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Assessing	the	impact	of	the	National	Cycle	Network	and	physical	activity	lifestyle	
on	cycling	behaviour	in	England		

Abstract		

This	paper	examines	the	association	between	access	to	National	Cycle	Network	(NCN)	

routes	in	England	and	an	individual’s	cycling	behaviour	whilst	accounting	for	their	

broader	physical	activity	lifestyle	and	controlling	for	their	socio‐economic	

circumstances.	It	identifies	a	positive	association	between	access	to	these	routes	and	

the	total	minutes	of	any	form	of	cycling,	and	the	number	of	days	that	cycling	takes	place	

primarily	for	recreational	purposes.	The	broader	physical	activity	of	individuals	also	has	

a	positive	association	with	cycling.		Walking	appears	most	likely	to	be	complementary	

to	non‐recreational	cycling,	whilst	participation	in	sport	with	all	forms	of	cycling,	but	

not	with	longer	duration	utilitarian	trips.	The	research	also	indicates	that	access	to	NCN	

routes	has	the	potential	to	increase	such	cycling	further,	with	the	exception	of	longer	

utilitarian	trips,	as	does	a	more	physically	active	lifestyle,	particularly	walking.	The	

main	policy	implications	of	the	research	are	to	recognise	that	cycling	is	intrinsically	

linked	to	other	physical	activity,	notably,	walking,	but	that	the	NCN	routes	measured	in	

this	study	primarily	support	longer	duration	recreational	activity,	which	is	also	affected	

by	sporting	activity.	This	suggests	that	one	avenue	for	achieving	the	health	benefits	of	

cycling	may	be	through	promoting	NCN	routes	to	harness	a	more	generally	active	

lifestyle	and	particularly	in	leisure,	whilst	sustainability	may	be	further	promoted	

through	being	linked	more	to	other	active	travel	such	as	walking.	There	is	a	therefore	a	

need	to	exploit	the	potential	of	such	NCN	route	provision	as	part	of	this	promotion.		

Key	words		

Active	Travel,	cycling,	walking,	sport,	Zero‐inflated	negative	binomial	model.	
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1.	Introduction	

Active	travel	through	cycling	is	generally	seen	to	be	an	important	way	of	both	reducing	

congestion	and	also	contributing	to	a	healthier	and	fitter	population	(Department	for	

Transport,	2012).	This	has	led	to	recent	UK	government	support	of	£148m	to	improve	

infrastructure	in	8	major	cities	(The	Guardian,	2013).		Nonetheless,	significant	

investment	in	cycle	routes	has	already	taken	place	in	the	UK,	notably	through	the	efforts	

of	active	transport	charity,	Sustrans,	which	began	in	Bristol	in	the	UK	in	1977.	Up	until	

the	1990s	Sustrans	focussed	on	developing	and	improving	transport	conditions	for	

walking	and	cycling	with	route	development	in	specific	localities.	Beginning	in	1995	and	

underpinned	by	National	Lottery	funding,	Sustrans	has	since	developed	the	National	

Cycle	Network	(NCN)	to	try	to	link	both	new	and	existing	traffic	free	paths	to	quiet	and	

traffic‐calmed	roads.	The	NCN	currently	stretches	to	14,500	miles	across	the	UK	and	

passes	within	a	mile	of	55	per	cent	of	UK	homes	(Sustrans,	undated).		Whilst	the	NCN	

development	and	maintenance	is	a	considerable	achievement,	involving	in	excess	of	400	

partners	that	include	planning	authorities,	private	and	public	landowners	and	other	

local	groups,	and	also	requiring	considerable	localised	voluntary	support,	Aldred	(2012)	

notes	that	it	should	be	recognised	that	the	NCN	has	emerged	in	a	context	in	which	

cycling	is	viewed	primarily	as	a	local	transport	issue	and	not	one	of	national	strategic	

transport	planning.	NCN	route	provision	has	had	to	develop,	therefore,	without	

adversely	affecting	other	modes	of	transport.	This	naturally	brings	with	it	compromises	

and	limitations	in	terms	of	what	the	NCN	can	deliver	with	routes	often	being	coincident	

with	traffic	or	blocked	by	parking	(Aldred,	2012).				

	

Nonetheless,	based	on	the	Active	People	Survey	(APS),	which	is	a	large‐scale	survey	of	

physical	activity	in	England,	including	cycling,	this	paper	examines	the	association	
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between	the	presence	of	NCN	routes	on	the	total	minutes	of	any	form	of	cycling,	and	the	

frequency	in	days,	and	the	intensity	of	the	effort	on	those	days,	in	which	recreational	

and	utilitarian	cycling	takes	place.	The	latter	is	distinguished	as	cycling	for	purposes	

such	as	commuting	to	work	or	undertaking	errands,	rather	than	for	leisure.		The	

research	controls	for	the	socio‐economic	circumstances	of	the	individuals	but,	of	more	

importance,	for	the	first	time	in	a	large‐scale	national	data	analysis,	the	paper	also	

examines	the	association	of	cycling	with	other	physical	activity	from	walking,	and	sport	

and	recreation.	This	is	a	need	that	has	been	identified	in	the	literature	by	Yang	et	al.	

(2010)	and	argued	to	be	theoretically	important	because	lifestyle	physical	activity	will	

be	an	important	mediating	factor	influencing	cycling	behaviour	(Chatterjee	et	al.	2013).		

	

The	paper	employs	a	zero‐inflated	Negative	Binomial	regression	model	(ZINB)	to	

analyze	the	data.	This	is	because	the	data	comprises	‘over	dispersed’	counts	bounded	

below	by	zero,	in	measuring	the	minutes	or	number	of	days	in	which	the	respondent	

cycled	in	the	last	four	weeks	prior	to	the	interview	.1	One	reason	for	the	overdispersion	

is	because	the	data	are	also	characterized	by	excess	zeros.		In	survey	data	such	as	the	

APS,	respondents	are	asked	about	their	behavior	over	a	particular	time	period,	which	in	

this	case	is	four	weeks.	Zero	responses	to	activity	such	as	cycling	could	therefore	reflect	

never	having	cycled	at	all	as	‘absolute’	zeros,	and	‘relative’	zeros	that	reflect	not	having	

cycled	in	the	period	asked	of	the	survey	but	that	the	respondent	may	do	so	otherwise	if	

the	circumstances	were	different.	It	follows	that	not	only	can	the	ZINB	model	examine	if	

access	to	NCN	routes	and	participation	in	other	physical	activity	are	associated	with	the	

actual	frequency	of	cycling	behavior,	but	also	their	impact	on	potential	cycling	through	a	

consideration	of	the	factors	associated	with	a	reduction	in	the	incidence	of	the	absolute	

zeros	in	the	data.	
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The	paper	proceeds	as	follows.	The	literature	examining	the	benefits	of	active	travel,	

particularly	cycling,	as	well	as	the	determinants	of	cycling	behavior	and	evidence	on	the	

impact	of	policy	initiatives	on	cycling	behavior	is	briefly	presented	in	Section	2.	The	

data	are	described	in	Section	3,	with	the	ZINB	model	presented	in	Section	4.	Results	are	

presented	in	Section	5,	with	a	discussion	of	the	implications	of	the	research	and	its	

limitations	in	Section	6.	Conclusions	follow	in	Section	7.	

	

2.	Literature	review	

International	literature	suggests	that	active	travel	through	walking	and	cycling	has	two	

main	benefits	for	society.	On	the	one	hand,	it	can	reduce	congestion	and	environmental	

pollution	(Olgivie	et	al.	2004).	On	the	other	hand,	it	can	improve	the	health	of	

participants	(Oja	et	al.	2011).	Targeting	policy	to	promote	such	behaviour	consequently	

relies	on	identifying	the	factors	that	encourage	active	travel	generally	and,	in	the	

context	of	this	paper,	cycling	specifically.	Despite	relatively	recent	arguments	that,	

compared	to	walking,	active	travel	research	in	cycling	was	undeveloped	(Pikora	et	al.,	

2003),	there	is	now	a	large	literature	addressing	the	determinants	of	cycling,	employing	

a	variety	of	different	research	designs	(For	a	review	see,	for	example,	Heinen	et	al.	

2010).		

	

International	surveys	indicate	that	it	is	generally	the	case	that	both	individual	

characteristics	as	well	as	social	and	physical	environmental	features	such	as	geographic	

and	transport	related	characteristics	can	influence	cycling	(Pikora	et	al.	2003;	Panter	

and	Jones	2010).		For	example,	Winters	et	al.	(2007)	in	a	study	of	commuter	cycling	in	

Canada	identify	that	males	and	younger	adults	are	more	likely	to	cycle.	The	same	is	the	
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case	for	those	with	a	lower	income,	and	higher	education.	Examining	commuter	cycling	

in	England	and	Wales,	Parkin	et	al.	(2008)	support	these	results	and	identify	that	with	

the	exception	of	higher	professionals,	individuals	in	most	socio‐economic	classifications	

cycle	less	than	those	of	the	lowest	socio‐economic	classification.	Less	cycling	is	also	

identified	for	non‐white	ethnicities.		Based	on	more	recent	Census	data	from	2011	for	

England	and	Wales,	however,	Goodman	(2013a)	argues	that	whilst	active	travel	is	more	

common	for	socio‐economically	disadvantaged	groups,	this	may	soon	reverse	for	

cycling	overall	and	recreational	cycling	is	more	likely	to	be	positively	associated	with	

affluence.		

	

Overall,	therefore,	some	of	this	literature	can	suggest	that	having	lower	income	

promotes	cycling	behaviour	because	it	is	a	cheaper	transport	alternative.	Not	

surprisingly,	studies	also	identify	that	car	availability	reduces	cycling	in	England	and	

Wales	(Parkin	et	al.,	2008),	and	an	increase	in	the	cost	of	fuel	(Buehler	and	Pucher	

2012),	or	higher	car‐parking	charges,	increase	commuter	cycling	(Rietveld	and	Daniel	

2004)	in	US	cities	and	Dutch	municipalities	respectively.	Similarly,	modest	financial	

incentives,	good	parking	and	shower	facilities	at	work	have	a	positive	effect	on	the	level	

of	cycling	to	work	in	England	(Wardman	et	al.,	2007).	However,	the	results	linking	the	

highest	incomes	and	white	ethnicities	to	greater	cycling	and	particularly	recreational	

cycling	also	suggest	that	cycling	can	be	driven	by	choice,	cultural	context	and	perhaps	

facilitating	conditions	rather	than	simply	travel	cost	(Chatterjee	et	al.,	2013).			

	

In	the	context	of	England	and	Wales,	Aldred	and	Jungnickel	(2012)	suggest	that	

changing	norms	can	be	evident	through	emergent	cultures	challenging	established	ones.	

In	the	context	of	the	above	results	this	might	be	that	lifestyle	choices	have	changed	for	
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those	with	more	discretion	over	their	travel	behaviour	and	particularly	in	the	context	of	

recreation.	More	generally,	their	research	suggests	that	interventions	to	promote	

cycling	will	be	mediated	by	the	identities	that	people	have	with	respect	to	cycling,	and	

identity	can	be	influenced	by	gender,	access	to	travel	opportunities,	proximity	of	

schools	and	access	to	social	networks.		So	too,	Sherwin	et	al.	(2014)	examine	how	social	

influences	and	cultural	cues	affects	the	decision	to	start	cycling	in	England	and	three	

levels	of	influences	are	identified:	direct	(immediate	family),	less	direct	(peers	and	

colleagues)	and	indirect	(wider	cultural	context).	There	is,	consequently,	debate	about	

the	impacts,	for	example,	of	gender	on	cycling.	Whilst	Pucher	and	Buehler	(2008)	show	

that	differences	in	cycling	by	gender	is	much	less	pronounced	in	some	European	

Countries	such	as	the	Netherlands,	Denmark	and	Germany	in	which	cycling	is	more	

embedded	in	behaviour	and	has	been	consistently	and	actively	championed	in	transport	

policy,	Parkin	et	al.	(2008)	and	Downward	and	Riordan	(2007)	show	that	both	

commuting	and	recreational	cycling	respectively	are	more	common	for	adult	males	in	

the	UK,	a	country	in	which	cycling	remains	a	marginal	form	of	transport	and	is	therefore	

a	key	target	for	policy	and	initiatives	such	as	the	NCN.	In	this	respect,	in	the	context	of	

Australian	commuter	cycling,	Garrard	et	al.	(2008)	indicate	the	importance	of	

segregating	cycling	from	motorised	transport	in	order	to	increase	female	cycling.	

Moreover,	Caulfield	(2014)	argues,	that	policymakers	should	tailor	their	strategies	to	

target	distinct	groups	to	encourage	them	to	take	up	cycling.	For	example,	it	is	shown	

that	lowering	motorised	vehicular	speed	limits	has	led	to	a	significant	increase	in	female	

cycling	to	work	on	a	regular	basis	in	Dublin	(Eire).	This	is	particularly	the	case	for	

higher	professional	females.		Finally,	it	has	also	been	argued	that	pro‐cycling	strategies	

should	be	regionally	differentiated,	as	the	results	by	Vandelbulcke	et	al.	(2011)	suggest	

that	bicycle	use	for	commuting	in	Belgian	municipalities	is	influenced	by	neighbouring	
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municipalities,	and	that	differences	exist	in	the	northern	and	southern	parts	of	Belgium.	

It	follows	that	some	areas	may	require	greater	focus	for	policy	than	others.	

	

As	far	as	environmental	factors	are	concerned,	Winters	et	al.	(2007)	find	that	greater	

precipitation	and	lower	temperatures	reduce	commuter	cycling	in	Canada,	as	do	long‐

term	seasonal	variations,	where	commuter	cycling	is	shown	to	be	more	frequent	in	

warmer	months	in	Australia	(Nankervis,	1999).	These	results	are	supported	for	

commuter	cycling	in	US	cities	by	Buehler	and	Pucher	(2012).	Nosal	and	Miranda‐

Moreno	(2014)	extend	the	analysis	of	the	impact	of	weather	on	the	use	of	urban	bicycle	

facilities	in	North	America	and	disaggregate	weather	conditions‐	temperature,	humidity	

and	precipitation‐	by	hour	as	well	as	differentiate	the	analysis	between	weekends	and	

weekdays.	Temperature	is	found	to	be	positively	associated,	and	humidity	and	

precipitation	are	found	to	be	negatively	associated,	with	utilitarian	and	recreational	

cycling,	with	strong	non‐linear	effects	for	temperature	and	lagged	effects	for	rain.		

	

The	topography	of	localities	is	also	investigated,	with	the	presence	of	hills	reducing	

cycling	in	England	and	Wales	(Parkin	et	al.	2008)	and	the	Netherlands	(Rietveld	and	

Daniel	2004)	as	do	the	number	of	stops	or	hindrances	(Rietveld	and	Daniel,	2004).	

Perhaps	naturally	it	is	found	that	greater	trip	distances	also	reduce	the	incidence	of	

commuter	cycling	in	the	UK	(Dickinson	et	al.	2003;	Parkin	et	al.	2008	)	and	Australia	

(Timperio	et	al.,	2006)	but	the	density	of	population	per	locality	increases	it’s	likelihood	

as,	for	example,	indicated	by	cycling	in	urban	areas	in	Denmark,	Germany	and	the	

Netherlands	(Pucher	and	Buehler	2008)	and		in	the	U.S.	(Zahran	et	al.	2008).		
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Much	research	has	focussed	on	the	provision	of	cycling	routes.2	For	example,	Dill	and	

Carr	(2003)	identify	that	an	increase	in	the	linear	miles	of	cycle	lane	per	square	mile	of	

U.S.	city	area	increased	commuter	cycling.	These	results	are	supported	in	the	U.S.	by	

Tilahun	et	al.	(2007).	Moreover,	Barnes	et	al.	(2005)	also	found	that	commuter	cycling	is	

more	prevalent	in	the	U.S.	in	proximity	to	the	provision	of	cycle	lanes	and	paths.	Mixed	

evidence	is	found	over	preferences	for	cycling	routes,	however.	Vernez‐Moudon	et	al.	

(2005)	identify	in	the	U.S.	that	proximity	to	bike	paths	encourages	commuter	cycling,	

but	not	the	proximity	to	lanes,	whereas	Krizek	and	Johnson	(2006)	find	the	opposite	

case.	

	

Finally,	and	recently	in	the	UK,	a	number	of	longitudinal	studies	have	identified	the	

causal	importance	of	policy	and	infrastructure	to	active	travel	by	focussing	upon	

selected	sites	and	comparing	behaviours	before	and	after	various	policy	and	

infrastructure	interventions.	Making	use	of	comparative	census	data	from	2001	and	

2011,	Goodman	et	al.	(2013b)	identify	that	increases	in	cycling	and	walking	to	work	and	

decreases	in	car	borne	commuting	took	place	across	six	Cycling	Demonstration	towns	

(funded	between	2005‐2011)	and	12	Cycling	Cities	and	Towns	(funded	between	2008‐

2011)	as	a	result	of	a	variety	of	initiatives	including	capital	infrastructure	investment	in,	

for	example,	cycle	lanes	along	with	investment	in	promotional	and	training	activity.	

Moreover,	making	use	of	primary	data,	results	from	the	iConnect	study	in	three	selected	

intervention	towns	and	cities,	when	compared	to	comparator	groups,	found	that	past‐

week	walking	and	cycling	for	transport	increased	in	proximity	to	the	infrastructure	

after	2	years	(Sahlqyist	et	al.	2013;	Goodman	et	al.	2014).	The	interventions	were	the	

installation	of	traffic	free	bridges	in	Cardiff	and	Kenilworth,	and	the	development	of	an	

informal	riverside	path	into	a	boardwalk	in	Southampton.3			
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There	are	three	important	features	of	these	studies.	The	first	is	that	they	examine	active	

travel	through	cycling	alongside	walking.	The	second	is	that	they	also	take	account	of	

the	recreational	context	of	these	activities	as	well	as	commuting,	whereas	much	of	the	

above	reported	literature	focusses	upon	commuting	behaviour.	Finally,	the	studies	also	

take	account	of	other	leisure	time	physical	activity.	The	studies	show	that	this	latter	

behaviour	also	increases	more	in	proximity	to	the	interventions.	This	is	suggestive	of	

complementarity	between	commuter	walking	and	cycling,	walking	and	cycling	of	a	

recreational	nature	as	well	as	other	leisure	time	activity.		

	

Implicit	in	the	above	discussion	of	the	literature	are	different	research	designs.	Some	

studies	such	as	Parkin	et	al.	(2008)	and	Rietveld	and	Daniel	(2004)	focus	on	

comparisons	of	the	proportion	of	cyclists	in	different	aggregate	geographical	areas.	

They	are	necessarily	based	on	secondary	data.	Other	research	focusses	on	the	individual	

(Goodman	et	al.	2013b;	Handy	et	al.	2010;	Sloman	et	al.	2009)	through	analysis	of	

secondary	data,	or	data	collected	through	primary	survey	or	the	monitoring	of	users.	

The	research	is	more	localised	in	nature	either	through	the	survey	design	or	the	focus	

on	specific	interventions.4		It	has	been	argued,	therefore,	that	future	research	should	

focus	on	changes	in	behaviour	according	to	environmental	and	infrastructure	changes,	

and,	as	noted	earlier,	the	relationship	between	cycling,	walking	and	overall	physical	

activity	(See	also	Yang	et	al.	2010;	Saelens	at	al.	2003).	The	former	case	was	first	noted	

by	Lawlor	et	al.	(2003)	who	also	argued	that	research	needed	to	move	beyond	the	

specific	context,	even	if	this	context	was	essential	for	a	randomised	controlled	trial,	to	

assess	impacts	at	the	population	level.	In	the	latter	case,	in	a	population	level	study	

Rasciute	and	Downward	(2010)	show	that	cycling	behaviour	is	conditional	on	other	
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physical	activity.	This	is	not	surprising	given	the	insights	noted	above	and,	as	Litvin	et	al.	

(2013)	show,	that	non‐travellers	tend	to	have	more	sedentary	lifestyles	compared	to	

those	who	travel,	regardless	of	the	form	of	travel.	To	address	these	issues,	therefore,	this	

paper	extends	the	current	research	by	examining	the	relationship	between	individuals’	

cycling	behaviour	and	access	to	NCN	routes	using	a	nationally	representative	survey,	in	

the	context	of	their	walking	and	other	physical	activity,	whilst	controlling	for	the	

typically	identified	socio‐economic	characteristics	noted	above.	It	should	be	emphasised,	

however,	that	the	study	is	cross‐sectional	and	thus	causal	insight	is	limited.	Nonetheless,	

the	aim	of	the	study	is	to	offer	some	generality	to	the	emergent	findings	from	the	

longitudinal	studies	in	the	UK	noted	above.			

	

3.	Data	and	variables	

This	research	primarily	draws	upon	the	Active	People	Survey	(APS).	Commissioned	by	

Sport	England,	with	data	being	collected	through	random	sampling	on	a	rolling	monthly	

basis,	and	published	in	annual	waves	since	2005/6,	the	APS	measures	cycling,	walking	

and	sports	participation,	as	well	as	the	individual’s	socio‐economic	circumstances,	for	

representative	samples	of	individuals	for	each	local	authority	in	England.		The	current	

research	focusses	upon	Wave	6,	which	was	collected	between	mid	October	2011	and	

mid	October	2012.5		As	the	local	authority	level	is	the	lowest	level	of	disaggregation	that	

localities	can	be	identified	in	the	APS,	this	data	were	then	matched	at	local	authority	

level	to	the	miles	of	NCN	route	for	each	local	authority	for	the	commensurate	period	

from	data	provided	by	Sustrans6,	as	well	as	local	authority	population	data	from	the	

2011	Census,	and	the	geographic	area	of	the	local	authority	from	the	Local	Government	

Boundary	Commission.7	
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Table	1	provides	an	outline	of	the	variables	employed	in	the	study.	The	total	sample	size	

upon	which	the	alternative	models	are	estimated	is	n=	22,	845	including	both	cyclists	

and	non‐cyclists	of	any	type.	The	original	sample	size	for	the	APS	is	n	=	163,420.	

However,	for	the	purposes	of	the	current	multivariate	analysis	of	cycling,	the	sample	

size	is	reduced	for	various	reasons.	The	first	is	because	income	is	only	measured	for	a	

random	sample	of	50%	of	the	original	targeted	sample	size	in	the	survey.	Consequently,	

the	sampling	strategy	for	the	survey	involved	only	asking	about	income	of	a	random	

sample	of	n=	78,807	respondents.	In	addition,	amendments	were	made	to	the	questions	

on	walking	and	cycling	in	this	wave	of	the	survey	such	that	subsequent	to	the	first	three	

months	of	data	the	actual	length	in	minutes	of	any	form	of	walking	and	cycling	were	

collected	for	the	first	time	unlike	previously	when	the	APS	had	a	sole	measurement	

emphasis	on	trips	of	at	least	30	minutes	duration	(TNS/BMRB,	2013).	This	previous	

situation	reflected	the	fact	that	the	main	role	of	the	APS	for	the	commissioner,	Sport	

England,	is	to	provide	information	on	the	‘1	x	30’	indicator	of	physical	activity,	which	

‘measures	the	percentage	of	the	adult	population	participating	in	sport,	at	a	moderate	

intensity,	for	at	least	30	minutes	on	at	least	four	days	out	of	the	last	four	weeks	

equivalent	to	30	minutes	on	one	or	more	day	a	week’	(Sport	England,	2013;	See	also	

Sloman,	et	al.	2009).	Focussing	on	data	for	which	this	general	form	of	walking	and	

cycling	were	available,	therefore,	meant	that	in	excess	of	46,000	cases	from	the	total	

original	sample,	for	example	for	walking,	were	also	ineligible.	Genuine	missing	values	

were	also	present	across	some	of	the	variables.	For	example,	there	were	in	excess	of	

10,000	cases	for	education,	and	in	excess	of	4000	cases	for	work	status	etc.	The	very	

large	absolute	size	of	the	remaining	‘core’	data	for	the	modelling	across	the	covariates,	

coupled	with	the	rolling	random	monthly	sampling	and	sub‐sampling,	suggests	that	the	

results	retain	statistical	reliability	for	aggregate	inferences.8		
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For	each	variable	three	sets	of	means	and	standard	deviations	are	presented	covering	

the	total	sample,	and	sub	samples	for	non‐cyclists	and	cyclists.	For	economy	of	

presentation,	means	are	also	presented	for	binary	as	well	as	scale	variables.	In	the	

former	case	the	means	should	be	viewed	as	providing	an	indication	of	the	sample	

proportions	of	the	measured	characteristic.	Because	of	the	large	preponderance	of	zeros	

in	the	cycling	data,	which	as	discussed	in	the	introduction	is	due	to	the	low	frequency	of	

population‐level	behaviour	in	activities	such	as	cycling,	a	more	direct	and	meaningful	

comparison	across	the	dependent	variables	can	be	made	with	reference	to	the	sub‐

sample	for	cyclists.		

	

INSERT	TABLE	1	HERE	

The	dependent	variables	each	capture	an	aspect	of	cycling	behaviour.	Based	on	the	

newly	available	data	in	the	APS,	‘cyctot’	measures	the	total	minutes	undertaking	cycling	

of	any	sort	and	any	duration	(i.e.	this	includes	both	recreational	and	utilitarian	cycling)	

in	the	last	four	weeks	prior	to	the	survey.9	This	was	calculated	as	the	product	of	three	

variables.	A	binary	variable	indicating	if	any	cycling	had	been	undertaken	in	the	last	

four	weeks,	a	variable	measuring	the	number	of	days	in	which	cycling	takes	place,	and	

the	typical	duration	in	minutes	of	a	cycling	session.	The	remainder	of	the	variables,		

focus	on	the	number	of	days	in	which	cycling	takes	place	of	at	least	30	minutes	duration,	

which	was	the	traditional	measurement	emphasis	of	the	APS,	and	which	is	still	

investigated.	Consequently,	the	variables	‘cyc30days’	and	‘cyc30daysMI’	measure	the	

number	of	days	that	any	cycling	has	taken	place	in	the	last	four	weeks	of	at	least	30	

minutes	duration	and	either	of	any	intensity	or	moderate	intensity	respectively.	The	

intensity	of	cycling	is	identified	by	respondents	indicating	if	the	activity	raised	their	



15	
	

breathing	rate	and	if	it	made	them	out	of	breath	or	sweat.	The	former	indicates	

moderate	intensity	and	the	latter	vigorous	intensity.	The	moderate	intensity	variable	is	

important	as	it	is	indicative	of	whether	the	cycling	activity	is	contributing	to	certain	

typical	expressions	of	health	enhancing	physical	activity	guidelines	and	embedded	in	

the	traditional	measurement	emphasis.10	The	survey	also	allows	these	latter	variables	

to	be	disaggregated	by	purpose.	The	equivalent	recreation	versions	of	the	above	

variables	are	‘cyc30daysr’	and	‘cyc30daysMIr’	respectively.		Finally,	based	on	the	

differences	between	these	two	sets	of	variables,	utilitarian	cycling	variables	were	

calculated	to	measure	non‐recreational	cycling	of	at	least	30	minutes	duration	and	also	

of	at	least	30	minutes	duration	of	moderate	intensity.	The	variables	are	named	‘cyc30ut’	

and	‘cyc30utMI’	respectively.		

	

The	data	reveal	that	on	average	the	total	duration	of	any	form	of	cycling	is	512	minutes	

over	the	four	week	period.11	The	data	also	reveal	that	cycling	of	at	least	30	minutes	

duration	takes	place	on	approximately	6	days	every	four	weeks	with	utilitarian	cycling	

of	this	duration	but	of	moderate	intensity	on	only	one	day.	Recreational	cycling	of	at	

least	30	minutes	takes	place	on	approximately	3.5	days	and	similarly	for	such	activity	at	

a	moderate	intensity.	Utilitarian	cycling	of	at	least	30	minutes	duration,	but	not	at	

moderate	intensity,	also	takes	place	approximately	3	days	every	four	weeks.	This	

suggests	that	recreational	cycling	may	be	more	likely	to	be	of	a	longer	duration	and	at	

this	duration	of	a	greater	intensity.	Consequently,	it	may	have	more	potential	to	yield	

health	benefits	than	the	equivalent	utilitarian	travel.	Of	course	the	data	are	inconclusive	

with	respect	to	shorter	utilitarian	trips,	but	this	insight	does	qualify	some	of	the	more	

general	pronouncements	linking	active	travel	to	health	and	indicates	how	important	

recreational	cycling	may	be	to	health.	This	is	an	important	point	that	has	recently	been	
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identified	by	Sahlqvist	et	al.	(2015)	in	which	it	is	argued	that	recent	infrastructure	

investments	in	cycling	in	the	UK	have	had	a	greater	recreational	impact.	It	is	important	

to	note,	however,	as	the	authors	point	out,	that	this	could	reflect	the	specific	goals	of	the	

projects	and	potential	lack	of	connection	to	feeder	routes	for	the	interventions	to	allow	

for	effective	commuting.		

	

Three	other	sets	of	variables	are	presented	in	Table	1.	These	are	locality	variables,	other	

physical	activity	variables	and	socio‐economic	(control)	variables.	Comparison	of	the	

means	of	these	variables	allows	some	initial	analysis	of	the	cycling	context	and	socio	

economic	characteristics	of	cyclists	and	non‐cyclists,	which	provides	some	expectations	

about	possible	behaviour	to	be	captured	in	the	ZINB	model.			

	

The	mean	values	of	the	locality	variables	suggest	that	cyclists	tend	to	come	from	local	

authorities	with	more	miles	of	NCN	route,	but	also	those	that	are	larger	in	area	and	

which	are	less	populated.		This	could	be	related	to	the	potentially	greater	recreational	

use	of	the	routes.	In	the	analysis	that	follows	therefore	a	composite	variable	measuring	

NCN	route	miles	per	population	density	is	used	to	capture	the	likely	interacting	

influences	of	the	locality	variables.	The	miles	of	available	NCN	route	in	the	local	

authority	clearly	represents	the	absolute	opportunity	to	cycle	for	the	individual.	

Population	density	captures	two	factors	that	combine	to	influence	this	opportunity.	

Population	size	is	an	indicator	of	the	potential	total	demand	for	the	NCN	routes	whilst	

the	geographical	area	indicates	the	confines	within	which	this	demand	can	operate.	

Population	density	thus	gives	an	indication	of	the	degree	of	concentration	of	demand	

and	consequently	the	potential	congestion	facing	an	individual	cyclist.	This	means	that	

NCN	route	miles	per	population	density	represents	the	opportunity	to	cycle	for	the	
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individual	constrained	by	potential	use	of	the	route	by	others.	An	alternative	scaling	

approach	in	which	NCN	route	miles	and	population	are	both	expressed	in	terms	of	the	

area	of	the	locality,	would	in	contrast,	not	fully	capture	this	congestion	effect	but	focus	

on	the	impacts	that	NCN	route	miles	and	population	per	se	have	on	the	individual	

because	of	the	shared	denominator.	It	is	not	clear	that	the	latter	variable	in	‘isolation’	

captures	a	likely	influence	on	an	individual.	There	is	also	the	potential	problem	that	

NCN	route	miles	are	likely	to	be	highly	correlated	to	the	area	of	the	local	authority,	

given	that	the	NCN	is	a	planned	intervention	to	meet	the	needs	of	an	identified	

population	within	its	geographic	space.		This	is	suggestive	of	potential	problems	with	

multicollinearity	in	estimating	such	a	model	and	this	was	indeed	found	to	be	the	case.		

Some	experimentation	with	the	modelling,	therefore,	also	supported	the	choice	of	the	

variable	and	the	reasoning	above.12		

	

Cyclists	are	also	far	more	active	than	non‐cyclists	undertaking	almost	30	percent	more	

minutes	of	walking	on	average	for	at	least	10	minutes	duration	and	almost	80	percent	

more	minutes	of	sports	participation	on	average	relative	to	non‐cyclists.	Cyclists	are	

also	more	likely	to	be	of	white	British	ethnicity,	have	an	income	in	excess	of	the	income	

category	£31,999	≥	£20,800,	be	in	full	or	part	time	work	or	a	student,	have	a	higher	

education	and	be	younger	and	male.	There	is	less	likelihood	that	cyclists	have	a	long‐

term	illness,	but	more	that	they	come	from	households	with	more	adults	and	children	

(i.e.	families)	and	have	access	to	more	vehicles.		

	

4.	Statistical	Model:	Zero‐Inflated	Negative	Binomial	Model.	

In	order	to	analyse	the	relationships	between	access	to	cycle	routes,	physical	activity	

lifestyle	and	the	other	variables	on	the	dependent	variables	noted	above,	a	ZINB	model	



18	
	

is	employed.	This	model	belongs	to	a	class	of	models	that	analyse	count	data.13	Count	

data	comprises	non‐negative	integers.	Clearly	the	dependent	variables	measuring	the	

numbers	of	days	of	cycling	correspond	to	this	categorisation.	Whilst	the	variable	

measuring	the	total	minutes	of	any	cycling	is	bounded	below	by	zero,	it	might	be	argued	

that	minutes	are	less	meaningfully	viewed	as	integers.	However,	Wooldridge	(2002)	has	

argued	that	count	models	can	be	applied	to	non‐negative	continuous	variables.	Because	

of	the	importance	of	examining	general	cycling,	as	distinct	from	solely	that	of	a	fixed	

duration	of	at	least	30	minutes	on	different	days	for	the	first	time	in	a	national	survey,	

this	is	the	approach	adopted	in	this	paper.	

	

The	most	simple	count	regression	is	based	on	the	Poisson	distribution.		The	Poisson	

distribution	of	a	variable	‘Y’	i.e.		for	the	number	of	days	and	minutes	of	cycling,		can	be	

described	according	to	the	density,		

	

																																																					(1)	

	

Where	λ	is	known	as	the	rate	parameter.	It	is	equal	to	the	expected	value	of	the	Poisson	

random	variable	Y,	which	can	be	approximated	by	the	average	of	the	observed	values	of	

this	denoted	as	y.	A	limit	of	this	model	is	that	the	mean	will	be	equal	to	the	variance.	

Consequently,		 This	is	the	equidispersion	property	of	the	Poisson	

distribution.14	The	Poisson	regression	model	is	then	derived	from	the	Poisson	

distribution	by	using	the	exponential	mean	parameterisation	of	the	relation	between	

the	mean	parameter	λ	and	the	regressors	x	(Cameron	and	Trivedi,	2005)	as:	
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																																																								(2)	

	

Equation	(2)	shows	that	the	expected	counts	associated	with	cycling	are	conditional	on	

a	set	of	variables	,	xi,	that	is	a	1	x	k	row	vector,	describing	the	access	to	cycling,	other	

physical	activity	and	control	variables	used	in	the	analysis.	The	corresponding	

parameter	vector	to	be	estimated	is		.Values	of	particular	parameters	thus	indicate	

how	a	unit	change	in	a	relevant	variable	becomes	reflected	in	changes	in	(the	log	of)	

expected	counts.15			

	

The	Poisson	regression	model	is	usually	too	restrictive	for	count	data.	In	count	data	the	

variance	usually	exceeds	the	mean,	which	leads	to	overdispersion.		Overdispersion	can	

arise,	firstly,	due	to	unobserved	heterogeneity,	that	is	some	variability	of	cycling	

behaviour	other	than	that	observed	and	measured	in	the	data	on	the	regressors.		For	

example,	this	could	include	particular	tastes	or	dispositions	for	travel	to	be	green,	or	

socially	responsible.	In	this	case	the	model	of	the	rate	parameter	in	the	Poisson	case	is	

not	correctly	specified	(Cameron	and	Trivedi	2005).	Secondly,	overdispersion,	may	

arise	because	the	process	generating	a	decision	to	cycle,	as	a	first	event,	may	differ	from	

that	determining	how	much	to	cycle,	as	a	later	event.	For	example,	the	decision	to	cycle	

may	be	due	to	supply‐side	factors	such	as	access	to	routes	or	membership	of	a	cycling	

club,	while	the	frequency	of	cycling	may	be	due	to	other	factors	such	as	the	availability	

of	time	because	of	work	and	family	commitments.	Finally,	overdispersion	in	count	data	

may	be	due	to	the	violation	of	the	assumption	of	independence	of	events,	that	is,	that	

cycle	trips	depend	on	previous	trips.	This	is	linked	to	the	first	context	in	which	
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heterogeneity	is	present.	Significantly,	the	first	and	the	third	problems	may	be	amended	

by	the	Negative	Binomial	model,	while	the	second	problem	suggests	that	a	two‐part	

model	is	needed	to	capture	both	aspects	of	behaviour.	It	is	to	account	for	all	of	these	

three	problems	in	the	data	that	the	ZINB	model	is	used.	Nonetheless,	tests	of	its	

applicability	are	also	undertaken.		

	

In	the	first	instance,	the	relevance	of	the	Poisson	or	the	Negative	Binomial	model	can	be	

assessed	by	testing	for	the	presence	of	overdispersion.	As	discussed	in	the	next	section,	

the	data	support	the	use	of	a	negative	binomial	model.	The	test	can	be	understood	by	

considering	the	distribution	describing	the	probability	of	counts	according	to	the	

Negative	Binomial	model	(Greene	2008;	Cameron	and	Trivedi	2005).	

	

(3)	

In	equation	3,	yi,	as	in	equation	1,	refers	to	the	observed	minutes	or	days	of	cycling,		is	

the	gamma	function	and	θi	is	a	parameter	that	determines	the	degree	of	dispersion.		For	

identification	it	is	often	assumed	to	be	the	same	for	all	individuals	and	that:	 .		

Under	this	assumption	the	mean	is	 		as	with	the	Poisson	distribution	but	the	

variance	is	 .	Testing		=0	thus	determines	the	appropriateness	

of	the	Negative	Binomial	model	over	the	Poisson	model.			

	

A	problem	with	both	the	Poisson	and	Negative	Binomial	models	occurs	if	the	dependent	

variable	is	characterised	by	excess	zeros.		Failure	to	account	for	this	would	lead	to	an	
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over‐prediction	of	the	number	of	zeros	in	the	data	by	the	model.		As	discussed	earlier,	in	

survey	data	such	as	the	APS	which	has	collected	data	on	cycling	in	the	last	four	weeks,	

there	is	a	possibility	that	some	zeros	are	‘absolute’,	implying	that	the	respondent	has	

never	cycled,	and	some	zeros	are	‘relative’,	in	the	sense	that	that	they	have	not	cycled	in	

the	last	four	weeks,	but	may	have	done	so	previously,	or	will	do	so	if	circumstances	

change.	In	this	context	a	zero‐inflated	model	is	used,	which	considers	the	existence	of	

two	latent	groups	within	the	population:	one	group	has	zero	counts	–	but	with	the	two	

forms	of	zeros	distinguished	‐	and	the	other	group	has	strictly	positive	counts.		

Consequently,	estimation	proceeds	in	two	parts	where	a	count	density	 	is	

supplemented	with	a	binary	process	with	density	 .	If	the	binary	process	takes	value	

0,	with	probability	 ,	then	y=0.	If	the	binary	process	takes	value	1,	with	probability	

,	then	y	takes	count	values	0,1,2,…	from	the	count	density	 	(Cameron	and	

Trivedi	2005).	The	density	can	then	be	written	as	:	

	

	 (4)	

	

In	our	model	 	is	a	logit	model	and	 	is	a	negative	binomial	density.	The	first	term	

of	the	model	indicates	the	probability	of	observing	a	zero,	that	is	no	cycling,	from	a	

binary	decision	to	cycle	or	not	and	the	second	term,	which	is	the	joint	probability	that	

an	individual	chooses	to	cycle	rather	than	not,	but	currently	chooses	a	zero	frequency.	

The	final	term	of	the	model	then	describes	that	positive	counts	have	a	probability	given	
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by	the	joint	distribution	of	an	individual	choosing	to	cycle	and	choosing	a	non‐zero	

frequency.	The	first	part	of	the	model,	thus	describes	the	excess	zeros.	The	zero‐

inflation	in	the	data	can	be	tested	following	Vuong	(1989)	and,	as	shown	in	the	next	

section,	supports	the	use	of	the	zero‐inflated	model.	

	

5.	Results	and	Discussion	

Table	2	presents	the	results	of	the	ZINB	model.	The	heading	of	each	column	in	the	table	

describes	the	dependent	variable.	Two	sets	of	coefficient	estimates	are	then	presented,	

one	above	the	other.	The	first	refer	to	the	relationship	between	the	independent	

variables	and	the	counts	or	frequencies	of	cycling	behaviour.	The	second	refer	to	the	

relationship	between	the	independent	variables	and	the	zero	inflation	of	the	dependent	

variables;	in	other	words	capturing	the	‘shift’	from	being	an	‘absolute’	to	a	‘relative’	zero	

in	the	data	for	the	dependent	variable.	These	latter	results	yield	important	information	

concerning	the	potential	increases	in	cycling	following	from	a	change	in	each	of	the	

independent	variables	in	the	sense	that	they	describe	how	cycling	behaviour	may	vary	

from	being	considered	never	to	occur	to	currently	chosen	not	to	occur.	As	well	as	the	

coefficient	estimates	the	asymptotic	z‐values	are	also	presented,	with	statistical	

significance	indicated	at	the	levels	identified	by	the	asterisks.		Each	set	of	results	is	

based	on	robust	estimation	of	the	variances	that	are	clustered	around	the	local	

authorities	as	this	is	the	unit	in	which	NCN	routes	are	measured	and	also	the	basis	of	

sampling	of	individuals.		

INSERT	TABLE	2	HERE	

As	implied	in	the	previous	section,	the	last	rows	of	Table	2	show	that	first	α≠0,	and	

hence	the	variance	of	the	distributions	are	not	equal	to	the	mean	i.e.	λ.	This	indicates	

that	the	Negative	Binomial	regression	is	preferred	to	the	Poisson	model.	Second,	the	
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Vuong	test	results	indicate	that	the	Zero‐inflated	Negative	Binomial	model	is	preferred	

to	the	standard	Negative	Binomial	model.			

	

The	results	indicate	a	positive	association	between		miles	of	NCN	route	per	population	

density	and		minutes	cycled	of	any	type		but	also	a	positive	association	with	the	number	

of	days	in	which	cycling	is	of	at	least	30	minutes	duration	for	recreational	purposes,		

and	recreational	cycling	of	a	moderate	intensity.	The	effect	sizes	are	relatively	small.	A	

one	unit	change	in	the	miles	of	NCN	route	per	population	density	generates	an	extra	

0.055	minutes	of	any	cycling;	an	extra	0.0005	days	in	which	cycling	of	at	least	30	

minutes	duration	for	recreation	purposes	is	undertaken,	and		an	extra	0.0005	days	in	

which	such	cycling	takes	place	of	moderate	intensity.16	There	is	no	association	of	the	

NCN	route	variable	with	utilitarian	cycling	or	non‐specific	cycling	that	occurs	of	at	least	

30	minutes	duration	of	any	intensity.	This	result	adds	some	support	to	Sloman	et	al.’s	

(2009)	argument	that	the	NCN	routes	have	a	potentially	twofold	function;	they	facilitate	

shorter	duration	utilitarian	travel	and	longer	duration	recreational	activity.		These	

results,	consequently,	indicate	that	the	NCN	routes	may	be	more	likely	to	contribute	to	

healthy	activity	in	a	recreational	context,	if	the	focus	for	health	centres	upon	activity	

that	is	at	least	30	minutes	duration.	The	results	also	suggest	that	the	NCN	routes	could	

enhance	these	potential	behaviours	in	that	for	the	same	dependent	variables	there	is	a	

negative	sign	on	the	zero	inflation	coefficients.	The	coefficients	are,	moreover,	

significant	for	all	cases	except	utilitarian	cycling	of	at	least	30	minutes	duration.	Overall	

the	results	suggest	that	increased	access	to	NCN	routes	is	associated	with	a	reduction	in	

the	likelihood	of	individuals	never	cycling	at	all,	but	particularly	so	in	a	recreational	

context.		
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In	the	case	of	the	other	physical	activity	variables,	the	results	show	that	walking	is	most	

likely	to	be	associated	with	changes	in	cycling	of	a	non‐specifically	recreational	nature,	

with	some	evidence	that	it	can	encourage	the	intensity	of	non‐recreational	cycling.	

These	results	suggest	that	utilitarian	cycling	is	more	closely	complementary	to	walking,	

and	that	some	health	benefits	may	emerge	from	the	joint	behaviours	through	cycling	if	

this	is	measured	as	a	moderate	intensity	activity	of	at	least	30	minutes	duration.	In	

contrast,	greater	minutes	of	sports	participation	are	associated	positively	with	all	

cycling	activity	measures	other	than	utilitarian	cycling	of	at	least	30	minutes	duration.	

This	suggests	a	primary	complementarity	with	longer	duration,	higher	intensity	

recreational	cycling,	though	connection	as	well	with	shorter	utilitarian	cycling.	The	

reasons	behind	such	behaviours	could,	of	course,	be	linked	to	the	built	environment	in	

which	mixed	use	land	in	more	urban	areas	could	help	to	facilitate	walking	and	cycling,	

whilst	those	inclined	to	participate	in	cycling	for	a	recreational	purpose	may	also	

prioritise	fitness	for	their	sports	activities.	Likewise,	the	zero‐inflation	results	indicate	a	

strong	suggestion	that	walking	activity	has	the	potential	to	have	a	more	general	impact	

on	cycling,	other	than	for	higher	intensity	longer	duration	utilitarian	trips,	and	

participation	in	sport	likewise	with	the	exception	of	any	longer	duration	utilitarian	trips.	

These	results	provide	evidence	that	cycling	is	positively	associated	with,	that	is	

complementary	to,	a	more	generally	active	lifestyle.		However,	there	are	differences	in	

emphasis.	Health	enhancing	activity,	at	least	as	measured	by	30	minutes	of	activity,	is	

more	likely	to	be	linked	to	recreational	activity	to	which	NCN	routes	can	service,	and	be	

associated	with	a	more	sporting	set	of	behaviours.	Walking	is	more	likely	to	be	

associated	with	utilitarian	trips.	There	is	some	evidence	that	NCN	routes	can	support	

this	activity.	It	is	clear	that	policy	that	wishes	to	promote	more	active	travel	and	health	

could	focus	more	on	these	relatively	distinct	lifestyle	complementarities.	It	remains,	
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however,	that	the	results	also	demonstrate	in	a	general	large‐scale	survey	context,	and	

as	noted	in	Section	2	for	more	specific	intervention	studies	in	the	UK,	the	potential	of	

linking	these	three	physical	activity	behaviours	together.	It	remains	that	more	work	

needs	to	be	done	on	researching	the	links	between	NCN	and	other	route	availability	and	

longer‐run	utilitarian	cycling,	which	is	a	finding	also	supported	from	these	intervention	

studies	(Sahlqvist	et	al.,	2015).			

	

Other	general	results	are	that	having	a	higher	income,	working,	being	a	student,	having	

higher	education	and	being	male	reduce	the	zero‐inflation	in	the	data	and	are	also		

factors	that	can	potentially	increase	the	probability	of	cycling.	Being	male	is	also	

associated	with	an	increase	in	actual	counts	or	frequencies	of	all	types	of	cycling.	Whilst	

the	latter	is	a	common	result	in	the	literature	for	the	UK,	the	general	thrust	of	the	results,	

because	of	the	use	of	the	zero‐inflated	model,	suggests	that	the	potential	for	additional	

cycling	is	connected	to	lifestyle	choice,	rather	than,	say,	just	concerns	with	the	cost	of	

transport.	Nonetheless,	as	access	to	vehicles	is	negatively	associated	with	the	number	of	

days	in	which	utilitarian	cycling	takes	place	of	at	least	30	minutes	duration,	whilst	it	

increases	the	zero‐inflation	for	such	travel	but	not	of	moderate	intensity,	these	results	

suggest	that	longer‐term	cycle	commuting	and	its	potential	is	a	relatively	distinct	active	

travel	segment	and	one	which	is	more	likely	to	be	linked	to	transport	cost.		

	

The	results	also	suggest	that	having	a	longer	term	illness	is	associated	with	a	positive	

effect	on	zero‐inflation	suggesting,	perhaps	obviously,	less	potential	for	cycling.	Finally,	

there	are	complex	household	compositional	effects	detected	in	the	results.		Whilst	the	

presence	of	more	children	in	the	household	is	associated	with	a	reduction	in	the	

duration	of	any	cycling,	it	also	decreases	the	zero‐inflation	of	any	cycling	and	that	for	a	



26	
	

recreational	purpose	but	not	utilitarian	cycling.	This	is	indicative	of	children	adding	

constraints	to	behaviour,	but	nonetheless	retaining	the	potential	to	cycle	for	recreation.	

The	number	of	adults	in	the	household,	however,	increases	the	zero‐inflation	for	cycling	

of	a	general	and	recreational	nature,	if	it	is	of	at	least	30	minutes	duration,	but	reduces	

it	for	non‐moderate	intensity	utilitarian	cycling	of	at	least	30	minutes	duration.	As	there	

is	also	some	evidence	that	additional	adults	in	the	household	are	associated	with	a	

decrease	in	the	incidence	of	utilitarian	cycling	of	at	least	30	minutes	of	a	moderate	

intensity,	the	results	suggests	that	family	life	could	reduce	utilitarian	cycling,	though	

retain	its	potential.	Overall	these	results	suggest	that	families	as	indicated	by	more	

adults	being	present	could	tend	to	reduce	cycling,	though	the	presence	of	children	can	

increase	the	potential	to	cycle	recreationally,	whilst	partners	alone	can	preserve	the	

potential	for	utilitarian	cycling.		

	

6.	Limitations	and	Implications	

The	current	research	has	some	limitations.	The	first	is	that	potential	omitted	variable	

bias	could	be	present	in	the	results.	The	current	research	focusses	on	the	NCN	and	does	

not	account	for	the	influence	on	behaviour	of	other	potential	cycle	routes	and	

opportunities.		This	means	that	the	impacts	of	NCN	route	access	could	be	either	

overstated	or	understated.	The	former	would	be	the	case	if	the	(unmeasured)	effects	of	

the	other	routes	on	cycling	would	be	positive	if	measured	in	the	analysis	and	there	was	

a	positive	relationship	between	the	NCN	and	other	cycle	routes.		The	latter	could	be	the	

case	if	there	was,	for	example,	a	negative	association	between	the	NCN	and	the	

provision	of	other	cycle	routes.	Likewise,	topographical	data	along	with	actual	road	

traffic	and	congestion	statistics,	or	meteorological	measurements	were	not	explicitly	

accommodated	in	the	analysis.	This	was	because	of	either	lack	of	availability	of	some	of	
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the	data	or	inability	to	match	this	to	measurement	at	the	level	of	at	least	local	

authorities.	Nonetheless,	to	the	extent	that	variations	in	other	cycle	route	availability	

and	traffic	and	congestion	are	likely	to	be	relatively	constant	or	enduring	features	

across	local	authorities,	then	basing	inference	on	clustered	standard	errors	at	the	local	

authority	level	could	ameliorate	variations	in	these	effects.	Moreover,	as	the	data	are	

randomly	collected	on	a	rolling	monthly	basis,	then	it	is	also	possible	that	effects	of	

seasonal	and	meteorological	changes	are	also	controlled	for	to	an	extent.		

	

It	should	also	be	emphasised	that	the	current	analysis	cannot	claim	to	be	a	causal	

investigation,	and	this	recognition	is	identified	in	the	commentary	on	the	results	above,	

in	which	associations	are	central	to	the	discussions.	The	potential	lack	of	causality	could	

apply	in	two	senses.	The	first	is	that	feedback	between	cycling	behaviour	and	NCN	route	

provision	is	not	formally	accounted	for	in	the	analysis.	However,	as	the	access	to	NCN	

routes	is	an	explicitly		‘supply	side’	influence	,	and	it	is	also	measured	at	a	more	

aggregate	level	than	individual	behaviour,	then	there	is	some	theoretical	and	statistical	

basis	for	cautious	claims	to	identify	cause	as	far	as	this	variable	is	concerned.	The	

second	sense	in	which	causality	may	not	apply	is	that	because	this	is	a	large‐scale	

correlational	study	and	not	one	that	monitors	actual	route	usage	by	individuals,	it	might	

be	possible	that	the	NCN	routes	can	act	as	signals	to	cycle	more	generally,	rather	than	

being	the	main	or	only	specific	geographical	conduit	for	activity,	as	noted	above.	It	

remains	however,	that	such	ambiguity	over	the	causal	mechanisms	of	changed	

behaviour	does	not	undermine	the	fact	that	evidence	is	present	in	the	research	that	

access	to	NCN	routes	is	associated	with	more	cycling,	and	that	other	aspects	of	the	

physical	activity	of	individuals	influences	this	behaviour.	
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With	these	caveats	in	mind,	the	main	policy	conclusions	to	draw	from	the	research	are	

that	the	evidence	suggests	that	NCN	route	provision	can	play	a	part	in	promoting	active	

travel	upon	which	health	and	congestion	benefits	for	society	can	accrue.	The	current	

research	suggests	that	these	health	benefits,	being	achieved	through	longer	duration	

and	intensity	cycling,	are	more	likely	with	recreational	cycling	as	part	of	a	more	

sporting	leisure	lifestyle.	Importantly,	capitalising	on	these	benefits	suggests	linking	the	

promotion	of	interventions	like	the	NCN	to	broader	sport	and	physical	activity	

promotion	as	the	behaviours	are	highly	complementary.				

	

The	research	also	illustrates	that	more	utilitarian	travel	is	a	relatively	distinct	segment	

of	cycling	and	that	routes	are	more	likely	to	be	linked	to	shorter	trips	of	lower	intensity	

that	are	in	part	driven	by	transport	costs	and	more	likely	to	be	complementary	to	

walking	activity.	This	behaviour	can	also	contribute	to	health	guidelines	as	indicated	by	

WHO	(2010),	but	of	which	the	current	research	cannot	formally	address.	Overall,	

therefore,		the	results	suggests	that	NCN	marketing	needs	to	be	nuanced	to	appeal	to	

these	potential	segments	and,	more	importantly,	that	general	claims	that	active	travel	

through	cycling	per	se	contributes	to	health	subject	to	further	investigation	by	the	large‐

scale	analysis	of		shorter	duration	utilitarian	cycling.	The	current	research	suggests	that	

utilitarian	cycling	would	have	largely	indirect	effects	on	health	in	the	sense	of	this	being	

derived	from	being	a	part	of	longer	duration	physical	activity	for	more	generally	

physical	active	individuals,	though	it	naturally	has	an	impact	on	sustainability.	This	is	

also	an	issue	that	requires	further	research.	
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7.	Conclusion				

This	research	has	used	unique	large‐scale	data	to	examine	the	impact	of	access	to	NCN	

routes	on	a	variety	of	cycling	behavior	in	England.	Making	use	of	an	application	of	a	

ZINB	model	to	the	data,	the	research	provides	evidence	that	the	presence	of	cycle	routes	

in	local	authorities	is	associated	with	increases	in	both	the	total	minutes	of	any	form	of	

cycling	as	well	as	increases	in	the	number	of	days	on	which	cycling	is	undertaken	for	at	

least	30	minutes	duration,	both	of	a	moderate	and	lower	intensity,	for	recreation	

purposes.	No	significant	associations	are	identified	for	utilitarian	cycling	of	a	least	30	

minutes	duration.	The	results	suggest	that	the	routes	could	help	to	facilitate	shorter	

utilitarian	cycling	as	well	as	longer	recreational	activity.	The	analysis	of	the	excess	zeros	

in	the	data	facilitated	by	the	ZINB	model	also	suggests	that,	with	the	exception	of	the	

measures	of	utilitarian	cycling	of	at	least	30	minutes	duration,	the	presence	of	NCN	

routes	reduces	the	number	of	absolute	zeros	in	the	data.	It	is	argued	that	this	reveals	

their	impact	on	potential	cycling	behavior.			

	

Differences	in	the	broader	physical	activity	of	individuals	are	also	shown	to	have	an	

association	with	cycling.		Walking	is	most	likely	to	be	complementary	to	non‐

recreational	cycling,	whilst	participation	in	sport	is	associated	with	all	forms	of	cycling	

but	not	for	longer	utilitarian	trips.	This	suggests	that	harnessing	the	benefits	of	cycling	

and	the	promotion	of	NCN	routes	needs	to	be	nuanced	more	to	meet	the	needs	of	users	

and	their	lifestyles	as	part	of	meeting	both	sustainability	and	health	objectives.		
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Table	1.	Variables	

	 	 Total	 	 Non‐Cyclist	 	 Cyclist	 	

		 Mean	 SD	 Mean	 SD	 Mean	 SD	

Variable	 Definition		 n=22,845	 		 n=19,530	 		 n=3,315	 		

Cycling	 		 		 		

cyctot*	 Total	minutes	cycling		 74.24	 347.00	 0.00	 0.00	 511.62	 778.56	

cyc30days*	 Number	of	days	cycled	for	30	minutes		 0.93	 3.74	 0.00	 0.00	 6.43	 7.82	

cyc30daysr*	 Number	of	days	cycled	for	30	minutes	for	recreation	 0.52	 2.46	 0.00	 0.00	 3.55	 5.55	

cyc30daysMI*	 Number	of	days	cycled	for	30	minutes	at	moderate	intensity	 0.61	 2.97	 0.00	 0.00	 4.23	 6.76	

cyc30daysMIr*	 Number	of	days	cycled	for	30	minutes	at	moderate	intensity	for	recreation		 0.49	 2.38	 0.00	 0.00	 3.34	 5.44	

cyc30ut*	 Number	of	days	cycled	for	30	minutes	not	for	recreation	 0.44	 2.70	 0.00	 0.00	 3.02	 6.53	

cyc30utMI*	 Number	of	days	cycled	for	30	minutes	not	for	recreation	at	moderate	intensity		 0.15	 1.51	 0.00	 0.00	 1.02	 3.86	

Locality	 		 		 		

cycmile	 Miles	of	cycle	route	in	local	authority	 34.17	 48.49	 34.01	 48.42	 35.09	 48.89	

pop	 Population	of	local	authority	 156,912	 102,729	 157,465	 102,619	 153,652	 103,332	

area	 Area	of	local	authority	(square	miles)	 44,593	 58,663	 44,334	 58,591	 46,116	 59,068	

cycmpa	 Miles	of	cycle	route	per	population	density	 25.13	 78.27	 24.86	 77.28	 26.71	 83.84	

Physical	Activity	 	 	 	 	 	 	 	

walk10tot*	 Total	time	walking	of	at	least	10	minutes	duration	 985	 1,706	 944	 1,674	 1,224	 1,864	

Stim*	 Total	time	undertaking	sport	activity	 399	 879	 358	 829	 644	 1,097	

Control	 		 		 		

White	 White	British	or	not		 0.94	 0.25	 0.93	 0.25	 0.95	 0.23	

Income1a	 Individual	annual	income	<	£10,399	 0.12	 0.32	 0.13	 0.33	 0.05	 0.21	

Income2	 Individual	annual	income	£20,799	≥	£10,399	 0.19	 0.39	 0.19	 0.40	 0.13	 0.34	

Income3	 Individual	annual	income	£31,999	≥	£20,800	 0.14	 0.35	 0.14	 0.34	 0.15	 0.36	

Income4	 Individual	annual	income	£41,,599	≥	£31200	 0.13	 0.33	 0.12	 0.32	 0.16	 0.37	

Income5	 Individual	annual	income	£51,999	≥	£41,600	 0.08	 0.26	 0.07	 0.25	 0.11	 0.31	
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Income6	 Individual	annual	income	>	£52,000	 0.12	 0.32	 0.11	 0.31	 0.20	 0.40	

Working	 Full	time	or	part	time		working	or	not		 0.52	 0.50	 0.49	 0.50	 0.69	 0.46	

Student	 Fulltime	or	part	time	student	 0.05	 0.22	 0.04	 0.20	 0.09	 0.29	

Keephouse	 Keeps	house	or	not		 0.03	 0.18	 0.04	 0.19	 0.03	 0.16	

Retired	 Retired	or	not		 0.31	 0.46	 0.35	 0.48	 0.13	 0.34	

otherwka	 Other	work	status	or	not	 0.08	 0.27	 0.08	 0.28	 0.06	 0.23	

he	 Higher	education	or	not	 0.38	 0.49	 0.36	 0.48	 0.48	 0.50	

sex	 Male	or	female	 0.42	 0.49	 0.39	 0.49	 0.60	 0.49	

age	 Age	in	years	 51.41	 19.02	 52.89	 19.08	 42.74	 16.13	

Longill	 Long	term	illness	or	not	 0.31	 0.46	 0.33	 0.47	 0.17	 0.37	

Numadults	 Number	of	adults	in	respondent	household	 1.92	 0.93	 1.89	 0.92	 2.11	 0.93	

Numchild	 Number	of	children	in	respondent	household	 0.46	 0.87	 0.42	 0.84	 0.70	 0.99	

Vehicle	 Number	of	cars	available	to	the	household	 1.30	 1.10	 1.26	 1.05	 1.51	 1.34	

*	 All	in	the	last	four	weeks	

a	 Base	category	
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Table	2.	Zero‐inflated	Negative	Binomial	Analyses:	All	Sample	

	 cyctot	 cyc30days cyc30daysr cyc30daysMI cyc30daysMIr cyc30ut cyc30utMI
cycmpa	 0.000468**	 ‐0.0000272 0.000512* 0.000107 0.000544* 0.000204 0.000240
	 (3.14)	 (‐0.11) (2.18) (0.57) (2.16) (0.59) (0.30)
walk10tot	 0.0000755***	 0.0000411*** 0.00000625 0.0000446* 0.0000142 0.0000384*** 0.0000385
	 (5.26)	 (3.65) (0.22) (2.05) (0.53) (3.64) (0.70)
Stim	 0.0000932***	 0.0000553** 0.000125*** 0.0000762** 0.000113*** ‐0.000000194 ‐0.0000387
	 (3.80)	 (2.88) (4.23) (3.17) (3.91) (‐0.01) (‐0.69)
White	 0.0791	 0.000433 ‐0.143 0.0959 ‐0.125 0.157 1.422**
	 (0.70)	 (0.00) (‐1.08) (0.71) (‐0.89) (1.10) (2.85)
Income2	 ‐0.0889	 0.0484 0.0161 0.0585 ‐0.00553 ‐0.0672 ‐0.244
	 (‐0.98)	 (0.59) (0.15) (0.55) (‐0.05) (‐0.67) (‐0.79)
Income3	 ‐0.0611	 0.0163 ‐0.00708 0.0581 ‐0.0205 ‐0.0792 ‐0.131
	 (‐0.76)	 (0.21) (‐0.07) (0.58) (‐0.20) (‐0.82) (‐0.45)
Income4	 ‐0.112	 ‐0.103 ‐0.0970 ‐0.0708 ‐0.0931 ‐0.146 ‐0.179
	 (‐1.32)	 (‐1.39) (‐0.98) (‐0.75) (‐0.95) (‐1.52) (‐0.64)
Income5	 ‐0.135	 ‐0.131 ‐0.133 ‐0.0709 ‐0.144 ‐0.0404 0.125
	 (‐1.53)	 (‐1.46) (‐1.17) (‐0.63) (‐1.27) (‐0.35) (0.49)
Income6	 ‐0.0392	 ‐0.152 ‐0.123 ‐0.0821 ‐0.129 0.0546 0.195
	 (‐0.45)	 (‐1.84) (‐1.36) (‐0.87) (‐1.42) (0.53) (0.64)
Working	 ‐0.165	 ‐0.0266 ‐0.169 ‐0.183 ‐0.159 0.337* 0.180
	 (‐1.08)	 (‐0.25) (‐1.21) (‐1.52) (‐1.17) (2.19) (0.57)
Student	 ‐0.679***	 ‐0.258 ‐0.637*** ‐0.351* ‐0.603** 0.146 0.390
	 (‐3.77)	 (‐1.78) (‐3.31) (‐2.04) (‐3.22) (0.85) (1.04)
Keephouse	 ‐0.254	 ‐0.0930 ‐0.00922 ‐0.0727 ‐0.0486 ‐0.187 0.118
	 (‐1.22)	 (‐0.46) (‐0.04) (‐0.36) (‐0.24) (‐0.61) (0.23)
Retired	 ‐0.104	 ‐0.130 0.0908 ‐0.0675 0.103 ‐0.0183 ‐0.0342
	 (‐0.58)	 (‐0.91) (0.51) (‐0.42) (0.58) (‐0.09) (‐0.06)
he	 ‐0.0270	 ‐0.0402 ‐0.196** ‐0.0520 ‐0.193** ‐0.0745 ‐0.308
	 (‐0.48)	 (‐0.69) (‐2.99) (‐0.81) (‐2.97) (‐1.02) (‐1.20)
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	 cyctot	 cyc30days cyc30daysr cyc30daysMI cyc30daysMIr cyc30ut cyc30utMI
sex	 0.515***	 0.453*** 0.546*** 0.569*** 0.531*** 0.173* 0.540**
	 (10.42)	 (9.45) (9.76) (10.40) (9.47) (2.50) (2.78)
age	 ‐0.00708**	 ‐0.00156 ‐0.00292 ‐0.00462 ‐0.00397 0.000285 ‐0.00581
	 (‐2.92)	 (‐0.73) (‐0.93) (‐1.78) (‐1.27) (0.10) (‐0.83)
Longill	 0.0226	 0.0679 0.115 0.0878 0.136 ‐0.00746 0.00965
	 (0.32)	 (0.98) (1.48) (1.19) (1.78) (‐0.08) (0.04)
Numadults	 ‐0.0332	 ‐0.00795 ‐0.00724 ‐0.0232 ‐0.0194 ‐0.0285 ‐0.251*
	 (‐1.29)	 (‐0.31) (‐0.23) (‐0.66) (‐0.60) (‐0.73) (‐2.03)
Numchild	 ‐0.0977***	 ‐0.0847** ‐0.0494 ‐0.0836* ‐0.0468 0.00221 0.0424
	 (‐3.36)	 (‐3.14) (‐1.45) (‐2.45) (‐1.37) (0.06) (0.49)
Vehicle	 ‐0.0278	 ‐0.0543* ‐0.0314* ‐0.0452* ‐0.0258 ‐0.198*** ‐0.411***
	 (‐1.82)	 (‐2.07) (‐1.98) (‐1.96) (‐1.59) (‐4.09) (‐4.04)
constant	 6.377***	 1.847*** 1.636*** 1.790*** 1.723*** 2.017*** ‐1.365
	 (26.57)	 (9.94) (6.45) (7.65) (6.66) (7.99) (‐1.62)
Zero	inflation 	

cycmpa	 ‐0.000331*	 ‐0.000537** ‐0.000567** ‐0.000720*** ‐0.000580*** 0.000449 ‐0.000558
	 (‐2.04)	 (‐3.04) (‐3.23) (‐3.45) (‐3.55) (1.06) (‐0.27)
walk10tot	 ‐0.0000453***	 ‐0.0000563*** ‐0.0000400* ‐0.0000265* ‐0.0000335* ‐0.0000711*** ‐0.000132
	 (‐4.70)	 (‐4.80) (‐2.28) (‐2.05) (‐2.13) (‐5.28) (‐0.61)
Stim	 ‐0.000111***	 ‐0.000103*** ‐0.000106*** ‐0.000123*** ‐0.000114*** ‐0.0000250 ‐0.000605
	 (‐5.74)	 (‐4.46) (‐4.41) (‐5.33) (‐4.78) (‐0.74) (‐0.58)
White	 ‐0.710***	 ‐0.696*** ‐0.761*** ‐0.703*** ‐0.781*** ‐0.654*** ‐0.811
	 (‐7.38)	 (‐6.29) (‐6.07) (‐5.38) (‐5.88) (‐4.40) (‐1.02)
Income2	 ‐0.0497	 0.0166 ‐0.0212 ‐0.0311 ‐0.0508 0.0696 0.118
	 (‐0.74)	 (0.21) (‐0.22) (‐0.32) (‐0.52) (0.62) (0.31)
Income3	 ‐0.214***	 ‐0.176* ‐0.244** ‐0.226* ‐0.280** ‐0.180 ‐0.714
	 (‐3.40)	 (‐2.42) (‐2.73) (‐2.53) (‐3.08) (‐1.62) (‐1.05)
Income4	 ‐0.271***	 ‐0.322*** ‐0.431*** ‐0.404*** ‐0.463*** ‐0.129 ‐0.178
	 (‐4.12)	 (‐4.09) (‐4.80) (‐4.59) (‐5.16) (‐1.15) (‐0.41)
Income5	 ‐0.322***	 ‐0.388*** ‐0.453*** ‐0.472*** ‐0.512*** ‐0.220 ‐0.424
	
	

(‐4.15)	 (‐4.31) (‐4.18) (‐4.44) (‐4.71) (‐1.83) (‐0.60)
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	 cyctot	 cyc30days cyc30daysr cyc30daysMI cyc30daysMIr cyc30ut cyc30utMI
Income6	 ‐0.368***	 ‐0.425*** ‐0.558*** ‐0.495*** ‐0.583*** ‐0.123 ‐0.206
	 (‐5.34)	 (‐5.34) (‐6.02) (‐5.55) (‐6.33) (‐1.03) (‐0.36)
Working	 ‐0.354***	 ‐0.334*** ‐0.310** ‐0.322** ‐0.341** ‐0.368* ‐0.293
	 (‐4.19)	 (‐3.44) (‐2.67) (‐2.82) (‐2.86) (‐2.29) (‐0.59)
Student	 ‐0.671***	 ‐0.545*** ‐0.587*** ‐0.456** ‐0.607*** ‐0.712*** ‐1.433
	 (‐5.89)	 (‐3.76) (‐3.59) (‐2.86) (‐3.73) (‐3.57) (‐1.69)
Keephouse	 0.00581	 0.00279 ‐0.0407 ‐0.0796 ‐0.110 0.154 0.355
	 (0.04)	 (0.02) (‐0.20) (‐0.40) (‐0.54) (0.52) (0.43)
Retired	 0.00678	 0.0791 0.126 0.113 0.129 0.157 0.214
	 (0.06)	 (0.59) (0.84) (0.74) (0.83) (0.80) (0.31)
he	 ‐0.364***	 ‐0.365*** ‐0.488*** ‐0.420*** ‐0.501*** ‐0.361*** ‐1.724**
	 (‐7.93)	 (‐7.13) (‐8.16) (‐7.39) (‐8.39) (‐4.24) (‐3.13)
sex	 ‐0.760***	 ‐0.645*** ‐0.533*** ‐0.552*** ‐0.549*** ‐0.814*** ‐1.630**
	 (‐18.57)	 (‐12.72) (‐9.33) (‐9.96) (‐9.40) (‐10.11) (‐3.08)
age	 0.0158***	 0.0183*** 0.0172*** 0.0172*** 0.0173*** 0.0170*** 0.0351**
	 (9.12)	 (8.84) (7.31) (7.41) (7.32) (5.69) (2.61)
Longill	 0.492***	 0.496*** 0.428*** 0.401*** 0.404*** 0.504*** 0.848
	 (9.41)	 (8.26) (6.16) (5.99) (5.74) (5.10) (1.75)
Numadults	 0.00988	 0.0663* 0.116** 0.0989** 0.109** ‐0.0821* ‐0.531
	 (0.39)	 (2.26) (3.23) (2.78) (3.00) (‐2.14) (‐1.52)
Numchild	 ‐0.178***	 ‐0.180*** ‐0.216*** ‐0.190*** ‐0.192*** ‐0.00895 0.156
	 (‐8.62)	 (‐7.28) (‐7.25) (‐6.78) (‐6.36) (‐0.25) (0.87)
Vehicle	 0.00167	 ‐0.0350 ‐0.135*** ‐0.121*** ‐0.122** 0.318*** 0.340
	 (0.08)	 (‐1.56) (‐3.86) (‐3.34) (‐3.21) (6.80) (1.47)
constant	 2.698***	 2.486*** 2.886*** 3.005*** 3.082*** 3.442*** 2.019*

	 (16.09)	 (13.22) (13.20) (13.81) (13.46) (13.09) (2.11)
N	 22845	 22845 22845 22845 22845 22845 22845
H0:alpha=0	 	
χ	bar2(1)	 7.6e+06***	 7.4e+04*** 4.2e+04*** 5.5e+04*** 4.1e+04***	 5.0e+04*** 2.2e+04***
Vuong	Test	
(z)	

	
15.79***	 18.76***	 15.45***	 16.05***	 15.23***	 12.70***	 7.95***	

t	statistics	in	parentheses	

*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001
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Endnotes	

																																																								
1	The	precise	definition	of	over	dispersion	is	discussed	in	Section	4.	
2	In	this	context	cycle	routes	can	be	either	a	bike	lane,	which	is	a	prioritised	section	of	roadway	in	which	
motorised	transport	also	travels,	whilst	a	bike	path	is	segregated	and	dedicated	to	cycling.			
3	For	details	of	the	iConnect	study	see	http://www.iconnect.ac.uk/	(retrieved	February	16th	2015).	
4	This	literature	focusses	on	quantitative	evidence	Chaterjee	et	al.	(2013)	review	and	provide	qualitative	
evidence	on	cycling	behaviour.	
5	The	aim	was	to	match	as	closely	as	possible	population	estimates.	
6	The	data	were	provided	by	Dr	Andy	Cope,	to	whom	we	express	our	gratitude,	and	covered	the	
operational	length	in	miles	of	the	NCN	in	each	local	authority	in	England.	
7	http://www.lgbce.org.uk/	(retrieved	October	9th	2014)	
8	It	was	not	attempted	to	test	for	the	sensitivity	of	the	results	to	sample	size	because	omitting	the	
variables	that	affected	sample	size	failed	exclusion	restriction	tests	and	would	mean	that	the	model	
suffered	from	omitted	variable	bias.	The	following	examples	of	chi	square	(p	value)	tests	of	not	including	
some	variables	like	income	χ2	(10)	=	44.89	(0.000)	and	education	χ2	(2)=65.03	(0.000)	illustrate	this.	
9	These	data	are	collected	by	different	sets	of	old‐form	and	new‐form	questions.	Consequently	the	actual	
minutes	of	recreational	and	utilitarian	cycling	cannot	be	identified.	This	distinction	is	only	possible	still	
for	the	questions	that	capture	at	least	30	minutes	of	activity.		
10	For	example,	The	WHO	recommends	as	a	minimum	that	adults	aged	between		
“18–64	years	should	do	at	least	150	minutes	of	moderate‐intensity	aerobic	physical	activity	throughout	
the	week,	or	do	at	least	75	minutes	of	vigorous‐intensity	aerobic	physical	activity	throughout	the	week,	or	
an	equivalent	combination	of	moderate‐	and	vigorous‐intensity	activity.”	(WHO	2010,	p8).	Thirty	minute	
sessions	are	often	recommended	(See	Sport	England,	2013;	and	NHS	guidelines,	
http://www.nhs.uk/Livewell/fitness/Pages/physical‐activity‐guidelines‐for‐adults.aspx)	and	this	is	what	
motivated	the	development	of	the	APS.	However	it	should	be	recognised	that	ultimately	the	benefits	from	
aerobic	activity	can	also	be	gained	from	bouts	of	activity	of	at	least	10	minutes	duration	(WHO	2010).	The	
walking	variable	included	in	the	study	recognises	this	(see	Table	1).	
11	Clearly	the	cycling	variables	are	indicative	of	skewed	distributions,	which	help	to	explain	the	
importance	of	the	modelling	strategy.	
12		A	number	of	statistical	factors	also	supported	the	use	of	the	composite	measure	of	NCN	route	miles	per	
population	density.	Experimentation	with	including	the	locality	variables	separately	suggested	that	this	
did	not	affect	the	interpretation	of	the	results	as	given	in	the	paper.	For	example	an	equivalent	cyctot	
frequency	regression	including	the	variables	separately	yielded	coefficient	estimates	(p	values)	of:	
cycmile	0.0039139	(0.000);	area	‐3.05E‐0.06(0.000);	and	pop	‐4.66E0.07(0.089).	This	is	in	keeping	with	
the	descriptive	and	regression	insights	noted	in	the	text.	These	results	suggest	that	a	rise	in	NCN	route	
miles	increases	cycling.	A	rise	in	area	is	associated	with	a	reduction	in	cycling,	but	the	same	is	also	the	
case	for	a	rise	in	population.	These	two	latter	results	mean	there	could	be	a	trade‐off	of	between	these	
influences	overall	if	it	is	changes	in	population	density	that	influence	cycling.		Moreover,	in	the	zero‐
inflation	regression	only	the	population	variable	is	individually	significant	with	an	estimate	(p	value)	of	
9.16E‐07(	0.000).	However,	in	this	model,	in	which	all	variables	are	included	separately,	a	joint	test	of	the	
significance	of	the	three	variables	across	both	the	frequency	and	zero‐inflation	equations	rejects	the	null	
hypothesis	that	they	are	jointly	insignificant	with	χ2	(6)	=	50.87	(0.000).	This	suggests	that	the	variables	
do	interact	in	their	influence	and	that	their	separate	use	means	that	the	regressions	suffer	from	
multicollinearity.	Pairwise	correlations	suggest	this	with	a	correlation	of	0.8423	between	cycmile	and	
area	and	0.2474	between	cycmile	and	population.	This	suggests	strongly,	as	indicated	in	the	text,	that	
NCN	route	miles	are	closely	linked	to	the	area	in	which	they	are	located.	Estimating	an	alternatively	
scaled	specification	including	cycmile/area	and	population	density	is	thus	also	affected	badly	by	
multicollinearity	because	there	is	a	pairwise	correlation	of	0.5402	between	the	two	variables.	
Consequently	only	cycmile/area	is	statistically	significant	in	the	frequency	equation	with	a	highly	inflated	
estimate	(p	value)	of	89.95623	(0.001)	and	yet	a	joint	test	of	the	significance	of	this	variable	and	
population	density	across	both	equations	rejects	the	null	hypothesis	that	they	are	jointly	insignificant	
with	χ2	(4)	=	12.17	(0.0161).			
13	Like	other	limited	or	discrete	dependent	variable	models,	count	models	are	nonlinear	in	nature.	
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14	Consequently	the	homoscedasticity	assumption	is	violated	as	any	factor	that	affects	the	mean	will	affect	
the	variance	too.	Some	inefficiency	relevant	to	simple	linear	estimators	is	thus	a	result.	However,	the	key	
properties	of	the	dependent	variable	are	captured	more	fully.			
15	Assuming	that	the	observations	are	independent,	the	maximum	likelihood	estimator	is	used	to	estimate	
the	parameters.		
16	To	put	these	effects	into	comparison	the	effects	sizes	for	being	male	compared	to	female	suggest	
approximately	an	additional	83	minutes	of	any	cycling;	an	extra	half	a	day	of	recreational	cycling	of	at	
least	30	minutes	duration,	or	of	recreational	cycling	of	this	duration	and	also	moderate	intensity.	


