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Abstract: Automated classification of cloud types using a ground-based infrared imager can provide 
invaluable high resolution and localised information for Air Traffic Controllers. Observations can be 
made consistently, continuously in real time and accurately during both day and night operation. 
Details of a field trial of an automated, ground-based infrared cloud classification system are 
presented. The system was designed at Campbell Scientific ltd in collaboration with Loughborough 
University, UK. The main objective of the trial was to assess the performance of an automated 
infrared camera system with a lightning detector in classifying several types of clouds, specifically 
Cumulonimbus and Towering Cumulus, during continuous day and night operation. Results from the 
classification system were compared with those obtained from Meteorological Aerodrome Reports 
(METAR) and with data generated by the UK Meteorological Office from their radar and sferics 
automated cloud reports system. In comparisons with METAR data, a Probability of Detection of up to 
82% was achieved, together with a minimum Probability of False Detection of 18%.  
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1. Introduction and background 
Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus (CB) are associated with 
thunderstorms, turbulence, and atmospheric instability. Low-based clouds like CB and TCU can be 
dangerous to aircraft at landing and take-off, therefore meteorological monitoring and reporting is vital 
for air traffic and civil aviation control and safety. The Meteorological Aerodrome Report (METAR) 
provides data on current weather conditions in the vicinity of an airport or airfield. It contains data 
about cloud amount, cloud base height, thunderstorms, and other weather information. METAR 
reports, which don’t include cloud types apart from CB and TCU when they are present, are 
traditionally issued by human observers every half an hour during day and night. This requires a 
human presence for continuous visual inspection of the sky. This visual observation is expensive, 
time limited, subjective and not reliable at night. Some instruments have been introduced to automate 
cloud base height (Costa-Surós, et al. (2013)) and cloud cover (Cazorla, et al. (2008)) estimation 
throughout the last few decades. However, automatic cloud type recognition was first tested in France 
and the Netherlands in 2006 at a few airports. Automated cloud type recognition was introduced 
operationally in 2011 by the Royal Netherlands Meteorological Institute (KNMI), based on detecting 
TCU and CB presence from lightning and precipitation radar networks. 

Cloud properties are extremely variable in time and space, and there are six main features to be 
considered in describing the visual appearance of clouds. These features are: brightness, texture, 
size, shape, organisation, and shadow effects. Cloud spectral properties may change but their texture 
properties are unique to a given cloud type, according to Lamei, et al. (1994) and Pankiewicz (1995). 
Texture analysis of visible wavelength images of clouds obtained from ground-based observations 
has been demonstrated by different authors. Singh, et al. (2005) trained a classifier system to 
recognise cumulus, towering cumulus and cumulonimbus clouds using five different feature extraction 
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methods: autocorrelation, co-occurrence matrices, edge frequency, Law's filters and primitive length. 
Their k-nearest neighbour (KNN) and neural network classifiers were trained using segmented visible 
cloud images to identify cloud types. The correct recognition rate of the combined features in 
classifying the three types was 72.4%. Heinle, et al. (2010) used visible wavelength whole-sky images 
to classify cloud types based on statistical properties of both grey scale texture and colour 
components of the observable sky. They used a KNN type classifier to distinguish between seven 
different sky conditions, including cumulonimbus and nimbostratus clouds. On a test run of 275 
random images, independently classified by human observers, their classifier reached an average 
Probability of Detection (POD) of 74.6%, and for the CB/Nimbostratus class alone they achieved 
85.7% POD.  

A reasonable number of airports nowadays are continuously operational and some, such as East 
Midlands Airport (EMA) in the UK, have substantial night-time activity involving cargo aircraft.  Human 
observation or visible wavelength cameras cannot provide the required data during the hours of 
darkness, so an automated, ground-based infrared (IR) cloud classification system offers the 
advantage of real time uninterrupted cloud monitoring to compensate for the lack of human vision at 
night (Rumi, et al. (2013)). Liu, et al. (2013) studied cloud cover and type based on measurement 
from a whole-sky IR cloud measuring system (WSIRCMS) and ceilometer. CB classification was 
excluded from their analysis, due to the system’s inability to identify CB clouds without atmospheric 
electric field measurement. To the authors’ knowledge there is no ground-based IR system yet 
available that classifies CB and TCU clouds in real time. 

 An experimental  ground-based IR system using texture analysis was recently presented by the 
authors (Rumi, et al. (2013)). Results from the supervised classification method gave a POD of up to 
90% with a Probability of False Alarm (POFA) as low as 16%. This paper presents the extended field 
trial results using the same system. The system was designed at Campbell Scientific Ltd (CSL) as a 
collaborative project with Loughborough University. The trial, located close to EMA, ran for one year 
from May 2013 to May 2014. The objective of the trial was to assess the viability and performance of 
an automated IR camera system with a lightning detector in classifying different types of clouds, 
specifically CB and TCU, during both day and night. 

 

Figure 1. Visible and infrared cameras (a), P&T unit with cameras on 15m mast, with lightning 
detector on second mast (b). 
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2. Overview of trial apparatus 
The trial system was set up at a location 5 km south of EMA at co-ordinates 52.79231 ° N, -
1.2718007 ° W. The system consisted of both IR and visible wavelength cameras housed in a Pan 
and Tilt (P&T) unit on a 15 m height mast as shown in Figure 1. A NEC Thermo Tracer TS9230 IR 
camera was used for the main imaging task. It had an uncooled micro-bolometer providing a quarter-
VGA (320x240 pixels) resolution calibrated thermal image. The standard lens provided a field of view 
(FOV) of 21.7 ° horizontally by 16.4 ° vertically. In addition, a F610A CCD IP ZAVIO camera was used 
to provide visible wavelength images with a 704x576 pixel resolution. CB clouds are identified visually 
based on their shape, height, accompanying lightning, and sometimes acoustically, when thunder is 
heard.  By convention a cloud is reported as a CB if accompanied by lightning or thunder, therefore a 
Strike Guard lightning detector was mounted on a second mast about 2 m away from the camera 
mast, as shown in Figure 1 (right). The detector was fully automated and monitored cloud-to-cloud 
and cloud-to-ground lightning within an 8, 16 and 32 km radius. Information from the lightning detector 
was used to confirm the existence of CB clouds when they were embedded within other clouds or at 
night. 

The system setup block diagram is shown in Figure 2. Camera signal and power connections as well 
as pan and tilt power and control were provided via an external connection box. Both IR and visible 
cameras are IP devices and were connected to a LAN network switch via Ethernet. The Strike Guard 
sensor data were communicated via a lightning proof fibre optic cable. The bi-directional fibre-optic 
link data were converted to RS232 serial and then to USB using the lightning-proof fibre-optic 
converter, the sensor being connected to the computer via USB. A secure, metal container located in 
a nearby building housed a five-way network switch, a computer, a MOXA Nport 5110 serial device 
server and a fibre to RS232 converter. An uninterruptable power supply (UPS) was added to insure 
continuity in case of a power cut. The system was located about 2 km from the main CSL site, 
therefore remote communication was established using a cellular 3G mobile network. A remote 
access 3G router was used to re-establish communication in the event that data calls drop out. An 
antenna was attached to the router and placed outside the metal container. The router was connected 
to the computer via the Ethernet switch. The computer was connected to the network switch and 
provided communication to the system locally and remotely. 

 

Figure 2. Trial system block diagram. 



3. Details of trial procedure 
The trial system was fully automated, scanning the sky three times around approximately 360º every 
half an hour. The method used for capturing images was similar to the way a human observer 
inspects the sky, taking into account the limitations in the FOV of the IR camera and the P&T 
operation. Normally, a manual observation would be made every half an hour, repeated in several 
directions to complete a 360º scan of the prevailing sky conditions. A human observer would watch for 
lightning and record any sounds of thunder. To increase the FOV without reducing spatial resolution, 
a series of nine 320x240 images with overlap were taken and then stitched together in the form of a 
3x3 rectangle, as shown in Figure 3. Adjacent edges were re-aligned and merged to form a single 
panoramic sky image. This method of operation and image capture was applied to both the IR and 
visible camera as they moved and captured images simultaneously. Visible images were used for 
verification and only IR images were processed for cloud classification. Following the method 
described in Rumi, et al. (2013), one image was captured every 13 seconds, and a total of 15 stitched 
panoramic images were generated and classified every half an hour. Thus real time data capture and 
classification was achieved day and night. 

The objective of the system was to classify CB and TCU clouds as they appeared in real time. A 
supervised classification method was selected and therefore a large amount of training data needed 
to be captured, inspected by an experienced observer and separated into 8 classes (CB, CL1, CLS, 
HC, MX, OTH, OVC, and TCU) as defined in Table1. Ground truth data were generated from 
inspection of the visible camera images and accompanying local METAR reports. A total of 420 
images were used to create the training data set, which was used at the start of the trial in May 2013. 

Table 1 Cloud classes 

Class number and 
name Symbol Definition 

1  Cumulonimbus CB Tall vertical extent of cloud with formation of ice crystals at the 
top. Can form an anvil shape 

2  Small Cumulus CL1 Represents small clouds known as cumulus humilis, cumulus 
fractus, or cumulus mediocris 

3  Clear Sky CLS Clear sky with no cloud 
4  High Cloud HC Includes cirrus, cirrocumulus, cirrostratus and contrails 
5  Mixed Clouds MX Mixed layers and types of clouds, with no CB or TCU present 
6  Others OTH Any other unidentifiable cloud type, not covered by the other 7 

classes 
7  Overcast OVC Cloud cover complete due to one or more layers with no gaps. No 

CB or TCU present 
8  Towering 
Cumulous 

TCU Cumulus cloud of strong vertical development, also known as 
cumulus congestus 

 
A further training data set was created in June 2013 after manual analysis of the initial trial data. This 
training data set contained a total of 455 observations of the 8 cloud types. This data set was used 
from 21 June 2013 onwards.  Subsequent tests on classification results showed some increase in 
false alarms during OVC conditions using this set. A decision was therefore made to increase the 
number of OVC samples to create a better balance with the number of CBi. On 17 October 2013, a 
new training data set was introduced with 500 observations, and this was used until the end of the 
trial in April 2014. 
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Figure 3. Classification methodology. 

The classification process is summarised in Figure 3, where a total of 45 image features were 
extracted for each observation in the training data set. The features used were a combination of 
measures relating to image texture, including grey-level co-occurrence matrix (GLCM) statistics, 
Fourier Transform (FFT) power spectrum properties and energy outputs from Laws and Gabor digital 
filter banks. Features were normalised by dividing by their sample standard deviations and were then 
grouped within a training set according to cloud class, determined independently by trained 
observers. In order to improve discrimination between CB cloud and all other 7 cloud types, the 
number of features used by the classifier was reduced to 27 by selecting those with the highest 
Fisher’s Discriminant Ratio (FDR). A weighted  k = 20 nearest neighbours (KNN) method was used to 
classify subsequent test images, weights being applied to each nearest neighbour “vote” in the 
training set space to take account of unequal numbers of observations of each of the 8 classes. 
Detailed descriptions of the features used and their extraction methods can be found in Rumi, et al. 
(2013). 

During the course of the trial, automated METAR data was available every half an hour. In order to 
compare the IR trial data with the local METAR data from EMA, capture times had to be synchronised 
as far as possible. The IR system was designed to generate cloud types automatically at every 20 
minutes and 50 minutes past the hour reflecting the timing used to generate the METAR data. 

The system scanned the sky three times in every half hourly interval to generate five panoramic 
image sets during each scan. The complete classification process is shown in Figure 4. Each 
panoramic image was classified into one of the eight cloud types immediately after it was generated. 
Images containing the sun or moon were treated with a special algorithm to remove any localized 
thermal influence, as described in Rumi, et al. (2013). It took about two minutes to capture nine 
images, stitch, enhance, and classify the resulting panoramic image. Each scan took about 10 
minutes. At the end of every 10 minutes the lightning detector data was read. Using the lightning 
detector data together with the cloud classifications from the five panoramic images, a decision was 
produced following the heuristic rules 1-5 defined below. 

 



Heuristic rule set applied to each scan (every 10 minutes): 
 

1. If any strike recorded by lightning detector within the last 10 minutes, then report cloud 
type as CB. 

2. If one or more CBi classified in any one scan, then report cloud type as CB. 
3. If one or more CBi and one or more TCUs classified in any one scan, then report cloud 

type as CB. 
4. If two or more TCUs classified in any one scan, then report cloud type as TCU.  
5. Otherwise report (Non-Significant Cloud) NSC. 

 
 This process was repeated three times and the three decisions were combined to generate one class 
type for the specific half an hour, for comparison with the equivalent METAR report from EMA. The 
three scan decisions have one of three possible outcomes: CB, TCU or NSC. A score of 3, 6, and 9 
was applied to the three scans respectively, so that the most recent image had the highest weighting. 
The final decision for the half-hour period was obtained from these by majority vote. In the event of a 
tie, priority was given to a CB and then to a TCU condition. 

 

Figure 4. Automated cloud classification process. 

 
4. Results from IR system 
The field trial ran for one year, and the system was automated to generate a cloud type for every half 
an hour, potentially providing 17,520 observations in total. Due to problems with mechanical 
limitations of the pan and tilt unit and software limitations in handling the large number of data files, in 
some cases the system got out of sync with the METAR data from EMA. It was important for 
comparison purposes to synchronize the cloud classification results exactly with the METAR reports, 
therefore some of the IR system data had to be rejected. This left us with 13,197 usable 
classifications samples, or just over 75% of the total annual data. Figure 5 shows the total number of 
samples available per month. Data from June, July, and October were limited due to the technical 
issues mentioned above. The total number of CB/TCU events reported by EMA during that period 
was 217, out of which there were 26 TCUs. The Strike Guard system detected lightning and/or 
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thunder alarms, most of which coincided in time with CB reports from EMA. However, 19 alarms 
appeared at a time when no CB/TCU events were reported by human observation at EMA. This 
represented about 10% of the total reported CB by EMA for the whole year. These additional CBi 
were added to the METAR reports to create a ground truth of observed convective clouds and as a 
result, the total number of CB/TCU events during the trial period was considered to be 236, as shown 
in Figure 6. CB events were reported in every month apart from June, because the IR system was 
unfortunately not operational during the few times in that month when CBi were present. More CBi 
than TCUs were reported overall, TCUs being reported in 6 out of the 12 months, and CBi being 
reported in every month of the trial period. Most convective clouds appeared during the summer 
months as expected, based on previous observation records at EMA for the East Midlands region. 

 

Figure 5. Total number of samples per month. 

A typical meteorological practice for evaluating cloud classification calculates the Probability of 
Detection (POD), and the Probability of False Detection (POFD) for the classifier outcomes, following 
for example Barnes, et al. (2009) , where: 

   POD = true positives (TP) / (true positives (TP) + false negatives (FN)), and 

POFD = false positives (FP) / (true negatives (TN) + false positives (FP)) 
 
Since the main interest was in the presence of CB and TCU cloud types, POD and POFD were 
assessed for two cases in this study; one case was for evaluating CB cloud classification and the 
other was for evaluating the combined classification of CB and TCU clouds. The contingency 
construction for the field trial result for the whole year was based on using EMA and Strike Guard 
reports as the ground truth; the results are shown in Table 2.  The contingency table for CB/TCU and 
CB for every month is shown in Tables 3a and 3b. 

5. Data analysis and comparison with METAR and Met Office data 
From Tables 3a and 3b, the overall yearly POD rate achieved was 75% for CB/TCU and 73% for the 
CB category. The overall POFD was 23% for CB/TCU and 20% for CB category. In general, the 
automated IR system recorded more CB/TCU than human observers, which caused a relatively high 
number of false positives. There could be several reasons for this: 



• On some occasions, human observers reported a thunderstorm (TS or VCTS) but failed to 
include CB in the METAR reports. 

• During the trial period, there were occasions where Strike Guard reported lightning but there 
were no CB, TS or VCTS reports in the METAR. These observations were recorded during 
daylight, and it is more difficult to see lightning during the day. CBi may at these times have 
been embedded in other cloud and observers may not have heard any thunder from the 
inside of the traffic control tower. It should be noted that Strike Guard is an extremely reliable 
commercial instrument. To prevent false alarms, the device requires an optical signal to 
coincide with a changing magnetic field signal before reporting lightning. 

• Some apparent false positives were reported at night time by the IR system, but EMA 
reported heavy rain and no convective clouds. It is difficult for human observers to detect CB 
clouds at night, especially if there are no thunderstorms or lightning present. 

• The TS will only be reported as present weather in METAR if a thunderstorm occurred during 
the 10 minute period up to the METAR time, in line with recommendations. The automated IR 
system however, reported a CB whenever a thunderstorm alarm was captured during the 30 
minutes of the report. 

• METARS report TS/VCTS and therefore a CB, for up to 8 km from the Aerodrome Reference 
Point (ARP); however the automated IR system would report TS at  8 , 16 and 32 km  
distance from the location of the Strike Guard sensor. 

• On a few occasions, hail and thunder were observed at the location of the trial and the 
automated IR system reported a CB, however there were no convective clouds reported in 
the METAR data. 

 

 
 

Figure 6. Total number of observed cumulonimbus (CB) and towering cumulus (TCU) by the East 
Midlands Airport (EMA) and Strike Guard per month. 
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Table 2 Contingency table for CB and CB/TCU field trial results for one year 

Classified as Event Observed Classified 
as Event Observed 

 CB No CB Marginal 
total 

 CB/TC
U 

No 
CB/TCU 

Marginal 
Total 

CB 153 2555 2708 CB/TCU 178 3008 3186 

No CB 57 10,432 10,489 No 
CB/TCU 58 9953 10,011 

Marginal 
total 210 12,987 13,197 Marginal 

total 236 12,961 13,197 

 

According to Bluestein (1993), CB clouds most often develop from large cumulus clouds, and TCU 
clouds are generally at an intermediate stage between cumulus of strong vertical development and a 
CB. Although TCU clouds are short lived compared to CB clouds, it was still surprising to see METAR 
reports of TCU as low as 26 compared to 191 CB reports during the trial period. It was evident, during 
both the proof of concept of the IR system and during the trial, that human reporting of TCU was 
generally at a lower rate than automated reporting, and that this contributed to the high number of 
false positives encountered in the trial. There were 462 false positives due to TCU reports in the 
CB/TCU category as can be seen in Table 3a. Reporting TCU clouds is more uncertain and 
subjective, and it is in general not possible to identify a TCU cloud that is obscured by another cloud 
mass. It was also confirmed that at some airports including EMA, if a TCU has a base higher than 
5000 feet (1524 m) it will not be reported in METARs. 

Table 3a Contingency table for CB/TCU field trial results per month 

Month TP TN FN FP 
Monthly 

Observation 
Total 

POD 
(%) 

POFD 
(%) 

May 41 1118 10 241 1410 80 18 
June 0 486 0 95 581 N/A 16 
July 73 209 9 123 414 89 37 
August 26 685 8 548 1267 76 44 
September 11 927 3 259 1200 79 22 
October 7 678 8 230 923 47 25 
November 3 1001 3 242 1249 50 19 
December 4 894 6 278 1182 40 24 
January 4 952 1 196 1153 80 17 
February 2 898 8 214 1122 20 19 
March 5 1093 2 329 1429 71 23 
April 2 1012 0 253 1267 100 20 
Entire year 
of trial 178 9953 58 3008 13197 75 23 

 
 

The number of false negatives for CB/TCU and CB-only categories were 58 and 57 respectively. This 
indicates that almost all false negatives were CBi. After inspection of the visible images, it was clear 
that in some situations, CB clouds were far-off and captured near the horizon, and were visible only in 
the lower part of the image. The high resolution and relatively small FOV of the IR panoramic image 
didn’t contain the CB cloud, and therefore it was not reported. Increasing the FOV of the camera 
would allow the capture of far-off convective clouds as well as allowing capture of a complete extent 
of TCU clouds, thus reducing false negatives rates.  



Table 4b Contingency table for CB field trial results per month 

Month TP TN FN FP 
Monthly 

Observation 
Total 

POD 
(%) 

POFD 
(%) 

May 35 1173 12 190 1410 74 14 
June 0 521 0 60 581  N/A 10 
July 64 270 7 73 414 90 21 
August 21 822 8 416 1267 72 34 
September 8 962 2 228 1200 80 19 
October 7 707 8 201 923 47 22 
November 3 1012 3 231 1249 50 19 
December 4 895 6 277 1182 40 24 
January 4 965 1 183 1153 80 16 
February 2 919 8 193 1122 20 17 
March 3 1129 2 295 1429 60 21 
April 2 1057 0 208 1267 100 16 
Entire year 
of trial 153 10432 57 2555 13197 73 20 

 
To better assess the performance of the CB and TCU classification it was necessary to compare the 
results with other ground-based classifications systems that are used for AUTO METAR generation. It 
is difficult to find one system that operates in the same way i.e. is a ground-based IR system. At 
KNMI, the automated observation system of present weather and CB/TCU information has been 
derived from lightning and precipitation radar reflectivity data since 2006, and recently improved by 
using METEOSAT satellite data. A POD of 65.2% and a POFA of 35.4 % were reported for CB/TCU 
cloud detection by (Carbajal, et al. (2009)). Although not yet achieved to the authors’ knowledge, it 
has been suggested by KNMI, that for air traffic control, the desired POD is greater than 80% and 
POFA is less than 20%. To evaluate our results, the receiver operating characteristic (ROC) was 
compared with these KNMI requirements. The ROC describes the relationship between the False 
Positive Rate (FPR) and the True Positive Rate (TPR), Metz (1978). POD is equivalent to Sensitivity 
and is the same as TPR, however FPR is equal to (1 – Specificity), where: 

         Specificity = TN / (TN + FP), and 

Sensitivity = TP / (TP + FN) 

A graphical representation of the yearly field trial result was compared with KNMI requirements and is 
shown for both CB/TCU and CB cases in Figure 7. The upper-left area denoted by the dotted lines 
represents the ideal operating points as defined by KNMI. The CB and CB/TCU results from the IR 
trial fall just outside this area, with the CB class operating point lying on the POFD 20% boundary. 

 
A similar system to the KNMI system was trialled for six months in the UK between June and 
November 2010 by the Met Office and the National Air Traffic Services (NATS). NATS data were 
based on a test at 24 airports, where 58,918 samples were gathered and analysed. Trial results 
showed a POD of 57.8% for CB/TCU and only 36% for CB, however a small false positive rate of 9% 
for CB/TCU cases and 3% for the CB category was reported by Hord (2011).  An improved version of 
this system became operational in the UK before the time of the current trial. This gave the 
opportunity to compare the IR system with another automated system at the exact location of the 
current trial; however this system cannot be considered as a ground truth, based on the system UK 
trial results mentioned above. Therefore data from IR automated and radar automated systems had to 
be evaluated using EMA METARs as the ground truth. Data was available from the Met Office for the 
trial site from July 22nd until August 22nd 2013. From the data in Table 3a, the total number of TP + 
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FN of convective clouds reported in July and August was 116, of which103 occurred during the period 
under consideration. This made the selected sample very useful and representative for CB/TCU 
classification analysis. After removing the missing data from METARs, Met Office and IR trial for this 
period, the total number of data samples available to be analysed was 1,417 containing 414 samples 
from July and 1003 samples from August. 

 

Figure 7. Receiver operating characteristic (ROC) curve for infrared (IR) trial and Met Office trial 
compared. 

Data from the Met Office automated cloud reports and the automated IR system were compared with 
METAR data, assuming the human observer METARs to be the ground truth, and results are shown 
in Table 4. 

Table 5 MET Office data and IR system data comparison results using METAR as 
ground truth and with old training data 
July 22 – August 22 
CB/TCU TP TN FN FP Totals POD 

(%) 
POFD 

(%) 
July 71 272 11 60 414 87 18 
August 24 699 10 270 1003 71 28 
IR Trial 95 971 21 330 1417 82 25 
MET Radar 80 1126 23 188 1417 78 14 
        
July 22 – August 22 
CB only TP TN FN FP Totals POD 

(%) 
POFD 

(%) 
July 63 299 8 44 414 89 13 
August 15 775 14 199 1003 52 20 
IR Trial 78 1074 22 243 1417 78 18 
MET Radar 69 1218 22 108 1417 76 8 

 

A POD of 82% was achieved with the automated IR system and a POD of 78% with the Met Office 
automated system. The IR trial system demonstrated a much better true positive rate and an 
equivalent false negative rate to the Met Office automated system. The automated IR system showed 



a high value of false positive rate with a POFD of 25% for the CB/TCU case and a more acceptable 
18% for the CB case. The graphical representation of these results is shown on the ROC plot for both 
CB/TCU and CB in Figure 8, where it can be seen that both systems have performed very closely to 
the KNMI criteria. 

There were more than double the number of CBi and TCUs reported by both automated systems 
compared to the number reported by human observation at EMA, which is in line with the IR yearly 
results reported here. Both systems reported TS at times when there were no TS or CB reports in 
METARs. 

 

Figure 8. Receiver operating characteristic (ROC) curve representing a comparison of Met Office 
Radar–automated system and automated IR trial system for 1month of data from 22 July to 22 August 

2013. 

6. Conclusions 
A field trial of an experimental automatic ground based IR cloud classification system has been 
conducted and presented. The results demonstrate the feasibility of classifying CB and TCU clouds 
along with other sky conditions using high resolution IR images. A CB/TCU POD of 75% was 
achieved for the whole year, with a maximum of 82% over one summer month. Results were based 
on using human observations as the ground truth, but human observation is often unreliable and 
cannot be considered as 100% accurate. By using lightning detection in both IR and Met Office 
automated systems, it was clear that at least 10% of CBi accompanied by lightning and/or thunder 
were missed by human observation. It is very possible therefore, that many more convective clouds 
were either embedded or not seen during the night time, and were not reported. This likely explains 
the high number of false positives reported by both automated systems. In general, comparison of 
any automated cloud recognition system with that of human observers may never show PODs much 
higher than those achieved in the current trial, due to lack of consistency and variations in experience 
and objectivity of the observer. 

Both automated systems worked more reliably at night than human observers, however the Met 
Office system relies on a large network of radars and lightning detectors, that is expensive to install, 
operate and maintain. It can cover a very large area on a national scale, but it is sensitive to 
precipitation and it does not perform well during snow and hailstones according to Hord (2011). In 
contrast, the IR system worked well during snow, rain and hail, and was easy to install, run and 



Trial of an infrared cloud classification system 
 

13 
 

maintain. However it covers a much smaller area than the Met Office automated system, although it 
does provide local results out to a range that is more in tune with the requirements of airport 
operators. In all the analyses, the automated IR system performed at a similar level to that of the Met 
Office automated system with regard to true positives, and slightly worse for false positives. Results 
showed comparable performance with Met Office automated reports but there is still room for 
improvement in order to get the system to operate at a more advantageous point in the ROC space. 

Further development work could thus include reducing the number of texture features, as a precise 
selection of the most influential measures would enhance the classifier performance still further. 
Increasing the IR camera FOV by replacing its lens would help to provide the larger panoramic 
images needed to gather more complete CB cloud data. Calculation of elevation temperature would 
also help in separating high clouds from low clouds, and measuring cloud base height would enable 
the introduction of accurate automated cloud cover estimation from the IR images. Finally more 
reliable hardware and software would help to improve the performance of the system overall.  
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