelastic properties of alginate hydrogels. The aim of the study is to optimise the 

concentration of alginate and calcium crosslinking to achieve the viscoelastic response equivalent to 

the native NP tissue at a frequency of 1 Hz. This is important to ensure that the hydrogels have 

sufficient mechanical stiffness to withstand physiologically relevant mechanical perturbations in the 

tri-axial bioreactor.   

 

Calcium concentration effects of the culture medium: This study aims to determine the optimal 

calcium concentration of the culture medium for maintaining cell viability, and dimensional stability 

of the alginate constructs before further studies of applying mechanical stimulus in the tri-axial 

bioreactor. In standard medium conditions, calcium crosslinked alginate constructs lose structural 

integrity because of cellular uptake or due to the presence of monovalent ions such as Na
+
 in culture 

medium that compete with calcium ions for junction sites of guluronic residues causing the gels to 

weaken (LeRoux, Guilak & Setton 1999). Adjusting the calcium concentration of the culture medium 

can control the dimensions and mechanical properties of calcium alginate gels. However, high Ca
2+

 

concentration in the culture medium can increase cell death and also causes the gels to shrink. 

Therefore, it is important to regulate the Ca
2+

 level to protect the engineered tissue against overload or 

deficiency.  

 

Effects of mechanical stimulation: The primary aim of this chapter is to investigate the combined 

effects of dynamic compression and perfusion with associated hydrostatic pressurisation of the culture 

medium on hMSCs, seeded in 3D alginate hydrogels. Conventionally, bioreactors used for applying 

NP mechanostimulus use a single isolated loading parameter, which is advantageous due to the 

complex nature of NP biomechanics, but a strong limitation as well, since the simultaneous 

application of different stimuli could result in improved mechanical and biochemical properties of the 

engineered tissue. This experiment will also preliminarily attempt to elucidate the involvement of the 

chemical parameters of the culture medium in influencing the biological response.  In addition, results 

of a preliminary study, in which nonporous platens were used to apply dynamic compression will be 

presented and compared with those obtained under simultaneous compression and perfusion. 
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Chapter 2 Literature Review 

 

2.0. Introduction 
 

This chapter reviews the scientific issues associated with the development of an early stage tissue 

engineered construct for the treatment of disc degeneration. The characteristics of a healthy IVD and 

the aetiology of disc degeneration are described in sections 2.1 and 2.2. The primary focus of the two 

sections is the chemical and mechanical environment in a healthy and degenerated nucleus pulposus 

tissue, although some attention will be paid to the annulus fibrosus (AF) region and the spine in 

general.  

 

Section 2.3 discusses the multidisciplinary field of NP tissue engineering therapy for early disc 

degeneration, describing the possible types of cells, scaffolds and bioreactors, which can be 

incorporated into the treatment process. The potential cellular candidates are described in section 

2.3.1. The scaffold design considerations, using the NP ECM properties as design criteria are 

reviewed in section 2.3.2. The structural properties of the chosen scaffold for use in this research are 

reviewed in section 2.3.3. The use of mechanical stimulation in the presence or absence of 

biochemical factors to dictate cell function, as well as on the bioreactor systems that have been 

developed to investigate this phenomenon are reviewed in 2.3.4.  
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2.1. Characteristics of a healthy intervertebral disc 

 

2.1.1.   Disc anatomy 
 

The human spine is divided into 4 major zones namely cervical vertebrae (C1 to C7), thoracic 

vertebrae (T1 to T12), lumbar vertebrae (L1 to L5) and five fused sacral vertebrae (S1 to S5). It is 

composed of 24 functional spinal units (FSUs) or motion segments, each consisting of 2 adjacent 

vertebrae separated by an intervertebral disc (IVD) (White, Punjabi 1990). IVDs are soft fibro-

cartilaginous cushions that serve as shock absorbers to allow bending and twisting of the spine 

(White, Punjabi 1990).  IVDs are thicker in the cervical and lumbar parts of the vertebral column and 

constitute 20-33% of the total column height. They have no direct blood supply and rely on blood 

vessels outside the organ such as ligaments and the vertebrae to supply them with nutrients such as 

oxygen and glucose and remove waste products (White, Punjabi 1990, Panagiotacopulos et al. 1987, 

Grunhagen et al. 2006). The disc along with the vertebrae, ligaments, and muscles is responsible for 

carrying compressive loading to which the spine is subjected. The disc is regarded as the most 

important component as it absorbs the load and distributes the forces applied to the vertebral column. 

Lumbar discs carry the largest amount of body weight and are frequently involved in back pain 

(White, Punjabi 1990, Hirsch 1963, farfan 1973, Jensen 1980). The disc is composed of three 

anatomic zones that permit its shock-absorbing and force-distributing ability; the soft gel-like nucleus 

pulposus (NP) at the centre of the disc, a fibrous ring of annulus fibrosus (AF) encapsulating the 

nucleus and the cartilaginous endplates (CEP) separating the IVD from adjacent vertebrae (Jensen 

1980) (figure 2.1). The NP resembles articular cartilage in its biochemistry, but has different 

morphologic, phenotypic and metabolic characteristics (Mwale, Roughley & Antoniou 2004). 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Components of the intervertebral disc, adapted from reference (Jensen 1980) 

 

 

Nucleus pulposus 

(NP) 

Annulus fibrosus 

(AF) 

Cartilaginous 

endplate (CEP) 
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2.1.1.1. Nucleus Pulposus 

 

Nucleus pulposus (NP) is the central part of the disc composed of a very loose and translucent 

network of collagen fibres embedded in a mucoprotein gel containing various mucopolysaccharides 

known as proteoglycans (Jensen 1980). The hydrophilic polysaccharides give NP a water-absorbing 

ability causing it to swell. The water content ranges from 65-90%, which is highest at birth and 

decreases with age (Nixon 1986). Notochordal cells predominate in the very young nucleus pulposus 

and are gradually replaced during childhood by rounded cells resembling articular chondrocytes. 

 

 

2.1.1.2. Annulus Fibrosus 

 

Annulus fibrosus (AF) is fibrocartilaginous structure that forms the outer boundary of the disc. It is 

composed of collagen fibres in concentric laminated bands. The fibres run parallel to each other 

within each lamellae, but opposite to those in adjacent lamellae (Hickey, Hukins 1980). The fibres are 

directed at about 25º to 45º (approx 30º) to the vertebral endplate and this angle diminishes with age 

(Ambard, Cherblanc 2009). The collagen fibres resist tensile stresses preventing tears from spreading 

across ligaments. The fibres also provide reinforcement during compression, torsion and bending 

(Hickey, Hukins 1981).  

 

 

2.1.1.3. Cartilaginous Endplates 

 

This is a hyaline cartilaginous structure that separates the nucleus and annulus from the vertebrae. 

CEPs surround the NP and inner one third of the AF inferiorly and superiorly. The endplates are 

porous and allow for the diffusion of metabolites between the vertebral body and the disc (Jensen 

1980). Endplate permeability of the disc decreases with age, thereby decreasing the transport of 

nutrients into the disc and could lead to accumulation of wastes, such as lactate. A reduction in the 

supply of nutrients is often suggested to be a major cause of disc degeneration 

(http://www.ilo.org/safework_bookshelf/english?content&nd=857170059).  

 

 

 

 

 

 

 

 

http://www.ilo.org/safework_bookshelf/english?content&nd=857170059
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2.1.2.   IVD Extracellular Matrix 

 

The disc matrix is composed of a complex framework of macromolecules that attract and hold water. 

The major classes of macromolecules are proteoglycans and collagens (Yoon, Patel 2006). 

Proteoglycans absorb water giving the tissue resilience, viscoelasticity, and resistance to compression 

while collagens provide a strong three-dimensional network to support the cells and confine the 

proteoglycans within (Buckwalter, Einhorn & Simon 2000, Hukins 1988). An outline of the 

collagenous and non-collagenous proteins found in a healthy disc is presented in table 2.1. The 

functions of proteoglycans are explained in section 2.1.2.1, collagens in section 2.1.2.2 and disc 

proteinases in sections 2.2 and 2.3.2.1. 

 

 

2.1.2.1. Proteoglycans 

 

Proteoglycans are the major components of the disc providing resilience under compressive loading. 

The major proteoglycan of the disc is aggrecan. Other proteoglycans found in the disc are versican, 

biglycan, decorin, fibromodulin, and lumican. The majority of the proteoglycan content is found 

within the NP and it has been shown that the macromolecule comprises 50% of the NP dry weight in 

children (Buckwalter, Einhorn & Simon 2000). The proteoglycan molecular structure consists of a 

core protein (10%) with one or more covalently attached glycosaminoglycan (GAG) chains (90%). 

These GAG chains are large carbohydrate molecules that are negatively charged under physiological 

conditions, because of the occurrence of sulphate and uronic acid groups (Tow, Hsu & Wang 2007). 

The most common GAGs in discs are chondroitin sulphate and keratan sulphate, with the former 

predominating in the normal disc and the latter in the degenerated disc (Buckwalter, Einhorn & Simon 

2000, Lipson, Muir 1981).  A high fixed charge density on the sulphated GAGs (sGAGs) generates 

considerable osmotic pressure causing the NP to swell due to the uptake of water (Watanabe, Yamada 

& Kimata 1998). The movement of water may also be accompanied by electrokinetic effects such as 

streamlining potentials and currents as various ions are moved through the matrix.  The structural 

viscoelastic behaviour of the IVD results from the frictional interactions between the liquid and solid 

phases of the matrix when a load is applied to the tissue (Campana et al. 2011). 

 

GAGs initially synthesized by cells are free to diffuse within the cell microenvironment and are 

referred to as ‘unbound GAG’. These monomers then form aggregates with hyaluronic acid and link 

proteins, which are also secreted independently by the cells. The proteoglycan aggregates bind to 

collagens, growth factors and other matrix components and are associated with control of the 

assembly of the collagen network (Hayes, Benjamin & Ralphs 2001, Adams, Muir 1976). 
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Proteoglycan content and its ability to aggregate decreases with disc degeneration due to reduced 

proteoglycan synthesis or increased degradation (Adams, Muir 1976).  

 

 

2.1.2.2. Collagens 

 

The collagen network is largely responsible for the tensile strength of the disc and combined with the 

action of the proteoglycan aggregates, the network allows the disc to wedge extensively, thus 

permitting bending and twisting of the spine (Hukins 1988). Additionally, the fibres provide a tough 

network, which supports the cells and confines the proteoglycans fragments entrapped within (Hukins 

1988, Bayliss, Johnstone 1992).  

 

Several different types of collagens that form collagen fibril bundles (fibrillar) and short-chain 

collagens that do not form large fibril bundles (non-fibrillar) have been found in the disc. At least 

eight different types have been identified, including type I, II, III, V, VI, IX, X and XI (Nerlich et al. 

1998, Adams, Eyre & Muir 1977). The collagen content of the disc increases from the centre to the 

outer boundary of the disc; the collagenous proteins constitute 70% of the dry weight of the AF and 

20% of the NP dry weight (Buckwalter, Einhorn & Simon 2000). The nucleus is rich in type II 

collagen, which forms a fibrillar network that serves as a scaffold for the proteoglycans. Type I 

collagen constitutes the major part of the outer AF with inverse radial concentration gradients of type 

I and type II collagen in the inner AF. When Type II collagen production decreases, proteoglycan 

breakdown increases. Type I collagen content increases with aging and degeneration (Yoon, Patel 

2006, Eyre, Muir 1977, Eyre, Muir 1976).   

 

Table 2.1: Intervertebral disc matrix components, adapted from reference (Yoon, Patel 2006) 

 

 

 

 

 

 

 

 

 

Proteoglycans Collagens Disc proteinases 

Aggrecan –most abundant Fibril-forming 

collagens 

Matrix Metalloproteinases 

(MMPs) 

Versican Type I, 0-80% Collagenases (MMP 1, 8, and 13) 

Decorin Type II, 0-80%  

Biglycan Type III, <5% Gelatinases (MMP 2 and 9) 

Fibromodulin Type V, 1-2%  

Lumican Type XI, 1-2% Stromelysin (MMP3) 

Perlecan Short helix collagens  

 Type VI, 5-20% ADAMS  

 Type IX, 1-2%  

 Type XII, <1%  
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2.1.3. Function of the intervertebral disc 
 

The disc’s ability to withstand axial loads is mostly attributable to the considerable role of fluid 

pressurisation in NP mechanics (Johannessen, Elliott 2005). When a compressive load is applied to a 

healthy disc, a hydrostatic pressure develops in the NP. Because the fluid in the ECM of NP is 

incompressible, the pressure pushes the surrounding structures outwards away from the centre of the 

tissue (White, Punjabi 1990, Kulak, Belytschko & Schultz 1976) (figure 2.2). This produces tensile 

stresses in the inner and outer lamellae of the annulus. The stresses are largest along the fibres of the 

outer annulus and in the tangential periphery direction. However, because of the parallel orientation of 

the fibres in the direction of the applied load, they are able to absorb the tensile stresses (White, 

Punjabi 1990). This arrangement allows for the elongation of the fibres before the tensile stresses are 

experienced.   

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2.2: Disc under compressive loading, adapted from reference (White, Punjabi 1990) 

 

During daily activities, axial compression due to the weight of the body is often combined with 

external loads, e.g. lifting, where both forces are applied to the spine under bending postures 

(Natarajan et al. 2008). The NP tissue is typically exposed to intradiscal pressures in the physiological 

range of 0.2-1 MPa, with stress as high as 2.3 MPa reported when lifting a 20 kg load, with a round 

flexed back (Wilke et al. 1999). These pressures were measured by implanting a pressure transducer 

in the NP tissue of a healthy L4–L5 disc of a male volunteer 45-years old and weighing 70 kg. 

Internal deformations and strains in the disc have been measured noninvasively within intact human 

lumbar motion segments using magnetic resonance imaging (MRI). When an axial compressive load 

of 1000 N corresponding to 0.74 MPa compressive stress representing physiologic stresses 

encountered while sitting or walking was applied, the average disc height loss is ~ 0.4-0.9 mm, which 

corresponds to roughly 4.5% compressive strain (O'Connell et al. 2007, O'Connell, Vresilovic & 
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Elliott 2011). The average outward displacement of the inner AF during the loading is 0.16 mm, 

which is less than the displacement in the outer AF 0.36 mm (O'Connell et al. 2007).           

 

 

2.1.3.1. Mechanical properties of nucleus pulposus 

 

It is important that the mechanical environment of the native tissue is well characterized to provide 

baseline information to guide the development of tissue engineering strategies. Various models have 

been employed to study the mechanical properties of NP and IVD, including full disc organ structures 

and motion segments, each with their own limitations (Nerurkar, Elliott & Mauck 2010, An, Masuda 

2006). Disc organ cultures are more easily translated to human IVD and facilitate investigation into 

both biologic and mechanical dependent variables while the disc is largely intact (Korecki, MacLean 

& Iatridis 2008). A summary of the mechanical properties of native NP available in literature is 

presented in table 2.2 & 2.3. The variability in the methods used and shortcomings presented by each 

of the models makes it difficult to pinpoint concrete data. 

 

Compression has been the most commonly used test method to characterise the mechanical properties 

of NP.  This is probably because the disc is the major compression-carrying component of the spine. 

Testing modalities used include local indentation (Umehara et al. 1996), confined compression 

(Johannessen, Elliott 2005, Perie, Korda & Iatridis 2005) and unconfined compression (Johannessen 

et al. 2004, Cloyd et al. 2007). In vivo, compression-induced fluid flow and lateral expansion of the 

NP tissue are restricted by the surrounding AF and cartilaginous end plates resulting in an increase in 

intradiscal pressure that is necessary to support axial spine loads (Nerurkar, Elliott & Mauck 2010). 

Confined compression more closely mimics the in vivo loading environment and is appealing for 

testing of nucleus tissue because it constrains the tissue and prevents alterations to the geometry 

during loading (Perie, Korda & Iatridis 2005). The increased compressive modulus or stiffness of the 

NP tissue in confined compression (see table 2.2) is attributed directly to the considerable role of fluid 

pressurization in NP mechanics, while the tissue is quite soft in unconfined compression and 

indentation. A confined compression experiment consists of an isometric swelling test followed by a 

stress-relaxation experiment, from which the isometric swelling pressure and hydraulic permeability 

can also be determined apart from the compressive modulus. The swelling pressure is the final 

equilibrium stress reached at the end of the swelling experiment performed by applying a small 

compressive strain followed by a hold period. Biphasic theory is used to determine the permeability of 

the tissue (Johannessen, Elliott 2005).  
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Table 2.2: Summary of compressive mechanical properties of native nucleus pulposus 

 

 

 

 

 

Species Method Compressive 

modulus 

(MPa) 

Poisson’s ratio Hydraulic 

permeability 

(x10
-16

m
4
N

-1
S

-1
) 

Swelling 

pressure (MPa) 

References 

Human  Confined compression 1.0 - 9.0  0.138  (Johannessen, Elliott 

2005) 

Bovine Confined compression 0.31  6.7 - (Perie, Korda & Iatridis 

2005) 

Human Unconfined compression 0.005 0.65 - - (Cloyd et al. 2007) 

Human Indentation 0.006   - - (Umehara et al. 1996) 

Sheep Unconfined compression 0.003 - - - (Johannessen et al. 

2004) 
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Torsion of the spine generates shear stresses about the transverse direction of the disc and 

perpendicular to the long axis of the spine (Nerurkar, Elliott & Mauck 2010). Because this is 

superimposed upon compressive stresses, NP torsional shear properties have been investigated under 

axial compression. In shear, the nucleus exhibits both fluid-like and solid-like properties with a rate-

dependent response (Iatridis et al. 1996). Therefore studies of torsional shear have focused on 

characterising the rheological properties of the tissue (Iatridis et al. 1997, Leahy, Hukins 2001). The 

inherent elasticity of the solid matrix is represented by the shear elastic (or storage) modulus (G') and 

the viscous properties of the fluid within the tissue by the shear viscous (or loss) modulus (G''). G' can 

be calculated from equation 1.1. It is defined as the amplitude ratio of the component of the stress (σ0) 

in phase with the strain to the strain amplitude (γ0). δ is the phase angle between stress and strain. It is 

also known as the loss angle. Likewise, G'', is the amplitude ratio of the component of the stress in 

quadrature with the strain to the strain amplitude and is given by equation 1.2. The complex shear 

modulus |G*|, which is a measure of the shear stiffness of a material under dynamic conditions can be 

calculated from equation 1.3. ω is the angular frequency. The combination of equations 1.1 and 1.2 

gives an expression for δ, equation 1.4 (Mezger 2002). The complex shear modulus |G*| is related to 

Young’s modulus (E) by equation 1.5, for isotropic materials subjected to low strains (Ferry 1970).  

 

G' = σ0 cos (δ) / γ0                                                                                            (1.1) 

G'' = σ0 sin (δ) / γ0                                                                                            (1.2) 

|G*| = √(𝐺′(𝜔)2 +  𝐺′′(𝜔)2)                                                                           (1.3) 

δ = tan
-1

(G''/ G')                                                                                                (1.4)  

E = 2G(1+v); where v is the poisson ratio.                                                      (1.5) 

 

 

Table 2.3: Summary of viscoelastic properties of nucleus pulposus tissue 

 

 

 

Species Rheometry Complex shear 

modulus (kPa) 

Loss angle 

(degrees) 

Reference 

Human Strain controlled 

(shear) 

7.4-19.8 23-30 (Iatridis et al. 1997) 

Bovine 

 

Compression  9-24 (Leahy, Hukins 

2001) 

Goat Stress controlled 

(shear) 

22 15.6 (Bron et al. 2009) 
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2.1.4.   Disc-cell response to mechanical loading 

 

The most commonly used animal model to investigate the effects of compressive loading on disc-cell 

metabolism in vivo is the rat-tail. Despite geometric differences, tail models are both biomechanically 

and metabolically similar to human lumbar discs. However, the exact magnitude and frequency of 

loading may differ in humans in order to achieve the same effects due to fundamental differences in 

the primary spinal units (Iatridis et al. 2006).  

 

Response of rat-tail disc cells to compressive loading depends on the loading magnitude, frequency, 

and duration. There is a threshold for frequency and magnitude where there is no effect of loading on 

the gene expression. This is approximately 0.2 MPa, regardless of frequency or around the load 

frequency of 0.2 Hz, regardless of magnitude (Ching et al. 2003, MacLean et al. 2004).  It has also 

been shown that loading at magnitudes of approximately 1 MPa and both increasing and decreasing 

the frequency between 0.01 and 1 Hz results in appreciable changes in anabolic gene response 

(Iatridis et al. 2006). Time duration of as little as 0.5 hours can stimulate an anabolic response from 

the rat-tail (Maclean et al. 2005). Cyclic loading at 1 MPa and 1 Hz for two hours results in 

predominately catabolic gene up-regulation (MacLean et al. 2004, MacLean et al. 2003). 

 

A few studies have investigated the effects of hydrostatic pressure (HP) on disc explants (Ishihara et 

al. 1996, Handa et al. 1997). These studies suggest that physiological pressure levels might act as 

anabolic factors on disc metabolism, whereas abnormal pressures, at higher pressures than the 

physiological levels may inhibit ECM protein synthesis. For example, proteoglycan synthesis was up-

regulated in the NP tissue of a human lumbar disc explant when 2.5 MPa magnitude of hydrostatic 

pressure was applied for 2 hours, whereas 7.5 MPa inhibited proteoglycan synthesis (Ishihara et al. 

1996). In another study, 0.3 MPa applied for 2 hours stimulated proteoglycan synthesis whereas 3MPa 

resulted in the synthesis of Matrix Metalloproteinases-3 in the NP of a human lumbar disc (Handa et 

al. 1997). These studies are limited by the application of static HP, which is not a true representation 

of the in vivo situation, where the disc is exposed to dynamic oscillatory hydrostatic loads, 

characterised by wide frequency spectrum and variable amplitude (Pope, Magnusson & Wilder 1998, 

Kasra et al. 2006, Kasra et al. 2003). 
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2.1.5.   Disc nutrition 
 

The intervertebral disc is an avascular tissue and depends mainly on diffusion of nutrients from blood 

vessels located in adjacent vertebral bodies, through the porous cartilaginous end plates (Urban, Holm 

& Maroudas 1978, Jackson, Gu 2009). However, the cells in the centre of the adult disc reside as far 

as 8 mm from the nearest blood supply and it is evident that it acquires low nutrition (Katz, Hargens 

& Garfin 1986, Bibby et al. 2001) including oxygen. As a result, they make use of Adenosine 

Triphosphate (ATP) from the process of glycolysis resulting in the production of lactic acid at a high 

rate. This accumulation of lactic acid reduces the pH in the tissue to acidic levels, which are 

detrimental to disc cell survival. In addition, the synthesis of ECM is inhibited when pH levels get 

lower than 6.1 and oxygen levels fall below 5% (Grunhagen et al. 2006). With age, the thickness of 

the end plates decrease and its hyaline cartilage structure becomes highly calcified inhibiting the 

transport of nutrient to the IVD (Kandel, Roberts & Urban 2008).  

 

 

2.1.5.1. Growth factors in IVD 

 

Growth factors are cytokines that bind to specific transmembrane receptors resulting in activation of 

an intercellular signalling cascade to promote specific cellular function, such as proliferation, 

differentiation and migration (Tow, Hsu & Wang 2007). Many growth factors have been found to be 

present in the IVD, including transforming growth factor-β (TGF-β), insulin-like growth factor-1 

(IGF-1), growth and differentiation factor-5 (GDF-5), and platelet-derived growth factor (PDGF) 

(Tow, Hsu & Wang 2007). Using cell and IVD organ culture systems, these growth factors have been 

reported to increase matrix synthesis and cell proliferation in the NP tissue. Growth factors exert their 

biologic functions in the IVD through endocrine, paracrine, and/or autocrine mechanisms. In an 

endocrine mechanism, the growth factors are secreted directly into the blood circulation system by the 

liver, kidney, or other organs, and are eventually delivered through the cartilaginous end plates to the 

cell surface receptors of the disc cells. In the paracrine mechanism, cells that are the source of the 

growth factor target neighboring cells that have specific receptors for the initiation of a biologic 

effect. In an autocrine mechanism, the cell self-regulates by first producing a growth factor that binds 

to cell-surface receptors on the same cell that produced it (Masuda, An 2004).  
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2.2. Disc Degeneration 
 

Disc degeneration is an abnormal, cell-mediated response to progressive structural failure. It is a very 

common disorder often associated with low back pain. There is however no direct correlation between 

the severity of pain symptoms and the severity of disc degeneration (Urban, Roberts 2003, An, 

Masuda 2006, Adams, Roughley 2006). The possible causes of disc degeneration include inadequate 

metabolite transport, aging, genetic inheritance and environmental factors such as heavy lifting, 

vibrations, immobilisation and trauma, all of which can alter the biochemical, metabolic and 

functional properties of discs. Degeneration of the disc occurs gradually through life and is graded on 

the basis of morphologic changes in the structure (Urban, Roberts 2003, Thompson et al. 1990, 

Pfirrmann et al. 2001). 

 

In healthy discs, there is a balance between the synthesis of matrix macromolecules by the cells and 

the proteinases for matrix breakdown. Matrix synthesis decreases gradually through life, most likely 

due to the increased level of the catabolic factors such as proinflammatory cytokines and matrix 

metalloprotenaises (MMPs) over the tissue inhibitors of MMPs (TIMPs), which inhibit the activity of 

MMPs (Le Maitre et al. 2007, An, Masuda 2006). TIMPs also exhibit growth factor-like activity for 

instance; the gene delivery of TIMP-1 into cells of degenerated IVDs resulted in an increase in 

proteoglycan synthesis rate (Wallach et al. 2003).  The imbalance between MMPs and TIMPs in 

favour of MMPs suggests a deregulation of the normal homoeostatic mechanism with an increased 

breakdown of ECM compared to its secretion. Stromelysin-1 (MMP3) is the only MMP capable of 

degrading proteoglycan aggregates leaving glycosaminoglycan fragments and isolated hyaluronate-

binding regions as breakdown products (Takahashi et al. 1996, Fujita et al. 1993). Two members of 

the aggrecanases subfamily of MMPs (ADAMTS4 and ADAMTS5) have also been identified for 

their involvement in the degradation of aggrecan (Guiot, Fessler 2000). Other mediators involved in 

the catabolic process of NP cells are TNFalpha (tumour necrosis factor alpha) and IL-1 (interleukin 1) 

(Le Maitre, Freemont & Hoyland 2005, Le Maitre, Hoyland & Freemont 2007). Reduced synthesis is 

also partly attributable to decreased cell density and decreased proteoglycan synthesis rates per cell 

(Maeda, Kokubun 2000). Additionally, increased disc size and endplate changes, when combined with 

reduced cell density, result in the reduction of nutrients in the centre of the nucleus, low pH, and 

possibly cell death (Buckwalter, Einhorn & Simon 2000).  
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The process of degeneration begins in the NP region (Yang, Li 2009). As the level of proteoglycan 

synthesis decreases, it causes a reduction in the water-absorbing capability of the tissue. As a result, 

the disc no longer behaves hydrostatically under load and inappropriate stress peaks may occur, which 

can lead to tears, disc herniation, spinal stenosis and degenerative spondylolisthesis as degeneration 

progresses with time (Adams, Roughley 2006, Wognum, Huyghe & Baaijens 2006). The loss of 

proteoglycan from the nucleus is a slow process due to the enmeshment of the tissue by the AF and 

cartilaginous endplates (Adams, Roughley 2006). The bound proteoglycans can fulfil the functional 

properties of NP only to a certain extent. Reduced matrix turnover in older discs enables collagen 

molecules and fibrils to become increasingly cross-linked with each other encouraging the retention of 

damaged macromolecules and thus leading to reduced tissue strength (DeGroot et al. 2004). AF cells 

found in the early stages of degeneration synthesise more proteoglycan and type I collagen fibrils 

replacing the type II collagen fibrils found in the inner annulus of the non-degenerated discs (Adams, 

Roughley 2006, Cs-Szabo et al. 2002).  With advanced degeneration, the levels of the majority of the 

matrix proteins are reduced with the exception of biglycan and fibronectin (Cs-Szabo et al. 2002). 

Structural failures in the discs and vertebrae are irreversible because adult discs have limited healing 

potential.  

 

The response of the disc to compressive loading is quite different in degenerated discs. The shock-

absorbing, load-distributing mechanism of the nucleus as described in section 2.1.3, is altered 

significantly because it is incapable of building sufficient hydrostatic pressure during compression 

due to reduced hydration. As a result, the tensile stresses in the collagen fibres of the inner annulus 

become compressive stresses. The inner fibres bulge inwards, leading to abnormal stresses on other 

disc structures, eventually causing their failure (Shirazi-Adl, Shrivastava, Ahmed 1984). 
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2.3. Tissue engineering 
  

Due to the inability of current treatment strategies to restore function of degenerated intervertebral 

discs, the field of disc tissue engineering has received much interest in recent years. Since it is 

generally believed that the process of disc degeneration begins in the nucleus pulposus region, most 

studies are currently steered towards NP tissue regeneration (Yang, Li 2009). Three ingredients are 

required to reconstruct a new tissue by tissue engineering, including (i) cells, (ii) scaffolds to which 

cells are attached and cultured and (iii) biomolecular and mechanical signals (see figure 2.3) to 

promote cell adhesion, proliferation, migration and differentiation (O'Halloran, Pandit 2007, Langer 

2000).  

 

 

 

Figure 2.3: Principal components of nucleus pulposus tissue engineering 

 

 

 

 

 

 

 

Cells 

Nucleus pulposus cells 

Mesenchymal stem cells 

Nucleus Pulposus  

Tissue Engineering 

Signals 

Growth factors 

Mechanical loads 

ECM-based cues 

Scaffolds 

Natural/synthetic 

Simple/composite 



18 
 

2.3.1.   Cell sources 
 

One of the main problems hindering the development of an effective NP-tissue engineering strategy is 

the identification of a suitable source for cells (Kandel, Roberts & Urban 2008). Two potential 

cellular sources have been investigated: NP cells and mesenchymal stem cells (MSCs) with no 

consensus on the optimal cell type, as each candidate has some limitations as discussed below.  

 

 

2.3.1.1. NP cells 

 

Cells in the nucleus are initially notochordal but are gradually replaced during childhood by 

chondrocyte-like cells with a round morphology (Adams, Roughley 2006). NP cells as a cell source 

for tissue-engineering applications poses a number of problems. Firstly, the IVD is relatively 

acellular, with only approximately 4,000 cells per mm
3
 in the NP (Maroudas et al. 1975). It would 

therefore be impossible to obtain enough cells for a successful treatment from a single biopsy. 

Furthermore, several animal studies have shown that extracting cells from a healthy disc alters the 

tissue’s mechanical function; inducing degeneration, while the removal of tissue from a degenerate 

disc accelerates degeneration within that disc (Nomura et al. 2001).  Additionally, the viability and 

metabolic activity of disc cells decline during growth. A large number of cells in adult disc cells show 

increased senescence (Kim et al. 2009, Gruber et al. 2007), either via apoptosis (Gruber, Hanley 

1998) or necrosis (Trout et al. 1982) and a reduced expression of disc ECM components (Antoniou et 

al. 1996, Pearce, Grimmer & Adams 1987) demonstrating the unsuitability of NP cells for tissue 

engineering applications.  

 

One potential method to overcome these problems is to co-culture NP cells with stem cells either to 

promote differentiation to an NP-like phenotype and increase the number of NP-like cells or to 

increase the activity and matrix production rates of the NP cells. Human mesenchymal stem cells 

(MSCs) have been co-cultured with NP cells derived from bovine (Richardson et al. 2006) and human 

NP tissue from lumbar IVDs (Strassburg et al. 2010), demonstrating an increase in SOX9, type VI 

collagen, aggrecan and versican levels of the MSCs and NP cells. 
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2.3.1.2. Mesenchymal stem cells (MSCs) 

 

As NP cells are essentially of a chondroid-like lineage (Sive et al. 2002), it should be possible to 

produce them from MSCs. MSCs can potentially differentiate into several tissues of mesodermal 

origin, including osteoblasts, adipocytes and chondrocyte-like cells found within the nucleus pulposus 

(Risbud et al. 2004). In vivo, MSCs are present in rare population in the bone marrow (Pittenger et al. 

1999) and possibly other tissues such as adipose tissue (Gronthos et al. 2001), amniotic fluid (Tsai et 

al. 2004), peripheral blood (Zvaifler et al. 2000), lungs (in 't Anker et al. 2003), umbilical cord blood, 

chorionic villi of the placenta (Igura et al. 2004) and even exfoliated deciduous teeth (Miura et al. 

2003). MSCs are expanded in vitro before use and thus the properties attributed to them are of these 

ex vivo-expanded cells. MSCs also have highly immunosuppressive properties (Yanez et al. 2006) and 

there is some evidence that MSCs can engraft into a number of tissues to regenerate or repair defect 

sites.  

 

For NP tissue engineering, MSCs have been derived from two sources; the bone marrow (bone 

marrow derived MSCs (BM-MSCs)) (Richardson et al. 2006, Risbud et al. 2004, Hiyama et al. 2008, 

Richardson et al. 2008, Steck et al. 2005, Minogue et al. 2010) and adipose tissue (adipose derived 

MSCs (ASCs)) (Minogue et al. 2010, Gaetani et al. 2008, Lu et al. 2008, Lu et al. 2007). In order to 

ensure a successful clinical outcome for MSC-based therapy for NP tissue engineering, it is essential 

that implanted cells adopt the correct phenotype. This is particularly important for the optimisation of 

the factors that can be used to direct adult stem cell differentiation to NP cells such as growth factors, 

co-culture of MSCs with NP cells and/or mechanical stimuli (Kandel, Roberts & Urban 2008). In 

most studies, the shift of MSCs towards an NP-like phenotype is demonstrated via the expression of 

chondrogenic ECM proteins such as aggrecan, type II collagen and SOX-9 (Leung, Chan & Cheung 

2006). However, although the NP tissue has a similar macromolecular composition to articular 

cartilage, the two tissues have different organisations in their extracellular matrices and their 

biomechanical properties are very different. To date, only a few attempts have been made to 

characterise the phenotypic differences between chondrocytes and NP cells (Erwin 2010). A study by 

Minogue and colleagues (Minogue et al. 2010) identified specific markers to characterise the human 

NP cell phenotype and evaluate novel markers to define MSC differentiation to an NP-like rather than 

an articular chondrocyte-like phenotype. The markers identified include PAX1, FOXF1, HBB, CA12, 

and OVOS2. The preliminary results indicated that ASCs differentiate to a more NP-like phenotype 

compared to BM-MSCs, although more studies with larger sample numbers are required to validate 

the findings. It also remains unclear whether the NP cell phenotypes identified in the study are the 

same across different species. 
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2.3.2.   Hydrogel design considerations 
 

Numerous scaffolds have been developed and assessed for efficacy both in vitro and in vivo for the 

promotion of tissue repair. They are applied as three-dimensional support structures for cells and 

delivery vehicles for biochemical and mechanical signals to direct the desired cellular functions. The 

design of an appropriate scaffold is regulated by the ECM properties of each specific tissue 

application including the physical structure and biochemistry, biological interactions, mass transport 

requirements and mechanical strength. Hydrogel systems have a similar macromolecular structure to 

the highly hydrated cartilage-like nucleus pulposus tissue due to their ability to absorb large amounts 

of water (Peppas et al. 2006). Thus, numerous hydrogel scaffolds have been embedded with NP cells 

and/or MSCs and tested both in vitro and in vivo for NP repair (Sebastine, Williams 2007). Hydrogels 

can be classified into two categories according to their sources, namely natural and synthetic 

scaffolds. 

 

Naturally derived hydrogel forming biomaterials are hydrophilic polymer chains, which are either 

components of or have properties similar to natural ECM. Natural biomaterials include collagen, 

fibrin, gelatine, hyaluronic acid, agarose, alginate and chitosan (Drury, Mooney 2003). For an 

extensive review of these materials, see (Hunziker 2002). These materials are advantageous because 

many of them provide adhesion sites for cells and interactions with their microenvironment can 

readily direct cellular function (Salinas, Anseth 2009). Furthermore, the degradation products are 

physiological and are therefore non-toxic (Stoop 2008). Disadvantages of naturally derived 

biomaterials include their low physical and mechanical properties, potential disease transmission to 

the host tissue and the inability to synthesize gels with reproducible properties (Salinas, Anseth 2009, 

Stoop 2008). The use of scaffolds containing the principal ECM components of the native NP tissue 

(i.e. collagen type II and aggrecan) has rarely been investigated. 

 

Synthetic hydrogels can be produced under controlled conditions and therefore exhibit reproducible 

mechanical and physical properties such as, compressive modulus, porosity and degradation rate 

(Drury, Mooney 2003, Salinas, Anseth 2009, Lutolf, Hubbell 2005). The most commonly used 

synthetic hydrogels for NP and cartilage repair are poly(ethylene glycol) (PEG) and poly(vinyl 

alcohol) PVA. However, the lack of adhesion sites within these scaffolds leads to programmed cell 

death or apoptosis as the cells use up their energy source in an effort to maintain their survival. 

Therefore, the incorporation of signals found in the native ECM, which provide the adhesive motifs 

necessary to maintain the survival of anchorage-dependent cells is a crucial requirement in the design 

and production of synthetic gels (Nuttelman, Tripodi & Anseth 2005, Drumheller, Hubbell 1994). 

The following sections discuss the design of hydrogels with tunable components to allow control of 

matrix factors that affect the chondrogenesis of NP cells, and/or chondrocytes and MSCs.  
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2.3.2.1. Degradation 

 

The timescale at which materials degrade and the mechanism of matrix breakdown is very important 

in the design and application of hydrogels. A desirable feature would be synchronisation of polymer 

degradation with the replacement by regenerated tissue produced from cells. The amount of time 

required by implanted cells to regenerate NP tissue so that it has a similar amount of matrix molecules 

to that present in healthy adult discs or the level of regeneration required to achieve a clinically 

successful regeneration is unknown.  

 

One direction of designing hydrogels with tunable degradation rate is by incorporation of hydrolysis 

of bonds, such as esters that crosslink the polymer chains together. In gels, hydrolytic degradation is 

often a bulk process, whereby a material’s high water content leads to homogeneous degradation 

throughout. But while hydrolytic degradation is often tuned to allow for cell proliferation and ECM 

deposition, the timeline for degradation does not always coincide with cellular function (Salinas, 

Anseth 2009). Therefore, researchers are focussing on the development of enyzmatically cleavable 

materials that can exploit the activity of the cell to alter material properties. 

 

In enzymatic degradation, the cells mediate the timeline of material loss and adjust their surrounding 

environment as needed for cellular growth, matrix deposition and matrix reorganisation (Salinas, 

Anseth 2009). Enzymatic degradation is mainly mediated by matrix metalloprotenaises (MMPs), 

which are grouped into collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs 

according to their substrate preference (Nagase, Visse & Murphy 2006). MMPs 1, 2, 3, 8, and 13 are 

expressed in the intervertebral disc (Yoon, Patel 2006) (see table 2.1) and are up regulated during 

MSC-chondrogenesis except for MMP-9 (Djouad et al. 2007). Enzymatically degradable cross linkers 

can be created by incorporating MMP-degradable peptides into polymerised hydrogels (Kamarun et 

al. 2009, Kim, Healy 2003). When MSCs differentiate, it should be possible to take advantage of the 

timeline at which the enzymes are upregulated and downregulated to design hydrogels that are 

sensitive to the enzymatic activities (West, J.L., Hubbell, J.A. 1999).  
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2.3.2.2. Incorporation of growth factors  

 

The beneficial effects of a variety of growth factors on NP cells, articular cartilage chondrocytes and 

MSC-chondrogenesis have been tested in vitro; including transforming growth factor-b (TGF-β) 

(Specchia et al. 2002, Thompson, Oegema & Bradford 1991, Xie et al. 2009, Miyanishi et al. 2006), 

insulin-like growth factor 1 (IGF-1) (Osada et al. 1996, Gruber, Norton & Hanley 2000), platelet-

derived growth factor (PDGF) (Gruber, Norton & Hanley 2000), Insulin-like growth factor 1 bone 

morphogenetic protein 7 (IGF-1/BMP-7) (Kim et al. 2010), bone morphogenetic protein-2 (BMP-2) 

(Kim et al. 2009, Kim et al. 2003) and fibroblast growth factor-2 (FGF-2) (Tsai et al. 2007, Ehlicke et 

al. 2010).  

 

The administration of growth factors was originally considered as an extension to drug delivery 

through sustained release by diffusion at appropriate levels from delivery vehicles. However, better 

control over the release of growth factors is required than the conventional method used for small 

molecule drug delivery (Santin 2009). A number of delivery vehicles have been designed for better 

control of growth factor delivery in a biomimetic manner. For instance, the biomolecules can be 

loaded into hydrogel itself, the release profile of which is dictated by diffusion or degradability of the 

hydrogel (Salinas, Anseth 2009, Santin 2009). However, larger molecular weight growth factors are 

difficult to entrap in cell-laden hydrogels and diffuse out prematurely before cellular uptake (Salinas, 

Anseth 2009). Alternatively, growth factors can be loaded into degradable micro or nanoparticles, 

which are then incorporated into the hydrogel scaffold. The release profile of the biomolecules is 

controlled by the degradation properties of the microparticles/nanoparticles (Salinas, Anseth 2009). 

 

 

2.3.2.3. Cell-matrix interactions 

 

The interactions between cells and their surrounding ECM are mediated by substrate-specific 

receptors known as integrins. Integrins are a family of heterodymeric transmembrane glycosylated 

proteins consisting of 2 non-covalently associated subunits, referred to as the β and α subunits that 

combine to form 24 distinct integrin receptors (Hynes 2002, Le Maitre et al. 2009). Binding to these 

receptors can lead to focal adhesion formation and the activation of several intracellular signalling 

pathways and can induce changes in cell proliferation, survival, differentiation and gene expression 

(Hynes 2002, Giancotti 2000, Lukashev, Werb 1998). 

 

NP cells are surrounded by a pericellular matrix, and embedded in a dense extracellular matrix that 

includes various types of collagen, proteoglycans as well as the cell adhesion proteins, fibronectin and 

laminin (Hayes, Benjamin & Ralphs 2001). A few studies have investigated the expression of integrin 

subunits on NP cells. The expression of α6 and β4 were identified by tissue immunostaining (Nettles, 
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Richardson & Setton 2004) and flow cytometry analysis (Chen, Yan & Setton 2006) on cells of 

immature porcine NP. α6 integrin subunit in combination with β1 or β4 is a primary receptor for the 

matrix protein laminin. The presence of α6 in the NP suggests that this integrin is important in 

regulating cellular interactions with laminin in the NP (Chen et al. 2009). The expressions of α5 and 

β1subunits and the classic fibronectin receptor α5β1 heterodimer have also been identified on human 

NP cells (Le Maitre et al. 2009). 

 

Several of the integrins recognise and bind to an arginine-glycine-aspartic acid (RGD) peptide 

sequence found in many adhesion proteins including fibronectin, vitronectin and laminin. The RGD 

peptide sequence is the cell attachment site for numerous adhesive ECM proteins, blood and cell 

surface proteins (Ruoslahti 1996). The integrin-binding activity of adhesion proteins can be 

reproduced by short synthetic peptides containing RGD or other adhesion sequences that promote cell 

adhesion when immobilised onto surfaces (Humphries, Mould & Westo 1994, Garcia et al. 2002).  

Synthetic peptides have been widely used in PEG hydrogel (Nuttelman, Tripodi & Anseth 2005, 

Vonwil et al. 2010, Zhang et al. 2010b, Burdick, Anseth 2002, Yang et al. 2005) to mimic cell 

adhesion proteins that are recognized by cells and to participate in molecular interactions. A lack of 

adhesive motifs in the hygrogels inhibits force transmission among cell adhesion mediated events of 

anchorage dependent cells, such as MSCs, causing the loss of cell viability. RGD peptides can be 

tethered to the gel network through the use of a degradable linker and the release profile tuned by the 

chemistry of the linker (Salinas, Anseth 2009). Apart from the effects on cell adhesion and viability, 

the differentiation of MSCs in RGD-modified three-dimensional gels has also been investigated. But 

while studies have demonstrated the induction of MSC osteogenesis in the RGD-modified gels 

(Nuttelman, Tripodi & Anseth 2005, Yang et al. 2005), persistence of the adhesive molecule has been 

shown to hinder chondrogenic differentiation of MSCs (Connelly, García & Levenston 2007). 

Incorporation of an RGD adhesive linker designed with an MMP-13 specific cleavable linker to 

release RGD mimicking the native timeline for active MMP-13 production by hMSCs enhanced the 

chondrogenic differentiation and cartilage matrix production of MSCs (Salinas, Anseth 2008).  
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2.3.2.4. Mechanical properties 

 

It has been well documented that cells grow best on matrices that replicate the elasticity of their native 

tissue (Reilly, Engler 2010, Guilak et al. 2009). Surfaces that do not recapitulate the normal 

mechanical environment of a particular cell type can lead to de-differentiation or loss of function in 

cells (Reilly, Engler 2010). In a study by Reilly et al. (Reilly, Engler 2010), undifferentiated MSCs 

showed lineage specific differentiation depending on matrix elasticity when grown on polyacrylamide 

hydrogels in the absence of growth factors. Soft substrates that mimic the elasticity of brain promoted 

neurogenic differentiation, on stiffer matrices the cells were myogenic and bone-like substrates 

promoted osteogenic differentiation. The effect of matrix elasticity on MSC chondrogenesis has also 

been investigated. Erickson and colleagues (Erickson et al. 2009), evaluated the effect of compressive 

and tensile elasticity of methacrylated hyaluronic acid gels on cartilage-specific gene expression and 

ECM deposition and showed that MSCs produced more cartilage-like matrix on stiffer gels (20-25 

kPa) compared to those cultivated on softer gels (5 kPa). However, the stiffer gels limited diffusion of 

large ECM molecules impeding the homogenous distribution of formed ECM. This resulted in 

functionally inferior constructs upon maturation.  

 

The replication of mechanical factors found in native tissue of NP has been less emphasized. 

Successful tissue engineering should be able to reproduce some or all of the complex mechanical 

behaviours of the tissue (Nerurkar, Elliott & Mauck 2010). Even though various derivatives of 

synthetic and natural biomaterials have shown appropriate biological behaviour through the 

production of cartilage-like ECM proteins by implanted cells, the mechanical properties of the TE 

constructs are often not measured. Table 2.4 shows the data available for the mechanical properties of 

NP tissue engineered constructs or acellular hydrogels specifically designed for NP TE.  
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Table 2.4: Summary of mechanical properties for acellular scaffolds or tissue engineered NP constructs. δ = loss angle, | G*| = complex shear modulus, E = 

equilibrium modulus, HA = aggregate modulus 

 

Cell source  Scaffold  Type of test  Mechanics  Native benchmark  Reference  

N/A  Type I collagen  Rheology  δ = 6.5-8.5º 

| G*| = 2-10kPa 

23-30º 

7.4-19kPa  

 (Bron et al. 2009) 

NP cells (bovine)  Photocrosslinked 

carboxymethylcellulose  

Unconfined 

compression  

E = 1.3-3.5kPa  5.4kPa  (Reza, Nicoll 2010) 

NP cells (bovine)  Photocrosslinked alginate  Unconfined 

compression  

E = 0.6 - 8.8kPa  5.4kPa (Chou, Akintoye & 

Nicoll 2009) 

N/A Hyaluronic acid  Rheology  δ = 14.6-16.7º  δ = 23-30º (Gloria et al. 2010)  

N/A Type II collagen /Hyaluronic acid  Confined 

compression  

E = 1.4-10.3kPa  1MPa  (Calderon et al. 2010)  

NP cells 

(Human) 

Alginate/glucosamine/chondroitin 

sulphate 

Confined compression HA = 40kPa – 60kPa 1MPa (Foss, Maxwell & Deng 

2014) 
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2.3.2.5. Pore size and porosity 

 

Pore structure and pore size have a large impact on gross mechanical properties of a scaffold (LaNasa, 

Hoffecker & Bryant 2011). The scaffold architecture of the scaffolding biomaterial also plays an 

important role in the cell seeding procedure (Jukes et al. 2008). Larger pores enhance cell seeding and 

nutrient transport of large biomolecules (LaNasa, Hoffecker & Bryant 2011). Even though the 

hydrophilic nature of hydrogels offers sufficient diffusion rate for the encapsulation of living cells, 

effective transport of nutrients is only limited to smaller distances (Landers et al. 2002). In particular, 

cells at the centre suffer from low nutrition resulting in new tissue formation predominately at the 

outer edges and not the centre.  

 

Traditional techniques for controlling the gross porosity of hydrogels include solvent casting/particle 

leaching (Lee et al. 2003, Horák et al. 2008) and phase separation followed by freeze-drying. The 

hydrogels prepared by these techniques include poly(2-hydroxyethyl methacrylate) (PHEMA), PEG 

and gelatine. Although the techniques have demonstrated success in fabricating hydrogels for tissue 

engineering, the conditions used during the fabrication process are often unsuitable for direct cell 

encapsulation (Annabi et al. 2010). Typically, cells can be seeded onto pre-fabricated scaffolds, but 

the inability to encapsulate the cells during fabrication could diminish the ability to achieve 

homogeneous cell distribution (Peppas et al. 2006). This is probably one of the reasons why the 

design of porous hydrogel scaffolds has hardly been explored for NP tissue engineering. In addition, a 

low scaffold porosity and permeability similar to the native NP tissue should minimise the volume 

change during compressive loading. 

 

 

2.3.2.6. Cell encapsulation  

 

The 3D encapsulation of cells within hydrogels provides an environment that better mimics what the 

cells observe in vivo and is becoming a very popular approach for the development of constructs for 

tissue engineering (Khetan, Burdick 2009). This strategy is employable as an injectable system for the 

development of injectable, in situ forming materials, which are attractive because of the reduced 

invasiveness associated with their implantation. However, due to the presence of cells during gelation, 

the hydrogels must be formed from biocompatible macromolecular precursors and under mild 

gelation conditions. This limits the number of appropriate biomaterials and formulations for the 

application (Nicodemus, Bryant 2008). In addition, because cells are suspended in a liquid precursor 

solution prior to gelation, the choice of precursors is limited to water-soluble components 

(Nicodemus, Bryant 2008). Techniques such as temperature change (Ling et al. 2007), ionic 

crosslinking (Zhang) or UV crosslinking (Yeh et al. 2006) enable the direct encapsulation of cells into 

hydrogel systems maintaining long-term cell viability after fabrication (Annabi et al. 2010). The 
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encapsulation of cells into hydrogel networks, however, restricts fabrication to the micrometer scale 

and does not yet permit fabrication of centimeter-scaled scaffolds. Therefore, effective transport of 

nutrients is only limited to smaller distances and the cells at the centre suffer from low nutrition 

resulting in low cell viability at the centre of the constructs (Landers et al. 2002).  

 

 

2.3.3.   Scaffold selection 
 

Of the 6 scaffold design considerations described in section 2.3.2, cell encapsulation (section 2.3.2.6) 

was considered a top priority in this research. One of the most commonly used polymers to 

encapsulate cells for nucleus pulposus and cartilage tissue engineering is alginate. It is a well-

established scaffold for the chondrogenic differentiation of bone marrow derived stem cells (Xu et al. 

2008a) and enhancement of the chondrogenic phenotype of NP cells (Wang et al. 2001) and 

chondrocytes (Bonaventure et al. 1994). Other advantages of alginate include ease of availability, low 

cost, ease of fabrication and good mechanical properties. Based on these advantages, alginate polymer 

was chosen to fabricate hydrogels in this research. A great emphasis will be placed on tuning the 

alginate formulation to closely replicate the viscoelastic properties of nucleus pulposus tissue. The 

structural properties of alginate biopolymers, gelation methods, gel applications and how the hydrogel 

formulations can be modified to regulate cell-matrix interactions and degradation are discussed in the 

following section. 

 

 

2.3.3.1. Alginate properties 

 

Alginate is a naturally derived non-mammalian polysaccharide that is extracted from brown seaweeds 

such as laminaria hyperborea and lessonia and bacteria species. They represent a family of linear 

copolymers consisting of (1-4)-linked β-D-mannuronic acid (M) and α-L-guluronic acid residues in 

varying proportions that are covalently linked together in different sequences or bonds. The two 

monomers can be arranged in homopolymeric blocks of consecutine G- or M-unit (poly-guluronate or 

poly-mannurate) or alternating M and G unit (heteropolymeric) block structures (Augst, Kong & 

Mooney 2006). The M/G ratio, which is dependent upon the source of the alginate, determines the 

overall strength and viscosity of the gels. Alginates with a higher content of G units generally produce 

stronger gels compared to molecules with greater M content. The viscosity of an alginate solution also 

depends on the concentration of the polymer and the molecular weight distribution. 

Alginate gels are widely used as stabilisers, gelling agents and emulsifying agents in the food industry 

(Cottrell, Kovacs 1980).  This material is also widely applied in the pharmaceutical and medical 

industry as a delivery vehicle for drugs, a wound dressing (Dumville et al. 2012) and a dental 
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impression material (Wandrekar et al. 2010). In biomedical and biotechnological applications, 

alginate is mainly used as a material for the encapsulation and immobilisation of cells, enzymes, 

proteins and tissue fragments due to its gentle gelling behaviour in the presence of Ca
2+

 ions. It has 

been shown that IVD cells and chondrocytes do not dedifferentiate when encapsulated within alginate 

(Wang et al. 2001, Guo, Jourdian & MacCallum 1989). Additionally, bone-marrow-derived stem cells 

cultured within the three-dimensional alginate matrix, have been reported to differentiate into 

chondrocytes in an in vivo rabbit study (Diduch et al. 2000). This has led to the extensive exploitation 

of the material in the fields of NP and cartilage tissue engineering (Korecki et al. 2009, Chen, Yan & 

Setton 2004, Campbell, Lee & Bader 2006). 

 

One method of crosslinking alginate is through the interaction between divalent cations (Ca
2+

, Ba
2+

 

and Sr
2+

) and the carboxyl groups of two G blocks of adjacent polymer chains (Morch et al. 2006). 

Ca
2+

 ions are the most widely used divalent cations for biomedical applications due to their mild 

reaction conditions compared to the cellular toxicity of Ba
2+

 and Sr
2+ 

(Draget, Skjåk-Bræk & 

Smidsrød 1997, Smidsrod, Haug 1965). The choice of calcium source depends on the intended 

biomedical application either with or without cells. Calcium chloride (CaCl2) is a commonly used 

Ca
2+ 

source and works by diffusion of the Ca
2+

 ions through the alginate solution boundary 

(Nunamaker, Purcell & Kipke 2007). In the crosslinking process, the calcium ions interact with the 

carboxyl groups of the G blocks of two neighbouring alginate chains replacing the sodium ions and 

forming an ‘egg box’ orientation (figures 2.4 and 2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Chemical representation of sodium alginate 
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Figure 2.5: Gelation of sodium alginate by addition of Ca
2+-

ions 

 

 

 

Alginate is not naturally broken by cells due to the lack of the enzyme alginase, which can cleave the 

polymer chains (Lee, Mooney 2012). However, ionically crosslinked alginate gels slowly dissolve in 

an uncontrolled manner through the loss of divalent cations to the surrounding culture medium. 

Although the gel dissolves at physiologic conditions, it is likely that complete elimination of the 

degradation products from the body will not be possible because the average molecular weight of 

commercially available alginates is above the renal clearance threshold of 2-40kDa (Nuttelman et al. 

2008). Gel degradation can be regulated through partial oxidation, as alginate can be made susceptible 

to hydrolysis via reaction with sodium periodate (Augst, Kong & Mooney 2006). The combination of 

partial oxidation with a bimodal molecular weight distribution of polymer chains results in faster gel 

degradation compared to gels formed from a single molecular weight distribution (Boontheekul, Kong 

& Mooney 2005). A small degree of oxidation can lead to significant gel degradation without causing 

the loss of cell viability (Bouhadir et al. 2001). Gel degradation can also be manipulated through the 

application of gamma irradiation to high molecular weight alginates to create polymers of varying 

molecular weights and structures (Lee et al. 2003). The application of gamma irradiation was shown 
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to increase gel degradation rate resulting in a significant improvement in new extracellular matrix 

formation from transplanted cells (Simmons et al. 2004, Alsberg et al. 2003). Furthermore, reducing 

the molecular weight of alginate using gamma irradiation decreases the shear viscosity of pre-gelled 

alginate solution leading to higher viabilities of immobilised cells without compromising the 

mechanical properties of the crosslinked gel (Kong, Smith & Mooney 2003). 

 

Alginates can be chemically modified with covalent cross-linkages, as an alternative to ionic 

crosslinking. Covalent crosslinks are capable of producing 3D alginate gel structures with permanent 

bonds unlike ionic crosslinks that may be broken down by processes, which reverse the gelation 

mechanism (Nicodemus, Bryant 2008). Furthermore, covalent crosslinking offers more tightly 

controlled biodegradation and mechanical properties of the gels. However, the reagents used in the 

covalent cross-linking process are toxic and the unreacted chemicals may need to be removed 

thoroughly from gels (Lee, Mooney 2012). Alginate has two active functional groups (i.e. hydroxyl 

and carboxylate) in its molecular structure that make covalent crosslinking possible (Yang, Xie & He 

2011). Previous work has employed anhydride chemistry to replace the secondary alcohols on the 

alginate backbone with methacrylate groups to create methacrylate-alginate (Chou, Akintoye & Nicoll 

2009, Chou, Nicoll 2009). This is followed by photo-crosslinking of methacrylate-alginate solution in 

the presence of a photoinitiator under exposure to UV light.  

 

RGD-containing peptides have been extensively used as model adhesion ligands to promote and 

regulate cellular interactions in alginate hydrogels. Typically, the RGD peptides are coupled as side 

chains to the carboxylic groups on the alginate backbone, using water-soluble carbodiimide chemistry 

(Augst, Kong & Mooney 2006, Lee, Mooney 2012). The mechanical properties and crosslink density 

of the gels can influence the response of cells to the adhesion peptides presented.  For example, it has 

been shown the stiffness of RGD-alginate matrix regulates morphology and attachment of 

chondrocytes (Genes et al. 2004). Cell-matrix interactions can also be tailored by the addition of 

ECM-derived chemistries (e.g. hyaluronic acid and collagen) into alginate gels to create bioactive 

hydrogels.  
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2.3.4. The role of bioreactors in nucleus pulposus tissue engineering  
 

A bioreactor is a device in which biological and/or biochemical processes develop under closely 

monitored and tightly controlled environmental factors and operating conditions. In tissue 

engineering, bioreactors are used to direct cellular activity and phenotype by providing efficient 

nutrition and/or mechanical stimuli to the cells (Martin, Wendt & Heberer 2004). Three main types of 

bioreactors have been investigated for NP tissue engineering or MSC chondrogenesis: hydrostatic 

pressure, direct compression and perfusion bioreactors. The use of these systems can provide an 

opportunity to predict the response of the cells to mechanical loading in vivo (Grad et al. 2011).  

The aims of the following sections are to: (1) highlight the response of NP cells and MSCs to the 

different specific stimuli applied; (2) highlight the main design features of the bioreactor systems used 

and commercially-available bioreactors that can be potentially used for a NP application; and (3) 

detail conditions in which physical stimulation has been combined with other regulatory influences 

such as growth factors and cell matrix interactions. 
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2.3.4.1. Hydrostatic pressure  

 

To evaluate hydrostatic pressure (HP) as an isolated mechanical stimulus, a number of different 

custom-built bioreactors have been developed that directly pressurize the culture medium surrounding 

the NP or MSC-seeded constructs (see figure 2.6A). For example, HP has been applied by placing 

sealed bags containing the constructs into a water-filled vessel, which is pressurized by a hydraulic 

press or pump controlled by a computer (Meyer et al. 2011, Luo, Seedhom 2007, Steward et al. 2012, 

Carroll, Buckley & Kelly 2013). In another study, an air pressure-driven piston, which is controlled 

by a programmable logic controller and a solenoid, was used to apply high HP in a custom-built 

culture chamber containing the constructs and culture medium, while low HP was applied in a 30ml 

luer lock propylene syringe containing the constructs and culture medium (Correia et al. 2012). 

Alternatively, bioreactors can pressurize the gas phase above the culture medium (Neidlinger-Wilke et 

al. 2006) as shown in figure 2.6B. However, this method is limited because pressurizing the gas phase 

may alter the gas concentration within the culture medium. Therefore, these types of bioreactors are 

less commonly used. 

 

 

 

  

 

 

 

  

 

 

 

 

Figure 2.6: Methods of applying HP to cells seeded in scaffolds: (A) HP applied by compressing the 

culture medium surrounding the cell-seeded constructs and (B) HP applied by compressing a gas 

phase that transmits load through the medium to the cells. 
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The inclusion of hydrostatic pressure in NP tissue engineering strategies is particularly important, as it 

is the dominant mechanical load experienced in the native tissue (Baer et al. 2003). NP tissue 

engineering efforts have generally focussed on frequencies and magnitudes within the physiological 

ranges described in section 2.1.3. Table 2.5 summarises the biological effects of HP application to NP 

cells in different 3D scaffolds. The results show that the responses of the NP cells depend on the 

frequency and/or magnitude of the applied HP. Kasra and colleagues (Kasra et al. 2006) reported that 

1MPa of HP above a threshold frequency of around 3Hz disrupted protein metabolism. In contrast, the 

results of another study (Kasra et al. 2003) found that high frequency and high amplitude (from 

1.5MPa, 1Hz to 3MPa, 20Hz) increased protein synthesis and lowered protein degradation. In 

addition, Neidlinger-Wilke and colleagues (Neidlinger-Wilke et al. 2006) showed that low magnitude 

HP (0.25MPa) simulated small changes on anabolic effects, whereas high HP (2.5MPa) caused 

catabolic effects. Based on a finite element model (Baer et al. 2003), magnitude dependent responses 

are associated with differences in solid matrix strain, while frequency dependent responses are related 

to changes in hydrostatic pressures. Greater hydrostatic pressures are developed under high frequency 

loading. Due to a limited number of studies on the response of NP cells to hydrostatic pressurisation 

and the wide variation in culture and loading conditions used, no consensus can be reached on the 

most ideal loading conditions to simulate tissue growth. Additionally, most studies to date have been 

performed on cells derived from different animal species e.g. bovine, rabbit and pig and the effects of 

different pressure magnitudes on human NP cells have rarely been investigated. The extent of 

similarity of animal cells to human cell responses and in an in vivo environment is not known. 

 

HP has been used as a method for inducing MSC chondrogenesis in tissue engineering studies as 

summarised in table 2.6. Similar to studies involving NP cells, no optimum HP loading conditions 

have been established for inducing chondrogenesis in MSCs cultured in 3D environments. In general, 

the results indicate that dynamic HP in physiological range for articular cartilage (0.1-10 MPa) in the 

presence of chondrogenic growth factors can enhance gene expression and ECM production in MSCs. 

However, MSCs respond differently to different magnitudes of HP. For instance, differences in 

chondrogenic matrix deposition and mechanical properties have been observed in constructs derived 

from human adipose tissue MSCs (ASCs) and gellum gum hydrogels and exposed to either 0.4MPa or 

5MPa of dynamic HP at 0.5Hz, 4 h/day, and 5 days/week for 4 weeks. The results demonstrated 

increased aggrecan gene expression and GAG at the higher HP level. In contrast, collagen type II was 

higher in the constructs of the 0.4MPa group (Correia et al. 2012).   

 

Studies assessing the time-dependent effects of dynamic HP have demonstrated that repetitive 

application of HP over several days is necessary to enhance the chondrogenic differentiation of 

MSCs. For example, intermittent HP initiated at day 0 of a 42-day culture period was shown to 

improve the dynamic modulus and chondrogenic differentiation of MSCs cultured in agarose, whereas 
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HP initiated at day 21 did not improve ECM content or construct functionality, suggesting that 3 

weeks of the HP regime used was insufficient to have a significant effect (Meyer et al. 2011). In 

another study, ovine BMSCs were seeded on polyester scaffolds and precultured in medium 

supplemented with TGF-ß3 for 4 weeks before the application of HP at 0.1MPa, 0.25Hz, for 30

min/day for 10 days. HP resulted in increased GAG and collagen content, with earlier time points 

having no effect on collagen content (Luo, Seedhom 2007).   

 

The response of MSCs to HP is also dependent on the tissue source of the cells. For example, when 

constructs derived from porcine bone marrow MSCs (BM-MSCs) or porcine infrapatellar fat pad 

MSCs (FP-MSCs) were exposed to the same HP conditions, the mean equilibrium modulus of the FP-

MSC constructs was found to be greater than that of BM-MSC constructs. This was attributed to the 

higher levels of GAG (as a percentage of wet weight) within the FP-MSC constructs. (Carroll, 

Buckley & Kelly 2013). Furthermore, it has been shown that cells from different donors respond 

differently to intermittent HP. For instance, despite the fact that BM-MSCs from two donors were 

expanded and maintained under identical conditions, one donor did not respond to either continuous 

HP (CHP) applied from day 0 or delayed HP (DHP) applied from day 21 of a 42-day culture period. 

In contrast, CHP increased collagen and GAG by day 42 in the second donor, resulting in increased 

dynamic modulus (Meyer et al. 2011). A further analysis of MSCs isolated from three additional 

donors and subjected to the same HP regime for three weeks only, revealed that when combined with 

the results from the first two donors, only 2 out of the 5 donors responded to HP. 

 

The cell-matrix interactions, which are unique to the scaffolds in which MSCs are seeded, also play a 

key role in regulating the response of the cells to HP. One study compared the response of MSCs to 

10MPa of dynamic HP (1Hz, 4h per day, 5 days per week for 3 weeks) in the presence of either 1 or 

10 ng/ml of TGF-β3 following encapsulation in fibrin or agarose. Fibrin facilitated integrin-mediated 

cellular attachment causing the cells to take a spread morphology, while the cells cultured in agarose 

did not adhere and adopted a spherical morphology. HP only enhanced GAG accumulation in fibrin 

hydrogels (in the presence of 1 ng/ml of TGF-β3), which shows that integrin-mediated cell adhesion 

plays a key role in mechano-transduction of HP (Steward et al. 2012).  
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Table 2.5: Summary of studies evaluating the response of nucleus pulposus cells to hydrostatic pressure.  = increase,  = decrease,    = no significant 

decrease 

 

 

 

 

 

 

 

 

Cells Scaffold Seeding 

density 

Growth 

factors 

Pre-culture 

duration before 

initiation of HP 

HP conditions  Main outcomes Reference 

Pig lumbar 

NP cells 

1.2% alginate 

hydrogels 

1.5 million/ml None 24 hours 1MPa at 1, 3 5, 8 or 

10Hz for 30min/day for 

3 days. 

Collagen and protein synthesis  

@ 1Hz 

3 - 8Hz  protein metabolism. 

(Kasra et al. 

2006) 

Rabbit NP 

cells 

1.2% alginate 

hydrogels 

1.5 million/ml None Overnight 0.75, 1.5 or 3 MPa at 1, 

10 or 20 Hz for 

30min/day for 3 days. 

High amplitude and frequency 

(from 1.5MPa, 1Hz)  collagen 

and  protein degradation. 

(Kasra et al. 

2003) 

Human NP 

cells 

3D type 1 collagen 

hydrogels 

0.3 million 

cells/ml 

None No preculture  0.25 MPa, 0.1 Hz for 30 

min 

Aggrecan and collagen I  

Collagen II  

(Neidlinger-

Wilke et al. 

2006) 2.5 MPa, 0.1 Hz for 30 

min 

Aggrecan and collagen I  

Collagen II  
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Table 2.6: Summary of studies evaluating chondrogenesis in mesenchymal stem cells in response to hydrostatic pressure.  = increase,  = decrease,    = no 

significant decrease

Cells Scaffold Seeding 

density 

Growth 

factors 

Pre-culture 

duration  

HP conditions  Main outcomes Reference 

Human ASCs  1.5% gellum gum 

hydrogels 

10 million 

cells/ml 

10ng/ml TGF-

β3 

. 

0 days 5MPa at 0.5Hz, 

4h/day, and 5 days/week  

sGAG and aggrecan,  

Collagen and II   

(Correia et al. 

2012) 

0.4MPa at 0.5Hz, 4h/day, 

5 days/week for 4 weeks 

sGAG and aggrecan,  

sGAG and aggrecan  <  than 5MP 

group 

Collagen and II   

Porcine BM-

MSCs 

2% agarose hydrogels 15 million 

cells/ml 

10ng/ml TGF-

β3 

0 days (CHP) 10MPa at 1Hz for 

1hr/day, for 5 days/week 

until day 42. 

 

CHP: Collagen, sGAG and 

dynamic modulus   for one 

donor, but    for 2
nd

 donor.  

(Meyer et al. 

2011) 

21 days (DHP) DHP: ECM and mechanical 

properties    for both donors. 

Ovine BM-

MSCs 

Polyester scaffolds 0.5 million 

cells/ml 

10ng/ml TGF-

β3 

4 weeks 0.1MPa at 0.25 Hz, for 

30 min/day, for 10 days 

sGAG  @ day 7 -10 

DNA and collagen II  @ day 10 

(Luo, Seedhom 

2007) 

Porcine BM-

MSCs or  FP-

MSCs 

2% agarose hydrogels 20 million 

cells/ml 

10ng/ml TGF-

β3 

No preculture 10MPa at 1Hz for 

4hr/day, for 5 days/week 

for 5 weeks  

sGAG and collagen type II  

Dynamic and equilibrium  

modulus  

DNA   

(Carroll, 

Buckley & 

Kelly 2013) 

Porcine BM- 

MSCs  

2% Agarose gels  15 million 

cells/ml 

1 or 

10ng/ml of 

TGF-ß3 

0 days 10MPa at 1Hz, 4h/day, 

5 days/week for 3 weeks. 

sGAG, collagen and DNA   (Steward et al. 

2012) 
Fibrin hydrogels sGAG   in presence of 

1ng/ml TGF-ß3 

Collagen and DNA   
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2.3.4.2. Compression 

 

The native NP is restricted axially by the superior and inferior cartilaginous end plates and 

circumferentially by the annulus fibrosus. Compressive load on the NP is transferred to the annulus 

when it expands in a radial direction. Thus, the NP behaves physiologically in an environment that is 

neither completely confined nor completely unconfined (Cloyd et al. 2007). Therefore, bioreactor 

systems have been developed applying either confined or unconfined compression. The confined test 

is performed by placing constructs in a confining chamber to prevent radial expansion of the 

constructs under compressive loading (see figure 2.7A). In an unconfined compression test (figure 

2.7B), the specimens are tested without lateral confinement. This is the more favourable set up as 

culture medium can surround the sides of the constructs under compression. In confined compression, 

there is a risk of cell starvation and the loss of cell viability. Confined set-ups are also more difficult 

to work with due to difficulty to insert a perfectly fitting tissue in the confining container and 

difficulty to install the compression platens on top of the tissue. In addition, friction between the 

porous platens and the tissue can become an issue, especially when dynamic compression is applied. 

All the studies cited in tables 2.7 and 2.8 were conducted in unconfined testing devices using either 

porous (Huang et al. 2004, Kisiday et al. 2009, Steinmetz, Bryant 2011, Wang, Yang & Hsieh 2011) 

or nonporous compression platens (Chen, Yan & Setton 2004, Wang, Yang & Hsieh 2011, Huang et 

al. 2010, Thorpe et al. 2008, Thorpe et al. 2012).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: An illustration of confined (A) and unconfined compression (B) 
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Both static and dynamic compression methods have been used to stimulate NP cells in 3D-tissue 

scaffolds, although dynamic compression represents a more physiological load in vivo. The results of 

the studies are summarized in table 2.7. Static loading at 25% compressive strain after 2, 18 and 30 h 

was found to suppress collagen and aggrecan gene expression in NP cells encapsulated in alginate 

hydrogels (Chen, Yan & Setton 2004). In another study, the application of 20% static compressive 

strain for a shorter period of time (3000s) up-regulated aggrecan, laminin, fibronectin, glypican, 

biglycan and fibromodulin gene expression of NP cells seeded in alginate gels (Wang, Yang & Hsieh 

2011). A study applying dynamic compression demonstrated that loading affects NP cell gene 

expression and ECM synthesis in a frequency- and age- dependent manner. In the study, 12% 

compressive strain was applied for 7 days at one of three frequencies (0.1, 1, or 3 Hz) in alginate 

constructs derived from young or mature bovine NP cells. The expression of collagen types I and II 

increased significantly in mature cells but reduced in young cells compared to the static controls. 

Furthermore, collagen types I and II increased with increasing compression frequency in mature cells 

and decreased with increasing frequency in young cells. sGAG was higher in young NP constructs 

compared with mature NP constructs and sGAG increased with increasing frequency in young NP 

constructs and decreased with increasing frequency in mature NP constructs. Aggrecan levels were 

not significantly affected by loading frequency or age except for an increase at 3 Hz in young cells 

(Korecki et al. 2009). Further study of young and mature NP cells is required at different loading 

amplitudes and frequencies to confirm the distinct differences between their responses to dynamic 

compression. 

 

In MSC constructs, dynamic compressive loading has been the most utilized model of mechanical 

stimulation. A number of studies shown in table 2.8 suggest a beneficial effect of dynamic 

compression for chondrogenesis of MSCs. Most of these studies used a frequency of 1 Hz and 10% 

magnitude compression. These are similar conditions to those that lead to the greatest increase in 

chondrogenic gene expression and GAG synthesis in chondrocytes (Grad et al. 2011, Mauck et al. 

2000, Mauck et al. 2003).  

 

One mechanism through which dynamic compression of MSC-laden gels increases chondrogenesis is 

through the TGFβ signalling pathway; provided that there is a pre-differentiation period in culture 

medium containing TGFβ growth factors before loading is applied. When 10% dynamic compression 

at 0.5Hz, 1 hour/day, 5 days/week was initiated immediately after porcine MSC encapsulation in 

agarose, a marked reduction in the mechanical properties of the loaded constructs in comparison to 

free-swelling controls was observed after a 42 day cultured period (Thorpe et al. 2008). In another 

study, 10% dynamic compressive strain applied at a frequency of 1Hz, 4 hours/day was initiated both 

after 3 days or 3 weeks of preculture in the presence of TGFβ. Loading initiated soon after MSC-

encapsulation decreased functional maturation, although chondrogenic gene expression increased 
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compared to the free swelling controls. In contrast, loading initiated after 3 weeks of preculture (after 

chondrogenesis and matrix elaboration) further improved the mechanical properties of MSC-seeded 

constructs relative to the free swelling controls (Huang et al. 2010).  

 

In the absence of chondrogenic growth factors, dynamic compressive strain has been shown to 

enhance MSC chondrogenesis at the gene (Huang et al. 2004) and/or the protein level (Kisiday et al. 

2009) suggesting that the differentiation pathway of MSCs is at least partially regulated by the local 

mechanical environment. However, load-induced cartilage differentiation was minimal at best 

particularly in comparison with growth factor treatment alone (Kisiday et al. 2009). In contrast, 

another study showed that the dynamic compression alone increased collagen type II gene expression 

of rabbit BM-MSCs more than TGF-β1 alone (Huang et al. 2004).  

 

Interactions with the scaffold also play a key role in regulating stem cell fate; however, the influences 

of integrin-mediated adhesion on chondrogenesis of MSCs in response to dynamic loading remain 

unclear.  Fibrin is one such hydrogel, which facilitates integrin binding to ligands present on the 

scaffold.  In a free swelling environment, fibrin has been shown to support myogenic differentiation 

of MSCs in the presence of TGF-β. However, the application of long term dynamic compression 

(from day 0 to day 42) or from (day 21 to day 42) on constructs directed MSCs along a chondrogenic 

pathway as opposed to the default myogenic phenotype supported within free swelling controls. These 

results show that mechanical signals generated by compressive loading ultimately governed MSC fate 

(Thorpe et al. 2012). In another study, poly(ethylene glycol) hydrogels were modified with cell 

adhesion moieties, RGD to investigate integrin-mediated mechanotransduction in response to 14 days 

of dynamic compression after a pre-differentiation period  in chondrogenic medium. While the 

constructs that were cultured in the free swelling conditions showed significant increase in 

chondrogenic markers such as aggrecan, SOX-9 and collagen II during the culture duration, the 

application of loading down-regulated the chondrogenic markers relative to the controls, potentially 

due to overloading of the differentiating MSCs before sufficient pericellular matrix was produced 

(Steinmetz, Bryant 2011).  
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 Table 2.7: Summary of studies evaluating the response of nucleus pulposus cells to compressive loading.  = increase,  = decrease,    = no significant 

decrease 

 

 

Cells 3D scaffold Cell seeding 

density 

Growth factors Preculture duration 

before loading 

Compression 

conditions 

Main outcomes References 

NP cells 2% alginate 20 million 

cells/ml of 

gel 

None 2, 18 and 30 h  25% strain static for 25 

minutes.  

Loading conditions did not change gene 

expression for matrix proteins. 

(Chen, Yan & 

Setton 2004) 

Rat NP cells  

 

2% alginate 0.4 million 

cells/ml of 

gel 

None 24 hours 10kPa peak stress at 

0.5Hz for 1hour. 

Glypican, biglycan, lumican and 

fibromodulin expression  

Aggrecan, laminin, and fibronectin 

expression   

(Wang, Yang & 

Hsieh 2011) 

0.001mm/s for 600s 

and 20% strain 

constant for 3000s 

Glypican, biglycan, fibromodulin 

aggrecan, laminin, and fibronectin  

Lumican expression  

Young bovine 

caudal NP cells  

1.5% 

alginate 

4 million 

cells/ml of 

gel 

None 0 days 12% compressive 

strain, at 0.1, 1, or 3 Hz 

for 2h/day for 7days. 

DNA   

Collagen type I and II  with increasing 

frequency 

sGAG  with increasing frequency 

Aggrecan  @ 3Hz 

(Korecki et al. 

2009) 

Mature bovine 

caudal NP cells  

DNA and aggrecan    

Collagen type I and II  with increasing 

frequency 

sGAG  with increasing frequency 
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 Table 2.8: Summary of studies evaluating chondrogenesis in mesenchymal stem cells in response to compressive loading  = increase,  = decrease,    = no 

significant decrease 

Cells 3D scaffold Cell seeding 

density 

Growth 

factors 

Preculture duration 

before loading 

Compression conditions Main outcomes References 

Porcine BM- 

MSCs 

2% agarose 15 million 

cells/ml of gel 

 0 days 10% strain, 0.5 Hz, for 1h/day, 

5 days/week for 42 days. 

Dynamic and equilibrium moduli   

sGAG and collagen ECM  and DNA     

Collagen and aggrecan genes  

(Thorpe et al. 

2008) 

Bovine BM- 

MSCs 

2% Agarose 

 

20 million 

cells/ml of gel 

 3 days   10% compressive strain at 

1Hz for 4 hours/day, 5 days a 

week for up to 6 weeks. 

Dynamic and equilibrium moduli   

sGAG and collagen ECM and DNA  

(Huang et al. 

2010) 

3 weeks Dynamic and equilibrium moduli   

sGAG, collagen ECM  and DNA   

Rabbit BM- 

MSCs 

2% agarose 10million 

cells/ml  of gel 

None 20-24 hours   10% strain at 1 Hz for 4h/day 

for up to 14 days. 

Collagen type II   more than TGF-free 

and TGF controls  

(Huang et al. 

2004) 

TGF-ß1 Collagen type II gene expression  

Equine BM- 

MSCs 

2% agarose 10 million 

cells/ml of gel 

None 0 days 10% strain at 0.3Hz on/off, 6h 

total/day or 12h/day for 3 

weeks. 

GAG  compared to unloaded TGF-free 

controls, but was 20-35% lower than 

TGF controls with the 12h/day duration. 

(Kisiday et al. 

2009) 

10ng/ml of 

TGF-ß1 

10% strain at 0.3Hz on/off, 

12h total/day for 3 weeks. 

GAG  

Porcine BM- 

MSCs 

Fibrin 15 million 

cells/ml  of gel 

10ng/ml of 

TGF-ß3 

0 days 10% strain, 1 Hz, for 3h/day, 7 

days/week for 42 days 

sGAG and collagen ECM   (Thorpe et al. 

2012) 
21 days sGAG and collagen ECM  

Human BM-

MSCs 

PEG-RGD 5 million 

cells/ml of gel 

5ng/ml of 

TGF-ß3 

24 hours 15% strain, 1 Hz, on/off 4h 

total/day for up to 14 days 

Aggrecan, collagen I, collagen II and 

SOX 9   

(Steinmetz, 

Bryant 2011) 
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2.3.4.3. Perfusion  

 

Avascularity of the disc is thought to play a major role in the onset of disc degeneration, as sufficient 

nutrient delivery and waste removal does not occur (Nachemson et al. 1970, Urban, Smith & Fairbank 

2004). Similarly, efficient mass transport is a challenge for engineered constructs. Mass transfer 

problems in large 3D constructs of a few mm thick explain the presence of a necrotic central region, 

surrounded by a dense layer of viable cells generally observed in 3D constructs cultured in static 

conditions (Wendt et al. 2009, Salehi-Nik et al. 2013). These constructs rely on the diffusion of 

nutrients and other metabolites from the surrounding culture medium to the tissue surfaces as well as 

to the interior cells within the tissue constructs. In addition, toxic metabolites have to be removed 

from the cells within the tissue to the medium. The loss of cell viability at the centre of the constructs 

indicates that diffusion alone does not provide sufficient mass transport within the constructs. This 

also causes new tissue to be formed mostly in the peripheral parts of the constructs and not in the 

centre (Salehi-Nik et al. 2013).  

  

Perfusion bioreactors can be used to force culture medium through the pores of porous 3D scaffolds, 

thereby enhancing mass transport and providing mechanical stimuli in the form of shear stress. In 

these systems, nutrients and other metabolites are supplied to the construct interior by both diffusion 

and convection by pressure gradients (Salehi-Nik et al. 2013). Internal mass transfer depends strongly 

on the scaffold's structure and porosity, the size of the construct, and the specific bioreactor design. 

The basic design of a perfusion bioreactor (figure 2.8) features media pumped from a media reservoir 

through a fluid flow circuit, via a pump. The cell-seeded construct(s) are placed in a growth chamber 

within the flow circuit. For successful perfusion, the fluid path must be confined so as to ensure the 

flow path is through the interconnected pores of the cell-seeded scaffold, rather than around the edges 

(Bancroft, Sikavitsas & Mikos 2003).  

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

     

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.8: Schematic representation of a basic flow-perfusion bioreactor system. Media is directly 

perfused through porous scaffold confined by a flow chamber.  

  

More advanced perfusion bioreactors incorporate sensing and/or process-control technologies to 

monitor and/or control specific culture media parameters (e.g. pH and O2 and CO2 concentrations) 

within close limits of the physiological environment during culture durations. For example one semi-

automated perfusion bioreactor using a real-time monitoring system for dissolved oxygen in culture 

medium has been used to culture MSCs to produce constructs with bone forming potential (Janssen et 

al. 2010). For oxygen measurements within 3D constructs during perfusion, a needle-type oxygen 

micro sensor (PreSens, Regensburg, Germany) with the capability of measuring the concentration of 

oxygen every 50µm has been used to match oxygen gradients within the gels to the measured cell 

viability. The sensor was mounted on a one-axis micromanipulator, which allowed precise positioning 

of the sensor in line with a small-diameter silk tube (~500µm) within 3D collagen hydrogels in the 

bioreactor (Lovett et al. 2010). The bioreactor system was used for perfusing human MSC-seeded 

collagen gels resulting in enhanced oxygen transport, cell viability and chondrogenesis within the 

gels. The oxygen tension within perfused 3D constructs can also be measured non-invasively by 

connecting in-line oxygen sensors (PreSens, Regensburg, Germany) in the flow-loop near the inlet 

and outlet of the constructs. This can help to determine whether the flow rate applied is sufficient. 

Using a bioreactor system with in-line oxygen sensors connected, successful long-term cultivation of 

human articular chondrocyte cells in foam scaffolds was achieved in normoxic oxygen levels 

(http://www.presens.de/). 

 

A perfusion bioreactor system that provides real-time measurements of pH, dissolved oxygen 

concentration, temperature, pressure, pulsation frequency and flow rate has also been previously 

  

Medium reservoir 

Flow chamber 

3D construct 

Pump 

http://www.presens.de/uploads/tx_presensapplicationnotes/APP_Perfusion_Culture_of_HAC_web_08.pdf
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described. In addition, the system automatically controls the pH, temperature and dissolved oxygen 

concentration levels to defined set points using a software program and gas exchange unit. The 

temperature of the culture medium is automatically controlled using a heating device and a circulating 

water bath. The perfusion pressure can be manually controlled using a clamp connected on the outlet 

tubing from the growth chamber. The system has been validated to support cell viability and 

proliferation of human umbilical vein endothelial cells (HUVEC) seeded in a fibrin gel (Chouinard et 

al. 2009). A more closed bioreactor design enables the seeding of porous ceramics, foams, or meshes 

with MSCs or chondrocytes followed by direct perfusion in a single-unit ensuring sterility and easier 

processing. In addition, oxygen concentrations are monitored by in-line oxygen sensors incorporated 

at the construct inlet and outlet (Wendt et al. 2003).  

 

Few studies have investigated the effects of perfusion culture on MSC chondrogenesis in 3D 

scaffolds. The results of the studies are summarised in table 2.9. In one study, culture medium 

supplemented with TGF-β1 was perfused through goat bone marrow MSC seeded starch-

polycaprolactone fibre mesh scaffolds at 0.1ml/min. Dynamic conditions resulted in the increase in 

collagen type II in comparison with the static conditions (Gonçalves et al. 2011). Similarly, an 

increased collagen type II deposition was observed from BM-MSCs seeded in 50:50 

chitosan:poly(butylene terephthalate adipate) meshes and perfused at 0.1ml/min in the presence of 

TGF-β3 (Alves da Silva et al. 2010). Furthermore, perfusion transport at a rate of 4µL/min has been 

shown to increase aggrecan, collagen type I and collagen type II expression in HMSCs seeded in 

collagen type I gels. In contrast, collagen type II expression and sGAG production were significantly 

decreased when a flow rate of 1.22ml/min was used to perfuse medium containing TGF-β2 through 

3D-printed porous scaffolds seeded with human BM-MSC pellets (Kock et al. 2013). The higher flow 

rate used in the study might explain the differential effects in comparison with the other three studies. 

This could be in agreement with the hypothesis that very low levels of shear stress up-regulate the 

synthesis of ECM specific to hyaline cartilage in chondrocyte-seeded constructs (Raimondi et al. 

2008, Raimondi et al. 2006). But even if the same flow rates were used, differences in the perfusion 

systems and porosity of the scaffolds used in the experiments would result in different shear stresses 

being applied to cells. Computational fluid dynamics (CFD) studies can provide a great insight into 

the quantitative relationship between shear stress fields imposed on the cells and matrix production to 

aid in the interpretation of results in bioreactor studies (Cioffi et al. 2008, Cioffi et al. 2006, Williams, 

Saini & Wick 2002). However, it is difficult to distinguish the individual effects of fluid flow induced 

shear stress or nutrient supply on tissue development. CFD modelling that predicts the flow velocity; 

shear stress (Boschetti et al. 2006, Voronov et al. 2010) and the concentrations of the biochemical 

factors (Cioffi et al. 2008) within the pores of 3D scaffolds could provide an insight into the 

individual effects of nutrient supply or shear stress on MSC-chondrogenesis to aid in the optimisation 

of individual bioreactor designs. 
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Table 2.9: Summary of studies evaluating chondrogenesis in mesenchymal stem cells in response to fluid flow perfusion  = increase,  = decrease,    = no 

significant decrease 

Cells Scaffold Seeding density Growth 

factors 

Preculture 

duration before 

perfusion 

Perfusion 

conditions 

Results Reference 

Goat bone 

marrow MSCs 

Fibre mesh scaffolds 

consisting of a blend 

30:70  starch : 

polycaprolactone  

5 million 

cells/scaffold 

10ng/ml of 

TGF-β1 

0 days 0.1ml/min/ fibre 

mesh for 28 days 

Cell viability   

DNA content  

Collagen  type II  

sGAG   

(Gonçalves et al. 

2011) 

Human bone 

marrow MSCs 

Fibre mesh scaffolds, 

consisting of a blend of 

50:50 chitosan: 

poly(butylene 

terephthalate adipate) 

1 million 

cells/scaffold 

1ng/ml of 

TGF-β3 

0 days 0.1ml/min/fibre 

mesh for 28 days 

DNA  

Aggrecan   

Collagen type II  

Collagen type I  

(Alves da Silva et al. 

2010) 

Human bone 

marrow MSCs 

Printed porous 3D 

polycaprolactone  

8 pellets/ 

scaffold      

(0.25 million 

cells/pellet) 

10ng/ml of 

TGF-β2 

7 days for pellets 

11 days for pellet- 

scaffold constructs 

1.22ml/min/scaffol

d for 10 days 

Collagen II  

Osteocalcin  

GAG   

(Kock et al. 2013) 

Human MSCs Rat-tail collagen type I 

hydrogels (2.5mg/ml) 

with a silk tube 

(~500µm inner 

diameter) embedded 

within.  

0.5 million/ml 

gel 

10ng/ml  of 

TGF-β1 

0 days 4 μL/min of the silk 

tube for 18 days 

Cell viability  

Aggrecan  

Collagen type II  

Collagen type I  

 

(Lovett et al. 2010) 
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2.3.4.4. Commercially available bioreactor systems 

 

There are many different bioreactor systems that are commercially available for culturing cell/scaffold 

constructs. Some of the systems are summarized in tables 2.10 and 2.11. All the systems presented in 

the tables are not specifically designed for NP tissue engineering, but could potentially be used for a 

NP application. For example, the TEB1000 flow bioreactor from EBERS Medical Technology 

(www.ebersmedical.com) is a disposable system that has the flexibility to work with an unlimited 

number of cells and biomaterials and offers the necessary tissue culture package for seeding the cells 

on the scaffolds and growing and developing tissue. The OstoeGen perfusion bioreactor is 

commercially available from Instron Tissue Growth Technologies (www.tissuegrowth.com). The 

bioreactor can accommodate up to 12 cylindrical samples with maximum sizes of 10mm diameter and 

10mm thickness. Each sample has an individual flow loop and a separate media reservoir while a 

shared media reservoir is used in a pressure-controlled system. The entire system is autoclavable and 

can fit in a standard incubator. The company offers optional features such as transducers, non-contact 

micrometers and pressure sensors to meet specific research requirements. Minucell and Minutissue 

GmbH (www.minucells.de) provides a perfusion culture container, which can hold six 3D samples 

measuring 13mm in diameter. The culture medium enters at the base of the container while waste 

medium is removed at an upper side of the container. The perfusion container is made out of a special 

polycarbonate, which can be autoclaved for multiple uses. Sigma-Aldrich (www.sigmaaldrich.com) 

provides a 3D perfusion bioreactor consisting of multiple independent, autoclavable polycarbonate 

chambers. Sigma Life Science and 3D Biotek jointly developed the bioreactor system. Using 3D ring 

inserts, scaffolds with various sizes ranging from 96-well to 6-well can be stacked in the bioreactor 

with an O-ring separating each scaffold. The system can also be used as a single-use bioreactor 

system. The BioDynamic 3DCulturePro from Bose ElectroForce (www.bose.com) is a portable, 

compact and lightweight perfusion bioreactor that can be used for a variety of sample shapes and 

sizes. The system is available as a single, standalone chamber or as a complete system with 6 

chambers. The system is autoclavable and can fit in standard incubators.  

 

Bose ElectroForce also provides a number of bioreactors for dynamic compression and 

characterization of cell-seeded scaffolds. Each sample can be mounted between 2 porous or 

nonporous compression platens in a chamber filled with culture medium. The BioDynamic 5100 

bioreactor system is designed as a single sample chamber, while the 5200 system can accommodate 4 

sample chambers. The systems can be used in a single axis (compression only) configuration or in a 

dual axis configuration with both compression and continuous recirculation of medium. The 

bioreactors are provided as complete systems with an individual media perfusion flow loop, load cell, 

displacement transducers, and pressure transducers for each sample chamber. Likewise, Instron 

Tissue Growth Technologies (www.tissuegrowth.com) has a series of standard mechanical 

http://www.ebersmedical.com/
http://www.tissuegrowth.com/
http://www.minucells.de/
http://www.sigmaaldrich.com/
http://www.bose.com/
http://www.tissuegrowth.com/
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compression bioreactor system configurations to choose from. For example, the CartiGen C10-1 is a 

standalone single sample bioreactor system, which can accommodate a sample of a maximum size of 

30 mm diameter and 5 mm thickness. The C10-12x system is designed as a multi-sample bioreactor 

system, which can accommodate up to 12 3D samples with a maximum size of 10mm diameter and 

5mm thickness. Optical grade windows on the bottom of the sample chamber enable the microscopic 

visualization of samples during the culturing process. The CartiGen C9-x bioreactor accommodates 

up to 9 samples per chamber, integrated with individual flow loops and a common reservoir. The 

system is capable of dynamic loading and perfusion of the same sample of a maximum size of 8mm 

diameter and 5mm thickness. The sample chambers are outfitted with one linear motor and one load 

cell. These bioreactors are compact and able fit in a standard incubator, and all components of the 

systems are autoclavable.  

 

The CartiGen HP bioreactor from Instron Tissue Growth Technologies (www.tissuegrowth.com) 

applies static or dynamic hydrostatic pressure to multiple samples in a standard incubator. The 

bioreactor accommodates different formats of tissue culture plastics allowing up to 192 samples to be 

tested simultaneously. Pressurizing the air inside in the incubator generates pressure in the chamber. 

The TC-3 bioreactor from EBERS Medical Technology (www.ebersmedical.com) can be utilized in 

both unconfined compression and hydrostatic pressure loading configurations. Up to 3 chambers can 

be actuated in parallel distributing the compression axial loading conditions between the chambers. 

The TC-3 actuation system presses a flexible membrane integrated in the bioreactor system, which in 

turn increases the hydrostatic pressure inside the chamber.  

 

http://www.tissuegrowth.com/
http://www.ebersmedical.com/
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Table 2.10: Key features of commercially available perfusion bioreactor systems for 3D tissue engineering 

 

 

 

Company Bioreactor Key features Website 

EBERS Medical 

Technology 

TEB1000  Disposable perfusion bioreactor system that is fully integrated in a CO2 

incubator 

 Supports unlimited cells and 3D scaffolds 

 Can be used for cell seeding on 3D scaffolds  

www.ebersmedical.com 

Instron Tissue Growth 

Technologies. 

OsteoGen  Perfusion bioreactor, which can accommodate up to 12 samples with a maximum 

size of 10mm diameter x 10mm thickness 

 Each sample has an independent media reservoir and flow loop 

 A shared media reservoir is used in the pressure-controlled system 

www.tissuegrowth.com 

Minucell and Minutissue 

GmbH 

Perfusion culture 

container 

 Perfusion culture container, which can hold six 3D samples measuring 13mm in 

diameter 

www.minucells.de  

Sigma Life Science 3D perfusion 

bioreactor 

 Single-use or autoclavable perfusion bioreactor with interchangeable 3D inserts 

to accommodate different sizes of scaffolds from 96-well to 6-well 

 4 chambers that hold up to 10 polycarbonate (PCL) scaffolds each  

www.sigmaaldrich.com 

Bose ElectroForce 3DCulturePro  Autoclavable perfusion bioreactor that can be used for a variety of sample shapes 

and sizes 

 Each system has up to 6 sample chambers that can be positioned in 3 orientations 

to suit particular research application 

www.bose.com 

http://www.ebersmedical.com/
http://www.tissuegrowth.com/
http://www.minucells.de/
http://www.sigmaaldrich.com/
http://www.bose.com/
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Table 2.11: Key features of commercially available compression, compression/perfusion, hydrostatic pressure or compression/hydrostatic pressure bioreactor 

systems for 3D tissue engineering 

Company Bioreactor Product configurations Website 

Bose ElectroForce BioDynamic 5100  Multi-axial system that can apply compression or compression and pulsatile perfusion to 

a single sample of various sizes and shapes 

 Load cells and pressure transducers are connected to individual samples 

www.bose.com 

Bose ElectroForce BioDynamic 5200  Multi-axial system that can apply compression or compression and pulsatile perfusion 

simultaneously to 4 samples of various sizes and shapes 

 Load cells and pressure transducers are connected to individual samples 

www.bose.com  

Instron Tissue Growth 

Technologies. 

CartiGen C10-1  Single sample compression loading bioreactor system 

 Accommodates sample with a maximum size of 30 mm diameter x 5 mm thick 

www.tissuegrowth.com  

Instron Tissue Growth 

Technologies. 

CartiGen C10-12x  Multi-sample bioreactor system for applying dynamic compression 

 Can hold up to 12 samples with a maximum size of 10mm diameter x 5mm thick 

 Samples inside the chamber can be viewed with a confocal microscope 

www.tissuegrowth.com 

Instron Tissue Growth 

Technologies 

CartiGen C9-x  Bioreactor system for applying compression and perfusion to 3D samples 

  Holds up to 9 samples with a maximum size of 8mm diameter x 5mm thick 

 One load cell is used over a set of 3D constructs 

www.tissuegrowth.com 

Instron Tissue Growth 

Technologies 

CartiGen HP  Applies hydrostatic pressure to cell-seeded constructs in various sizes of culture plates 

 Up to 192 samples can be simulated in parallel speeding up the research 

www.tissuegrowth.com 

EBERS Medical 

Technology 

TC-3  Bioreactor can apply both unconfined compression and hydrostatic pressure   

 Up to 3 samples can be tested simultaneously 

 The chambers containing samples can be removed from the loading frame for microscopy 

www.ebersmedical.com 

http://www.bose.com/
http://www.bose.com/
http://www.tissuegrowth.com/
http://www.tissuegrowth.com/
http://www.tissuegrowth.com/
http://www.tissuegrowth.com/
http://www.ebersmedical.com/
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2.4. Discussion 
 

Over the last 30 years, a number of investigators have been interested in developing a tissue 

engineering therapy for disc degeneration. But a number of challenges will have to be overcome 

before a tissue engineered construct is readily available in the clinic for the treatment of low back 

pain. First, a greater level of understanding of the nature of disc degeneration and its causes than what 

is currently available is needed for the development of an effective tissue engineering strategy. Also, 

the assumption that a repaired disc will automatically relieve low back pain is unfounded until tests 

are available to link disc degeneration and low back pain. Another fundamental problem is the 

identity and lineage of the NP cells which are similar yet different from articular chondrocytes. The 

characterisation model of the cell used to date that reflects a functional approach rather than strict cell 

characteristics suggests that there are still many questions to be answered about the definition of an 

NP cell (Erwin 2010).  

 

MSCs are the most promising cell source for future production of cartilaginous constructs. These cells 

can undergo in vitro chondrogenic differentiation in the presence of appropriate biochemical and 

mechanical stimuli. The advantage of using MSCs in nucleus pulposus tissue engineering studies over 

NP cells is that they can be obtained from many sources in a less invasive manner than NP cells. 

MSCs isolated from bone marrow are currently the most popular candidate stem cells with 

encouraging results. However, differentiation of MSCs into the chondrogenic phenotype is a complex 

process, which is largely donor dependent (Meyer et al. 2011, Kock et al. 2013). In addition, there is 

little known about the characteristic molecular profile of nucleus pulposus cells so it is not known 

whether MSCs can differentiate into the NP cell phenotype. There is currently no consensus on the 

best cell type or source due to the apparent limitations with all the options (Kandel, Roberts & Urban 

2008). 

 

Great efforts have been made in the development of biomimetic hydrogel scaffolds for the 3D culture 

of MSCs and NP cells, to provide cues to induce/enhance their differentiation into a cartilage-like 

phenotype.  Researchers have investigated the use of synthetic RGD to provide cell-matrix 

interactions, the incorporation of growth factors in the hydrogel matrix, the design of hydrogels with 

tunable degradation, as well as the replication of the mechanical properties of the native NP tissue. 

These research directions provide a variety of differentiation pathways for the cells.  Additionally, the 

encapsulation of cells within a 3D hydrogel allows for homogenous cell distribution in the hydrogel 

and injectable application where the polymerization can be initiated after injection, leading to the 

setting of the hydrogel after being injected into the defective tissue. Nevertheless, hydrogel constructs 
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formed using this approach usually have poor mechanical properties and the cells at the centre of the 

gels suffer from insufficient nutrition causing the loss of cell viability. Better techniques are required 

for the development of a more mechanically sound hydrogel with improved nutrient transport 

properties.  

 

As discussed in sections 2.3.4 and 2.3.2.4, the transmission of external forces acting on the cells is 

largely dependent upon the chemistry, porosity and mechanical properties of the scaffold on which the 

cells are seeded. Within the body, a synergy of the biochemical and biophysical cues are all presented 

together. However, during scaffold production, it is necessary to decouple the effects of each of these 

factors to examine the contribution of the individual cues. It has been shown that the combined effect 

of the factors is not the same as the sum of their individual effects (Flaim, Chien & Bhatia 2005). This 

observation stresses further the complexes due to the interplay between intrinsic and extrinsic signals 

involved in directing the differentiation of stem cells.  Further studies are required to elucidate the 

precise biochemical and biomechanical mechanisms by which intrinsic and extrinsic properties 

regulate stem cell fate. This will require extensive characterisation and better mimicry of the ECM 

microenvironments for optimal force production (Reilly, Engler 2010). A well-characterised 

mechanical environment of the native nucleus pulposus tissue is of most importance in order to 

provide benchmark information against which the outcomes of tissue engineering strategies can be 

judged. The variability in the methods used and shortcomings presented by each of the models makes 

it difficult to pinpoint concrete data. Nevertheless, the mechanics of tissue engineered NP or cartilage 

has rarely been investigated. Evaluation of the mechanical properties of tissue engineered constructs 

against the available mechanical properties of the native tissue should be encouraged as replacing the 

mechanical function is equally important as replacing the cellular function in matrix secretion for the 

treatment of disc degeneration.  

 

Compression, hydrostatic pressure and perfusion bioreactors have provided significant beneficial 

effects on gene expression and protein production of MSCs and NP cells, which has led to the 

enhancement of the mechanical properties in tissue-engineered constructs. Although physiologic 

magnitudes and intermittent loading frequencies clearly have beneficial cartilage properties of 

constructs, based on the varying results observed in the studies regarding effects of compression and 

hydrostatic pressure regimens, magnitude, frequency and loading duration must all be optimised for 

each bioreactor system and scaffold used. In perfusion systems, the flow rate and pressure in the 

microenvironment of cells is to a great extent responsible for the biological changes due to medium 

perfusion. To optimise a perfusion bioreactor, the extent of nutrient transport to the cells, the removal 

of toxic metabolites away from cells, and the fluid-induced shear stress effects on cells should be 

considered using computational fluid dynamics studies.  However, it is difficult to distinguish the 
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individual effects of fluid flow induced shear stress or nutrient supply and waste removal on tissue 

development. Thus, the optimum flow values for both shear stimulation and nutrition cannot be easily 

determined.  

 

In the context of MSC-based tissue engineering therapy for IVD repair, the results from previous 

studies demonstrate the importance of considering mechanical stimulation in combination with 

chondrogenic growth factors to regulate not only the initiation of chondrogenesis, but also the 

development of a stable repair tissue. However, conducting mechanical stimulation studies in the 

presence of chondrogenic growth factors presents additional issues, because the optimal time to begin 

loading during tissue development must be determined. Dynamic compression has been shown to 

inhibit chondrogenesis of MSCs if initiated at the beginning of growth factor mediated differentiation 

(Huang et al. 2010, Thorpe et al. 2008). When growth factor induced differentiation is allowed to 

occur prior to the application of dynamic compression, chondrogenic gene expression, matrix 

synthesis and/or construct mechanical properties are increased (Huang et al. 2010, Thorpe et al. 

2012). In contrast, it is apparent from tables 2.8 and 2.9 that beginning hydrostatic pressure and 

perfusion regimes at early time points in the presence of chondrogenic growth factors are optimal for 

MSC chondrogenesis. To fully realise the potential of mechanical and biochemical stimuli requires a 

more thorough understanding of how the factors will influence the phenotypic stability of the 

biosynthetic activities of MSCs during in vitro cultivation over long periods of time and following 

implantation into the acidic and low oxygen and low glucose IVD environment. 

 

One limitation of the majority of the current bioreactor systems for NP or cartilage tissue engineering 

is that they have been developed for the application of isolated mechanical stimulation conditions, i.e. 

either compression, hydrostatic or flow perfusion. These systems do not accurately represent the true 

in vivo situation, where a number of forces are acting simultaneously. The complexity of the load and 

motion patterns within the disc and cartilage makes it difficult to reproduce the exact in vivo situation. 

Only a few of the devices combine either compression and/or hydrostatic pressure with perfusion of 

medium (Schulz et al. 2008, Heiner, Martin 2004).  

 

The key function of tissue engineering bioreactors is to provide control over physical, chemical and 

biological parameters during tissue growth. This requires the development of bioreactors that combine 

physiologically relevant mechanical stimulation conditions with integrated sensing to enable real-time 

optimisation of the milieu and construct factors that affect tissue growth. Milieu factors can be 

physical (temperature, pressure, flow rate), chemical (pH, dissolved O2 and CO2, chemical 

contaminants, concentration of significant metabolites/catabolites such as glucose, lactate, or secreted 

proteins), and biological (sterility). In a similar way, construct parameters can be categorized into 
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physical (stiffness, strength, and permeability), chemical (composition of the scaffold and 

extracellular matrix components) and biological (cell number, concentration of intracellular proteins, 

cell viability) (Wendt et al. 2009). Currently, it is difficult to measure all of the parameters ‘real-time’ 

as the sensors need to be incorporated into the bioreactor design increasing the complexity and cost of 

the system. Bioreactor designs are now many and diverse and each design places constraints on the 

geometrical form of any sensing device. Improved control of the processing environment will enable 

the synthesis of more robust and reproducible tissue engineered products to improve acceptance and 

commercialization of the products.  

 

In order to successfully translate tissue-engineering bioreactors from bench to bedside, efficacy will 

need to be accompanied by an economically acceptable manufacturing process that complies with 

Good Manufacturing Practice (GMP) requirements. The clinical translation of the current processes is 

problematic due to the time- and labour intensive manual bench top cell and tissue culture protocols, 

which always hold the risk of contamination and variability, while providing limited scale-up 

opportunities. Closed and automated bioreactor designs can lead to safer and standardized production 

which will give the opportunity for scale-up and reduce costs at the same time. However, 

measurement and control of a tissue culture process using a closed bioreactor is challenging, as the 

sensors for measuring the milieu and construct parameters affecting tissue growth must be 

incorporated into the bioreactor system prior to sterilization. Ultimately, the sensors will have to be 

disposable since repeated calibration will be difficult to carry after the system is assembled (Wendt et 

al. 2009). 

 

Finally, the success of the multidisciplinary field of nucleus pulposus tissue engineering will depend 

on the corroborative efforts from all aspects involved. The understanding of the aetiology of disc 

degeneration, improved characterization of the NP cell, cell sourcing, scaffolding approach, growth-

stimulating and differentiation-stimulating signals and the design of safe, biologically effective and 

clinically-translatable bioreactor systems are all important aspects in achieving better functional 

outcomes of IVD tissue engineering. The field would benefit from close collaborations between 

biologists, engineers and biochemists in academia, industrial partners with expertise in commercial 

bioreactor and automation systems and clinicians to ensure that all aspects of are considered fully.  
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Chapter 3 Optimisation of the perfusion system of the tri-

axial bioreactor 

 

3.0.    Introduction 
 

The function of the perfusion system of the tri-axial bioreactor is to pump culture medium through the 

interconnected porous network of the cell-embedded 3D constructs within the spaces confined by the 

sample membranes to enhance the delivery of nutrients and other metabolites to and from the 3D 

tissue engineered constructs. In addition, shear stresses due to the flow of culture medium over the 3D 

construct or the cells are known to stimulate cell metabolism (Van Donkelaar, Schulz 2008).  

Pressure is the critical performance characteristic of the perfusion system. In order to move fluid 

through a 3D tissue engineered construct, a hydrostatic pressure difference is applied between two of 

its ends (Van Donkelaar, Schulz 2008). If the pressure is too low, the liquid is powerless and some 

parts across the cross section of the scaffolds remain unfilled. Conversely, overpressures can lead to 

leakages of culture medium through the mechanical joints of the bioreactor frame and the membranes 

that surround the circumferences of the 3D constructs.  

 

Proper functionality of the perfusion system has been limited by non-uniformity in the fluid flow 

environment and the inability to regulate pressures at low flow rates (0.5 ml/min or less) typically 

used for chondrogenic differentiation (Gonçalves et al. 2011, Alves da Silva et al. 2010, Schulz et al. 

2008, Mizuno et al. 2002, Raimondi et al. 2004, Xu et al. 2008b, Carver, Heath 1999, Xu et al. 2006). 

Flow variability can lead to undesirable differences in cellular growth rates in the three dimensional 

scaffolds due to differences in mass transport of oxygen, growth factors and other nutrients to the cells 

and the removal of waste products away from them during culture. This makes it difficult to compare 

results both within and between experiments. In addition, due to the instability of the pressure control 

system, tissue culture experiments were limited to only a few hours. 

 

Design of experiments (DOE) was used as a problem solving quality tool to model and optimise the 

performance of various types of bioreactors and bioprocesses (Aguilar-Zarate et al. 2014, Kumar et al. 

2014, Mitchell et al. 2014). Here, such tools were also applied to optimise the tri-axial bioreactor 

perfusion performance at low flow rates, reduce the load on the pump and to gain a better 

understanding of the perfusion process. The chapter is organised as follows: “The perfusion system of 

the tri-axial bioreactor” describes the major components of perfusion system of the tri-axial 

bioreactor. “Problem descriptions” explicitly describes the perfusion system problems. “Methodology 
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for design of experiments” presents the methodologies that have been used for the DOE and finally 

“Results and discussions” presents the results and discussions. 

 

 

3.1.    The perfusion system of the tri-axial bioreactor 

 

The perfusion system consisted of a medium reservoir bottle, 4-channel peristaltic pump, pulsatile 

flow unit, tubing of various sizes, tubing fittings, supply and return manifolds and back pressure 

regulating valves. The flow loop can be divided into two main segments: 

 

 The inlet tubing segment that passes through the pump head and circulates fluid from the 

reservoir bottle to the 3D samples through inlet ports on the bottom shafts of the bioreactor 

frame. 

 The return tubing segment that connects to the outlet ports on the top shafts and returns fluid 

back to the reservoir bottle to form a closed-loop flow system. 

 

Tube restriction using pinch valves on the return tubes provides control of the back pressures.  

A 0.2μm filter is attached to the third port of the fluid reservoir bottle for sterile air exchange between 

the surrounding atmosphere and the culture medium. Dissolved O2, pH, CO2 concentrations are 

monitored non-invasively using chemical sensors connected in the perfusion loop. Transducers to 

record the pressure of the four-inlet flow and four-outlet flow are connected at the back of the 

bioreactor frame. A specially designed incubator programmed at 37°C and 5% CO2 was made to 

house the fully connected bioreactor system. The fully connected perfusion flow system is depicted in 

figure 3.1. The main components of the system are described in the following sections.  
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Figure 3.1: Circuit diagram showing the arrangement of original fluid flow system 
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3.1.1. Pump 
 

The pump is the single most important component of the fluid flow process. The pump is needed to 

overcome the elevation difference and frictional forces in the fluid system and move the fluid at the 

desired flow rate. The type of pump used in the perfusion system is a 4-channel peristaltic pump 

(Ismatec, Ecoline VC-MS/CA 4-12). This pump uses 4 flexible tubing to run through rollers in the 

pump head. As the rollers turn, the tubes are compressed and relaxed drawing content in and 

propelling product away from the pump. Flow rate is determined by the size of the tubing and the 

speed of the rollers turning. Constant squeezing of the tubes degrades the tubes and if they are not 

changed, they can leak and damage the pump. The 3-stop tubing used (WZ-07624-32, Cole Parmer) 

gives two sections - when one section of tubing starts to degrade, a fresh section is ready to use.  

 

 

3.1.2. Back pressure-regulating valves 

 

Screw tubing clamps (EW-06833-00, Cole Parmer) were used as ‘pinch valves’ to provide 

incremental control of the back (upstream) pressures. The clamps provide an obstruction on each 

return tubing from the sample chamber so that the liquid within the sample membrane has sufficient 

pressure to perfuse the 3D constructs. When pressure is too high, the backpressure regulator is slightly 

opened releasing some pressure through the return line to the reservoir bottle. Pinch valves have the 

advantage that they may be free from contamination by the culture medium and that they may be 

attached to an existing tube line without the need to disconnect it from the system.  
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3.2.    Problem descriptions  

 

3.2.1.   Pressure instability 
 

The purpose of the back pressure-regulating valves is to control flow in order to adjust the back 

pressures. When the pressure is not properly regulated, the term ‘pressure instability’ is used. This 

phenomenon is illustrated in figure 3.2 below. The pressures at the inlet ports of the bioreactor frame: 

‘Press 1 In’, ‘Press 2 In’, ‘Press 3 In’ and ‘Press 4 In’ were controlled by manual pinch valves 

connected on the return tubes from the top of the sample chamber to the return manifold to reach the 

target pressure between 4-6kPa. Preliminary experiments revealed that these inlet pressures provide 

enough nutrition around the constructs without over pressurising the system to cause leakages around 

mechanical joints and through the membrane. The valves are initially fully open. After the flow is 

established on the return tubing, the operator starts to close the valves and monitors the inlet pressures 

at same time. When the inlet pressure rises above the target pressure, the operator opens the valve 

slightly to reduce the pressure.  

 

Looking at ‘Press 4 In’, for instance, the valve is tweaked without success as the pressure rises or falls 

past the target pressure. At ~1000 seconds, when the pressure falls to ~ 3.8kpa, the valve is not 

adjusted any farther. However, the pressure continues to rise slowly till it reaches 10kPa when the 

experiment is terminated. The other 3 channels could not be controlled as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Real-time pressure profiles showing pressure instability at the inlet ports of the bioreactor  
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3.2.2. Perfusion variations 
 

Another problem is variability in the ‘press drop’, the difference between inlet pressure and outlet 

pressure as shown in figures 3.3a and 3.3b. Each figure implies significant variation in fluid flow 

between the 4 different channels of the bioreactor as the flow system fills up. There is also significant 

variation in the measurements between the 2 replicate experiments.   

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.3a: Real-time pressure profiles showing the variation in the press drop between the 4 

channels of the bioreactor 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3b: Real-time pressure profiles showing the variation in the press drop between the 4 

channels of the bioreactor 
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3.3.    Methodology for design of experiments 

 

Design of experiments was used as a problem solving quality tool to troubleshoot the perfusion 

problems and to gain a better understanding of the perfusion process. The choice of DOE was a full 

factorial approach, which allows us to evaluate the interactions effects among the main factors.   

 

 

3.3.1.   DOE Aims and Objectives: 

 

The following aims and objectives were set for the DOE: 

 

1. To identify the main effects and/or interactions which affect the mean pressures during the 

process of filling the system 

2. To identify the main effects and/or interactions which influence the variability in the pressures 

during the process of filling the system 

3. To determine the optimal factor levels that minimises the load on pump and the variability in 

the perfusion process.  

4. To identify the main effects or interactions which contribute to the unstable control of the 

perfusion pressures 

 

Two separate DOE experiments were conducted. The first experiment was conducted for objectives 1, 

2 and 3. In the second experiment, the system was filled-up and the pinch valves applied on the return 

tubes to control the back pressures for objective 4.   
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3.3.2.   Identifying potential problem causes using the cause and effect 

diagram 
 

A cause and effect diagram is a tool that can be used to identify the potential causes of a problem. It is 

also known as the Ishikawa diagram or fishbone diagram (Antony 2003). The causes of the problem 

can be classified into six categories: environment, machines, materials, maintenance, measurement 

and methods.  

 

Based on scientific understanding or prior knowledge of the perfusion process, the cause and effect 

diagram is constructed as shown in figure 3.4. In the diagram, the process and design parameters, 

which can influence the perfusion pressures, are identified. The factors are grouped into five different 

categories that suit the tri-axial bioreactor situation: machines, system design, measurement, methods 

and environment. 
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Figure 3.4: Cause-and-effect analysis of the problems
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3.3.3. Screening of factors  
 

Four controllable design parameters were identified in the cause-effect diagram as potential 

improvement opportunities: elevation changes, length of the inlet tubing segment, return tubing 

configuration and platen assembly design. A 2 level full factorial DOE experiment including 

replications would have required 32 runs. In order to reduce the number of experimental runs, the first 

step was to conduct a screening experiment to separate out the factors that have the largest impact 

from the insignificant ones.  

 

The length of the inlet tubing segment was found to have no effect on the pressure responses (results 

not shown). This is simply because there is no pressure measurement system within this section. Even 

if pressure transducers were connected, the tubing and fittings would only have a minimal effect (see 

section 4.3) due to the low flow rate of 0.22 ml/min used in the study. This flow rate is within the 

range of flow rates commonly used in MSC chondrogenic differentiation studies. It is the lowest flow 

rate that could be generated by the peristaltic pump with tubing of inner diameter 1.3mm used in the 

pump head. If we remove the pulsatile unit from the inlet flow segment and place the pump on a 

support structure, all connecting tubing (0.6m tubes) and fittings from the pulsatile unit to the 

bioreactor frame can also be eliminated as shown in figure 3.11 and figure 3.12. The pulsatile unit 

was previously used to induce a pulsation pattern in the linear flow pattern supplied by gear pumps. 

The pulsatile flow unit is not useful with the peristaltic pump, which produces a pulsation pattern of 

its own. By removing the pulsatile unit from the flow loop, we can also reduce the friction head and 

cost of materials.   

 

 

3.3.4.   DOE construction 

 

A full factorial DOE was conducted to find the settings of the platen design (A), the configuration of 

the return tubing segments between the outlet ports of the bioreactor and the return manifold (B) and 

the elevation difference between the fluid surface level in the reservoir and the outlet ports of the 

bioreactor (C) that optimise the perfusion process. The three factors along with their low (-1) and high 

(+1) settings are listed in Table 3.1.  
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Table 3.1: List of design parameters and their ranges for the DOE experiment 

 

Process 

parameters 

Label Units Low level (-1) High level (+1) 

Porous platen 

design 

A n/a Sintered (figure 

3.5) 

Laser hole-drilled (figure 3.7) 

Return tubing 

configuration 

B n/a 0.71m long, 1.6 

mm inner 

diameter (ID) 

(figure 3.10) 

 0.12m long, 3.1mm ID tube 

between 0.335m and 0.20m 

long 1.6mm ID tube segments 

(figure 3.8) 

Elevation 

difference 

C Meters (m) 0.6 m (figure 

3.11) 

1 m (see figure 3.12) 

The cells with the settings for the original system are shaded grey 

 

 

3.3.4.1. Platen assembly design 

 

The exchange of culture medium between the bottom and top of the 3D constructs largely depends on 

the platen assembly. The original platen assembly consists of a porous platen and a sleeve in which 

the porous platen is mounted (figure 3.5). The porous part was manufactured by axial compaction and 

sintering. The process involves the exertion of high pressures upon metal powder in a die cavity, 

simultaneously from top and bottom followed by sintering under controlled atmosphere at a 

temperature below the melting point of the metal but still sufficient to bond the particles together 

(www.pickpm.com/designcenter/porous.pdf). 

 

 

  

 

 

 

 

 

 

 

Figure 3.5: Sintered porous platen assembly showing (A) sintered porous platen, and (B) porous 

platen mounted in a sleeve. 
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Figure 3.6 shows microscopic images of the top sections of some of the sintered platens. A certain 

degree of non-uniformity of pore shape, size and distribution can be observed, which means that the 

fluid flow is not evenly distributed across the cross section of the construct. 

 

 

 

Figure 3.6: Microscopic images showing non-uniformity in 3 sintered porous platen structures 

 

Another issue with some platen assemblies is that, the fluid path is not confined to the boundaries of 

the porous platens to guarantee that the fluid passes through the samples and not through the small 

gaps between the edges of the platens and the sleeves.  

 

New platens with uniform porous structures were manufactured by laser hole drilling in stainless steel 

sheet metal. The drilling process is limited by the aspect ratio of the depth of the hole to its diameter. 

For the optical set-up used to drill the holes in the platens, the highest attainable aspect ratio was 

about 3:1. The smallest diameter of holes that could be drilled in 1mm thick steel was 300μm (figure 

3.7A). The porous structures were welded into the sleeves, thereby confining fluid flow to the porous 

platens (figure 3.7B). It was believed that the new platens would greatly reduce variation in the 

perfusion process. 
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Figure 3.7: Laser hole-drilled porous platen assembly showing (A) laser hole-drilled porous platen 

(10mm diameter and 1mm thickness, 300µm holes), and (B) porous platen welded into the sleeve. 

 

 

3.3.4.2. Return tubing configuration 

 

Poor tubing layouts can cause poor fluid flow profiles and increase the load on pump (Massey 2010). 

Examples of poor tubing configurations in the tri-axial bioreactor flow system include expansions and 

contractions on the 4 return lines from between the bioreactor and return manifold as illustrated in the 

figure 3.8 below. These tube configurations can result in the formation of air bubbles, which causes 

turbulence and erratic pressure profiles within the tubing (see figure 3.9). Applying of a control valve 

within a region of turbulence can cause pressure instability (Massey 2010). It is hypothesized that 

using 0.71 mm long tubes (see figure 3.10) with one inner diameter can improve the controllability of 

the flow pressures.  

 

  

 

 

 

  

 

Figure 3.8: Configuration of the 0.71m long return tubes in figure 3.1; smaller tubing inner diameter 

(ID) = 1.6 mm and larger tubing ID = 3.1 mm. 
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Figure 3.9: Air bubbles formed at corners of tubing due to expansion (A) and contraction (B)  

 

 

 

 

  

 

 

 

Figure 3.10: Configuration of the return tubing without expansion or contraction; ID = 1.6 mm. 

 

 

3.3.4.3. Elevation changes 

 

When the system is being filled, the fluid flows through multiple changes in elevation. The pressure 

of a fluid at a point in a flow system changes with the elevation of the fluid. As the fluid rises, there is 

an increased pressure and as it falls there is an equivalent loss of pressure for the same change in 

elevation (Massey 2010). In theory, decreasing the elevation distance between the media bottle and 

the bioreactor outlet ports as shown in figure 3.11 can reduce the load on the pump or the pump head. 
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3.3.5. Experiment set ups and conditions 
 

The experiment layouts for the DOE runs are shown in figures 3.11 and 3.12.  Before the inlet and 

return tubing segments were attached to the bioreactor frame, the sections were connected together 

using the male and female quick disconnect fittings attached at the end of the tubes and filled with 

water. The pump was then put on standby and the tubing segments were connected to their respective 

ports on the bioreactor frame. Once the complete system was assembled, the pump was restarted to 

fill it up. The system was drained in preparation for the next DOE run.  

 

The filling up procedure described above was repeated for a second DOE followed by the application 

of manual pinch valves on the return flow segments between the outlet ports of the bioreactor and the 

return manifold to control the bioreactor inlet pressures between prescribed limits of 4–6kPa.  All 

experiments were conducted at a mass flow rate of 0.22 ml/min at a room temperature of 20°C. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11: Circuit diagram showing flow configuration with the low-level (-1) elevation difference 

of 0.6m. 
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Figure 3.12: Circuit diagram showing flow configuration with the high-level (+1) elevation 

difference of 1m. 

 
 
 

3.3.6. Repeats and Replicates 
 

There were four repeat measurements of the responses at each experimental condition (i.e. the 

measurements from the 4 bioreactor channels). This allows for the amount of variation within each 

experiment run to be estimated.  

 

For objectives 1, 2 and 3, each trial condition was replicated twice to increase the precision of the 

response variables.  An important requirement for replication is that the order of the runs 

is randomized. If the run order is not randomized, the DOE may indicate factor effects that are really 

due to uncontrolled variables (e.g. aeration) that just happened to change at the same time (Antony 

2003). Therefore, the order of the experiment runs was randomized to remove the systematic error. 

Table 3.2 below shows the design layout for the experiment. 
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Table 3.2: A 2
3
 full factorial design of experiment replicated twice for objectives 1, 2 and 3 

Run order A B C 

1 1 1 -1 

2 1 -1 -1 

3 -1 -1 1 

4 1 -1 1 

5 1 1 -1 

6 -1 1 1 

7 -1 -1 -1 

8 -1 -1 -1 

9 -1 -1 1 

10 1 -1 -1 

11 1 -1 1 

12 -1 1 -1 

13 1 1 1 

14 -1 1 -1 

15 1 1 1 

16 -1 1 1 

 

 

The trials runs were replicated once for objective 4. Table 3.3 shows the design layout for the 

experiment. 

 

Table 3.3: Design layout for the 2
3 
full factorial design of experiment for objective 4 

Run order A B C 

1 -1 -1 1 

2 -1 1 1 

3 -1 -1 -1 

4 -1 1 -1 

5 1 1 -1 

6 1 -1 -1 

7 1 -1 1 

8 1 1 1 
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3.3.7. Statistical analysis of responses 

 

Statistical analysis of the responses was performed using the following analytical tools in Minitab 

software: 

 

 Normal probability plots of factor effects (NPPs) were constructed to identify the design 

parameters and interaction effects that are most influential on the mean responses and process 

variability. In the graphs, the standardised main and interaction effects are plotted against 

cumulative probability (per cent). The standardized effects are the t values shown in the 

session window in Minitab software (data in the session window is not shown in this thesis). 

The t values are calculated by dividing each regression coefficient value (Coef) by its 

standard error (SE Coef). The t-distribution shows, which mean effects and interactions, are 

statistically significant or insignificant (http://support.minitab.com/). The data are plotted 

against a theoretical normal distribution so that the points should form an approximate 

straight line if the data are normally distributed. These are noise factors, as they do not have 

any pattern. Significant effects will be large in magnitude and do not fall on the straight line 

established by the inert factors. The significant terms on an NPP plot are represented by a red 

square symbol while the insignificant terms are represented by a black symbol. The farther 

away a point is from the straight line, the greater its significance (Antony 2003). 

 

 Main effect plots were constructed to compare the relative strength of the effects of the three 

design parameters. Each point represents the average of the all the values of the response of 

the relevant factor either at the high or low level. The term ‘effect’ is defined as the difference 

in the average responses on the high level minus the average at the low level for each factor. 

A straight line is used to connect the means of a factor. A steeper slope implies a greater 

significance of that factor.  

 

 Interaction plots were constructed to determine the strength of the significant interaction 

effects identified in the NPPs.  An interaction plot plots the mean response of a factor at each 

level with the level of a second factor held constant.  

 

 

 

 

 

 

http://support.minitab.com/en-us/minitab/17/topic-library/modeling-statistics/doe/factorial-design-plots/what-is-a-pareto-chart-of-effects/
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3.4.   Results and Discussion 
 

Design of Experiments was employed to find the settings of the design parameters that optimise the 

perfusion process of the tri-axial bioreactor. 3 factors were investigated: platen design (A), return 

tubing configuration (B) and the elevation difference (C). Each design parameter was kept at 2-levels 

which are shown in table 3.1. The optimum settings of the design parameters are the levels that not 

only minimise the load on the pump, but also reduce the variability in the perfusion process and 

improve the controllability of the back pressures. The best factor levels that minimise the load on the 

pump and variation were investigated during the filling up process of the system. Another experiment 

was conducted to investigate the effects of the design parameters on the pressure control process. This 

was done by filling up the system followed by the application of manual pinch valves on the return 

flow lines to regulate the back pressures within the prescribed limits of 4-6kPa. If the pressures lie 

within 4–6kPa, the system is called stable. Otherwise, the system is called unstable. 

 

 

3.4.1   Filling up process 
 

 

The procedure for setting up the system is described in section 3.3.5. Figure 3.13 shows the typical 

real-time pressure profile captured by the bioreactor inlet port pressure transducers when fluid is 

being pumped from the inlet ports of the bioreactor to the end flow point at the reservoir.  

Once the fluid-filled tubing segments are attached to the bioreactor frame and the pump is started, 

there is an initial pressure rise to displace the fluid in the return flow segment. After the return flow 

segment is cleared, the inlet pressures drop and steadily increase again until fluid is pushed to the top 

of the flow loop at the outlet ports of the bioreactor. 

 

Increased elevation increases the amount of ‘hydrostatic pressure’ in the liquid contained in the 

sample chamber. Hydrostatic pressure can be defined as the force that fluid molecules exert on each 

other because of the earth’s gravitational pull. Hydrostatic pressure in a fluid can be calculated from 

equation 3.1 below. 

 

HP = ρgz     (3.1) 

                                                                                           

where:  

 

HP = Hydrostatic pressure (Pa) 

z = depth at which the pressure is measured (m) 
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ρ = density of the liquid (1000 kg/m
3
)  

g = the gravitational constant (9.81 m/s
2
) 

 

As the fluid flows downwards through the return flow segment, there is a progressive drop in the inlet 

pressures. When the system is filled, equilibrium is reached between the pump’s ability to push the 

fluid through the system and the resistance that the system offers, at this equilibrium a steady pulsatile 

pressure profile is established. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3.13: Typical real-time pressure profile captured when fluid is pumped between the bioreactor 

inlet ports and the end flow point at the reservoir.  
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3.4.1.1. Responses of interest 

 

The responses of interest for the DOE were:  

 

 The increase in inlet pressure as the fluid moves upwards from the inlet ports to the outlet 

ports of the bioreactor (Pressure gain)  

 

 The pressure difference between the inlet and outlet ports of the bioreactor (Pressure drop) 

when the system is filled 

 

 The reduction in inlet pressure as the fluid moves downwards through the return tubing back 

to the reservoir (Pressure loss)  

 

 

Pressure gain and pressure loss were obtained from the real-time pressure profiles generated by the 4 

inlet pressure transducers attached to the back of the bottom shafts of the bioreactor frame. The 

pressure drop was automatically generated in the software program.  

 

 

3.4.1.2. Experiment results 

 

In order to determine the factors and interactions, which influence the mean responses and variability, 

coded design matrices with the measured pressure responses, the mean values of the responses, and 

standard deviations (SD) were first constructed in Minitab software. These are shown in tables 3.4 – 

3.6 below.  
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Table 3.4: Pressure increase at the bioreactor inlet ports as the fluid moves upwards through the 

bioreactor frame 

Run 

order 

A B C Press 

gain 

1 

(kPa) 

Press 

gain 

2 

(kPa) 

Press 

gain 

3 

(kPa) 

Press 

gain 

4 

(kPa) 

Mean 

Press 

gain 

(kPa) 

SD of 

responses 

(kPa) 

1 1 1 -1 6.1 5.6 6.5 6.2 6.1 0.374 

2 1 -1 -1 5.3 4.9 5.4 6 5.4 0.455 

3 -1 -1 1 8.1 9.3 7.6 8.7 8.425 0.737 

4 1 -1 1 8.8 8.3 8.2 8.3 8.4 0.271 

5 1 1 -1 5.7 5.6 5.7 5.6 5.65 0.058 

6 -1 1 1 9.3 8.5 6.1 6.7 7.65 1.5 

7 -1 -1 -1 7.7 6.6 4 6.1 6.1 1.551 

8 -1 -1 -1 5.2 5.8 5 5.7 5.425 0.386 

9 -1 -1 1 9.4 8.2 5.8 6.2 7.4 1.697 

10 1 -1 -1 5.4 5.5 5.1 5.8 5.45 0.289 

11 1 -1 1 8.5 8.5 8.3 9 8.575 0.299 

12 -1 1 -1 5.9 6 4 5.7 5.4 0.942 

13 1 1 1 8 8 7.2 9.1 8.075 0.780 

14 -1 1 -1 8 7.1 4 3.2 5.575 2.332 

15 1 1 1 8.2 7.7 7.3 7.8 7.75 0.370 

16 -1 1 1 7.4 8.4 6.5 5.6 6.975 1.201 
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Table 3.5: Pressure drop between the inlet and outlet ports of the bioreactor 

 

 

 

 

 

 

 

 

 

 

 

 

 

Run 

Order 

A B C Press 

drop 

1 

(kPa) 

Press 

drop 

2 

(kPa) 

Press 

drop 

3 

(kPa) 

Press 

drop 

4 

(kPa) 

Mean 

press 

drop 

(kPa) 

SD of 

responses 

(kPa) 

1 1 1 -1 2.5 2.1 2.4 2.6 2.4 0.216 

2 1 -1 -1 2.5 2.2 2.6 2.5 2.45 0.173 

3 -1 -1 1 2.2 1.6 -0.5 1.3 1.15 1.162 

4 1 -1 1 2.2 2.2 2.4 2.5 2.325 0.15 

5 1 1 -1 2.5 2.4 2.4 2.5 2.45 0.058 

6 -1 1 1 2.8 2.5 -0.3 0.5 1.375 1.513 

7 -1 -1 -1 3.9 2.2 0 2 2.025 1.597 

8 -1 -1 -1 2 2.1 -0.8 0.9 1.05 1.348 

9 -1 -1 1 0.9 1.8 -1.5 0.5 0.425 1.394 

10 1 -1 -1 2.5 2.3 2.5 2.4 2.425 0.096 

11 1 -1 1 2.5 2.1 2.6 2.5 2.425 0.222 

12 -1 1 -1 1.2 2.9 -0.1 2.2 1.55 1.303 

13 1 1 1 2.6 2.5 1.9 2.5 2.375 0.320 

14 -1 1 -1 3 2.5 -0.6 -0.2 1.175 1.837 

15 1 1 1 2.5 2.1 2 2.4 2.25 0.238 

16 -1 1 1 2.2 2.2 -1.1 -0.8 0.625 1.823 
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Table 3.6: Pressure decrease at the bioreactor inlet ports as the fluid moves downwards through the 

return tubing segment 

  

 

 

 

 

 

 

 

 

 

 

 

Run 

Order 

A B C Press 

loss 1 

(kPa) 

Press 

loss 2 

(kPa) 

Press 

loss 3 

(kPa) 

Press 

loss 4 

(kPa) 

Mean 

Press 

loss 

(kPa) 

SD of 

responses 

(kPa) 

1 1 1 -1 4.2 4.1 4.2 4.2 4.175 0.05 

2 1 -1 -1 3.7 3.7 3.9 3.7 3.75 0.1 

3 -1 -1 1 6.2 8.2 8.1 7.4 7.475 0.922 

4 1 -1 1 8.5 8.4 8.5 8.3 8.425 0.096 

5 1 1 -1 4.2 4.3 4.2 3.8 4.125 0.222 

6 -1 1 1 7.2 6.9 7.8 6.3 7.05 0.624 

7 -1 -1 -1 4 4.2 4 4.3 4.125 0.15 

8 -1 -1 -1 3.5 3.7 4.1 4.4 3.925 0.403 

9 -1 -1 1 8.6 7.5 7.3 6.2 7.4 0.983 

10 1 -1 -1 4 4.2 4.5 4.2 4.225 0.206 

11 1 -1 1 7.8 8.2 7.6 7.7 7.825 0.263 

12 -1 1 -1 4.1 3.5 3 2.9 3.375 0.55 

13 1 1 1 8.3 8.1 8.5 7.8 8.175 0.299 

14 -1 1 -1 4 3.4 3 2.7 3.275 0.562 

15 1 1 1 8.2 8.2 7.9 8 8.075 0.15 

16 -1 1 1 6.1 7.1 7.8 7.6 7.15 0.760 
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3.4.1.3. Determination of the main/interaction effects that affect the mean pressure 

values  

 

The mean values for pressure gain at each experiment run are shown in table 3.4. Figure 3.14 shows 

the normal probability plot of standardized effects for the mean values in the second last column of 

table 3.4. The points in black are just random noise as they line up on the NPP. Point C, the elevation 

difference falls away from the straight line, which implies that it is statistically significant at 5 per 

cent significance level. In other words, the elevation difference has a large impact on the mean 

pressure gain, while the platen design and tubing configuration have very little impact. The main 

effects plot presented in figure 3.15 further supports this finding. It can be seen in plot that the 

pressure gain is minimum when the elevation difference is kept at a low level (0.6 m).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Normal probability plot of standardized effects affecting pressure gain 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Main effects plot for pressure gain 
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The mean values for the pressure drop between the inlet and outlet ports of the bioreactor at each 

experiment run are displayed in table 3.5. Analysis of the mean values showed that the platen design 

(A) has a significant influence at 5 per cent significance level (figure 3.16). The main effects plot for 

the mean pressure drop is presented in figure 3.17, which also shows that the main effects of the 

platen design are important. It can be seen in figure 3.17 that the pressure drop is minimum when the 

sintered platens (-1) are used in the bioreactor. The mean pressure drop is about 1.2kPa for these 

platens and 2.4kPa for the laser hole-drilled platens (1).  

 

The pressure drop can also be determined mathematically using equation 3.1.The vertical distance 

measured between the inlet and outlet ports of the bioreactor is about 0.25 m. Substituting this value 

into the equation 3.1, we calculate the pressure drop as 2.45kPa. Since the value shown in the main 

effects plot for the sintered platens is less than the pressure drop obtained from equation 3.1, it shows 

that the sintered platens highly restrict flow in the sample chamber. In contrast, the experimentally 

determined mean pressure drop for the laser hole-drilled platens is comparable with the 

mathematically derived pressure drop.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Normal probability plot of standardized effects affecting pressure drop 
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Figure 3.17: Main effects plot for pressure drop 

 

 

The average values for pressure loss on the return tubing are shown in table 3.6. The effects of platen 

design (A), the elevation difference (C) and the interaction between the platen design and the return 

tubing configuration (AB) have a significant effect (figure 3.18) at 5 percent significance level, i.e. p 

< 0.05. Ignoring the p value and the NPP devised in minitab software, I would have concluded that 

factor C was the only active factor - i.e. the only factor that was definitely having an effect on the 

response.  The effects for factors A and the interaction AB certainly seem to be in line with the black 

points on the plot. 

 

In the main effects plot (figure 3.19), it can be seen that pressure loss through the return tubing is 

minimum when the elevation difference is kept at a low level (0.6m). The vertical distance between 

the outlet ports of the bioreactor and the end flow point is 0.375m. Substituting this into equation 3.1, 

we get a pressure loss of 3.7kPa. At the high-level elevation difference (1m), the vertical distance 

between the outlet ports of the bioreactor and the end flow point is 0.775m. This equates to a pressure 

loss of 7.6kPa. The results obtained experimentally (figure 3.19) are in agreement with the 

mathematically derived values.  

 

In order to analyse the interaction between the platen design and the return tubing configuration, it 

was decided to construct an interaction graph (figure 3.20). The plot shows that the sintered platen 

design (-1) and the return tubing configuration with an expansion and contraction (1) yield the lowest 

pressure loss. 
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Figure 3.18: Normal probability plot of standardized effects affecting pressure loss 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: Main effects plot for pressure loss 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Mean pressure loss interaction plot for platen design and return tubing configuration  
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3.4.1.4. Determination of the main/interaction effects that affect the variability in the 

perfusion process  

 

In order to analyse the factors affecting variability in the perfusion process, the standard deviations 

(SD) of the responses in tables 3.4- 3.6 were computed using Minitab’s PreProcess response 

command. The SD values are shown in the last columns of the tables. Analysis of the ln(SDs) in 

normal probability plots indicated that only factor A (platen design) has a significant influence on the 

variation in the pressure gain, pressure drop and pressure loss at 5 per cent significance level (figures 

3.21, figure 3.23 and figure 3.25 respectively). Further analysis of factor A in the main effects plots 

(figure 3.22, figure 3.24 and figure 3.26) showed that variation is maximised when the sintered 

platens (-1) are used in the sample chamber. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Normal plot of effects affecting variability in pressure gain 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Main effects plot for In(SD) of pressure gain 



83 
 
 

420-2-4-6-8-10-12

99

95

90

80

70

60

50

40

30

20

10

5

1

Standardized Effect

P
e

rc
e

n
t

A 

1-1

0.5

0.0

-0.5

-1.0

-1.5

-2.0

Platen

ln
(S

D
)

3210-1-2-3-4-5

99

95

90

80

70

60

50

40

30

20

10

5

1

Standardized Effect

P
e

rc
e

n
t

A 

 

 

 

 

 

 

  

 

 

 

 

Figure 3.23: Normal plot of effects affecting variability in pressure drop 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: Main effects plot for In(SD) of pressure drop  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: Normal plot of standardized effects affecting variability in pressure loss 
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Figure 3.26: Main effects plot for In(SD) of pressure loss 

 

 

 

3.4.1.5. Determination of the optimal parameter settings that minimise the load 

on the pump and process variability 

 

Having identified the design parameters which influence the mean pressure responses and variability, 

the next stage was to determine the optimal settings of the design parameters that will not only reduce 

the load on the pump, but also reduce variability in the pressure drop in the sample chamber for more 

repeatable and reproducible biological results.  

 

Fluid flows through multiple changes in elevation between the inlet ports of the bioreactor and the end 

flow point at the reservoir. As the fluid rises through the bioreactor frame, the pump increases the 

fluid pressure to overcome the elevation increase and frictional forces in the bioreactor frame and 

clear the fluid in the pre-filled return flow segment. The fluid loses its elevation energy as it 

propagates through the return flow segment to the reservoir.  

 

The design parameter settings, which minimise the load on the pump, are the levels of the significant 

parameters, which minimise the pressure increase during fluid elevation between the inlet and outlet 

ports of the bioreactor (i.e. pressure gain). This information was derived from the main effects plot 

shown in figure 3.15. The pressure increase is minimised when the elevation difference (C) is kept at 

a low level (-1), i.e. 0.6m.  
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The best factor settings that minimise the variability in the process are the levels of the significant 

factors that minimise the variability in the pressure drop between the inlet and outlet ports of the 

bioreactor. As indicated in figure 3.23, only the platen design (A) had a significant influence on the 

variation in the pressure drop. Analysis of factor A in the main effects plot (figure 3.24) showed that 

variation is maximised when the sintered platens (-1) are used in the sample chamber. This is because 

the sintered platens have non-uniform porous structures. Fluids always tend to follow the path of least 

resistance (Bancroft, Sikavitsas & Mikos 2003), which leads to the problem of preferential flow 

through the platens. Some regions in the platen were perfused, and others were left un-perfused. In 

addition, due to the high flow resistance through the platens, most of the fluid can escape through 

small gaps between the porous platens and the sleeves in which the platens are mounted leaving the 

majority of the porous structures un-hydrated. In contrast, the laser hole-drilled platens (1) have 

uniform porous designs with low flow resistance. The porous structures were welded into the sleeves, 

thereby confining fluid flow to the porous platens. The laser hole-drilled design is the optimum platen 

design as it minimises variability in the pressure drop between the inlet and outlet ports of the 

bioreactor. 

 

Since the return tubing configuration (B) does not appear to influence either the pressure gain or 

process variability, it is set at its economic level. At the high level (1) of B, the larger diameter tubing 

connected between the two identical smaller diameter tubes costs more and takes up more culture 

medium.  Therefore, it is more economical to use one 1.6mm ID tubing segment between the outlets 

of the bioreactor and the return manifold. 

 

There is no trade-off in the selection of the factor levels to minimise the load on the pump and 

variability in the perfusion process. Therefore, the final optimum condition is given by:  

 

Platen design (A):  High level (laser hole-drilled platens)  

 

Return tubing configuration (B):  Low level (1.6mm ID tubing)  

 

Elevation difference (C):  Low level (0.6m) 
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3.4.2 Determination of the root cause(s) of pressure instability 

 

Pressure instability (see figure 3.2) is characterised by the slow increase of pressure, which can 

eventually exceed the hydrostatic pressure that the system can tolerate leading to leakages. Usually, 

leakages first occur around the threaded connections to the inlet and outlet ports of the bioreactor 

frame.  Further increase in pressure causes a leakage through the membrane that encloses the over-

pressurized sample until there is no more fluid in the reservoir. A problem with one bioreactor 

channel creates problems in the other three channels, as less and less fluid is available in the reservoir.  

 

The results of the DOE were inconsistent with preliminary experiments. In particular, it was highly 

anticipated that pressure instability would occur in the original flow configuration as was previously 

observed. However, in contrast to the previous findings, pressures were stabilised at this condition.  

This inconsistency may be due to variation in machine set up, operator error or other noise factors. 

The pressure responses were stabilised at the optimum condition that minimises the load on the pump 

and the variation in the perfusion process. This set-up was selected for further analysis in a follow-up 

experiment conducted over a 19-hour period. Pressures were initially stable after tweaking the pinch 

valves to find suitable closed positions of the valves to control the inlet pressures within the 

prescribed limits (see figure 3.27). However, overnight, an upset condition of the system caused 

‘Press 2 In’ (figure 3.28) to rise well beyond the prescribed limits. However, it appears that the cause 

of the increased pressure was cleared and the system remained marginally stable until the operator 

opened the pinch valves the next morning. 

 

The results of the follow up experiment show that pressure instability is caused by noise factor(s) that 

cannot be controlled. The most likely cause is trapped air pockets, which can create blockages in low-

velocity systems because the flow of the liquid is not capable of carrying the air (www.dorot.com/) – 

a low flow rate of 0.22ml/min was used in this study. If an air pocket is big enough to fill the diameter 

of the tubing or fitting, it will effectively create a total stoppage of flow by preventing the liquid from 

flowing over it (http://www.syntecpe.com/pdf/AirinPipelines.pdf). During this condition, the pressure 

of the liquid before the blockage rises and could dispel the air pocket if it is sufficient. The release of 

the air provides a pressure relief. However, if the pressure required to dispel the air pocket is beyond 

what the system can tolerate, then flow leakages occur around the system. 

 

There are two potential sources of air in the tri-axial bioreactor perfusion system. The first source is 

entrapment of air during filling, either initially or when the reservoir is changed, or the flow system is 

drained. When the flow system is empty, it is actually filled with air. While the system is filling, air 

pockets may become trapped at areas of high elevation (www.dorot.com/), for example at the outlet 

http://www.dorot.com/files/d4b4846948cbba80f3d04b255fac8596.pdf
http://www.syntecpe.com/pdf/AirinPipelines.pdf
http://www.dorot.com/files/d4b4846948cbba80f3d04b255fac8596.pdf
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ports of the bioreactor. The second source of air comes from the release of dissolved air in the 

perfused liquid, due to changes in pressure (Massey 2010). Results have shown that the culture 

medium pumped through the tri-axial bioreactor contains between 5.8 and 6.7 per cent by volume of 

dissolved O2 and between 0.6 and 3 per cent of dissolved CO2 (see figure 7.9) during the 5-day culture 

experiment presented in chapter 7. The air can come out of solution usually as a result of the sudden 

pressure drop as the fluid propagates downwards through the return flow segments during the filling 

up process and due to sudden release of the control valves. The air pockets tend to accumulate in the 

flow lines connecting to the bioreactor outlets and the collecting manifold and in the manifolds. In all 

of the DOE runs, air pockets trapped in the return flow lines were dispelled by flicking them before 

the pinch valves were applied. The air pockets trapped in the manifolds could not be removed. Due to 

the opacity of the metal components of the bioreactor frame, it is difficult to determine whether air 

pockets can get trapped in those areas.  

 

The manual control system that was used to control the pressures is disadvantageous as it requires the 

involvement of an operator to monitor the pressure transducers and tweak the valves when the 

pressures fall or rise above the target pressures. The uncontrollable factors in the system necessitate 

an automatic control system to improve efficiency and stability. Automated valves were supplied by 

Bose ElectroForce. The valves produce pulsating pressure responses between 2 limits (see figure 

7.2A). The system has been operated continuously for 5 days without any pressure control problems. 

The only factor that would disturb the functioning of the valves is a power failure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27: Pressure profiles at the beginning of the follow-up experiment 
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Figure 3.28: Pressure profiles during the last hours of the follow-up experiment  
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Chapter 4 Application of the modified Bernoulli Equation 

in the tri-axial bioreactor fluid flow system 

 

4.0.    Introduction 

 

The Bernoulli equation is a statement of the conservation of energy in a form suitable for solving 

problems involving the motion of fluids. For an inviscid (frictionless), incompressible fluid in steady 

flow along a streamline, the Bernoulli equation states that the sum of potential, kinetic and flow 

energies per unit mass is constant at any point on the streamline (Massey 2010, Douglas et al. 2011, 

Cengel, Cimbala 2006). This statement is equivalent to the conservation of mechanical energy in fluid 

systems where no energy is added to the system or lost as work or heat. In many instances, however, 

transfers of energy to and from the fluid may occur and additionally, viscous forces are appreciable. 

In the tri-axial bioreactor, a pump is required to provide energy in the form of pressure to overcome 

the total resistance in the system, which includes elevation increase and the frictional forces within the 

long and narrow flow passages. Fluid dynamics in the tri-axial bioreactor can be analysed with the 

help of a modified form of Bernoulli’s equation known as the Steady Flow Energy Equation (SFEE), 

which includes pumps, and friction. In this case, we say that the energy in a fluid at one point of the 

hydraulic system plus the energy added, minus the energy removed, equals the energy in a fluid at a 

second point. 

 

In this chapter, the SFEE is applied between 2 points along a streamline in the optimised flow system 

devised in Chapter 3 with the exception that the elevation of reservoir is increased so there is no 

height difference between the points of analysis. In addition, experimental verification of the SFEE 

was conducted. The primary aim of this chapter is to develop an analysis framework that allows for 

the determination of the pressure around the 3D samples mounted between the porous platens in the 

bioreactor system with a given configuration of the tubing and arrangement of the components.  
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4.1.    Materials and Methods  

 

4.1.1.   The Steady Flow Energy Equation 
 

The SFEE is derived in a number of textbooks (Massey 2010, Douglas et al. 2011, Cengel, Cimbala 

2006). The pressure form of the equation with each term in pascals is written as: 

 

𝑃𝑃  + 𝑃1 +
𝜌𝑉1

2

2
+ 𝜌𝑔𝑧1   =  𝑃2 +

𝜌𝑉2
2

2
+ 𝜌𝑔𝑧2  +  𝑃𝐿      (4.1)                                    

 

Where  

 

 P is the static pressure; it represents the actual thermodynamic pressure of the fluid.  

 

 
1

2
𝜌𝑣2 is the dynamic or velocity pressure; it represents the pressure rise when the flowing 

fluid is brought to rest isentropically. 

 

 ρgz is the hydrostatic pressure term; it represents the change in pressure due to change in 

elevation z.  

 

 𝑃𝑝  represents the pressure rise provided by the pump in order to overcome the total resistance 

in the system. 

 

 𝑃𝐿  represents the pressure loss due the frictional forces while moving from point 1 to 2 along 

a streamline. 

 

 

The SFEE assumes that the fluid and device meet three criteria: 

 

I) the flow is along a single streamline, II) the fluid is incompressible, III) the flow is steady or the 

flow conditions do not vary with time.  
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4.1.2.   Fluid flow system 

 

The fluid flow system is shown in figure 4.1. Alginate hydrogel samples of 10mm diameter and 3mm 

thickness were mounted between 2 laser hole-drilled porous platens and enclosed in a membrane in 

the bioreactor frame. The 4-channel peristaltic pump (Ismatec, Ecoline VC-MS/CA 4-12) was used to 

transport fluid from the medium supply bottle through the bioreactor frame and back to the reservoir 

forming a closed-loop flow system. The fluid was pumped at a pump speed of 1 revs/min, which 

equates to a mass flow rate of 0.22 ml/min (see section 4.2.1). The supply manifold distributes a 

single stream from the supply bottle into four parallel streams and the return manifold collects the 

streams into one discharge stream back to the reservoir. A 0.2μm filter (Millipore) is attached to the 

third port of the fluid reservoir bottle for air exchange between the surrounding atmosphere and the 

flow medium. The flow medium used was cell culture medium whose density is similar to that of 

water (i.e., ρ = 1000kgm
-3

). Transducers to record the pressure of the four-inlet flow and four-outlet 

flow were connected at the back of the bioreactor frame. 

 

The elevations and lengths of the tubing connected in the flow system are shown in figure 4.1 and 

figure 4.2. Table 4.1 shows the inner diameters of the various tubing segments and the dimensions of 

the bioreactor frame components. The tubing fittings and other components used are given in table 

4.2.  

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: Diagram showing the fluid flow system. The tubing segment numbers are indicated in 

brackets. 
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Figure 4.2: Lengths of the tubing connected to the filling/venting cap of the bottle that acts as a 

reservoir in figure 4.1. The tubing segment numbers are indicated in brackets. 

 

The following points of interest have been labelled on figure 4.1:  

 

A is the ends of the 4 peristaltic pump tubing 

B is the 4 fluid inlet ports of the bioreactor 

C is the bottom platens, where fluid enters into the samples 

D is the fluid outlet ports of the bioreactor 

E is the ends of the outlet tubes from the bioreactor 

F is the end flow point - the fluid tends to drip into the reservoir from this location. 

 

Locations A – F are used in subsequent sections to analyse fluid flow in the system using the SFEE 

and/or in the verification experiments. 
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Table 4.1: Flow segment dimensions  

 

  

 

  

 

 

Flow 

segment (s) 

Part description Length (m) Inner diameter (ID, 

mm) 

1 Tubing 0.12 5 

2 Tubing 0.10 5 

3 Tubing 0.10 5 

4 Tubing 0.10 5 

5 Tubing  0.22 1.6 

6  4 x Tubing  0.410  

 

1.3 

7 4 x Tubing  0.24  

 

3.1 

8 8 x Shafts  0.10 

 

3 

9 8 x Porous platens 

 

0.001 0.3/hole 

10 Tubing  0.71  

 

1.6 

11 Tubing  0.70 1.6 

12 Tubing  0.045 1.6 

13 Tubing  0.045 1.6 

14 Tubing  0.385 1.6 
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Table 4.2: List of fittings and other components used in the flow system 

 

 

 

 

Fitting/item number Part description 

1 1/8” male quick-disconnect luer  

2 1/8” female quick-disconnect 

luer  

3 1/8” male quick-disconnect 

NPT(M) luer 

4 1/8” female quick-disconnect 

NPT(M) luer 

5 1/16" male luer with lock ring   

6 1/8" male luer with lock ring   

7 1/8" female luer adapter  

8 Luer lock plug 

9 3/16" male luer with lock ring  

10 Air vent filter (Aervent filter) 

11 250 ml Bottle 

12 Filling/venting cap 

13 5-port manifold  

14 4 inlet and 4 outlet pressure 

transducers 

15 pH, dissolved CO2, and dissolved 

O2 sensors 



95 
 
 

4.1.3. Measurement of mass flow rate  
 

A preliminary experiment was conducted to determine the mass flow rate at different locations in the 

bioreactor flow system represented in figure 4.1.  The flow rate that the 4-channel peristaltic pump 

generates is directly proportional to the rotational speed of the rollers. A speed of 1 revs/min was 

used. Water coming out at point A, E or F on the hydraulic circuit diagram was collected in containers 

over a period of 30 minutes. Measuring the mass of the water in the containers and dividing this by 

the time taken to collect the water determined the mass flow rate. 

 

Mass flow rate = 
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑
       (4.2) 

 

 

In addition, flow rate was determined at point A after the peristaltic pump tubing had been used 

continuously for 5 days to circulate culture medium in the closed loop hydraulic system. This was 

done to determine if a steady rate of flow is maintained over time. 

 

 

4.1.4. Mean velocity  

 

4.1.4.1. Tubing and shafts  

 

The flow system consists of segments of various sizes as shown in table 4.1. The mean velocity (V) 

through the tubing and shafts is the distance travelled per unit time. Dividing volumetric flow rate (Q 

in m
3
/s) by cross-sectional area (A in m

2
), gives us the velocity in m/s: 

 

V = 
𝑄

𝐴
     (4.3) 

 

The volumetric flow rate was calculated from the mass flow rate using the following formula: 

 

Q = 
𝑀

𝜌
    (4.4) 

 

Where: 

 

 M is the mass flow rate (g/min) 
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 ρ is the density of the fluid (kg/m
3
) 

 

The cross sectional area can be computed from the formula below: 

 

A = 
𝜋𝑑2

4
    (4.5) 

 

Where d is the inner diameter of the tubing (m) 

 

 

4.1.4.2. Porous platens 

 

Alginate samples were mounted in the bioreactor between 2 laser hole-drilled porous platens as 

shown in figure 4.1. The platens are 10 mm in diameter and consist of 199 x 0.3 mm diameter (R) 

holes in 1 mm thick stainless steel with a pitch (T) of 0.6 mm between the centres of the holes (see 

figure 4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: 10 mm diameter and 1 mm thickness laser hole-drilled porous platen with 199 x 0.3 mm 

diameter (R) holes and pitch (T) of 0.6 mm between the centres of the holes. 

 

R 

T 

T 

T 
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If the volumetric fluid flow rate through each porous platen is Q (m
3
/s), the superficial (or empty 

tube) velocity Vo (m/s) is the total flow rate divided by the cross sectional area A of the platen (m
2
), 

i.e.  

 Vo =  
𝑄

𝐴
      (4.6) 

 

The solid fraction within the porous platens reduces the area available for fluid flow. The velocity per 

hole V is equal to the superficial velocity divided by the open area fraction ε, i.e. 

 

V =  
𝑉𝑜 

 ε
      (4.7) 

 

The percentage open area (% ε) for round holes, triangular pitch can be calculated from the expression 

below: 

 

% ε =  
90.69∗𝑅2

𝑇2  (wp.libpf.com/, www.newmetals.com/)  (4.8)  

 

Where  

 

R is the hole diameter (mm) 

 

T is the pitch (mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://wp.libpf.com/?p=514
http://www.newmetals.com/PDF/perforated.pdf
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4.1.5.   Reynolds number 

 

Reynolds number (Re) is a dimensionless quantity, which determines if the fluid flow is laminar, 

transitional or turbulent.  

 

 The flow is laminar for Re < 2000 

 

 The flow is transitional between 2000 < Re < 4000 

 

 The flow is turbulent for Re > 4000 

 

If the flow is laminar, the friction factor may be determined from equation 4.11 in the following 

section. When the flow is turbulent, the friction factor depends on pipe relative roughness as well as 

on the Reynolds number and can be derived from equation 4.12 (Massey 2010).  

Reynolds number can be calculated from the equation below: 

 

Re = 
|Inertia force|

|Net viscous force|
 = 

𝜌𝐷2𝑉2

µ𝑉𝐷
 = 

𝜌𝑉𝐷

µ
     (4.9) 

 

 

Where:  

 

ρ is the fluid density (kg/m
3
) 

 

D is the characteristic length of the flow geometry (inside diameter for circular pipe geometries in m) 

 

V is the flow velocity (m/s) 

 

µ is the dynamic viscosity of the fluid (Ns/m
2 
or Pa.s)  

 

 

 

 

 

 

 

 

http://www.engineeringtoolbox.com/density-specific-weight-gravity-d_290.html
http://www.engineeringtoolbox.com/dynamic-absolute-kinematic-viscosity-d_412.html
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4.1.6.   Pressure loss due to frictional forces 

 

4.1.6.1. Tubing and shafts 

 

Pressure loss due to friction in the tubing and shafts can be computed with the Darcy-Weisbach 

equation, in which losses are proportional to the flow regime-dependable friction factor and the square 

of the velocity. The Darcy-Weisbach equation is written as: 

 

𝑃𝐿(𝑡𝑢𝑏𝑒) = 𝑓
𝐿

𝐷

𝜌𝑉2

2
             (4.10)                 

   

Where: 

 

𝑃𝐿(𝑡𝑢𝑏𝑒)  is the pressure loss due to friction in a tube (Pa) 

 

L is the length of the tube (m) 

 

ρ is the density of the fluid (kg/m
3
) 

 

𝑉 is the flow velocity (m/s) 

 

D is the diameter of the tube (m) 

 

f is the Darcy-Weisbach friction factor 

 

 

For laminar flow through circular tubing, the friction factor can be calculated from the following 

formula: 

 

𝑓 =
64

𝑅𝑒
      (4.11)    

 

For turbulent flows, the Blasius equation for smooth tubing can be used. The Blasius equation is: 

 

𝑓 =
0.3164

𝑅𝑒0.25       (4.12) 
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4.1.6.2. Minor losses  

 

The following can cause minor losses in the flow system: 

 

 Bends in tubes  

 Tube fittings  

 The tees that make up the supply and return manifolds 

 

In general, minor losses can be neglected when the pipe friction is large in comparison to the minor 

losses (Massey 2010). Since the bioreactor flow system involves long runs of tubing, these extra 

losses were neglected. 

 

 

4.1.6.3. Porous platens 

 

The pressure drop due to fluid flow through the porous platens can be calculated using the Kozeny-

Carman equation (4.13). The equation assumes that flow in a porous structure can be represented as 

flow through many identical parallel channels.  

 

𝑃𝐿(𝑝𝑙𝑎𝑡𝑒𝑛) = 
8µ𝑉𝐿

𝑅2       (4.13) 

 

Where  

 

𝑃𝐿(𝑝𝑙𝑎𝑡𝑒𝑛) is the pressure difference across the length of each channel (Pa) 

 

µ is the viscosity of the fluid (Pa.s) 

 

L is the length of each channel (m) 

 

𝑉 is the interstitial velocity/hole (m/s) 

 

R is the hole radius (m) 
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4.1.7.   Pressure term relationships 

 

The pressure transducers connected on the bioreactor frame allow the surrounding atmospheric 

pressure to affect both sides of the sensing element, which negates the effects of the local atmospheric 

pressure. Therefore, the transducers measure the pressure difference between the absolute pressure 

value and the local atmospheric pressure. This pressure is often called the gauge pressure and can be 

expressed as: 

 

Gauge pressure = Absolute pressure - Atmospheric pressure (Patm) (www.freescale.com/) 

 

The UK standard absolute atmospheric pressure is 101.325kPa. 

 

A negative gauge pressure is known as a vacuum. Vacuum is the measurement of the amount by 

which the surrounding atmospheric pressure exceeds the absolute pressure. A perfect vacuum is 

known as zero absolute pressure (www.freescale.com/). 

 

Figure 4.4 shows the relationship between absolute pressure, gauge pressure and vacuum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Relationship between absolute pressure, gauge pressure and vacuum. 

 

 

 

Absolute 

pressure 

Local atmospheric pressure  

Gauge 

pressure 

Vacuum 

(negative gauge) 

Atmospheric 

pressure 

Absolute 

pressure 

Perfect vacuum (absolute zero pressure) 

http://www.freescale.com/files/sensors/doc/app_note/AN1573.pdf
http://www.freescale.com/files/sensors/doc/app_note/AN1573.pdf
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4.1.8.   Measurement of static pressure 

 

The static pressure (P term in the SFEE) in a pipe can be measured by installing a simple U-tube 

manometer (figure 4.5). If the bottom of the manometer is filled with a manometric liquid Q of 

density ρman and one end of the tube is connected to a point in a pipe system filled with fluid P, liquid 

or gas, of density ρ whose pressure is to be measured, the other end being open to the atmosphere, the 

manometric liquid will be displaced to balance the pressures (Douglas et al. 2011).  

 

 

 

 

 

 

 

 

 

  

Figure 4.5: U-tube manometer. 

 

 

The pressure difference between the ends of the manometer is given by: 

 

∆P = P1 – P2  = ρgh         (4.14) 

  

Where:  

 

∆P is the pressure difference between the ends of the manometer (Pa) 

P1 is the pressure at the high-pressure connection (Pa) 

P2 is the pressure at the low-pressure connection (Pa) 

ρ is the density of the indicating fluid (kg/m
3
) 

g is the acceleration due to gravity (m/s
2
) 

h is the difference in column heights (m) 

P1   = Atmospheric pressure 

Using gauge pressures, P1 = 0  

 

Therefore, P2 = ρgh 

Applied pressure 

1 

2 



103 
 
 

4.1.9.   Experimental verification of the SFEE during the filling up process 

 
 

Two different procedures were used to fill up the flow system shown in figure 4.1. These are 

described in the following sections. The purpose of the 2 different procedures was to identify the 

differences, if any, between attaching pre-filled tubing, or empty tubing segments onto the bioreactor 

before starting the pump to fill up the entire flow system.  

 

4.1.9.1. Procedure 1 

 

1. Connect the inlet tubing segment with the outlet segment using the hose barb quick 

disconnect fittings at the end of the sections to form a closed loop  

 

2. Turn on the peristaltic pump to fill up the tubing with culture medium   

 

3. Zero the pressure transducers 

 

4. Put the pump on standby and close the locks on the return manifold 

 

5. Disconnect the inlet and return tubing segments and attach them to their respective ports on 

the tri-axial bioreactor frame using the hose barb quick disconnect fittings  

 

6. Open the locks on the return manifold  

 

7. Restart the peristaltic pump to fill up the entire flow system 

 

 

4.1.9.2. Procedure 2 

 

1 Zero the pressure transducers 

 

2 Close the locks on the return manifold 

 

3 Attach empty tubing segments to bioreactor inlet and outlet ports 

 

4 Open the locks on the return manifold 

 

5 Start the pump to fill up flow the system 
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4.2. Results  

 

4.2.1.   Mass flow rate measurement 
 

The mass flow rates measured at points A, E and F on figure 4.1 are shown in figure 4.6. From the 

graph, it can be seen that the total mass flow rate through the circuit at different locations on the 4 

parallel channels remains constant regardless of the physical characteristics of the segments. 

Additionally, the rate is not affected over time as the peristaltic pump tubes slowly degrade after being 

used continuously to pump liquid for 5 days. The mass flow rate at point F is increased approximately 

by about a factor of 4 compared to the flow rate in the four parallel channels. The small deviation 

could have been caused by error in the mass flow rate measurement. 

  

The results are consistent with the ‘principle of continuity’, which is the statement for the 

conservation of mass in fluids. If no fluid is added or removed between two sections 1 and 2 of a 

single channel, then, the principle states that the mass flow rate must be the same at each section. 

When multiple channels converge into a junction, then, the principle states that the total mass flow 

into the junction is equal to the total mass flow out of the junction (Cengel, Cimbala 2006, 

www.efm.leeds.ac.uk/CIVE).  

 

The continuity equation is written as:  

 

ρ1Q1 = ρ2Q2 

 

As the flow medium is culture medium, which is not very compressible, the density changes very 

little so, ρ1 = ρ2 = ρ. This implies that the volumetric flow rate is constant, i.e. 

 

Q1 = Q2         (4.15) 

 

The results also show that the flow in the system is steady since the mass flow rate did not change 

with respect to time. 

 

 

 

 

 

 

http://www.efm.leeds.ac.uk/CIVE/CIVE1400/PDF/Notes/section_all2.pdf
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Figure 4.6: Average mass flow rate of water pumped at 1 revs/min and collected for 30 minutes at 

different locations of the bioreactor flow system  
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4.2.2.   Solving the SFEE for the sample pressures 

 

First, two locations 1 and 2 are identified to apply the SFEE. Location 1 is selected to be the bottom 

platens, where flow enters into the samples (C on figure 4.1) and location 2 at the end flow point (F 

on figure 4.1 and figure 4.2). F is fitting 9 in table 4.2, with an inner diameter of 4.76mm. The 2 

locations are chosen so that the maximum amount of information in the SFEE can be identified.  

The pressure form of the SFEE (equation 4.1) is written as: 

 

𝑃𝑃  + 𝑃1 +
𝜌𝑉1

2

2
+ 𝜌𝑔𝑧1  =   𝑃2 +

𝜌𝑉2
2

2
+ 𝜌𝑔𝑧2  +  𝑃𝐿 

 

 

4.2.2.1. Identify the known information: 

 

The hydrostatic pressure terms (ρgz) can be cancelled given that locations 1 and 2 are at the same 

elevation in figure 4.1.   

 

 P2 is equal to zero, because the medium surface at point F is in contact with the air in the medium 

bottle. In the steady state, there will be no air flowing into or out of the medium bottle through the 

vent with 0.2µm filter, so that the pressure of the air in the medium bottle will be atmospheric. 

 

The unknown pressure terms are calculated in the following sections. 

 

 

4.2.2.2. Calculate the velocity/dynamic pressure terms: 

 

The velocity V2 at fitting F can be calculated using equation 4.3.  

 

Mass flow rate at F = 0.92g/min (see figure 4.6) 

I.D of F = 4.76mm 

ρ of culture medium = 1000 kg/m
3
 

Mass flow rate (kg/s) = 0.92 ∗
0.001

60
 = 1.533 x 10

-5 
kg/s 

 

A2 = 𝜋 𝑥
0.00476

4

2
 = 1.780 x 10

-5 
m

2 

 

Q2 = 
1.53 x 10−5kg/s 

1000𝑘𝑔/𝑚3  = 1.53 x 10
-8

m
3
/s 
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V2 =  
1.53 ∗ 10−8𝑚3/𝑠

1.78 x 10−5𝑚2    = 8.62 x 10
-4 

m/s 

 

Using the principle of continuity (equation 4.15), we can calculate the volumetric flow rate (Q1) 

through the porous platens. 

 

Q1 = 
1.53 ∗ 10−8𝑚3/𝑠

4
 = 3.84 x 10

-9
m

3
/s 

 

Each porous platen consists of 199 x 0.3 mm diameter holes in 1 mm thick stainless steel with a 

triangular pitch of 0.6 mm (see section 4.1.4.2). The diameter of the platens is 10 mm. The superficial 

(empty tube) velocity Vo, and the percentage open area fraction %ε can be determined using equation 

4.6 and equation 4.8 respectively. The velocity per hole V1 can be calculated using equation 4.7. 

 

A1 =  
𝜋0.012

4
 = 7.86 x 10

-5 
m

2   

 

Vo = 
3.84 x 10−9𝑚3/s 

7.86 x 10−5𝑚2  = 4.89 x 10
-5

 m/s 

 

%𝜀 =   
90.69 x(0.3mm)2  

(0.6𝑚𝑚)2  = 22.67% 

 

V1= 
4.89 x 10−5 m/s 

 0.2267
 = 2.16 x 10

-4
 m/s  

 

The dynamic pressure term at location 1 = 
𝜌𝑉1

2

2
 = 

1000 𝑥 (2.16 x 10−4)
2

2
 = 2.33 x 10

-5
 Pa 

 

The dynamic pressure term at location 2 = 
𝜌𝑉2

2

2
 = 

1000 𝑥 (8.62 x 10−4)
2

2
 = 3.72 x 10

-4 
Pa 
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4.2.2.3. Calculate the total frictional loss: 

 

The hydraulic fluid loses some energy due to friction as it passes through the flow segments between 

location 1 and 2. For each of the flow segments between the two locations (apart from the porous 

platen), the mass flow rate, volumetric flow rate, mean velocity, Reynolds number, friction factor and 

pressure loss are shown in table 4.3.  

 

Table 4.3: Pressure loss for the flow segments between location 1 and 2 (minus the porous platen) 

 

ρ = 1000 kg/m
3
, µ = 0.001 Pa.s 

 

The pressure drop through each hole of the porous platen between location 1 and 2 can be calculated 

from equation 4.13. 

 

µ = 0.001 Pa.s 

V = 2.16 x 10
-4 

m/s 

L = 0.001m 

R = 1.5 x 10
-4

 m 

 

PL(platen) = 
8 𝑥 2.16 x 10−4 𝑥 0.001𝑥 0.001

(1.5 x 10−4) 2
 = 0.0768Pa 

 

 

 

 

Flow 

segment 

Length 

(m) 

Diameter 

(m) 

Mass 

flow rate 

(g/min) 

Eq. 4.2 

Volumetric 

flow rate 

(m
3
/s) 

Eq. 4.4 

Area (m
2
) 

Eq. 4.5 

Velocity 

(m/s) 

Eq. 4.3 

Reynolds 

number 

Eq. 4.9 

Friction 

factor 

Eq. 4.11 

Pressure 

losses (Pa) 

Eq. 4.10 

8 0.1 0.003 0.22 3.67E-09 7.07E-06 5.19E-04 1.56E+00 4.11E+01 1.84E-01 

11 0.71 0.0016 0.22 3.67E-09 2.01E-06 1.82E-03 2.92E+00 2.19E+01 1.62E+01 

12 0.71 0.0016 0.92 1.53E-08 2.01E-06 7.63E-03 1.22E+01 5.25E+00 6.77E+01 

13 0.045 0.0016 0.92 1.53E-08 2.01E-06 7.63E-03 1.22E+01 5.25E+00 4.29E+00 

14 0.045 0.0016 0.92 1.53E-08 2.01E-06 7.63E-03 1.22E+01 5.25E+00 4.29E+00 

15 0.385 0.0016 0.92 1.53E-08 2.01E-06 7.63E-03 1.22E+01 5.25E+00 3.67E+01 

Total pressure loss 1.29E+02 
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The total pressure drop along a streamline between location 1 and 2 (PL) is equal to the pressure drop 

in the tubing and shaft plus the pressure drop in each hole of the platen, i.e. 

 

PL = 129Pa + 0.0768Pa = 129.08 Pa 

 

The pressure drop through the alginate samples mounted between the top and bottom platens was not 

calculated because the pore size and distribution of the gels is not known. We can assume that this 

pressure drop is negligible. 

 

 

4.2.2.4. Determine the pressure supplied by the pump: 

 

This is the pressure that the pump provides to overcome the total resistance in the system. It consists 

of all the other components in the SFEE. Once the closed system is filled, however, the pump head 

has nothing to do with elevation. The fluid goes up one side of the loop and it also comes down the 

other side of the loop – the two cancel each other out. The velocity head is theoretically a 

consideration, but as shown in section 4.2.2.2, the tubing velocities are so low that this head is 

negligible. Pressure head is only a consideration in open systems 

(www.fluidh.com/calcpumphead.html, www.michiganair.com/). All the pump has to do is overcome 

the friction that’s created when fluid flows through the flow segments, i.e.  

 

Pump pressure = the sum of all friction pressure drops along a streamline between location 1 and 2 = 

129.08Pa.  

 

However, the flow section considered between locations C and F does not include the pump. In this 

case, PP is not valid for analysis and can therefore be neglected (Cengel, Cimbala 2006).  

 

 

 

 

 

 

 

 

 

 

http://www.fluidh.com/calcpumphead.html
http://www.michiganair.com/newsletters/2008-2/section4.htm
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4.2.2.5. Assembling the known/calculated information: 

 

𝑃2  =  𝑃𝑎𝑡𝑚 = 0 (gauge) 

 

𝑧1  =   𝑧2 

 

𝜌𝑉1
2

2
  = 2.33 x 10

-5
 Pa 

 

𝜌𝑉2
2

2
  = 3.72 x 10

-4 
Pa 

 

𝑃𝑃  = 0 

 

𝑃𝐿  = 129.08Pa 

 

The dynamic pressure terms are so low compared with the frictional losses. These can therefore be 

ignored. 

 

Substituting some of the known/calculated information, the SFEE becomes:  

 

    𝑃𝑃  + 𝑃1 +
𝜌𝑉1

2

2
+ 𝜌𝑔𝑧1  =  𝑃2 +

𝜌𝑉2
2

2
+ 𝜌𝑔𝑧2  +  𝑃𝐿 

 

 

𝑃1   =  𝑃𝐿 + 𝜌𝑔(𝑧2  −   𝑧1)           (4.16) 

 

𝑃1 = 𝑃𝐿 = 0.129kPa (gauge)  

 

 

Equation 4.16 shows that the sample pressure is equal to the sum of the frictional losses and the 

elevation or hydrostatic pressure from point C (z1) to F (z2). The frictional losses are small enough to 

be neglected without introducing too much error into the calculation. Therefore, placing the medium 

bottle at the same elevation as the samples made it possible to ensure that P1 is close to zero or 

atmospheric. If the elevation of the medium bottle is increased compared with its current level in such 

a way that level F is above point C, the hydrostatic pressure at point C would increase.  Conversely, if 

the medium bottle is lowered the gauge pressure at point C is reduced. 

 

0 0 0 0 
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4.2.3.   Experimental verification of the SFEE  
 

Two experiments were conducted to determine the validity of the SFEE for fluid flow analysis in the 

system depicted in figure 4.1. In the experiments, two different procedures were used to fill up the 

system. The step-by-step procedures are described in section 4.1.9. In procedure 1, the tubing 

segments were pre-filled with culture medium before they were attached to the bioreactor frame while 

in Procedure 2, the tubing segments are not pre-filled before being connected to the bioreactor.   

 

Figure 4.7 shows the pressures measured at the inlet ports of the bioreactor (B on figure 4.1) when 

Procedure 1 was used to fill up the system and figure 4.8 shows the pressures at the inlet ports during 

the filling up process in Procedure 2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.7: Real-time pressure profiles at the inlet ports of the bioreactor in Procedure 1. 
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Figure 4.8: Real-time pressure profiles at the inlet ports of the bioreactor in Procedure 2. 

 

 

 

The outlet tubes act as U-tube manometers when the fluid-filled inlet and outlet tubing segments are 

attached to the bioreactor frame under static conditions in procedure 1 (see section 4.1.8 for principle 

of U-tube manometers). One end of the tubes (the end flow point F) is exposed to atmospheric 

pressure (Patm) within the reservoir, the other end being exposed to the air pressure inside the 

bioreactor frame as shown in figure 4.9. Opening the locks on the return manifold (step 6) causes the 

air inside the bioreactor to expand and displace the fluid levels until the pressures in the left-hand limb 

and right hand limbs are balanced. This corresponds with a reduction in the pressures at the inlet ports 

as shown in figure 4.7. As there is only air above the inlet ports of the bioreactor, the indication is that 

Press 1 In to Press 4 In are equal to atmospheric pressure at step 6.  
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Figure 4.9: Outlet flow segment acts as U-tube manometers when fluid-filled tubing segments are 

attached to the bioreactor frame. 

 

In Procedure 2, the empty tubing, the bioreactor frame and the air above the medium reservoir will all 

be at atmospheric pressure when the tubing segments are attached to the bioreactor under static 

conditions. So, the indication is that Press 1 In to Press 4 In are equal to atmospheric pressure at steps 

3 and 4 (see figure 4.8). The varied pressure readings indicate differences in air pressures in the 4 

channels, since there is only air in the system at this point. The cause for this variation cannot be 

explained. However, it can be seen that the pressure measurements at steps 3 and 4 are quite similar to 

the measurements at step 6 in Procedure 1 (see figure 4.7).  

 

When the pump starts, the fluid flows through multiple changes in elevation between the inlet ports of 

the bioreactor (B) and the end flow point (F). The net pressure drop between the 2 locations is the 

difference between the initial pressures of the liquid at B and the pressures at B when the flow reaches 

point F. The average value of the pressure drop for the 4 bioreactor channels was 1.35 kPa in 

Procedure 1 and 1.175 kPa in Procedure 2 as shown in tables 4.4 and 4.5 respectively. There is no 

significant difference between the two values. This shows that the 2 procedures produce very similar 

Air inside the bioreactor 

frame  

Patm 

F 
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results during dynamic flow conditions. The small discrepancy between the two means is probably 

due to measurement errors and small variations in experiment set-ups.  

The distance measured between locations B and F is 0.125m in figure 4.1. The hydrostatic pressure 

term in the SFEE (ρgz) is equal to 1000 x 9.81 x 0.125 = 1.23 kPa. This value is comparable to the 

experiment average values in tables 4.4 and 4.5. This shows that the elevation change is the main 

component that contributes to the pressures measured at the inlet ports of the bioreactor once the 

system is filled. Therefore, the pressure rise provided by the pump, frictional losses, static pressure 

and dynamic pressure terms are insignificant pressure components in the flow system. 

 

 

Table 4.4: Derivation of the net pressure drop between the inlet ports of the bioreactor and the end 

flow point from figure 4.7 

 

Table 4.5: Derivation of the net pressure drop between the inlet ports of the bioreactor and the end 

flow point from figure 4.8 

 

 Channel 1  Channel 2 Channel 3  Channel 4 Average Standard  

deviation 

Inlet pressure before 

the pump is started  

2.3 2 2.1 2.5 2.225 0.222 

Inlet pressure once the 

system is filled 

3.8 3.2 3.2 4.1 3.575 0.45 

Net pressure drop 

between start and end 

flow points 

1.5 1.2 1.1 1.6 1.35 0.238 

 Channel 1  Channel 2 Channel 3  Channel 4 Average Standard  

deviation 

Inlet pressure when 

liquid reaches the 

inlet ports  

3.3 1.7 3.9 2.9 2.95 0.929 

Inlet pressure once 

the system is filled 

4.8 3 4.7 4 4.125 0.830 

Net pressure drop 

between start and end 

flow points 

1.5 1.3 0.8 1.1 1.175 0.299 
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4.2.3.1. Derivation of the sample pressures from the real-time pressure profiles 

 

The samples are located half the distance between the inlet and outlet ports of the bioreactor (see 

figure 4.1). To derive the pressures at the samples once the system is filled, we need to know the 

pressure drop between inlet ports and outlet ports of the bioreactor (let’s call this X) in addition to the 

pressure drop between the inlet ports and the end flow point that was calculated in the previous 

section (let’s call this W). X can be calculated by subtracting the pressures measured by the outlet 

pressure transducers from the pressures measured by the inlet pressure transducers. A typical real-

time profile of X during the filling up process is shown in figure 4.10 below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.10: Typical real-time pressure profile of the pressure drops between the inlet and outlet 

ports of the bioreactor during the filling up process of the system. 

 

 

Since the same components are used in the top and bottom halves of the bioreactor frame, we can 

assume that the pressure drop in the two parts is the same. Therefore, X can be divided by 2 to get the 

pressure drop between the inlet ports and the samples (let’s call this Y), i.e. 

 

Y = 
𝑋

2
        (4.17) 
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The pressure drop between the samples and the end flow point (let’s call this Z) can be calculated by 

subtracting Y from W. Z is equivalent to the total pressure at the samples once the system is filled, i.e.  

 

Z = W – Y      (4.18) 

 

The values of W, X, Y and Z for Procedure 1 and Procedure 2 are shown in table 4.6 and in table 4.7 

respectively. 

 

Both the Procedures yield average values of Z that are close to 0kPa (gauge). This is because the 

samples and the end flow point are at the same elevation and therefore, the hydrostatic pressure term 

(ρgz), which is the main contributing factor to the pressures in the system will be 0. The 

experimentally derived average sample pressure is consistent with the value derived using the SFEE 

in section 4.2.2.5.  

 

Table 4.6: Derivation of the sample pressures from the pressure profiles captured during the filling up 

process in Procedure 1 

 

 

 

 

 

 Channel 1  Channel 2 Channel 3  Channel 4 Average Standard  

deviation 

Net pressure drop 

between start and end 

flow points (W) 

1.5 1.2 1.1 1.6 1.35 0.238 

Pressure drop between 

the inlet and out ports of 

the bioreactor frame (X) 

2.5 2.5 2.5 2.6 2.525 0.05 

Pressure drop between 

the inlet ports and 

samples (Y) 

1.25 1.25 1.25 1.3 1.2625 0.025 

Sample pressure (Z) 0.25 -0.05 -0.15 0.3 0.0875 0.192 
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Table 4.7: Derivation of the sample pressures from the pressure profiles captured during the filling up 

process in Procedure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Channel 1  Channel 2 Channel 3  Channel 4 Average Standard  

deviation 

Net pressure drop 

between start and end 

flow points (W) 

1.5 1.3 0.8 1.1 1.175 0.299 

Pressure drop between 

the inlet and out ports of 

the bioreactor frame (X) 

2.6 2.2 2.2 2.1 2.275 0.222 

Pressure drop between 

the inlet ports and 

samples (Y) 

1.3 1.1 1.1 1.05 1.1375 0.111 

Sample pressure (Z) 0.2 0.2 -0.3 0.05 0.0375 0.236 
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4.3. Discussions 

 

In this chapter, the SFEE was used to analyse fluid flow in the bioreactor flow system in order to 

determine the sample pressures. Additionally 2 experiments were conducted using two different 

procedures in order to verify the theoretical predictions.  

 

The steady flow energy equation assumes that the fluid and device meet three criteria: I) the flow is 

along a single streamline, II) the fluid is incompressible, and III) the flow is steady (Massey 2010).  

In order to meet the first criterion, the equation was applied between 2 locations along one of the 

bioreactor channels. Additionally, flow through one hole of the porous platens was modelled. It was 

assumed that there is pore interconnectivity between the bottom and top platens and the alginate 

sample in between them. However, alginate gels have very low porosity and permeability and hence 

flow resistance is high. If the gel shrinks and the membrane no longer properly encloses it, then the 

flow will follow the pathways of least resistance around the edges of the gel. No gel shrinkage was 

observed in the short-term experimental studies. 

 

Most liquids meet the incompressible assumption. However, all fluids are compressible to a certain 

extent, i.e. their density will change with changes in pressure or temperature. Under steady conditions, 

and provided that the changes in pressure and temperature are small, the density variations can be 

neglected and the density can be considered constant (www.efm.leeds.ac.uk/CIVE). The fluid used 

was culture medium whose density is similar to that of water. Water is widely regarded as an 

incompressible liquid in literature (www.efm.leeds.ac.uk/CIVE). 

 

Steady flow means that the flow conditions do not vary with time (Massey 2010). This assumption 

was verified with the mass flow rate calculations in section 4.2.1, which showed that the flow rate 

does not change after 5 days of continuous perfusion.  

 

The SFEE was applied between the bottom platens, where flow enters into the samples and the end 

flow point, where the fluid drips into the reservoir in order to determine the sample pressures. Since 

the mass flow rate is the same in all four channels of the system, it was assumed that the sample 

pressures are equal. The experiment results showed that the sample pressures are close to 

atmospheric. Theoretical assessment using the SFEE indicated that this is because the samples are at 

the same elevation as the end flow point where the fluid is exposed to atmospheric pressure in the 

reservoir. This shows that the elevation term is the main factor that contributes to the pressures in the 

system. Due to the low flow rate used, the dynamic and pressure effects were negligible and can be 

http://www.efm.leeds.ac.uk/CIVE/CIVE1400/PDF/Notes/section_all2.pdf
http://www.efm.leeds.ac.uk/CIVE/CIVE1400/PDF/Notes/section_all2.pdf
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ignored without introducing much error into the calculations. The frictional losses of 0.129 kPa are 

also small enough to be neglected.  

 

Experimental verification of the SFEE was conducted using two different procedures to fill up the 

system. In the first procedure, fluid-filled tubing segments were attached to bioreactor frame before 

starting the pump and in the second procedure; the tubing segments were not pre-filled. There were no 

significant differences in the sample pressures derived from the pressure measurements obtained in 

the 2 procedures. The experimentally measured average sample pressures were comparable with the 

mathematically derived sample pressure. As the sample pressures are about 0 kPa (gauge) or Patm 

(absolute) when the system is filled, the inlet pressure transducers can be zeroed at this point by 

pressing the zero pressure buttons on the monitor. This establishes atmospheric pressure as the 

reference pressure value. So, once the automated pinch valves are applied on the outlet tubes to 

control the inlet pressures within the prescribed limits of 4 to 6kPa, the pressure readings on the inlet 

pressure meters are equal to the sample pressures.   
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Chapter 5 Optimisation of the Viscoelastic Properties of 

Alginate Hydrogels for Nucleus Pulposus Tissue 

Engineering  

 

5.0.    Introduction 

 

There is a significant interest in the use of hydrogels for nucleus pulposus tissue engineering based on 

their ability to swell and maintain hydrostatic pressure. The aim of hydrogel implantation is to restore 

the mechanics of a healthy NP tissue to support overall disc function. The scientific issues associated 

with the development of hydrogel-based tissue engineered constructs for the treatment of disc 

degeneration are reviewed in section 2.3.2. One particular hydrogel that has been widely used in the 

NP tissue engineering studies is alginate due to its abundance in source, biocompatibility, relatively 

low cost, low toxicity and ease of fabrication. The structural and gelling and degradation properties of 

alginate are described in section 2.3.3.1. The majority of the studies have employed calcium chloride 

(CaCl2) as a crosslinking agent. To form three-dimensional alginate structures, sodium alginate 

solution is usually poured into a mould and then placed in contact with a CaCl2 bath for crosslinking. 

Typically, the alginate and calcium solutions are separated by a semi-permeable membrane, which 

allows the diffusion of the Ca
2+ 

ions. Diffusion gelling is a rapid process, which is advantageous for 

cell encapsulation. However, the fast gelation rate results in varying crosslinking density and polymer 

concentration gradient within the gel structure (Kuo, Ma 2001). The inhomogeneities of the gels and 

potential regions of gel failure, make this approach less ideal for use in repairing load bearing nucleus 

pulposus.  

 

A slow gelation technique using calcium carbonate (CaCO3) as the source of calcium ions allows for 

control over the geometry and mechanical properties of alginate gels. CaCO3 relies on internal gelling 

through the release of the Ca
2+

 ions in situ. CaCO3 is homogeneously mixed with alginate solution 

followed by the addition of a catalyst to solubilise the Ca
2+

 ions (Kuo, Ma 2001). The most commonly 

used catalyst is D-glucono-d-lactone (GDL), which slowly acidifies the alginate-CaCO3 solution, 

driving the release of the Ca
2+ 

ions (Draget, Ostgaard & and Smidsrød 1990, Shchipunov, Koneva & 

Postnova 2002). CaCO3 has low solubility in water allowing its uniform distribution in alginate 

solution and moulding of the gel into complex geometry before gelation occurs. A slow gelation rate 

is critical for the formation of a uniform and stronger mechanical structure (Kuo, Ma 2001). Structural 

uniformity is a design pre-requisite for homogeneous cell distribution and cell growth as well as 
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mechanical loading in the tri-axial bioreactor described in section 1.0. Inhomogeneity in the gels can 

result in high experimental variation. 

 

When considering a new hydrogel material for a specific tissue engineering application, it is important 

to optimise the mechanical properties of the hydrogel to mimic the tissue of interest to ensure that 

cells of the tissue of interest or stem cells interact favourably with the biomaterial (see section 

2.3.2.4). Based on this premise, the aim of this study was to optimise the rheological properties of in 

situ formed calcium alginate hydrogels to closely mimic the viscoelastic properties of nucleus 

pulposus tissue to encourage the differentiation of encapsulated MSCs into a nucleus pulposus 

phenotype and to produce hydrogels with sufficient mechanical stiffness to withstand physiologically-

relevant mechanical perturbations in the bioreactor described in section 1.0. The application requires a 

complex shear modulus ranging from 7.5–20kPa and loss angle ranging from 23-30° between 

frequencies of 1–100rads
-1

 representing the viscoelastic properties of healthy NP tissue (Iatridis et al. 

1997). The effect of two independent variables, the concentrations of sodium alginate and calcium on 

the complex shear modulus |G*| and the loss angle δ at 1 Hz were considered as optimisation factors. 
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5.1. Materials and Methods 

 

5.1.1.   In situ-gelled alginate preparation  
 

The gels were formed from high G-content Protanal 10/60, which was kindly donated by FMC 

biopolymer. Alginates with a higher content of G units generally produce stronger gels compared to 

molecules with greater M content (Wang et al. 2003). In situ gelled alginate hydrogels were prepared 

using calcium carbonate (CaCO3) and glucono delta- lactone (GDL) following a method described by 

Kuo and Ma (Kuo, Ma 2001), but with a few modifications. CaCO3 stock solution was prepared by 

dissolving 0.3 g of CaCO3 (sigma Aldrich) into 2.5 ml of deionised water. To prepare the gels, a 

CaCO3 stock solution volume was added to an alginate solution in deionised water such that the 

complete dissolution yielded a molar ratio of calcium ion to carboxyl ([Ca
2+

]/[COO
-
]) of 0.2, 0.4 and 

0.6. These 3 ratios were designated as 1X, 2X and 3X respectively, where 1X is the basic calcium ion 

to carboxyl molar ratio. A molar ratio of CaCO3 to GDL of 0.5 was always used to ensure that the pH 

was held as near constant as possible. Using this methodology ensures that the comparison of final 

material properties of gels with different calcium concentrations is carried out at the same pH as it has 

been reported that the pH can significantly alter the materials properties of the gels (Draget, Smidsrød, 

Skjåk-Bræk 2002). After addition of CaCO3 suspension to alginate, the mixture was vortexed for 60s. 

A freshly prepared aqueous solution of GDL was subsequently added and the mixture vortexed for 20 

s. The gels were cast in custom designed moulds of 25 mm diameter and 3 mm thickness and 

transferred to a humidified 37°C, 5% CO2 incubator for gelation. 

 

 

5.1.2.   Rheology 

 

A rheometer (Anton Parr Physica MCR101) (figure 5.1) was used apply small amplitude shear 

deformations to alginate gels at a set temperature of 37ºC. The gels were placed between two parallel 

plates: a stationary serrated base plate (100 mm diameter) and a top plate (25 mm diameter), which 

oscillates at a specified frequency or strain. The viscoelastic measurement was conducted in two steps 

(Zuidema et al. 2013). First, the linear viscoelastic region (LVER) was determined by conducting a 

strain sweep between 0.01–100% at a constant angular frequency of 10 rads
-1

. Secondly, a dynamic 

frequency sweep was performed by applying a fixed strain within the LVER region over a frequency 

range between 1 and 100 rads
-1

. The rheological parameters studied in this work were the storage (G') 

and loss (G'') modulus. G' represents the amount of recoverable energy stored during the deformation 

process and the amount of viscous dissipation is represented by G''. G' and G" were calculated by the 

rheometer and recorded for further analysis. The complex modulus |G*|, which represents the 
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frequency-dependent stiffness of a material, was derived from (G') and (G") as shown in Equation 

(5.1): 

 

|G*| = √(G'
2
 + G"

2
 )    (5.1) 

 

The loss angle, δ, which provides a relative measure of viscous effects to elastic effects in a material, 

was obtained from equation (5.2): 

 

δ = tan−1 (G"/G')      (5.2) 

 

Low values of δ indicate minimal internal damping, a result of energy dissipation and internal friction 

in deformation cycles. (δ = 0◦ for a perfect elastic solid; δ = 90◦ for a perfect Newtonian viscous fluid) 

(LeRoux, Guilak & Setton 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Experimental set-up of rheometer using parallel plates. 
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Base plate 
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5.1.3.   Design of experiments 
 

This study was designed with an objective of evaluating the influence of two independent variables: 

sodium alginate concentration and calcium content on the rheological variables of in situ-gelled 

alginate gels, the complex shear modulus and the loss angle. Additionally, the study was aimed at 

optimising the alginate concentration and calcium content using design of experiments to achieve the 

response equivalent to the native NP tissue at a frequency of 1 Hz. The targeted response was 10 kPa 

for the complex shear modulus and loss angle of 23° (Iatridis et al. 1997). The study consisted of a 2
2 

design of experiment replicated twice and centre point runs added. Centre points allow for testing of 

the reproducibility of the DOE trials and can be used to determine if the relationship between the 

high, low and centre values is linear or not. Statistical experimental design was performed in Minitab 

software. Normal probability plots and main effects plots were used to identify the key variables that 

influence the responses. For more information about NPP and main effects plot, refer to section 3.3.7. 

Table 5.1 shows the low (-1) and high (+1) settings for the design of experiment. A total of 10 

experimental runs were required for analysis of the combinations of these settings so as to establish 

the best formulation. The 2
2 
full factorial design of experiment is presented in table 5.2.  

 

Table 5.1: High (+1), Centre (0) and Low (-1) settings for the DOE 

 Low (-1) Centre (0) High (+1) Units 

Alginate concentration 1 1.5 2 % 

Ca
2+

/COO
- 
ratio 0.2 0.4 0.6 n/a 

 

Table 5.2: A 2
2
 full factorial design of experiment replicated twice and centre point runs added. A 

random run order is indicated. 

Run order Standard order Alginate concentration (%) Calcium content (Ca
2+

/COO
- 

ratio) 

1 5 0 0 

2 2 +1 -1 

3 4 +1 +1 

4 3 -1 +1 

5 1 -1 -1 

6 6 -1 -1 

7 9 +1 +1 

8 10 0 0 

9 7 +1 -1 

10 8 -1 +1 



125 
 
 

5.2. Results and Discussions 

 

Rheology is considered to be a valuable and powerful method in the characterization of complex 

materials. In this study, in situ calcium-cross-linked alginate hydrogels were fabricated to closely 

mimic the viscoelastic properties of the native nucleus pulposus environment. The hydrogels were 

analysed to determine the selected concentrations of alginate and CaCO3 that would be used for 

further analysis in cell encapsulation studies in Chapters 6 and 7. Sterilisation is an important 

consideration when evaluating biomaterials for cellular studies. Before incorporating cells, alginate 

solutions must be sterilised to prevent contamination by microorganisms. Two sterilisation methods 

are commonly used in alginate studies: filter sterilisation (0.2µm pore size) and autoclave sterilisation. 

When filter sterilisation is used, only low alginate concentrations can be considered due to the 

limitations of sterile filtration of high viscosity solutions. Alginate concentrations above 2% were 

very difficult to sterilize through a 0.2µm filter. Autoclave sterilisation allows for higher 

concentrations to be used, but it is known to induce depolymerisation and degradation of alginate and 

is generally not recommended (Draget, Smidsrød, Skjåk-Bræk 2002). Therefore, a concentration of 

2% alginate was the maximum that could be considered for rheological characterization.  The 

maximum concentration of CaCO3 was chosen on the basis of the previous study by Kuo and Ma 

(Kuo, Ma 2001). The authors found that for 4X and higher calcium concentrations, precipitates were 

visible in the hydrogels likely due to Ca
2+ 

ion oversaturation (Kuo, Ma 2001). Based on this 

information, the maximum calcium concentration for the DOE study was chosen to be 3X.    

 

Rheological characterization started with a strain sweep to determine the linear viscoelastic region 

(LVER) of the hydrogels where the storage and loss modulus are independent of the imposed strain 

levels. Figure 5.2 shows the shear strain dependence of the storage and loss moduli, G' and G'' for the 

alginate hydrogels. Average values of 2 samples for each of the conditions of the full factorial design 

of experiment are shown. At sufficiently low strains, the samples showed the LVER where their 

response was independent of the applied strain. Elastic behaviour predominates within the LVER as 

G' was always greater than G". Alginate’s internal cross-links and entrapped entanglements likely 

contribute to the elastic behaviour of the gels while other physical mechanisms, such as slippage at the 

gel–plate interface, can contribute to viscous behaviours (LeRoux, Guilak & Setton 1999).  
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Figure 5.2: Viscoelastic properties of alginate hydrogels of various concentrations of alginate and 

Ca
2+

/COO
- 
ratios in response to a strain sweep between 0.01–100% at 10 rads

-1
 frequency. Data 

reported as mean (n=2). Standard deviations are not shown for clarity.  

 

 

Key: Alginate concentrations and Ca
2+

/COO
-
 molar ratios 

 1%_1X 1.5%_2X 2%_1X 2%_3X 1%_3X 

Alginate concentration (%) 1.0 1.5 2.0 2.0 1.0 

Ca
2+

/COO
- 
ratio 0.2 0.4 0.2 0.6 0.6 

 

 

A strain of 1% (within the LVER) was chosen to determine the frequency response of the alginate 

gels, between 1–100 rad/s
 
(figure 5.3). G' and G" were almost independent of frequency and G' was 

always higher than G" in the entire frequency range. All gels, except the 2%_3X and 1.5%_2X gels 

exhibited a plateau response, which is indicative of a stable cross-linked network. The 2%_3X and 

1.5%_2X hydrogels presented a significant increase in G' over the tested frequencies. This behaviour 

is due to increased fluid-solid interactions, which give the gels increased stiffness to loads at higher 

frequencies, a property which is critical to the functional behaviour of the NP tissue and cartilage in 

vivo (Iatridis et al. 1997, DiSilvestro et al. 2001).  
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Figure 5.3: Viscoelastic properties of alginate hydrogels of various concentrations of alginate and 

Ca
2+

/COO
- 
ratios in response to a frequency sweep between 1 and 100 rads

-1 
at 1% strain. Data 

reported as means (n=2). Standard deviations are omitted for clarity. 

 

G' and G'' from the frequency sweep tests of 2 batch experiments were correlated to equation 5.1 to 

calculate the complex shear modulus (|G*|). The frequency dependencies for complex shear modulus 

are shown in figure 5.4. The complex shear modulus increased with the alginate concentration and 

Ca
2+

/COO
- 
ratio. The effects of the alginate concentration, Ca

2+
/COO

- 
ratio and the interaction 

between alginate concentration and calcium Ca
2+

/COO
- 
ratio on |G*| at 1 Hz were all significant (p < 

0.05). The normal probability plot in figure 5.5A and the main effects plot in figure 5.5B show that 

factor B is the most significant, followed by A. Looking at figure 5.5B, the centre point is very close 

to the main effects line. This shows that for the 2 factors, the three points vary in a linear fashion. 

These results are in agreement with previous studies, which have demonstrated an increase in gel 

stiffness with increasing alginate concentration and calcium content (LeRoux, Guilak & Setton 1999, 

Kuo, Ma 2001, Nunamaker, Otto & Kipke 2011). Improvement in mechanical properties with 

increasing alginate concentration can be attributed to the increase in polymer chain density and 

entanglement (Kuo, Ma 2001, Moura, Figueiredo & Gil 2007). The increase of the complex shear 

modulus with Ca
2+

/COO
- 
ratio is likely due to increased crosslinking density (Kuo, Ma 2001).  
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Figure 5.4: Frequency dependency of the complex shear modulus of alginate gels containing different 

alginate concentrations and CaCO3 concentrations over a frequency range of 1-100 rads
-1

. Data 

reported as means (n=2).  Standard deviations are omitted for clarity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Analysis of the full factorial design for effects on the complex modulus. A: normal plot of 

the standardised effects identifying the key factors that influence the complex modulus; B: main 

effects plot of the means of the complex modulus at each of the factors. 
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The tangent of the loss angle δ was also derived from G' and G'' from the frequency sweeps of 2 batch 

experiments using equation 5.2. The loss angle is a measure of energy dissipation with values ranging 

from 0 to 45 degrees for elastic solids and 45 to 90 degrees for viscous liquids (LeRoux, Guilak & 

Setton 1999, Iatridis et al. 1996). Figure 5.6 shows the frequency dependency of the loss angle for the 

alginate gels. The loss angle at 1 Hz was dependent on the Ca/COO ratio (p < 0.05), but the alginate 

concentration and interaction between the alginate concentration and the Ca/COO ratio did not have a 

significant effect (p > 0.05) (figures 5.7A and 5.7B). All the gels in the study exhibited a 

predominantly elastic behaviour in dynamic shearing as shown by δ < 45º. The increase in energy 

dissipation with the calcium concentration is supported by the previous studies by Kuo and Ma who 

observed that syneresis increases with calcium content (Kuo, Ma 2001). Syneresis is characterized by 

a slow, time dependent de-swelling of a gel, resulting in an exudation of liquid (Draget et al., 2001). 

In the present study, syneresis was minimal in the formulations evaluated and was not quantified. The 

low level of syneresis in CaCO3-crosslinked alginate indicates good long-term dimensional stability in 

comparison with CaCl2-crosslinked alginate, where high levels of syneresis occur (Nunamaker, Otto 

& Kipke 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Frequency dependency of the loss angle of alginate gels containing different alginate and 

CaCO3 concentrations over a frequency range of 1-100 rads
-1

. Data reported as means (n=2). Standard 

deviations are omitted for clarity. 
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Figure 5.7: Analysis of the factorial design for effects on the loss angle. A: normal plot of the 

standardised effects identifying the key factors that influence the loss angle; B: main effects plot of 

the means of the loss angle at each of the factors. 

 

 

Figure 5.4 shows the combination of alginate concentration and Ca
2+

/COO
-  

molar ratio that optimise 

the complex shear modulus of in situ formed calcium alginate hydrogels to mimic the targeted 

response of 10 kPa observed in healthy NP tissue at 1 Hz . These are: alginate concentration 2% and 

Ca
2+

/COO
- 
molar ratio 0.6 (3X). No optimal solution was found for the loss angle as the values 

measured in the gels at 1 Hz (see figure 5.6) were significantly lower than the targeted loss angle of 

healthy NP tissue 23°.   

 

As a follow-up from the above study, the calcium concentration of the 2%_3X gels was doubled to 

form gels with a Ca
2+

/COO
- 
ratio of 1.2 (i.e. 2%_6X gels). Doubling the calcium concentration, 

increased δ (figure 5.8), as expected, but the value obtained was still significantly lower than that 

measured in healthy NP tissue. In addition, the 2%_6X gels demonstrated high syneresis levels 

causing the gels to shrink. This study confirmed that the acellular calcium alginate gels cannot 

replicate the loss angle of the NP tissue 23°. The biological performance of the 2%_3X gels will be 

evaluated in the following chapters before final conclusions can be drawn about the suitability of in 

situ gelled calcium alginate for NP tissue engineering.  
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Figure 5.8: Comparison of the rheological properties alginate hydrogels formed from 2%_3X and 

2%_6X formulations. Data reported as means (n=2). Standard deviations are omitted for clarity. 
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Chapter 6 Effects of Medium Calcium Concentration on 

the Cellular and Structural Properties of MSC-Alginate 

Constructs 

 

6.0.    Introduction 

 

It’s widely known that unmodified alginates do not support cell attachment. A standard method of in 

vitro culture is encapsulation of the cells within the alginate hydrogels. As cell viability is closely 

linked with tissue function, it is essential to evaluate the long-term viability of cells within a 3D 

scaffold to assess the suitability of the engineered tissues for clinical application. In addition, the 

hydrogels should exhibit sufficient mechanical integrity to withstand loading conditions in bioreactor 

conditions or at the implant site. 

 

Ionically-crosslinked alginate-cell constructs are prepared by mixing pre-gelled solutions with cells, 

followed by gelation with divalent ions. The cells typically experience shear stress due to mixing with 

the polymer solutions during the cell-encapsulation process. The shear force imposed on the cell 

membranes will be dependent on the viscosity of the solutions, due to the increasing force required to 

mix solutions of higher viscosity (Chisti 2001). As such, high viscosity alginate solutions may not be 

desirable in terms of maintaining cell viability before gel formation. However, the hydrogels must 

exhibit sufficient mechanical rigidity to maintain their structure under various physiologically relevant 

mechanical perturbations existing in the bioreactor described in section 1.0. This requires gels 

prepared from solutions containing a high concentration of a high molecular weight polymer as was 

shown in chapter 5. The solution viscosity increases with both alginate concentration and molecular 

weight (Nunamaker, Otto & Kipke 2011). Nevertheless, maintenance of the dimensions and 

mechanical integrity of ionically-crosslinked alginate hydrogels upon introduction of culture 

conditions is a difficult task for researchers. In standard culture conditions, the gels tend to swell and 

weaken due to the loss of crosslinking Ca
2+

 ions to the external culture medium or because of cellular 

uptake (LeRoux, Guilak & Setton 1999).  

 

Adjusting the Ca
2+

 concentration of the external culture medium with respect to the internal Ca
2+

 

concentration can control the dimensions and mechanical properties of calcium alginate gels. A high 

medium Ca
2+

 concentration results in gel shrinkage while a low calcium ion concentration results in 

swelling of the gel (Kuo, Ma 2008). In theory, as the cells form functional ECM, the mechanical 

properties are expected to increase. However, in some cases, matrix breakdown due to the loss of Ca
2+
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ions is higher than ECM production, reducing the overall mechanical properties of the constructs 

during culture conditions (Foss, Maxwell & Deng 2014). ECM production is influenced by a number 

of factors including the cell seeding density (Buxton et al. 2011, Kavalkovich et al. 2000), the culture 

duration and the passage of the cells used (Lee et al. 2013, Kretlow et al. 2008).     

 

In addition to the effect of calcium on the dimensions and mechanical properties of alginate, studies 

have also shown that when cartilage is damaged, calcium is an important regulator of chondrocyte 

death (Amin et al. 2009, Huser, Davies 2007). For instance, exposure of damaged cartilage to 

progressively higher concentrations of calcium chloride in media (2–20 mM) resulted in increased 

superficial zone chondrocyte death (Amin et al. 2009). In contrast, another study showed that media 

calcium concentration up to 10 mM had no effect on chondrocyte death (Huser, Davies 2007).  

The aim of the present study is to examine how alginate hydrogel structure changes with the external 

medium Ca
2+

 concentration [Ca
2+

] and how MSCs encapsulated in alginate hydrogel respond to the 

changes in [Ca
2+

]. Three [Ca
2+

] were tested: 1.8 mM, 2.8mM and 4.8mM and their effects on cell 

morphology, distribution, viability, proliferation, and structural and biochemical properties were 

investigated at various time points during a culture duration of 22 days. 
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6.1. Materials and Methods 

 

6.1.1.   Materials and reagents 

 

Human bone marrow-derived mesenchymal stem cells, low glucose Dulbecco’s modified Eagle’s 

medium (DMEM-LG), high glucose DMEM (DMEM-HG), L-glutamine, fetal bovine serum (FBS) 

and phosphate buffered saline without Ca
2+

 and Mg
2+

 (PBS) were purchased from Lonza 

(Wokingham, UK).  Penicillin-streptomycin solution, Live/Dead fluorescence assay kit (calcein AM 

and propidium iodide), MEM Non-Essential Amino Acids solution and TrypLE Express solution were 

obtained from Life Technologies (Paisley, UK). TGF-β3 was obtained from PeproTech (London, 

UK). Insulin transferrin selenium (ITS) + Premix supplement was purchased from VWR (West 

Sussex, UK) and the DNAQF DNA Quantification Kit was purchased from Sigma-Aldrich (Poole, 

Dorset, UK). 1,9-Dimethylmethylene blue chloride (DMMB) was obtained from Polysciences. All 

other materials that are not mentioned here were obtained from Sigma-Aldrich. 

 

 

6.1.2.   Methods 

 

6.1.2.1.  Culture of Human mesenchymal stem cells 

 

Passage 4 human bone marrow-derived human mesenchymal stem cells were thawed and then seeded 

at a density of 5 x 10
5
 cells per T-175 culture flask.  The cells were incubated at 37°C, 5% CO2 in 

culture media (DMEM-LG, which was supplemented with 4mM L-glutamine, 10% FBS and 1% 

penicillin-streptomycin solution. Medium was changed the next day and then every 3 days until 80% 

confluence. Cells were then sub-cultured using TrypLE Express solution.  Cell count and viability 

were quantified using trypan blue and a hemocytometer. 
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6.1.2.2.   Tissue engineered construct fabrication 

 

Alginate gel constructs were created in sterile 10 mm diameter and 3 mm thickness cylindrical 

custom-made Teflon moulds using the CaCO3 – GDL gelation technique as described in section 5.1.1 

forming gels with the 2_3X formulation. All gels were created with a volume of ~ 230µl of alginate-

cell suspension at a cell density of 5million cells/ml to mimic the cell density of the native NP tissue. 

Prior to use, calcium carbonate suspension was sterilised by autoclaving while GDL powder was UV-

sterilised. 4% wt% alginate solutions were initially prepared in double distilled autoclaved water 

before diluting with an equal volume of chondrogenic defined medium to make final concentration of 

2% wt% alginate. Alginate solutions were then sterile filtered (0.22 µm pore size). To prepare the 

cell-laden constructs, MSCs were mixed with Alginate-CaCO3 suspensions by gentle pipetting and 

shaking followed by the addition of GDL to initiate gelation. The suspensions were transferred into 

the moulds and allowed to gel at 37°C, 5% CO2 incubator conditions for 1.5 h to yield cylindrical 

constructs. After gelation, the constructs were transferred from the moulds and then incubated at 

37 °C and 5% CO2 for up to 22 days in DMEM-HG containing 10 ng/mL TGF-β3, 1% ITS + Premix, 

50 µg/mL ascorbic acid 2-phosphate, 100 nM dexamethasone, 1% penicillin-streptomycin solution 

and 1% MEM Non-Essential Amino Acids. Calcium chloride stock solution (1000x) was added to 

reach calcium concentrations of 1.8, 2.8, and 4.8 mM. During incubation, medium was changed every 

other day. At different time points, constructs were examined for cell morphology, distribution, 

viability, proliferation, and biochemical properties. 

 

 

6.1.2.3. Qualitative live and dead cell distribution and morphology in 3D alginate 

constructs 

 

Fluorescence microscopy was used on days 7 and 22.  Alginate constructs were washed in PBS for 3 

minutes and then incubated for 45 minutes at 37°C and 5% CO2 in 1 ml PBS containing 2μM calcein-

AM and 4μM ethidium homodimer-1. The calcein AM dye stains live cells resulting in green 

fluorescence while ethidium homodimer-1 stains dead cells with red fluorescence. The staining 

solution was replaced with PBS before examining the samples using an inverted Nikon Eclipse Ti 

microscope employing a 3D Z-series to observe the cell morphology and distribution in the calcium 

alginate constructs. NIS Elements C Imaging Software was used for observing the cells.  
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6.1.2.4.  Quantitative analysis of cell viability and proliferation by alginate 

digestion/automated cell counting  

 

An automated cell counting system (NucleoCounter NC-3000 (Chemotec, Allerod, Denmark)), which 

is based on fluorescent staining with Acridine Orange (AO) and DAPI was used to determine cell 

viability and proliferation on days 9 and 22. Alginate constructs were first weighed, halved using a 

scalpel and then dissolved at room temperature by the addition of 1 mL of a 55 mM sodium citrate 

solution (pH 6.8). In order to determine viability and cell concentration, a sample of an alginate-cell 

suspension (50µl) was drawn into a Via1-Cassette (Chemotec, Allerod, Denmark). The inside of the 

Via1-Cassette is coated with AO and DAPI, staining the entire cell population and the non-viable 

cells, respectively. The Via1-Cassette is inserted into the NC-3000 where the cell count and viability 

are determined. 

 

 

6.1.2.5. Papain digestion  

 

The remaining dissociated gel after cell counting (see the section above) was centrifuged and the 

supernatant carefully removed from the separated cell pellet. Pellets and supernatants were papain-

digested (300 μg/mL papain in a buffer containing 10 mM l-cystine, 10 mM EDTA, and 100 mM 

sodium acetate, pH 6.8) at 60°C for 24 hours (Korecki et al. 2009). Both digested pellet and 

supernatant digests were analysed for DNA content and sGAG content after centrifugation at 11000g 

for 5 min.  

 

 

6.1.2.6.   Hoechst DNA assay for cell proliferation  

 

The DNA content of the samples was measured after papain digestion (see section above) using a 

DNAQF DNA Quantitation Kit following the supplier’s instructions. Hoechst 33258 dye (200 µl; 

2µg/ml) was added to papain-digests (10 µl) in a 96 well plate. Fluorescence was measured using a 

plate reader (FLUOstar Omega, BMG LABTECH, Aylesbury, UK) with excitation and emission 

wavelengths of 355nm and 460 nm, respectively. The DNA content of the samples was quantified by 

interpolating values from a linear standard curve. Calf thymus DNA was used for the creation of the 

standard curve. The standard curve is presented in figure 6.1. 
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Figure 6.1: Standard curve of fluorescence intensity against the concentration of calf thymus DNA. 

 

 

6.1.2.7. Quantification of sulphated glycosaminoglycans  

 

Glycosaminoglycan (GAG) production was quantified using the 1,9-dimethylene (DMMB) blue assay 

adjusted to a pH of 1.5 using formic acid to account for the anionic nature of carboxyl groups of the 

alginate hydrogel (Enobakhare, Bader & Lee 1996). Aliquots of papain-digested samples (40µl) and a 

solution containing 16 μg/ml of DMMB, 2 mg/ml of sodium formate, 0.5% (v/v) ethanol and formic 

acid in distilled water (pH 1.5) were added to individual wells of 96 well plate. The absorbance of the 

test samples was measured using a plate reader (FLUOstar Omega, BMG LABTECH, Aylesbury, 

UK) at a wavelength of 595 nm. Shark chondroitin sulphate C standards were prepared at 

concentrations ranging from 0 to 150µg/ml in a buffer containing 10 mM l-cysteine, 10 mM EDTA, 

and 100 mM sodium acetate, pH 6.8 to generate the standard curve. The standard curve is presented in 

figure 6.2. 
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Figure 6.2: Standard curve of absorbance against the concentration of shark chondroitin sulphate C. 

 

 

 

6.1.2.8. Statistical Analyses 

 

The results presented are from repeated experiments, where n refers to the number of constructs 

analysed for each assay (n numbers provided in figure legends). Numerical and graphical results are 

presented as mean ± standard deviation of the mean. Statistics were performed using SPSS software 

(Version 21, IBM Corp, Armonk, New York). The construct groups were analysed for significant 

differences using a general linear model for analysis of variance with factors of calcium 

concentration, time point of measurement and interactions between the two factors examined. A 

mixed ANOVA, which includes between groups effects (calcium concentration) as well as within 

subject effects (time), was used for analysis. Differences were considered to be significant if the 

probability p ≤ 0.05.  
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6.2. Results 
 

Results obtained from microscopy imaging (figure 6.3) showed uniform distribution of HMSCs for 

each group on day 7 and a spherical morphology, the characteristic phenotype of native NP cells was 

observed throughout the entire experimental period. The cells were observed to form aggregates or 

agglomerates in all groups as indicated by the white arrows in figure 6.3. A large number of non-

viable cells (red stained) were observed on day 7 in the constructs cultured in 2.8 mM and 4.8 mM 

[Ca
2+

] media (figure 6.3B-C). On day 22, an increasing number of viable cells (green stained) were 

observed in the 1.8 mM and 2.8 mM [Ca
2+

] groups. Due to calcium oversaturation, the cells were very 

difficult to be observed at day 22 in the constructs cultured in 4.8 mM [Ca
2+

]
 
media (figure 6.3F).  

 

Figure 6.4 shows the total cell number/scaffold derived from the NC-3000 measurements. On day 9, 

the highest cell number was observed in the samples cultured in the 1.8 mM [Ca
2+

] media (1.39x10
6
 ± 

1.05x10
4
), whereas the 2.8 mM [Ca

2+
] media resulted in the highest cell content on day 22 (1.53x10

6
 

±2.69x10
4
). The effect of the interaction between the calcium concentration and time was however not 

significant (p > 0.05). The main effect comparing the three calcium concentrations was also not 

significant  (p > 0.05), suggesting no significant difference in cell numbers due to varying the Ca
2+

 

concentration of the culture medium. However, there was a significant main effect for time (p < 0.05), 

with all three of calcium concentrations showing an increase in total cell number between day 9 and 

day 22 (figure 6.4).  

 

The level of MSC proliferation within the hydrogels was also examined using the Hoescht DNA assay 

(see figure 6.5). Similar to the results derived from NC-3000 measurements, all culture conditions 

resulted in significant increase in DNA content between day 9 and day 22 (p < 0.05). In addition, no 

significant difference in DNA content was observed due to the 3 different Ca
2+ 

concentrations in the 

culture medium. DNA content was highest in the 1.8 mM [Ca
2+

] medium group on day 9 (9.96±0.39) 

and in the 2.8 mM [Ca
2+

] medium group on day 22 (14.59±1).  

 

The medium calcium concentration effect on percentage of viable cells is presented in figure 6.6. This 

shows that all culture conditions resulted in appreciable percentages of dead cells on day 9.  

Furthermore, a significant decrease in cell viability was found between day 9 and day 22 for each 

group (p < 0.05). There were no significant differences in cell viability between groups at each tested 

time points (p > 0.05). The effect of the interaction between time and calcium concentration was 

significant (p < 0.05). On day 9, the viable cell population was highest in the constructs cultured in 

4.8 mM [Ca
2+

] medium (66.1± 1.56%). However, this culture condition resulted in the highest cell 
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viability reduction rate between day 9 and 22. Cell viability was highest in the 2.8 mM [Ca
2+

] group 

constructs on day 22 (48.85±5.30%). 

 

The wet weights of the samples on days 9 and 22 were found to decrease significantly with increasing 

calcium concentration (p < 0.05) (figure 6.7). There were no significant differences in the wet weights 

between day 9 and day 22 for each group (p > 0.05) and the effect of the interaction between the 

calcium concentration and time was also not significant (p > 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Effects of medium calcium concentration on the morphology and distribution of the 

HMSCs in sections of alginate discs. Images were obtained on day 7 and day 22. Viable HMSCs are 

in green and the nonviable cells are in red. Arrows indicate the formation of agglomerates. The scale 

bar is equal to 100 µm. 

Day 7 Day 22 

1.8mM 
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Figure 6.4: Total number of cells/scaffold measured by the NC-3000 (n=2). Horizontal line indicates 

day 0 values. Results that are significantly different (p < 0.05) are marked with an asterisk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Total DNA content/scaffold measured by the Hoechst 33258 assay (n=2). Results that are 

significantly different (p < 0.05) are marked with an asterisk. 
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Figure 6.6: Percentage number of viable cells, measured by the NC-3000 (n=2). Results that are 

significantly different (p < 0.05) are marked with an asterisk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Effects of medium calcium concentration on the wet weight of MSC-embedded alginate 

hydrogel constructs after incubation for 9 and 22 days (n=2). Results that are significantly different (p 

< 0.05) are marked with an asterisk. 
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6.3. Discussions 

 

MSCs were encapsulated in alginate hydrogels at a cell density of 1.15 x 10
6 
cells/scaffold and 

cultured for 22 days in media with varying calcium ion concentrations [Ca
2+

] of 1.8mM, 2.8mM or 

4.8mM. Higher calcium concentrations of the media were expected to improve the mechanical 

stability of the ionically cross-linked hydrogels for long-term culture.  

 

The viability and proliferation of encapsulated cells are important factors to consider when evaluating 

biomaterials for tissue engineering. Many assays, employing different strategies are available to 

determine cell viability in 3D tissues. Each method has its own limitations and can strongly influence 

the interpretation of the results (Park, Hwang & Suh 2000, Gantenbein-Ritter et al. 2008).  One of the 

methods used in this study was fluorescence microscopy to produce optical sections through the 3D 

hydrogel specimens with the live and dead cells stained with calcein AM (green fluorescence) and 

ethidium homodimer-1 (red fluorescence) respectively. Microscopy imaging showed uniform 

distribution of the cells on the surfaces of the 3D tissues (< 100µm depth) in all groups on day 7 

(figure 6.3A-C) and the cells maintained a spherical morphology between day 7 and day 22. The 

spherical morphology is characteristic of NP cells and chondrocytes in their native tissue 

environments, which can assist in phenotype retention (Wang et al. 2001, Guo, Jourdian & 

MacCallum 1989). Some of the cells within the hydrogels formed aggregates, which are indicated by 

the white arrows. It has been suggested that cell aggregates form because unmodified alginates do not 

encourage cell attachment and migration causing the cells to form clusters when they proliferate 

(Glicklis, Merchuk & Cohen 2004, Bohari, Hukins & Grover 2011). In addition, cellular 

agglomeration is considered as an indication of gel degradation as more space would become 

available with time due to degradation enabling the formation of the aggregates (Foss, Maxwell & 

Deng 2014, Bohari, Hukins & Grover 2011). As stated in section 2.3.3.1, cells are unable to 

enzymatically degrade alginate hydrogels formed through ionic cross-linking with bivalent calcium 

ions. However, as the calcium ions are extracted out of the hydrogel during culture; the hydrogel 

structure will break down.  

 

After 22 days of culture, the cells embedded within the constructs cultured in the high calcium 

concentration (4.8 mM)
 
medium (figure 6.3F) were very difficult to detect due to limited diffusion of 

the staining solution because of the dense structure of the alginate gels as a consequence of high 

concentration of calcium in the medium. All in all, fluorescence microscopy only allowed the analysis 

of limited construct depths (up to 250 µm) making it difficult to derive quantitative data throughout 

the depth of the 3D constructs.  
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The numbers of live and dead cells in the 3D specimens were determined after scaffold digestion 

using the NC-3000 together with Vial1 cassettes coated with AO and DAPI. Unlike the direct staining 

of cells in the 3D constructs, this method is not limited by mass transfer issues. However, the 

technique does not provide spatial information on cell distribution or morphology and is destructive. 

In addition, the use of a scalpel to halve the gels before dissolution induces cell damage at the 

diameter of the constructs, but the proportion of cells damaged in the process is very small. To 

evaluate the effectiveness of the digestion/automated cell count method in measuring cell 

proliferation, the DNA content of papain-digested samples was also quantified using the Hoechst 

DNA assay. The NC-3000 measurements and the results obtained using the Hoechst DNA assay 

(figures 6.4 and 6.5, respectively) showed that the cells proliferated in all culture conditions as 

evidenced by increase of total cell number and DNA content per scaffold between day 9 and day 22.  

 

According to the NC-3000 measurements, there were a large proportion of dead cells in all the culture 

conditions and cell viability appeared to decrease over time (figure 6.6). This reduction of cell 

viability in alginate over time has been observed in previous studies (Chou, Nicoll 2009, Lee et al. 

2007). Reduction of cell viability is most likely caused by the high viscosity of the pre-gelled 

solution, which exerts a high level of shear stress at the cell surface and so affects the cells when they 

are homogenised in alginate solution (Chisti 2001). Depending on the degree of damage, cells can 

either recover by their self-repair mechanism or extensive cellular damage and death sometimes 

occurs. When cell death occurs, the number of living cells would be balanced in a dynamic between 

cell death and proliferation (Cao, Chen & Schreyer 2012). In this study, the data showed a cell 

number and DNA content increase, but at the same time cell death rate is higher than the proliferation 

rate, hence the reduction of viability with time. In contrast, other studies have reported an increase of 

cell viability in alginate over time (Foss, Maxwell & Deng 2014, Bohari, Hukins & Grover 2011) or 

no significant changes in cell viability (Xu et al. 2008a, Korecki et al. 2009, Park et al. 2006). The 

differences in observations could be attributed to differences in a number of factors such as cell 

seeding densities, alginate concentrations, media type or even the type of assay used to evaluate cell 

viability. 

 

It has been shown that altered calcium homeostasis is one of the factors involved in continuing 

chondrocyte apoptosis after a cartilage damage (Amin et al. 2009, Huser, Davies 2007). This 

hypothesis is supported by the progressive cell death observed in figure 6.6. However, the 

mechanisms of progressive cell death may involve complex three-way interactions between the cells, 

matrix, and soluble factors (Kühn et al. 2004). The highest cell viability was obtained in the constructs 

cultured in media with a Ca
2+

 concentration of 2.8 mM, suggesting that this was the optimum medium 

calcium concentration to maintain calcium homeostasis over long culture durations.  
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The primary objective of increasing the calcium content of culture medium, however, was to improve 

the mechanical integrity of the hydrogels during culture conditions in order to withstand the 

mechanical perturbations in the bioreactor. In the preliminary dynamic compression only study 

presented in chapter 7, constructs cultured in standard medium with a Ca
2+

 concentration of 1.8 mM 

were very weak and difficult to handle after repeated compression cycles in the bioreactor. This is 

because the loss of crosslinking Ca
2+

 ions to culture medium and/or due to cellular uptake weakens 

the gels (Drury, Mooney 2003, Kuo, Ma 2008). The mechanical integrity of the gels can be improved 

by increasing the calcium content of the external medium. For example, it was found that the 

magnitude of the complex shear modulus at 1 Hz of chondrocyte-seeded alginate constructs doubled 

when the Ca
2+

 concentration of the external medium was increased from 1 to 4 mM (Wan et al. 2008). 

In addition, increasing medium Ca
2+

 concentration has been shown to improve the mechanical 

properties of acellular alginate scaffolds (Kuo, Ma 2008). 

 

Theoretically, ECM production would be expected to increase and balance the reduction of the 

mechanical properties due to loss of Ca
2+

 ions. However, no GAG production was detected by the 

DMMB assay in the pilot or present study and no results are presented. This is probably due to the 

high passage of cells used in this study (passage 5), whereas most of the researchers culturing MSCs 

for chondrogenic differentiation use the cells at passage 1 to 3 (Buxton et al. 2011, Lee et al. 2007, 

Herlofsen et al. 2011, Mehlhorn et al. 2006). It has been shown that increased cell passage diminishes 

the multipotent properties of MSCs (Lee et al. 2013, Kretlow et al. 2008). In this study, the cells were 

expanded until passage 5 to ensure that a sufficient quantity of cells was obtained to encapsulate cells 

in alginate at a concentration of 5 million cells/ml. This cell concentration was chosen to closely 

mimic the native NP cell density of 4 million cells/ml (Maroudas et al. 1975). Nevertheless, this is a 

low seeding density and it might have resulted in diminished cell-to-cell contact preventing 

chondrogenic differentiation of the MSCs. Previous studies have shown that cell densities between 10 

and 25 million cells/ml are optimal for the production of GAG (Buxton et al. 2011, Kavalkovich et al. 

2000).  However, these high cell concentrations correspond to the cell density of human femoral 

condyle cartilage, which was measured at 14.1 ± 3.2 million cells/mL (Stockwell 1971).      
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The results of the effects of the [Ca
2+

] of the culture medium on the hydrogel wet weights are shown 

in figure 6.7. There was a significant reduction in the wet weights of the hydrogel-cell constructs with 

increasing [Ca
2+

] on day 9 and day 22 (p < 0.05). This is likely due to a decrease in the porosity of the 

samples as a result of an increase in crosslinking density with higher calcium concentration. (Wan et 

al. 2008). After 11 days of culture, precipitates were visible at the bottom of the wells containing the 

high calcium concentration medium (4.8mM) likely due to calcium oversaturation. This high Ca
2+

 

concentration also resulted in shrinkage of the gels. Gel shrinkage is undesirable as it could allow 

gaps to form between the membrane and the alginate in further studies in the bioreactor, creating a 

low resistance pathway for fluid leakage. The 1.8 mM and 2.8 mM medium Ca
2+

 concentrations 

maintained the original dimensions of the gels over the culture duration.  The development of the 

mechanical properties of the cell-alginate constructs in culture was not evaluated, as the rheometer 

used in chapter 5 to characterize the rheological properties of acellular hydrogels requires a big 

sample size. Based on manual inspection, the strength of the constructs appeared to improve with 

increasing medium Ca
2+

 concentration, which is consistent with the findings from previous studies 

(Kuo, Ma 2008, Wan et al. 2008). 

 

In conclusion, the best medium Ca
2+

 concentration for maintaining cell viability, and dimensional 

stability of the alginate constructs out of the 3 concentrations tested was found to be 2.8 mM. 

However, it should be noted that although trends can be observed from the results using only 2 

replicates (n=2), the experiment should be repeated with larger sample numbers to validate the 

findings. The effects of mechanical stimulation on the cellular and biochemical aspects of the 

constructs cultured in the best medium condition are subjects of investigation in the following chapter. 
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Chapter 7 Effects of Mechanical Stimulation 

 

7.0.    Introduction 
 

The application of physiologically relevant mechanical stimulation conditions in vitro is essential to 

inform the understanding of the behaviour of cells experiencing the biomechanics in vivo and improve 

the functional outcomes of the engineered tissues through achieving the appropriate phenotypic 

characteristics of the native tissue with or without the presence of biochemical stimulation using 

growth factors. Direct compression and hydrostatic pressure are the two most investigated loading 

regimes for NP-tissue engineering (for a detailed review, we refer to sections 2.3.4.1 and 2.3.4.2). 

Flow perfusion bioreactors are also of great interest for NP-tissue engineering studies as described in 

section 2.3.4.3. Besides mitigating mass transfer issues associated with static culture conditions, 

perfusion flow can also provide mechanical stimulation to the cells in the form of fluid shear stress 

leading to significant improvement in chondrogenic differentiation in hydrogel constructs (Lovett et 

al. 2010, Schulz et al. 2008). However, fluid flow-induced shear stress can also cause detrimental 

effects on the cell-seeded constructs such as the reduction in cell viability (Gonçalves et al. 2011) and 

the decrease in DNA content (Gonçalves et al. 2011, Alves da Silva et al. 2010) and accumulation of 

NP ECM (Kock et al. 2013, Mizuno, Allemann & Glowacki 2001). Therefore, more thorough 

investigations are required to prevent these negative effects of fluid flow induced shear stress in tissue 

engineering studies. 

 

In collaboration with the Healthcare Engineering group at Loughborough University, a combined 

compression, perfusion and pressurisation culture system was designed and built by Bose 

ElectroForce in response to the need of a bioreactor system that simultaneously applies loading 

conditions to more closely mimic the complex biomechanics environment that nucleus pulposus 

experiences in vivo. The concept of the bioreactor consists of a cylindrical cell-scaffold specimen, 

which is mounted between two porous platens and enclosed in a membrane sheath and subjected to 

axial compressive loads confined by the radial hydrostatic pressure when the sample chamber is filled 

with water. The porous platens also allow perfusion of culture medium to the specimen to improve 

nutrient delivery to the cells and also induce shear stress. It is also possible to increase the hydrostatic 

pressure of the medium flow through the 3D specimen by occluding the outflow from the specimen 

using a flow restriction valve. The principle behind the bioreactor system is analogous to the 

conventional tri-axial compression apparatus commonly used to measure the shear strength of soil 

under controlled drainage conditions. This system allows for independent control of the stress applied 

in the vertical direction along the axis of a cylindrical specimen (axial compression) and the stresses 
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applied in the radial direction perpendicular to the sides of the cylinder (confining hydrostatic 

pressure) thereby allowing for the investigation of the shear stresses in the soil sample arising from 

partial transverse confinement (faculty.fullerton.edu/btiwari, www.engr.uconn.edu/). The test is called 

"tri-axial" because the three stresses (axial compression, radial hydrostatic pressure and shear stress) 

are assumed to be known and are controlled (www.engr.uconn.edu/). Consequently, the bioreactor 

system used in this study is termed ‘tri-axial bioreactor’. The system accommodates 4 samples each 

with an independent channel for nutrient supply and perfusion pressure control. Depending on the 

magnitude of the axial load, radial hydrostatic pressure and sample fluid flow pressure; the samples 

can be subjected to loading regimes at different levels of confinement from unconfined uniaxial 

compression to full hydrostatic pressure confinement. The bioreactor system is controlled by a digital 

control system, which allows for multi-axial loading to mimic physiologic conditions, and real-time 

data acquisition from multiple sensors including load cells and pressure, temperature, pH and 

dissolved oxygen and carbon dioxide sensors to enable engineering of in vitro environment allowing 

experimental investigation of cellular response to mechanical stimulation and the physiochemical 

properties of the culture medium.  

 

The primary aim of this chapter is to investigate the biological response of mesenchymal stem cells, 

seeded in 3D alginate hydrogels to dynamic compression and perfusion inside the tri-axial bioreactor. 

The cell-embedded alginate constructs were loaded in the system for 5 days and subjected to 

continuous perfusion with associated hydrostatic pressurization, and intermittent compression cycles 

in the presence of TGF-β3. In addition, this work attempted to preliminarily elucidate the involvement 

of the temperature, and the chemical properties of the microenvironment (dissolved oxygen (pO2), 

dissolved CO2 (pCO2)) in influencing the biological response and whether optimisation of these 

factors was required. Furthermore, in order to evaluate the isolated effect of dynamic compression on 

cell viability, a preliminary study, in which constructs were loaded with non-porous platens, is also 

presented.  

 

 

 

 

 

 

 

 

 

 

http://faculty.fullerton.edu/btiwari/geotech_Lab/mainpage_files/other/UU%20Triaxial%20Test.pdf
http://www.engr.uconn.edu/~lanbo/courses.html
http://www.engr.uconn.edu/~lanbo/courses.html
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7.1.    Materials and Methods 

 

7.1.1. Bioreactor design 

 

The main components of the sample-loading frame (figure 7.1) are a computer-controlled linear 

actuator, a linear variable displacement transducer (LVDT), a sample chamber, eight stainless steel 

shafts, eight stainless steel porous platens, 4 membrane sheaths and four load cells. Each sample 

(surrounded circumferentially by a membrane) was placed between 2 laser hole-drilled platens with 

one connected to a lower shaft seating on the base of the actuator and the other connected to a load 

cell. Each shaft is guided by a linear bearing to maintain parallelism of the lower, actuated, shafts with 

the upper shafts. Dynamic compression of the samples is applied with a displacement control and load 

feedback system. The loading frame is controlled by WinTest digital control system (version 3.1), 

which allows for a vertical displacement of the samples at a specified magnitude, frequency and 

duration. Feedback from the LVDT sensor allows for proportional integral derivative (PID) control 

optimisation in the software to improve the closed loop performance of the linear actuator and tune 

the applied displacement to closely match the desired waveform. The actuator can induce a maximum 

compression of 12 mm of the samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Sample loading frame of the tri-axial bioreactor system. 
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The complete layout of the system used in the present study including the loading frame in figure 7.1 

and the perfusion system is shown in figure 4.1. The complete list of materials used in the perfusion 

system is presented in tables 4.1 and 4.2. A specially designed incubator programmed at 37°C and 5% 

CO2 was made to house the fully connected bioreactor system. The software also allows for real-time 

data acquisition from the load cells, pressure transducers and temperature and biochemical sensors 

during experimental studies.  

 

 

Table 7.1: Specifications for the dynamic tri-axial loading bioreactor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four specimens chamber with transparent, flexible membrane around each sample 

Compression   

Axial stress 

Displacement 

Frequency 

0.3 MPa (5 mm specimens) 

±6 mm 

0.01-1 Hz 

Perfusion flow   

Flow rates 

Pressure (gauge)           

0.22-40 mL/min 

4-6kPa 

Hydrostatic confining pressure  

Pressure 0.3 MPa  

Load cell per sample  

Load 225 N 
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7.1.2. Cell/Tissue Culture Materials and reagents 
 

All the materials and reagents used for cell and tissue culture were exactly the same as those described 

in section 6.1.1 except for the FBS, which was from Life Technologies (Paisley, UK). 

 

 

7.1.3. Methods 

 

7.1.3.1. Culture of Human mesenchymal stem cells 

 

HMSCs were cultured in accordance with the method described in section 6.1.2.1. 

 

7.1.3.2. Dynamic compression and perfusion of 3D alginate constructs 

 

Cell-alginate constructs were fabricated in accordance with the method described in section 6.1.2.2. 

After gelation, constructs were transferred into 12-well plates with 2 ml of chondrogenic-defined 

medium. Calcium chloride stock solution (1000x) was added to reach a calcium concentration of 2.8 

mM and the cultures were transferred to a humidified incubator (37ºC, 5% CO2). Medium was 

replaced every 2-3 days. The constructs were cultured in static incubator conditions for 9 days before 

the application of mechanical stimulation in the tri-axial bioreactor. During the dynamic experiment, 

unstimulated controls were maintained in static 37°C, 5% CO2 incubator conditions within the same 

incubator as the bioreactor system and in the standard humidified 37°C, 5% CO2 incubator.  

 

HMSC-embedded alginate constructs were cultured in the tri-axial bioreactor for 5 days from day 9 to 

day 14. Continuous perfusion was applied at a pump flow rate of 0.22 ml/min and automated 

restriction valves were used to control the perfusion pressures. The valves were set to regulate the 

sample pressures at 1.2 kPa (gauge).  The actual sample pressures typically varied between 1.6 and 4 

kPa during perfusion only cultures (figure 7.2A) and 0.9 and 4.7 kPa during perfusion and dynamic 

compression culture conditions (figure 7.2B). Intermittent compression was applied at 10% max 

compressive strain and 1 Hz frequency, for 1 hour/day. these loading parameters are within the 

physiological range of moderate, low-amplitude strain when applied to nucleus pulposus tissue in 

vivo. Experiments used a sinusoidal dynamic compression protocol (figure 7.2C). One limitation of 

the compression tests is that no desired level of preload was applied to remove any slack in the 

samples and ensure that all specimens start from the same load. A reference preload is very difficult to 

achieve due to the difficulty in installing the platens on top the samples when they are confined in the 

membrane. The lack of preloading explains the variations in the load profiles of the 4 samples shown 

in figure 7.2D. 
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Figure 7.2: Perfusion and dynamic compression conditions recorded over time showing (A) the valve 

command and actual sample fluid flow pressure during perfusion only cultures, (B) valve command 

and actual sample flow pressure during perfusion and dynamic compression cultures, (C) the daily 

compression profile applied to constructs, and (D) load response of samples due to applied 

compression. 

 

 

Before running the experiment, the chemical sensors were calibrated as recommended by the 

manufacturer: the CO2 sensor was calibrated by a 2-point calibration of the pH electrode in pH 7.00 

buffer to determine the zero point followed by immersion in pH 9.21 buffer to determine the slope. 

Prior to calibration of the O2 sensor, it was exposed to air for 6 hours. A single-point calibration was 

then conducted in water to determine the slope of the sensor. The pH sensor was calibrated by 

immersion in pH 7.00 buffer followed by pH 4.02. However, the pH sensor produced unstable results 

and was therefore not connected in the flow system during the 5-day experiment. The peristaltic pump 

flow rate was calibrated as described in section 4.1.3. The shaft assembly was autoclaved before each 

experiment and all the components exposed to the medium, such as tubing, 2-way valves, and 

connectors were sterilized by soaking in 70% ethanol followed by rinsing in PBS.  
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To conduct the experiment, cell-embedded constructs were transferred to the four individual ports 

within the bioreactor between 2 laser hole-drilled platens and surrounded circumferentially by a thin 

membrane. Once the samples were assembled, the inlet and outlet pressure transducers were zeroed 

and the inlet and outlet tubing segments primed with culture medium were connected to the bioreactor 

frame using the quick disconnect fittings. The pump was then started to fill up the system. When the 

system was filled, all the pressure transducers were zeroed again to establish atmospheric pressure as 

the reference pressure value so that the pressure readings on the inlet pressure meters were equal to 

the sample pressures as described in section 4.3. The automated restriction valves were then applied 

on the outlet tubing to regulate the sample pressures. Dynamic compression cycles were applied 

1h/day during the 5-day experiment. During the experimental run, the software was set to record the 

axial displacement and loads, inlet and outlet flow pressures and pressure drops across the samples, 

and pH, temperature and dissolved CO2 and O2 of the culture medium. The data was scanned every 

100 seconds for a period of 2 seconds at a scan rate of 100 Hz. On completion of the mechanical 

stimulation experiment on day 14, all the specimens were returned to static incubator conditions in the 

standard incubator and constructs were examined for cell morphology, distribution, viability, 

proliferation, and biochemical properties on day 15.  

 

 

7.1.3.3. Dynamic compression only protocol 

 

MSC-alginate constructs were fabricated in accordance with the method given in section 6.1.2.2. 

After gelation, constructs were transferred into 12-well plates with 2 ml of chondrogenic-defined 

medium and placed in a humidified incubator at 37ºC and 5% CO2. Medium was replaced every 2-3 

days. Constructs were cultured in the static incubator conditions for 3 days (test group 1) or 10 days 

(test group 2) before the application of dynamic compression in the tri-axial bioreactor was started. 4 

alginate constructs were each mounted between 2 nonporous platens, and surrounded 

circumferentially by a thin semi-permeable membrane to hold them in position during compression 

loading cycles. The daily loading regime consisted of 3 intermittent 1 hourly compression cycles; 

each followed with a 1-hour rest period (see figure 7.3A) after which the constructs were returned to 

the static incubator. Loading was repeated on day 7 for group 1 constructs and on day 14, day 17 and 

day 21 for group 2 constructs. Compression was applied at 10% strain (figure 7.3B) and a frequency 

of 1 Hz. The load response of the samples is shown in figure 7.3C. Unstimulated controls were 

maintained in static 37°C, 5% CO2 incubator conditions within a standard incubator during the 

loading cycles. The constructs were analysed for cell morphology, distribution and viability after the 

completion of dynamic compression loading on day 7 and day 21 for test groups 1 and 2 respectively.  
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Figure 7.3: Dynamic compression conditions applied to the constructs over time showing (A) 

intermittent compression regime, (B) sinusoidal compression profile, and (C) load response of 

samples due to the applied compression. 

 

 

7.1.3.4. Cellular and biochemical analytical techniques  

 

All the cellular and biochemical analytical techniques are described previously in the following 

sections: qualitative live and dead cell distribution and morphology in 3D alginate constructs (section 

6.1.2.3), quantitative analysis of cell viability and proliferation by alginate digestion followed by 

automated cell counting (section 6.1.2.4).  

 

 

7.1.3.5. Statistical analyses 

 

Numerical and graphical data are presented as mean ± standard deviation. The construct groups were 

analysed for significant differences using a one-way analysis of variance (ANOVA) and differences 

were considered to be significant if the probability p ≤ 0.05. n provided in figure legends refers to the 

number of constructs analysed for each assay. Statistics were performed using SPSS software 

(Version 21, IBM Corp, Armonk, New York).  
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7.2.    Results 
 

 

7.2.1.  Dynamic compression and perfusion 

 

MSCs were encapsulated in alginate hydrogels and cultured for 9 days in free-swelling unloaded 

conditions in chondrogenic medium before dynamic culture in the tri-axial bioreactor for 5 days. The 

morphology of the encapsulated cells on the surfaces of the dynamic and static control cultures were 

observed on day 15 using fluorescent microscopy after staining live and dead cells with calcein AM 

(green fluorescence) and ethidium homodimer-1(red fluorescence) respectively. Only the live cells 

could be viewed under the microscope (see figure 7.4) probably because of bleed through from the 

green channel into the red channel. The cells assumed a spherical morphology, which is characteristic 

of a nucleus pulposus phenotype. However, metachromatic staining was low in the loaded samples 

and the visual depth of the cells in all the 3D samples was limited to less than 100µm. It is difficult to 

translate the images into reliable cell distribution and cell viability and proliferation results.  

 

To investigate cell viability and proliferation, alginate-cell constructs were dissolved to collect cells, 

which were counted using the NC-3000 automated cell counting system on day 15. The cell viability 

results are shown in figure 7.5. A significant reduction in cell viability (p < 0.05) was noted in the 

loaded samples (26.10 ± 4.06%) in comparison with the static bioreactor incubator control samples 

(57.30 ± 1.98%) and the static standard incubator control samples (63.38 ± 1.52%). There was no 

significant difference between the cell viabilities of static culture groups (p > 0.05). Dynamic and 

static cultures were seeded with an initial cell count of 1 million cells/scaffold. At the end of the 

experiment, the average cell number found in bioreactor samples was 1.12 ± 0.08 million 

cells/scaffold. The static control samples cultured in the bioreactor incubator and those cultured in 

standard incubator conditions contained 1.29 ± 0.03 million cells and 1.46 ± 0.19 million 

cells/scaffold respectively (see figure 7.6).  A one-way anova test showed that the three values were 

not significantly different (P > 0.05). Similarly, the DNA content of the samples quantified using the 

Hoechst assay (figure 7.7) was not significantly different between the three groups (p > 0.05). When 

the initial seeding density was compared to the cell counts on day 15, no significant difference was 

found (p > 0.05) indicating that the cells did not proliferate in 3D alginate. No sGAG production was 

observed in both static and dynamic cultures using the DMMB assay as in the previous study in 

chapter 6 and no results are presented. All the cell counts after the samples were dissolved, and the 

DNA content of the samples after papain digestion were normalized to the wet weight of the samples 

(figure 7.8) to obtain the quantitative values/scaffold presented above. The average wet weight of the 

loaded samples on day 15 was found to decrease in comparison with the unloaded controls, but not 

significantly (p > 0.05).  
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Real-time measurements of pO2, pCO2, and temperature of the culture medium in the bioreactor 

during the simultaneous perfusion and dynamic compression loading conditions on day 9 and day 14 

are shown in figure 7.9 (A – F). The temperature varied between 30-37°C during the duration of the 

experiment. The pCO2 concentration in the culture medium was initially 0.8% reaching 3% at the end 

of the experiment. In contrast, the pO2 concentration decreased from 6.7% on day 9 to 5.8% on day 

14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Viable cell distribution and morphology on the surfaces of dynamic and static control 

samples on day 15. Scale bar is 100μm. 
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Figure 7.5: Effect of dynamic compression and perfusion on cell viability after 5 days culture in the 

bioreactor (n=4) in comparison with free swelling controls cultured in static incubator conditions (n = 

2). Results that are significantly different (p < 0.05) are marked with an asterisk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Influence of dynamic compression and perfusion on cell content after 5 days culture in 

the bioreactor (n=4) in comparison with free swelling controls cultured in static incubator conditions 

(n = 2). Horizontal line indicates day 0 values. There are no statistically significant differences 

between groups (p > 0.05). 
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Figure 7.7: Influence of dynamic compression and perfusion on DNA content after 5 days culture in 

the bioreactor (n=4) in comparison with free swelling controls cultured in static incubator conditions 

(n = 2). There are no statistically significant differences between groups (p > 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8: Wet weights of bioreactor-cultured samples (n=4) and free swelling control samples 

(n=2) on day 15. There are no statistically significant differences between groups (p > 0.05). 
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Figure 7.9: Data recorded over a 5-day period during the application of compression and perfusion in 

the tri-axial bioreactor.  Day 9: (A) dissolved oxygen concentration, (B) dissolved carbon dioxide 

concentration, and (C) temperature. Day 5: (D) dissolved oxygen concentration, (E) dissolved carbon 

dioxide concentration, and (F) temperature. 

 

Day 9 Day 14 
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7.2.2.  Dynamic compression  
 

The constructs that were dynamically compressed without the perfusion of culture medium were 

analysed for cell viability using the NC-3000 after dissolving the gels on day 7 (test group 1) and day 

21 (test group 2). The quantitative results are presented in figure 7.10. Test group 1 samples contained 

63.64 ± 7.62% viable cells compared to 60.25 ± 3.54% viable cells in the unstimulated controls. On 

day 21, the average number of cells was 29.07 ± 13.58 in the dynamically compressed samples and 

36.81 ± 6.01 in the free-swelling controls. A one-way anova showed that the application of dynamic 

compression alone did not result in a significant reduction of cell viability compared with the free-

swelling controls (p > 0.05).  

 

The live and dead cells on the surfaces of the constructs were visualised using a fluorescent 

microscope after staining with calcein AM (green fluorescence) and ethidium homodimer-1 (red 

fluorescence) respectively on day 7 and day 21 (see figure 7.11). The microscopic images showed 

cells with a rounded morphology - a phenotypic characteristic of a nucleus pulposus cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: Effect of dynamic compression on cell viability on day 7 and day 21 (n=4) in 

comparison with free swelling controls cultured in static incubator conditions (n = 2).  
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Figure 7.11: Viable (green) and nonviable (red) cell distribution and morphology on the surfaces of 

dynamic compression and static control samples on day 7 and day 21. Scale bar is 100μm.  
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7.1.    Discussions 

 

The primary aim of this chapter was to evaluate the biological response of MSC-alginate constructs to 

dynamic compression and perfusion flow with associated hydrostatic pressurization of the culture 

medium. In another experiment, constructs were mounted between nonporous platens in order to 

isolate the effects of dynamic compression. After the culture periods, loaded and control gels were 

stained using the Live/Dead assay and images were taken with a fluorescence microscope (see figure 

7.4 and figure 7.11). Microscopic visualization of viable and nonviable cells without disruption of the 

scaffold structure was limited to the surface layers of the constructs (depths < 100µm). The cells on 

the surface of the control and compression only gels were spherical and homogeneously distributed 

while metachromatic staining was low on the surfaces of the compression and perfused specimens. 

Quantitative assessment of cell viability after disruption of the scaffolds indicated that on average, 

26.10% of the cells in the loaded samples maintained viability after 5 days exposure to dynamic 

compression and perfusion in the bioreactor, whereas cell viability was more than double in the 

unloaded constructs (63.38% in the standard incubator and 57.30% in bioreactor incubator controls) in 

comparison with the loaded samples (see figure 7.5). In contrast, the application of compressive 

loading alone without perfusion did not result in a significant reduction in cell viability compared to 

the free swelling controls (see figure 7.10). It is important to point out that the porous platens used in 

compression and perfusion study, elevate the shear stress experienced by the samples during dynamic 

loading cycles, compared to the nonporous platens used in the compression only study. Hence, we 

cannot make conclusions about the isolated effects of compression or perfusion by comparing the two 

studies since different platens were used in the two experiments. The observed reduction of cell 

viability due to simultaneous perfusion and dynamic compression could be caused by shear stress due 

to the perfusion of culture medium, compression induced shear stress, the pH of the culture medium, 

and/or bubbles. Due to the complexity of the tri-axial bioreactor system, it is difficult to identify the 

exact cause. All the possible causes are discussed in the following paragraphs. 

 

Reduction of cell viability in perfusion studies has previously been associated with high levels of 

shear stress acting on the cells (Cartmell et al. 2003). As discussed in section 2.3.4.3, shear stress is 

dependent on the flow rate, the scaffold porosity, the size of the constructs and the bioreactor design. 

The flow rate used in this study (0.22 mL/min) was chosen to mimic the low flow rates previously 

used to induce chondrogenic differentiation of MSCs in 3D scaffolds (Gonçalves et al. 2011, Alves da 

Silva et al. 2010). However, the alginate scaffolds used in this experiment have very low porosity and 

permeability than those used in the previous experiments, and therefore, the local shear stress at a 

given flow rate would be higher (Vossenberg et al. 2009, Chen et al. 2012). The fluid that can be 

forced through low permeability hydrogel scaffolds, like alginate is very low (Van Donkelaar, Schulz 
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2008). Convective transport decreases with depth of the hydrogel, such that fluid transport is 

dominated by passive diffusion at depths where fluid flow is negligible (Chen et al. 2012). 

Computational fluid dynamics (CFD) simulations that specifically model scaffold microarchitecture 

during perfusion and fluid pressurization conditions in the tri-axial bioreactor could be useful in future 

investigations to estimate local fluid velocities and shear stresses and the concentrations of the 

biochemical factors throughout perfused constructs. Such studies can provide a great insight into the 

individual effects of shear stress stimulation or convective transport of nutrients on the biological 

response of MSCs encapsulated throughout the alginate hydrogels. 

 

Computational modelling can also be used to analyse the stress-strain states of 3D constructs in 

bioreactor systems to gain a better understanding of cell metabolic response to dynamic compression 

using porous platens. For instance, Kallemeyn and Colleagues (Kallemeyn et al. 2006) developed a 

poroelastic finite element model to parametrically analyse heterogeneities within cartilage explants 

due to axial and radially transverse compression applied via porous platens and a sheath respectively. 

The bioreactor was modelled after tri-axial compression systems commonly used in soil mechanics 

analyses (Praastrup, Jakobsen & Ibsen 1999, Sheng et al. 1997) and has a similar conceptual design to 

the tri-axial bioreactor system used in the present study. The authors found that the construct’s 

mechanical environment varied from the ideal homogeneous stress state that would occur from strict 

linear superposition of the applied axial and transverse pressure due to the proximity of boundary 

conditions (porous platen friction coefficient and sheath modulus) with respect to the size of the 

cartilage explant and the loading history of the explant (due to the poroelastic and viscoelastic 

behaviour of cartilage). The boundary conditions and loading history interact in a highly nonlinear 

manner to influence that heterogeneity (Kallemeyn et al. 2006). Similar to cartilage and the NP tissue 

(Iatridis et al. 1996, Frank, Grodzinsky 1987, Strange, Oyen 2012), alginate is a porous, hydrated 

scaffold consisting of solid and fluid phases and it exhibits a time-dependent viscoelastic and 

poroelastic response to applied load. Viscoelasticity arises from the rearrangement of the polymer 

network and poroelasticity results from the frictional drag of interstitial fluid through the polymer 

network when loading is applied (Strange et al. 2013). Based on the FE model by Kallemeyn and 

Colleagues (Kallemeyn et al. 2006), we can hypothesize that stress-strain and strength properties 

based on global load-displacement measurements (figure 7.2D and figure 7.3C) are not a true 

representation of the behaviour in the alginate constructs at the constitutive level due to the 

inhomogeneities that exist due to the poroviscoelastic behaviour of the alginate constructs and the 

boundary conditions at the porous platen/construct and the membrane/construct interfaces. In 

particular, the highest interstitial fluid flow and shear stress in response to the dynamic axial 

compression would be expected to occur in the upper and lower surfaces of the constructs, which are 

adjacent to the porous platens. In the central region, there would be relatively less fluid flow and shear 
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stress but much higher levels of hydrostatic pressure. A previous experimental study by Kisiday and 

Colleagues (Kisiday et al. 2009) reported low cell viability and metachromatic staining in the edges of 

cell-agarose constructs that were in contact a porous platen during the application of dynamic 

compression. Cell viability increased with depth, reaching levels similar to the unloaded TGF-β 

cultures in the lower portion of the hydrogel in contact with a nonporous platen. Taken together with 

the findings in the current studies, these results suggest that shear stress caused by dynamic 

compression induced fluid flow through the porous platens and/or shear stress due to direct perfusion 

can result in the loss of cell viability. 

 

Although mechanical stimulation and nutrient and mass transfer are usually the focus for dynamic 

tissue engineering studies, process performance can also be affected by small variations of operational 

parameters like temperature, dissolved CO2 concentration, pH, and oxygen tension (Trummer et al. 

2006). A number of studies have reported that low oxygen tension (2-5%) that mimics that 

experienced by cells in vivo improves the proliferation and chondrogenic differentiation of MSCs 

compared to normoxic conditions (20% O2) used in the standard incubators (Risbud et al. 2004, 

Lovett et al. 2010, Kanichai et al. 2008, Wang et al. 2005). However, one of the major issues in some 

of these studies is the assumption that the dissolved oxygen content in the media will eventually 

equilibrate to the oxygen level of the incubator in which the constructs are cultured. Based on Baker 

Ruskinn’s research, the actual oxygen content in the medium is much greater than the 2% oxygen 

level within the environment of a hypoxic chamber and it might not reach that level for a significant 

period of time (knowledge.bakerco.com/). In contrast, it was found that actual oxygen content in the 

medium within the tri-axial bioreactor is much lower than the normoxic oxygen level (20%) assumed 

to be contained in the incubator environment. The oxygen level in the medium was 6.7% on day 9; 

reducing to 5.8% on day 14 (see figure 7.9A and D). The lack of validated oxygen levels in previous 

studies makes it difficult to make comparisons of data between different research laboratories. 

 

pH is also known to play crucial role in the behaviour of MSCs (Wuertz, Godburn & Iatridis 2009, 

Wuertz et al. 2008). For instance, when MSCs were cultured for 5 days at 4 different pH levels 

representative of the healthy, mildly or severely degenerated intervertebral disc (pH 7.4, pH 7.1, pH 

6.8, pH 6.5), it was shown that acidic pH levels (pH 6.8 and pH 6.5), which are typical of degenerated 

discs significantly reduced MSC viability and proliferation and caused an inhibition of chondrogenic 

gene expression of MSCs from mature MSC donors. On the other hand, functionality and viability 

were generally maintained at pH 7.1 and pH 7.4 (representing a fairly healthy disc) (Wuertz, Godburn 

& Iatridis 2009). The culture medium used in the present study (high glucose DMEM, Lonza) 

contains a bicarbonate CO2-dependent buffering system to control the pH. The amount of dissolved 

CO2 in the medium is dependent on the amount of atmospheric CO2 and the temperature 

http://knowledge.bakerco.com/blog/bid/326126/Regulating-Dissolved-Oxygen-Levels-in-Culture-Media
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(cellgro.com). Both control and bioreactor constructs were cultured in 37°C incubators containing 5% 

CO2. However, the DMEM is buffered for a higher CO2 concentration. It contains 3.7g/L of sodium 

biocarbonate (www.level.com.tw/, www.researchgate.net), which is used to maintain physiological 

pH 7.2-7.4 of a culture in 10% CO2 (cellgro.com). A low CO2 level causes the sodium bicarbonate to 

take over; increasing the pH above 7.4 (cellgro.com, www.researchgate.net). Alkalinised medium is 

toxic and usually causes the cells to die immediately (http://www.atmosafe.net/). The actual dissolved 

CO2 in the medium contained in the bioreactor was 0.6% after 2h; reaching 3% after 5 days (see 

figures 7.9B and E). Since the temperature (see figures 7.9C and F) and CO2 levels in the incubator 

remained fairly constant during the duration of the experiment, the progressive increase in dissolved 

CO2 during the duration of the experiment could probably be due to the production of CO2 by 

metabolically active cells. Progressive increase in pCO2 has previously been observed in cell culture 

systems, in which oxygen is delivered via a gas permeable membrane. In these systems, the rate of 

CO2 removal is less than the rate of oxygen transfer through the membrane (Marks 2003). Increase in 

pCO2 reduces the pH of the medium (cellgro.com). Since the pH of the culture medium was not 

monitored during the 5-day experiment, it is not known how the dCO2 levels affected the pH.  

   

Lastly, bubbles are widely considered as a principle cause of cell death in flow systems. Air pockets 

can form in the tri-axial bioreactor perfusion system during filling as described in section 3.4.2. The 

occurrence of the bubbles cannot be predicted. They can remain at one place for some time and then 

grow larger. It was observed that the increase in sample hydrostatic pressure when the flow in the 

outlet tubing is restricted generally causes air bubbles near the constructs to dissolve/or rupture. Shear 

stress can become significant as a result of increasing bubbles near the constructs and can cause cell 

damage/loss of cell viability in bubble burst regions (Chisti 2001, Chisti 2000, Hu, Berdugo & 

Chalmers 2011, Minuth, Strehl & Schumacher 2005, Zhang et al. 2010a). Adding shear-protective 

additives to the culture medium can significantly reduce bubble-associated cell damage. Most 

commonly used is Pluronic F68, a non-ionic surfactant copolymer of polyoxyethylene and 

polyoxypropylene, which creates a protective layer around the cells mitigating the adverse effects of 

bubbles (Marks 2003, Chisti 2000). However, Pluronic surfactants are known to cause problems with 

foaming (Marks 2003) and this might result in reduced mass transfer efficiency in the perfusion 

system.  

 

 

 

 

 

 

http://cellgro.com/media/upload/file/techinfosheets/new/Buffering%20Systems.pdf
http://www.level.com.tw/html/ezcatfiles/vipweb20/img/img/21661/cc_guide_identifing_correcting_common_cell_growth_problem_5_2_03_cls_cc_013w.pdf
http://www.researchgate.net/post/Why_did_the_pH_level_of_DMEM_increase_when_placed_in_an_incubator_with_no_cells
http://cellgro.com/media/upload/file/techinfosheets/new/Buffering%20Systems.pdf
http://cellgro.com/media/upload/file/techinfosheets/new/Buffering%20Systems.pdf
http://www.researchgate.net/post/Why_did_the_pH_level_of_DMEM_increase_when_placed_in_an_incubator_with_no_cells
http://www.atmosafe.net/en/themes/current-themes/the-incubator-in-the-cell-culture-laboratory.html
http://cellgro.com/media/upload/file/techinfosheets/new/Buffering%20Systems.pdf
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Chapter 8 Summary, Conclusions and Future 

Recommendations 

 

8.1.    Summary and Conclusions 

 

This thesis is aimed at optimising the design and configuration of a tri-axial bioreactor system and 

investigating the effect of physiologically relevant mechanical stimulation conditions of nucleus 

pulposus on the viability/proliferation of hMSCs and their ability to produce ECM. The experimental 

work is covered in chapters 3 – 7.  

 

In Chapter 3, a systematic design of experiments (DOE) approach was used to optimise the perfusion 

process of a tri-axial bioreactor. Four controllable design parameters affecting the perfusion process 

were identified in a cause-effect diagram as potential improvement opportunities. A screening process 

was used to separate out the factors that have the largest impact from the insignificant ones. DOE was 

employed to find the settings of the platen design, return tubing configuration and the elevation 

difference that minimise the load on the pump and variation in the perfusion process and improve the 

controllability of the perfusion pressures within the prescribed limits of 4-6kPa. The factor levels that 

minimise the load on the pump and variability in the perfusion process were identified as the laser 

hole-drilled platen design, the 1.6mm ID tubing for the return tubing configuration and the lower 

elevation difference of 0.6 m. However, DOE could not identify the root cause of pressure instability. 

A follow-up experiment revealed that the problem is due to noise factors that cannot be controlled, 

such as, the formation of air bubbles in the system. It was concluded that manual pinch valves were 

not suitable for pressure control due to the requirement for an operator tweak the valves when the 

pressures fall below or above the prescribed limits. The solution to the problem was to use automated 

valves, which were successfully used to control the perfusion pressures during the 5-day experiment 

presented in chapter 7. The optimisation method presented in chapter 3 can be applied to any 

previously designed system to understand the factors that the affect the process, solve problems and 

reduce operational costs. But although, cost savings can be made and functionality improved by 

optimising existing systems, numerical optimisation technology combined with pump system 

optimisation software present the greatest opportunities for bioreactor perfusion systems and other 

fluid flow systems yet to be built. During bioreactor design, mathematical equations and 

computational simulations of different bioreactor configurations should be conducted to evaluate the 

performance of the systems before a bioreactor prototype is constructed. Such simulations greatly 

facilitate the design optimisation, speeding up the design process as well as reducing developmental 

costs (Shi 2008).  
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In Chapter 4, the modified Bernoulli equation commonly known as the steady flow energy equation 

(SFEE) was used to analyse fluid flow fluid flow in the bioreactor perfusion system in order to 

develop a predictive tool that provides an insight into the balance between velocity, elevation and 

frictional effects in the flow system and can be used to estimate the pressures around the 3D samples 

mounted between porous platens in the bioreactor system with a given configuration of the tubing and 

arrangement of the components. The results demonstrated that the elevation difference between the 

point of measurement and the end flow point is the main factor that contributes to the pressures in the 

system. The velocity and frictional effects are not significant pressure components in the closed-loop 

system at a low pump flow rate of 0.22 ml/min. The numerical predictions agreed well with 

experimental data, thus validating the SFEE for fluid analysis in the bioreactor flow system.   

 

Chapter 5 was concerned with the development and optimisation of an in situ forming calcium 

alginate formulation for nucleus pulposus repair. Alginate was chosen and used as a scaffolding 

biomaterial because of its good biocompatibility, ease gelation with divalent cations such as calcium 

ions and low cost. The preparation of in situ forming alginate gels involves the use of CaCO3 - GDL 

system, which causes an internal release of Ca
2+

 ions in the alginate formulation for gel formulation. 

The CaCO3 – GDL system is a slow process, which forms gels with homogeneous structures 

compared to gelation with CaCl2. The formulations were designed with the objective of replicating the 

viscoelastic properties of a healthy NP tissue at 1 Hz. The hydrogels were analysed mechanically to 

select the concentrations of alginate and CaCO3 prior to cell encapsulation studies in the following 

chapters. The results showed that the increase of alginate concentration and calcium crosslinking 

density in the 3D hydrogels led to an increase of the |G*| and, thus, the enhancement of the stiffness, 

which is a clear indication of the improvement on the stability of the 3D cross-linked networks. On 

the other hand, the value of the loss angle, a measure of the energy dissipation, only increased 

significantly with increasing calcium concentration. The 2% alginate concentration was selected in 

combination with the Ca/COO
-
 molar ratio of 0.6 to produce hydrogel scaffolds with |G*|, 10.6±0.27 

kPa, that mimicked the response observed in the NP native environment at 1 Hz. However, the 

calcium alginate hydrogels could not replicate the loss angle of the NP tissue.  
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In Chapter 6, the effects of different calcium concentrations of the culture medium (1.8, 2.8 and 4.8 

mM) on the structural properties of alginate, the viability/proliferation of hMSCs encapsulated within 

alginate, as well as the ability of the cells to produce GAG, were studied for 22 days. The results 

showed that the cells proliferated in all culture conditions as evidenced by increase of total cell 

number and DNA content per scaffold, but with a significant reduction in cell viability over time. Cell 

viability was highest in the 2.8 mM [Ca
2+

] group constructs on day 22 (48.85±5.30%) and this culture 

condition also appeared to maintain the original dimensions of the gels. From this, it was concluded 

that the 2.8 mM medium Ca
2+

 level was the optimum concentration for culturing the alginate 

constructs out of the 3 tested concentrations. GAG production was not observed in all the culture 

conditions. This could be attributed to the low cell seeding density and the high passage of cells used 

in the study.  The effects of the cell seeding density and cell passage on MSC chondrogenic 

differentiation need to be investigated in further studies. 

 

In Chapter 7, a tri-axial bioreactor system, developed to investigate the mechanobiology of nucleus 

pulposus tissue engineering and the aetiology of disc degeneration, was validated. The system can 

potentially support long-term cultures of cell-seeded constructs for weeks or even months in a 

controlled environment, while exposing the cells to various combinations of compressive loading, 

hydrodynamic shear and hydrostatic pressure confinement for the formation of functional tissues. 

Also, the improved pressure control system and reduced variation in the optimised bioreactor design 

enabled the production of tissue-engineered constructs with low standard deviations in the measured 

biological responses. However, the simultaneous application of dynamic compression and perfusion 

with associated hydrostatic pressurization of culture medium resulted in a significant loss of cell 

viability compared to the free swelling controls. The maintenance of cell metabolism under 

physiological loading is a necessity for the long-term studies. Due to a large number of factors 

affecting cell behaviour during dynamic compression and perfusion, the exact parameters influencing 

the observed cell response are difficult to distinguish. However, in the context of previous 

computational and experimental studies, we infer that the decreased cell viability due the loading 

conditions in the present study may be associated with increased fluid shear effects on the cells near 

the edges of the constructs during dynamic compression studies using porous platens. In addition, the 

drag that comes along with the perfusion of culture medium theoretically imposes shear stress that 

may induce detrimental mechanical effects on cell viability.  The formation of bubbles near the 

constructs also increases shear stress and this can cause cell death when the bubbles collapse. The 

production of GAG by the mechanically stimulated cells and the static-cultured controls was also 

measured. GAG was not observed in both the free-swelling and mechanically stimulated constructs. 

Similar to the study in chapter 6, the low cell seeding density and high passage of cells used in this 

study might have contributed to the lack of GAG synthesis by the cells.  
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8.2.    Future work 

 

This section describes key areas of further work to improve the mechanical properties of alginate 

hydrogels and to better understand the relationship between cell responses and biochemical and/or 

mechanical stimulation. 

 

 

8.2.1. Improvement of the mechanical properties of alginate 

 

In this thesis, the viscoelastic properties of calcium alginate hydrogels were characterized using a 

parallel plate rheometer with the aim of closely replicating the mechanical properties of nucleus 

pulposus at 1 Hz. Although an optimum combination of the alginate concentration and Ca
2+

/COO
- 

molar ratio was found to replicate the complex shear modulus of NP, the loss angles of the gels were 

significantly lower than the loss angle of healthy NP tissue. Previous work has shown that hyaluronic 

acid derivatives yield a value of δ close to the NP tissue (Gloria et al. 2010). So, perhaps δ in alginate 

could be improved in further studies by the addition of hyaluronic acid, which is the main water- 

absorbing component of the NP tissue. Cell-matrix interactions can also be tailored by the addition of 

hyaluronic acid to alginate since cells do not naturally adhere to and proliferate on unmodified 

alginate due to the lack of mammalian cell receptors. Hyaluronic acid is lower in cost and does not 

involve complex chemical synthesis in comparison to RGD peptide, which can also be used to create 

bioactive gels.  

 

Alternatively, different hydrogels such as agarose, which is widely, used in MSC chondrogenic 

differentiation studies (see tables 2.6 and 2.8) and unmixed hyaluronic acid could be considered in 

further studies for NP-tissue engineering. 
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8.2.2. Relationship between cell passage and MSC chondrogenesis 

 

Previous studies have demonstrated that sequential sub-passages affect the multipotent properties of 

MSCs. For example, when canine umbilical cord MSCs (passage 1–5) were cultured for chondrogenic 

differentiation for 21 days in chondrogenic-defined media, the cells in early passage displayed more 

intense GAG staining compared to those in late passage. In addition, it was found that the expression 

of stroma marker CD105 was decreased at passage 3 to 5. CD105 is a member of TGF-β receptor 

family and may be linked to TGF-β mediated chondrogenesis in MSCs (Lee et al. 2013). In another 

study, the effects of donor age (6 day, 6 weeks and 1 year olds) and serial passaging (P1 and P6) on 

murine bone marrow-derived MSC differentiation potential towards chondrogenic lineage were 

investigated. It was found that, increased passage only affected cells from 1year old donors, rendering 

the production of GAG and collagen II expression to be equal to control groups after 3 weeks 

incubation (Kretlow et al. 2008).  The cells used in the present study were expanded through 5 

passages in order to obtain a sufficient quantity to closely mimic the cell concentration in the native 

NP tissue of 4 million cells/ml. The high cell passage might have prevented the chondrogenic 

differentiation of the MSCs. The effects of cell passage on MSC chondrogenesis, as well as cell 

viability and proliferation should to be investigated in future studies. 

 

 

8.2.3. Relationship between cell seeding density and MSC chondrogenesis 
 

The scaffold cell seeding density has also been shown to have an impact on the chondrogenic 

differentiation of MSCs. Enhanced cell-to-cell contact obtained at a higher cell seeding density 

improves ECM production and deposition. For example, when scaffolds were seeded with initial cell 

concentrations ranging from 1.25 to 50 million cells/ml, cell densities between 10 and 25 million 

cells/ml were found to be optimum for proteoglycan and collagen production on a per cell basis after 

6 weeks of in vitro culture.  At cell concentrations below 10 million cells/ml, there was a significant 

decrease in matrix production while cellular density above 25 million cells/ml reduced production of 

ECM probably due to restricted transport of nutrient to the cells through the higher density culture 

(Buxton et al. 2011). Similarly, another study investigating the effects of cell seeding density on MSC 

chondrogenesis in alginate hydrogels also found that the optimum seeding density for chondrogenic 

differentiation was 25 million cells/ml (Kavalkovich et al. 2000). A cell concentration of 5 million 

cells/ml was used in this thesis to closely mimic the low cell density of the NP-tissue. This might also 

have contributed to the lack of GAG synthesis in alginate. Further studies should optimise the cell 

seeding density to ensure that there is enough cell-to-cell contact to improve the chondrogenic 

differentiation of MSCs.  
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8.2.4. Method for determination of cell viability and distribution 

throughout the 3D alginate scaffolds 
 

Determining cell viability in 3D tissues presents a greater level of complexity than in standard 2D 

culture. Cell viability and proliferation were determined by Live/Dead cell staining after alginate 

digestion. This assay does not provide critical information on cell distribution within the 3D 

hydrogels. To evaluate uniformity of cell density throughout 3D scaffolds, a non-destructive 

assessment of cell viability is advantageous. In this study, microscopic visualization of viable and 

nonviable cells after live and dead cell staining was limited to the surfaces of the constructs. A 

combination of fluorescence cell staining, cryosectioning, and 3D image compilation (Thevenot et al. 

2008), might be useful in future studies to quantitatively evaluate cell survival and distribution 

throughout the alginate scaffolds. 

 

 

8.2.5. Combination of experimental studies in the bioreactor with 

computational modelling 

 

The application of mechanical stimulation conditions in the bioreactor led to a significant reduction in 

cell viability compared to the free-swelling controls. The reasons for this result need to be studied. A 

thorough description of the region-specific relationships between dynamic compression/perfusion 

flow and cell viability using computational modelling will help to define how cells within the 3D 

alginate scaffolds respond to mechanical stimulus and flow in the tri-axial bioreactor with the 

potential for region-specific repair in the future. In addition, computational modelling studies of shear 

stress and the convective transport of biochemical species are necessary to compare results between 

different experimental conditions and to optimise the perfusion flow rate in order to minimise shear 

stress while ensuring sufficient nutrition to the cells.   
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8.2.6. Development of a gas control unit to regulate the pCO2, pO2 and pH 
 

Factors such as pH, dissolved oxygen (pO2) and dissolved carbon dioxide (pCO2) of the culture 

medium can individually have a dramatic impact on cell viability and functionality of the engineered 

tissues, and should be accurately monitored and controlled throughout the duration of the experiment. 

The tri-axial bioreactor system only monitors the chemical parameters of the culture medium and does 

not also control them, but technology exists to create a bioreactor that would actively monitor and 

control pO2, pCO2 and pH (Janssen et al. 2010, Chouinard et al. 2009, Pattison et al. 2000). For 

instance, injecting nitrogen into the system from a gas exchange unit can control the dCO2 content of 

the medium. The nitrogen injection flow rate can be increased if the pCO2 is increasing, maintained if 

the pCO2 is constant, or lowered if the pCO2 is decreasing with respect to a set point value (Pattison et 

al. 2000). In conjunction with a dO2 control mechanism using oxygen and pH control using carbon 

dioxide injection, this strategy can be used to achieve close loop control of all of the chemical 

parameters of the medium while minimising the overall injection rate (Marks 2003, Pattison et al. 

2000). Set points should be chosen to reflect parameters in vivo. Currently, temperature is the only 

parameter that mimics physiological conditions at 37˚C in the tri-axial bioreactor system. The pO2 

conditions measured in chapter 7 are not very different from the reduced oxygen or hypoxic (2-5% 

dissolved O2) environments surrounding BM-MSCs, chondrocytes or nucleus pulposus cells in vivo; 

however, optimisation is required. A CO2 level of 10% in the gas phase is optimal for maintaining 

optimal pH levels of 7.1 and 7.4, which have previously been measured in healthy intervertebral discs. 

However, it is not known whether the dCO2 levels measured in the bioreactor flow system during the 

5-day experiment (0.6-3%) were adequate enough to maintain optimal pH; since pH was not 

measured due to sensor instability during calibration.  
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