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Abstract

For any finite-dimensional Lie algebra we introduce the notion of Jordan-Kronecker in-
variants, study their properties and discuss examples. These invariants naturally appear in
the framework of the bi-Hamiltonian approach to integrable systems on Lie algebras and are
closely related to Mischenko-Fomenko’s argument shift method. We also state a generalised
argument shift conjecture and prove it for many series of Lie algebras.

1 Motivation and historical remarks

A Lie algebra g is defined by its structure tensor ckij . The invariants of g are, in essence, those of

ckij . This tensor is quite complicated to study and it is natural to try somehow to simplify it first.
The classical method is to consider, instead of this tensor, a simpler object, namely, the operator

adξ =
(∑

ckijξ
i
)

for a generic vector ξ ∈ g. This operator defines the decomposition of g into

generalised eigenspaces: the generalised 0-eigenspace is known as a Cartan subalgebra, the others
are root subspaces. Using this approach systematically leads, in particular, to the classification of
semisimple Lie algebras.

We are going to do a similar thing but instead of the operator adξ, we suggest to consider

the bilinear form Ax =
(∑

ckijxk

)
for a regular covector x ∈ g∗. This form does not give any

non-trivial invariants (except for its corank called the index of g). However, non-trivial invariants
immediately appear as soon as we consider a pair of forms Ax and Aa for x, a ∈ g∗. From the
algebraic viewpoint these invariants look quite natural, and their systematic analysis seems to be
an interesting mathematical problem. The Jordan–Kronecker invariants of g are defined to be the
invariants of the pair of forms Ax and Aa related to a generic pair (x, a) ∈ g∗ × g∗.

Some already known results become more transparent and receive a new interpretation if we
look at them from the viewpoint of Jordan–Kronecker invariants. Besides useful reformulations,
in this way one can get new non-trivial results (for example, Theorems 5, 6 and 7 below). We
expect that these techniques will be useful in the study of the coadjoint representation of non-
semisimple Lie algebras. Moreover, the idea of JK invariants1 can be naturally transferred to
arbitrary finite-dimensional representations [8].

However, the main reason why we have been involved in this area is the generalised “argument
shift conjecture” discussed below. Apparently, to prove or disprove it will necessarily require the
concept of JK invariants. This conjecture itself seems to be important as the argument shift
method is one of few indeed universal constructions which are worth being treated in detail.

The idea of Jordan–Kronecker invariants is based on the results, methods and constructions
invented and developed by different mathematicians in different years and sometimes even not
related to each other.

1Sometimes we use JK as abbreviation of Jordan-Kronecker.
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The main point for us is, no doubt, the argument shift method suggested in 1976 by A.S. Mischenko
and A.T. Fomenko [30] as a generalisation of S.V.Manakov’s construction [29]. This concept
has been analysed, developed and generalised by participants of the seminar “Modern geomet-
ric methods” at Moscow State University in the 80s (V.V. Trofimov, A.V. Brailov, Dao Trong
Tkhi, M.V. Mescherjakov and others) and many of their results have been extremely important to
us.

In the late 80s, I.M. Gelfand and I. Zakharevich discovered an interesting relationship between
compatible Poisson brackets, Veronese webs and the Jordan–Kronecker decomposition theorem
for a pair of skew-symmetric forms. This observation then played an important role in a series
or papers by I.M. Gelfand and I. Zakharevich [16, 17, 18, 54] devoted, in particular, to Kronecker
pencils and their applications to the theory of integrable systems.

The Jordan–Kronecker decomposition theorem in full generality is presented in the paper [43]
by R. Thompson together with other results on pencils of bilinear forms. The author refers to
them as a kind of folkloric results and say that his paper “may be regarded as a supplement to
Gantmacher’s chapters on pencils of matrices”. We do not know who was the first to state and
prove this theorem in the form we need, the earliest reference we could find with the help of
Yu. Neretin is the paper by G.B. Gurevich [21]. However, Gantmacher’s book [15] indeed contains
all necessary ingredients for this theorem going back to classical works by K. Weierstrass [50] and
L. Kronecker [28] and also a simple explanation of how to deduce the classification of pencils of
forms (symmetric of skew-symmetric) from the classification of pencils of linear maps.

In the symplectic case, when one of two skew-symmetric forms is non-degenerate, a transition
from the algebraic canonical form of a pair of skew-symmetric matrices to the differential-geometric
normal form of a pair of compatible Poisson structures has been carried out by F.-J. Turiel [45].
That was a crucial step in understanding local structure of compatible Poisson structures. However,
the description of their normal forms in the general case still remains an open and difficult problem,
see [47], [46] for recent development in this area.

In implicit form, the concept of JK invariants can be found in many papers devoted to integrable
systems on Lie algebras. Besides the above mentioned papers, first of all we would like to refer to the
series of papers by A. Panasyuk [34, 35, 36] where the JK decomposition has been effectively used.
Quite explicitly, these techniques have been used in a series of recent papers [7, 10, 8, 23, 49, 56].

Although all these ideas based on the JK decomposition seem to be very useful, they still
remain widely unknown. The present paper can be considered as an attempt to summarise them
in a unified and systematic way by putting into focus the JK invariants as a natural algebraic
object.

The structure of the paper is as follows. Sections 2, 3, 4 can be viewed as an introduction to
the main subject of the paper. In Section 2, we recall some basic notions and notation to be used
throughout the paper. Section 3 is devoted to the argument shift method, Mischenko–Fomenko
conjecture and its generalisation which we consider as the main motivation for our work. In Section
4, we formulate the Jordan–Kronecker decomposition theorem for a pair of skew-symmetric forms
and discuss some linear algebraic corollaries from this result. These quite elementary facts will
then be “translated” into the language of Lie algebras and will lead us (surprisingly easily) to some
not at all obvious results.

This programme will be realised in Sections 6–10 in the context of JK invariants which are
introduced in Section 5. The final section is devoted to examples.

The authors are very grateful to Andriy Panasyuk, Francisco-Javier Turiel, Ernest B. Vinberg,
Oksana Yakimova and Ilya Zakharevich for stimulating discussions. We also would like to thank
the participants of an informal seminar which has been working over the past several years between
Loughborough and Moscow, especially, Andrey Oshemkov, Sasha Vorontsov, Andrey Konjaev, An-
ton Izosimov and Ivan Kozlov. In many respects, the present paper is a result of these discussions.
We greatly appreciate the comments by two anonymous referees on the first version of this pa-
per after which the text has been considerably changed (in particular, the whole Section 9 is our
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reaction to these comments). We are grateful to the referee of the revised version for valuable
remarks. The work was supported by the Ministry of Science and Education of Russia, grants no.
14.740.11.0876 and 11.G34.31.0039.

This paper is a revised version of [12].

2 Background: basic notions and notation

Here we recall some basic notions and introduce notation we use throughout the paper. In what
follows, we consider vector spaces, Lie algebras and other algebraic objects over C unless otherwise
specified. The transition to the real case is usually straightforward.

Let g be a finite-dimensional Lie algebra and g∗ be its dual space. The Lie–Poisson bracket on
g∗ is defined as follows:

{f, g}(x) = 〈x, [df(x), dg(x)]〉, x ∈ g∗, f, g : g∗ → C. (1)

The corresponding Poisson tensor is given by the skew-symmetric matrix Ax =
(
ckijxk

)
, i. e.,

depends linearly on coordinates. The algebra P (g) of polynomials on g∗ endowed with this bracket
is called the Lie-Poisson algebra (associated with g).

The coadjoint orbits are symplectic leaves of the Lie-Poisson bracket. The Casimir functions
(i.e., functions f satisfying {f, g} = 0 for all g) are exactly the invariants of the coadjoint rep-
resentation. Notice that in general we can only guarantee existence of sufficiently many local
analytic Casimir functions in a neighborhood of a generic point. But even local Casimirs will be
sufficient for our purposes. From the algebraic viewpoint, however, Ad∗-invariant polynomials are
much more natural and we denote by P (g)g the subalgebra of polynomial coadjoint invariants or,
equivalently, the Poisson centre of P (g).

The annihilator of an element a ∈ g∗ is, by definition, the stationary subalgebra of a in the
sense of the coadjoint representation:

Ann a = {ξ ∈ g | ad∗ξa = 0}.

In terms of the Lie-Poisson structure, the annihilator of a ∈ g∗ is the kernel of the form Aa. We
can also characterise Ann a as the “orthogonal complement” of the tangent space of the coadjoint
orbit O(a) at point a ∈ g∗:

Ann a = {ξ ∈ g | 〈ξ, TaO(a)〉 = 0}.

We will say that a ∈ g∗ is regular, if its annihilator Ann a has the least possible dimension. In this
case Ann a is generated by the differentials df(a) of local analytic coadjoint invariants. Otherwise,
they span a certain subspace in Ann a.

The index of a Lie algebra g is the codimension of a regular coadjoint orbit. Equivalently,

ind g = min
x∈g∗

dim Ann x

The index can also be characterised as the number of functionally independent local analytic
coadjoint invariants, i.e., Casimirs. If ind g = 0, then the Lie algebra g is said to be Frobenius.

The singular set Sing ⊂ g∗ consists, by definition, of those points y ∈ g∗ for which corankAy >
ind g, where Ay is the Lie-Poisson tensor at the point y. In other words, Sing is the union of all
coadjoint orbits of non-maximal dimension. Equivalently,

Sing = {y ∈ g∗ | dim Ann (y) > ind g}.
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3 Generalised argument shift conjecture

We first notice that the formula (1) for the Lie-Poisson bracket on g∗ can be rewritten in the form

{f, g}(x) = Ax
(
df(x), dg(x)

)
=
∑

ckijxk
∂f

∂xi

∂g

∂xj
.

To each fixed element a ∈ g∗, one can assign another well-known Poisson bracket on g∗ by
setting:

{f, g}a(x) = Aa
(
df(x), dg(x)

)
=
∑

ckijak
∂f

∂xi

∂g

∂xj
. (2)

Here we assume a ∈ g∗ to be regular although this formula makes sense for an arbitrary a.

The matrices of these Poisson brackets, Ax =
(∑

ckijxk

)
and Aa =

(∑
ckijak

)
, look similar

and are related to the skew-symmetric forms on g∗ mentioned in Section 1. However the essential
difference is that in Ax we consider x as a variable, whereas a ∈ g∗ in Aa is a fixed element, so
that { , }a is a constant bracket on g∗ in contrast to { , } which is linear.

These two brackets are compatible in the sense that each linear combination µ{ , } + λ{ , }a
with constant coefficients µ, λ is a Poisson bracket too.

Recall that from the algebraic viewpoint, a completely integrable system on g∗ is a complete
commutative family (subalgebra) F ⊂ P (g). Completeness means that F contains 1

2 (dim g+ind g)
algebraically independent polynomials. Compatible Poisson brackets can be used as a good tool
for constructing such families. In this context, the brackets (1) and (2) are related to the argument
shift method suggested by A.S.Mischenko and A.T.Fomenko in [30], which is based on the following
observation. Let f and g be coadjoint invariants. Notice that the shifts f(x + λa) are exactly
Casimir functions for the linear combination { , } + λ{ , }a. Hence f(x + λa) and g(x + µa)
commute with respect to the both brackets (1) and (2). Using the shifts f(x + λa) as generators
one can often construct a big commutative subalgebra of P (g). Since the polynomial coadjoint
invariants of a Lie algebra do not necessarily separate generic orbits, it is convenient to modify
this construction.

To that end, consider local analytic invariants f1, . . . , fs, s = ind g defined in a neighbourhood
of a ∈ g∗ such that their differentials dfi(a) form a basis of Ann a (recall that a is regular so that
such invariants do exist). Take the Taylor expansions of fi at a:

fi(a+ λx) = f
(0)
i + λf

(1)
i (x) + λ2f

(2)
i (x) + λ3f

(3)
i (x) + . . . (3)

where f
(k)
i (x) is a homogeneous polynomial in x of degree k and λ is considered as a formal

parameter which will be useful later.

It is not hard to see that the collection of f
(k)
i ’s is somehow equivalent to the family of classical

shifts f(x + λa): in the simplest case, for example, when fi are homogeneous polynomials, f
(k)
i ’s

form a spanning set of the family of shifts fi(x+λa). That is why, in what follows, we replace the
classical shifts by the subalgebra Fa ⊂ P (g) generated by the homogeneous polynomials

f
(k)
i (x), i = 1, . . . , ind g, k > 0. (4)

We call Fa the algebra of (polynomial) shifts. Of course, we could confine ourselves with polynomial
Ad∗-invariants from the very beginning and consider, generally speaking, a smaller subalgebra
Ya ⊂ P (g), called a Mischenko-Fomenko subalgebra (see Section 9 for details). Many authors
prefer this approach, but we believe that our modification is useful at least for the following reason
(see [6, 11] for details).

The point is that for constructing generators of Fa we don’t need to know and even to mention
Ad∗-invariants of g (no matter polynomial or local analytic). These generators can be found
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explicitly by solving relatively simple systems of linear equations, step by step, starting from linear
generators, then quadratic, cubic and so on. We briefly describe this procedure as it is closely
related to some algebraic properties of pencils (e.g., see the definition of minimal row and column
indices of pencils in [15] and Corollary 2 below).

If f is a local analytic Ad∗-invariant function at a regular point a ∈ g∗, then the right hand
side of its Taylor expansion (3) satisfies the formal relation

Aa+λx

(
df (0) + λdf (1)(x) + λ2df (2)(x) + λ3df (3)(x) + . . .

)
= 0,

which, if we use the fact that f (0) is constant, amounts to the following system of linear recurrence
relations2:

Aadf (1) = 0

Aadf (2) = −Axdf (1)

Aadf (3) = −Axdf (2)

. . .

(5)

We now forget about the Ad∗-invariant function f we started with and consider the right hand
side of (3) as a formal power series satisfying these relations. The first equation simply means
that df (1) ∈ Ann a and since f (1) is linear, we set f (1)(x) = 〈x, ξ〉 for some ξ ∈ Ann a. Using this
function as “initial condition”, we can solve step by step the chain of the above equations to find
consecutively f (2), f (3) and so on.

Although the solution is not unique, the system of linear equations we obtain on each next step
will be consistent independently of the choice we made on the previous step and this recurrent
procedure can always be continued up to infinity (see [11]). As a result, we get a formal series∑
λkf (k)(x) satisfying (5). We may think of it as a formal Ad∗-invariant at the point a ∈ g∗.

Starting with a basis of Ann a, we can find in this way all the generators of Fa of any fixed degree.
This procedure is canonical in the sense that the algebra so obtained will not depend on the
choice of formal invariants. Of course, one may equally use local analytic or polynomial invariants
f1, . . . , fs, if their differentials at a ∈ g∗ generate Ann a, the resulting algebra will be the same.
We refer to [6, 11] for further discussion on the relationship between the algebras Fa and Ya.

In terms of the algebra Fa of polynomial shifts, the main result of [30] can be formulated as
follows.

Theorem 1 (A.S. Mischenko, A.T. Fomenko [30]).
1) The functions from Fa pairwise commute with respect to the both brackets { , } and { , }a.
2) If g is semisimple, then Fa is complete, i.e. contains 1

2 (dim g+ ind g) algebraically indepen-
dent polynomials.

Although in general Fa is not necessarily complete, A.S. Mischenko and A.T. Fomenko stated
the following well known conjecture.

Mischenko–Fomenko conjecture. On the dual space g∗ of an arbitrary Lie algebra g there
exists a complete family F of commuting polynomials.

In other words, for each g one can construct a completely integrable (polynomial) system
on g∗ or, speaking in algebraic terms, the Lie-Poisson algebra P (g) always contains a complete
commutative subalgebra.

This conjecture was proved in 2004 by S.T.Sadetov [42], see also [5],[48]. However, Sadetov’s
family F ⊂ P (g) is essentially different from the algebra Fa of shifts. Thus, it is still an open
question whether or not one can modify the argument shift method to construct a complete family

2This chain of equations was used by A. Mischenko and A. Fomenko in [30]. Similar relations are known in the
theory of integrable systems as Magri-Lenard scheme.
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of polynomials in bi-involution, that is, commuting with respect to the both brackets (1) and
(2). In all the examples we know, the answer is positive which allows us to propose the following
bi-Hamiltonian version of the Mischenko–Fomenko conjecture.

Generalised argument shift conjecture. Let g be an arbitrary finite-dimensional Lie algebra.
Then for every regular element a ∈ g∗, there exists a complete family Ga ⊂ P (g) of polynomials in
bi-involution, i.e. in involution w.r.t. the two brackets { , } and { , }a.

In fact, our conjecture can be reformulated in the following equivalent way (see discussion at
the end of Section 4): the algebra Fa of polynomial shifts can always be extended up to a complete
subalgebra Ga ⊂ P (g) of polynomials in bi-involution.

4 Jordan–Kronecker decomposition theorem

The below theorem gives the classification of pairs of skew-symmetric bilinear forms A,B by re-
ducing them simultaneously to an elegant canonical block-diagonal form. We refer to this result as
a Jordan–Kronecker decomposition as this canonical form consist of two kinds of blocks, Jordan
and Kronecker. This theorem goes back to Weierstrass and Kronecker (see the introduction). A
proof of it can be found in [43].

Theorem 2. Let A and B be two skew-symmetric bilinear forms on a complex vector space V .
Then by an appropriate choice of a basis, their matrices can be simultaneously reduced to the
following canonical block-diagonal form:

A 7→


A1

A2

. . .

Ak

 , B 7→


B1

B2

. . .

Bk


where the pairs of the corresponding blocks Ai and Bi can be of the following three types:

Ai Bi

Jordan block
(λi ∈ C)

 J(λi)

−J>(λi)

  −Id

Id


Jordan block
(λi =∞)

 −Id

Id

  J(0)

−J>(0)



Kronecker
block



1 0
. . .

. . .

1 0

−1

0
. . .

. . . −1
0





0 1
. . .

. . .

0 1

0

−1
. . .

. . . 0
−1
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where J(λi) denotes the standard Jordan block

J(λi) =


λi 1

λi
. . .

. . . 1
λi

 .

As a special case in this theorem, we consider the pair of trivial 1×1 blocks Ai = 0 and Bi = 0.
We refer to such a pair as a trivial Kronecker block.

Notice that the choice of a canonical basis is not unique. Equivalently, one can say that the
automorphism group of the pair (A,B) is not trivial (this group has been described and studied
in [55, 56]). However, the blocks Ai and Bi are defined uniquely up to permutation.

For the linear combination A + λB we will sometimes use the notation Aλ. Besides, we will
formally set A∞ = B having in mind that we are interested in these forms up to proportionality
so that the parameter λ of the pencil P = {Aλ} generated by A and B belongs, in fact, to the
projective line CP 1.

The rank of the pencil P is naturally defined as rankP = maxλ rankAλ. The numbers λi that
appear in the Jordan blocks Ai of the Jordan–Kronecker canonical form given in Theorem 2 are
called characteristic numbers of the pencil P. They play the same role as eigenvalues in the case
of linear operators. More precisely, λi are those numbers for which the rank of Aλ with λ = λi is
not maximal, i.e., rankAλi

< rankP.
Instead of two particular forms A and B, from the geometric viewpoint it is more natural to

consider the whole pencil P generated by them. If we accept this point of view, then A = A0

and B = A∞ are just two basis elements of P, which can be replaced by any other pair Aλ, Aµ,
λ 6= µ. After such a “change of basis”, the JK decomposition remains essentially the same but

the characteristic numbers change by means of the transformation λi 7→
λi − λ
µ− λi

. In particular, the

case of Jordan blocks with λi =∞ can always be avoided by replacing B with B′ = B + µA for a
suitable µ. So from now on, unless otherwise stated, we shall assume that∞ is not a characteristic
number, so that no Jordan block with “infinite eigenvalue” appears.

There is a natural analog of the characteristic polynomial p(λ) whose roots are exactly the
characteristic numbers with multiplicities. In order to define p(λ) in invariant terms, we consider
all diagonal minors of the matrix A+ λB of order rankP and take the Pfaffians, i.e. square roots,
for each of them. They are obviously polynomial in λ. Then p(λ) is the greatest common divisor
of all these Pfaffians.

If µ 6= λi, then we call the form Aµ regular (in the pencil P = {Aλ}). The set of characteristic
numbers λi of the pencil P will be denoted by Λ.

The size of each Kronecker block is an odd number 2ki− 1, i = 1, . . . , s. As we shall see below,
the numbers ki have a natural algebraic interpretation and we shall call them the Kronecker indices3

of the pencil P = {Aλ}. Notice, by the way, that the number of Kronecker blocks s is equal to
corankP. Also we have the following obvious formula:

s∑
i=1

ki + deg p(λ) =
1

2
(dimV + corankP). (6)

The Jordan–Kronecker decomposition theorem immediately implies several important facts.
First of all, we can always find a large subspace which is isotropic simultaneously for all forms

3If we consider A + λB as a pencil of linear operators from V to V ∗ then, in terminology of [15], ki − 1 are
minimal indices for columns and rows (in our case, due to skew symmetry, the column and row indices are the
same).

7



from a given pencil P. Speaking more formally, we call a subspace U ⊂ V bi-Lagrangian w.r.t. a
pencil P, if U is isotropic for all Aλ ∈ P and dimU = 1

2 (dimV + corankP). In other words, U is
a common maximal isotropic subspace for all regular forms Aλ ∈ P.

Corollary 1. For every pencil P = {Aλ}, there is a bi-Lagrangian subspace U ⊂ V .

Proof. The proof is evident: as such a subspace U one can take the direct sum of the subspaces
related to the right lower zero blocks of the submatrices Ai and Bi in the JK decomposition.

In fact, this result gives an algebraic explanation of that role which compatible Poisson brackets
play in the theory of completely integrable systems: an analog of a bi-Lagrangian subspace is just
a complete family of integrals in bi-involution. In particular, Corollary 1 can be understood as
an algebraic counterpart for the generalised argument shift conjecture. By using the results of
F.-J. Turiel [45], [46] on the local classification of compatible Poisson brackets, one can show that
a local version of this conjecture holds true if we replace polynomials by local analytic functions
(see also paper by P. Olver [31]). The problem is to show that these local analytic functions can
be chosen as polynomials. Turiel’s construction uses arguments from local differential geometry
which do not guarantee any kind of “polynomiality”.

Let us list some more corollaries of Theorem 2 having important applications in the theory of
bi-Hamiltonian systems.

Let U ⊂ V be a bi-Lagrangian subspace. By definition, U is maximal isotropic with respect to
each regular form Aλ, λ /∈ Λ. This implies that U contains KerAλ for all λ /∈ Λ. Hence, it makes
sense to consider the subspace

L =
∑
λ/∈Λ

KerAλ ⊂ V. (7)

In terms of the JK decomposition, L can be characterised in a very natural way. Namely, for each
Kronecker block consider the isotropic subspace that corresponds to the right lower zero block.
Then L is just the direct sum of these isotropic subspaces (over all Kronecker blocks).

The subspace L admits another useful description. Assume that B is regular in P = {A+λB}.
The first observation is that for every v(0) ∈ KerB there exists a sequence of vectors {v(k) ∈ V },
finite or infinite, such that the expression v(λ) =

∑r
k=0 v

(k)λk is a formal solution of the equation

(B + λA)v(λ) = 0, (8)

with λ being a formal variable. For an infinite sequence we set r = ∞. The following statement
easily follows from Theorem 2.

Corollary 2. Let k1 ≤ k2 ≤ · · · ≤ ks be the Kronecker indices of P = {A+λB} and B be regular.
Suppose the expressions

vi(λ) =

mi∑
k=0

v
(k)
i λk, where v

(k)
i ∈ V, i = 1, . . . , s = corankP,

are formal solutions of (8) such that their initial vectors vi(0) = v
(0)
i form a basis of KerB, and

the numbers mi = deg vi(λ) are ordered so that m1 ≤ m2 ≤ · · · ≤ ms. Then
1) mi ≥ ki − 1 for i = 1, . . . , s,

2) the linear span of all v
(k)
i coincides with the subspace L ⊂ V .

In fact, by considering each Kronecker block separately, one can easily find a set of polyno-
mial solutions u1(λ), . . . , us(λ) of (8) with deg ui(λ) = ki − 1. Such a set satisfies the follow-
ing natural property: any other polynomial solution v(λ) of (8) can be uniquely represented as
v(λ) =

∑
ci(λ)ui(λ) where ci(λ) are some polynomials. Another property of such a basis set is the

following algebraic formula.
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Corollary 3. Let u1(λ), . . . , us(λ) be solutions of (8) with deg ui(λ) = ki−1 such that u1(0), . . . , us(0)
form a basis of KerB, then

(B + λA) ∧ · · · ∧ (B + λA)︸ ︷︷ ︸
k times

= c · p(λ) · ?
(
u1(λ) ∧ u2(λ) ∧ · · · ∧ us(λ)

)
(9)

where c 6= 0 is a constant, 2k = dimV − s, p(λ) is the characteristic polynomial of the pencil
B + λA and ? : ∧sV → ∧n−sV ∗ denotes the operator (isomorphism) acting by

?(ξ1 ∧ · · · ∧ ξs)(η1, . . . , ηn−s) = σ(ξ1, . . . , ξs, η1, . . . , ηn−s), ξi, ηj ∈ V, n = dimV,

where σ is a volume form on V . The form v1(λ) ∧ v2(λ) ∧ · · · ∧ vs(λ) is not zero for all λ ∈ C,
i.e., the vectors v1(λ), . . . , vs(λ) are linearly independent.

The next statement summarises the properties of L.

Corollary 4.

1. The subspace L ⊂ V is bi-isotropic, i.e., isotropic w.r.t. all forms Aλ ∈ P.

2. L is contained in every bi-Lagrangian subspace U ⊂ V . Moreover, L can be characterised as
the intersection of all bi-Lagrangian subspaces.

3. dimL =
∑s
i=1 ki, where k1, . . . , ks are the Kronecker indices of P.

A characterisation of Kronecker pencils (i.e., with no Jordan blocks) is given by

Corollary 5. The following statements are equivalent:

1. P is of Kronecker type, i.e., the JK decomposition of P has no Jordan blocks;

2. rankAλ = rankP for all λ ∈ C̄, i.e., Λ = ∅;

3. the characteristic polynomial of P is trivial, i.e., p(λ) = 1;

4. the subspace L =
∑
λ/∈Λ KerAλ is bi-Lagrangian;

5. a bi-Lagrangian subspace is unique.

The following statement allows us to compute the number of Jordan blocks (both trivial, i.e.,
of size 2× 2, and non-trivial) for each characteristic number.

Corollary 6. Let P = {A+ λB} with B regular. Then for any µ ∈ C

1. corank
(
B|Ker (A+µB)

)
≥ corankP;

2. corank
(
B|Ker (A+µB)

)
= corankP iff the Jordan µ-blocks are all trivial;

3. the number of all Jordan µ-blocks is equal to

1

2

(
dim Ker (A+ µB)− corankP

)
;

4. the number of non-trivial Jordan µ-blocks is equal to

1

2

(
corank

(
B|Ker (A+µB)

)
− corankP

)
.
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These purely algebraic and elementary results have natural analogs (in fact, direct implications)
in the theory of integrable systems. Here is a kind of dictionary that allows one to translate “linear
algebra” to “Poisson geometry”:

skew-symmetric form ←→ Poisson structure
kernel of a skew-symmetric form ←→ Casimir functions
pencil of skew-symmetric forms ←→ compatible Poisson brackets
isotropic subspace ←→ family of commuting functions
maximal isotropic subspace ←→ integrable system
bi-Lagrangian subspace ←→ complete family of functions in bi-involution

Understanding this relationship allows us not only to interpret, but also to prove many im-
portant facts related to compatible Poisson structures and bi-Hamiltonian systems. For example,
the direct linear-algebraic analog of the algebra Fa is the subspace L ⊂ V , see (7), so that the
argument shift method (part 1 of Theorem 1) is just a reformulation of item 1 of Corollary 4 in
terms of compatible Poisson brackets (1) and (2) on g∗. The passage from the “classical shifts”
f(x+ λa) to the algebra of polynomial shifts Fa in Section 3 is equivalent to the interpretation of
L given by Corollary 2.

As another example of this relationship, let us show that the reformulation of the generalised
argument shift conjecture given at the end of Section 3 can be understood as a “translation” of
item 2 of Corollary 4. Indeed, consider two skew-symmetric forms A and B on a vector space V and
the subspace L ⊂ V defined by (7). If U ⊂ V is a bi-Lagrangian subspace w.r.t. P = {A + λB},
then according to Corollary 4, L is contained in U and moreover L in the intersection of all
bi-Lagrangian subspaces.

In the context of the generalised argument shift conjecture, Fa and Ga are analogs of L and U
respectively in the sense that at a generic point x ∈ g∗ (here “generic” means “on a Zariski open
non-empty set”) the subspaces of V = T ∗xg

∗ ' g generated by the differentials

dFa(x) = span{df(x), f ∈ Fa} and dGa(x) = span{dg(x), g ∈ Ga}

are exactly L and U from the above algebraic statement, if we consider on V ' g the pencil
generated by Ax and Aa (cf. proof of Theorem 3).

Thus, at a generic point we have inclusion dFa(x) ⊂ dGa(x). This immediately implies that Fa
is “in essence contained” in Ga. More precisely, every polynomial f ∈ Fa is algebraic over Ga so
that f is automatically in bi-involution with Ga. Therefore if Ga (complete and in bi-involution)
exists then we can always take a larger algebra generated by both Ga and Fa, which will be an
extension of Fa up to a complete algebra of polynomials in bi-involution.

In fact, the main idea of this paper is just to use this relationship between “linear algebra”
and “Poisson geometry” in a systematic way for compatible Poisson brackets (1) and (2) on the
dual space g∗ in order to get some information about the Lie algebra g itself and its coadjoint
representation.

5 Definiton of Jordan–Kronecker invariants

Let g be a Lie algebra and g∗ be its dual space. For a pair of points x, a ∈ g∗, consider the skew-

symmetric forms Ax =
(∑

ckijxk

)
and Aa =

(∑
ckijak

)
and the pencil {Ax + λAa} generated

by them. We say that two pencils have the same algebraic type, if they have the same Kronecker
blocks and there is one-to-one correspondence between their spectra such that the sizes of Jordan
blocks for any corresponding characteristic numbers are the same. Clearly, the algebraic type of
{Ax + λAa} essentially depends on the choice of x and a. However, it remains “constant” almost
everywhere.
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Proposition 1. There exists a non-empty Zariski open subset U ⊂ g∗× g∗ such that the algebraic
type of the pencil {Ax + λAa} is the same for all (x, a) ∈ U .

Proof. First we consider the vector space W = Λ2(V ∗) × Λ2(V ∗) of all pairs of skew symmetric
forms (A,B) with the natural action of the general linear group GL(V ). The Jordan–Kronecker
decomposition theorem gives a natural partition of W into finitely many subsets:

W = ∪α∈IWα, Wα ∩Wβ = ∅ if α 6= β,

where I denotes the (finite !) set of all possible algebraic types and Wα ⊂ W is the set of pairs
(A,B) related to a fixed algebraic type α ∈ I.

It is easy to see that Wα is a constructible subset of W . Indeed, consider the set Wα,can of
canonical pairs (Acan,Bcan) of a fixed type α. According to Theorem 2, the matrix Acan is fixed,
whereas Bcan = Bcan(λ1, . . . , λs) depends on characteristic numbers λ1, . . . , λs so that Wα,can is
an affine subspace of W of dimension s from which all the hyperplanes λi = λj are removed. In
particular, each Wα,can is constructible. Now the subset Wα is just the union of orbits of GL(V )
intersecting Wα,can. In other words, Wα is the image of Wα,can ×GL(V ) under the map

W ×GL(V )→W,
(
(A,B), P

)
7→ (PAP>, PBP>).

Hence, Wα is constructible as the image of a constructible set.
Take V = g. The linear map φ : (x, a) 7→ (Ax,Aa) induces a partition of g∗ × g∗ into

constructible subsets φ−1(Wα). Since the number of such subsets is finite, one of them must
contain a non-empty Zariski open subset, as required.

Let U be a non-empty Zariski open subset from Proposition 1. We will say that (x, a) ∈ U is
a generic pair. The corresponding pencil {Ax + λAa} is called generic too.

Definition 1. The algebraic type of a generic pencil Ax + λAa is called the Jordan–Kronecker
invariant of g.

In particular, we will say that a Lie algebra g is of

• Kronecker type,

• Jordan (symplectic) type,

• mixed type,

if the Jordan–Kronecker decomposition for the generic pencil Ax + λAa consists of

• only Kronecker blocks,

• only Jordan blocks,

• both Jordan and Kronecker blocks,

respectively.

Definition 2. The Kronecker indices of a generic pencil Ax+λAa are called the Kronecker indices
of g.

Similarly, the characteristic numbers λi of a generic pencil P = {Ax + λAa} can be thought of
as characteristic numbers of g. However, these are not “numbers” but functions λi = λi(x, a) that
are well defined (up to ordering) and analytic in a neighborhood of any generic pair (x, a) with
a regular (if not, we may still consider λi as an analytic map to CP 1 = C). To each of them we
can assign the sequence of sizes m1(λi), . . . ,msi(λi) of the Jordan λi-blocks in the canonical JK
decomposition of P. These numbers do not depend of (x, a) and can be called Jordan indices of g
relative to λi.
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6 Basic properties of JK invariants

The next two theorems easily follow from the definition of JK invariants and give characterisation
of Lie algebras of Kronecker and Jordan types respectively.

Theorem 3. The following properties of a Lie algebra g are equivalent:

1. g is of Kronecker type,

2. codimSing ≥ 2,

3. the algebra Fa is complete.

Proof. This theorem is, in fact, the main result of [4]. We give a sketch of proof (see details in
[4] and, in a more general case, [11]). A generic pencil Ax + λAa is Kronecker, if and only if the
rank of Ax + λAa = Ax+λa is maximal for all λ (Corollary 5), i.e., a generic line x+ λa does not
intersect the singular set Sing. This is obviously equivalent to the condition codim Sing ≥ 2. The
equivalence of 1 and 3 follows directly from Corollary 5 (see items 1 and 3). Indeed, the generators

f
(k)
i of the algebra Fa are, by definition, the coefficients of the expansion

fi(a+ λx) = f
(0)
i + λf

(1)
i (x) + λ2f

(2)
i (x) + λ3f

(3)
i (x) + . . . ,

where fi is a local Ad∗-invariant of g in a neighborhood of a ∈ g∗. The differential of fi(a + λx)
satisfies the relation

Aa+λxdfi(a+ λx) = (Aa + λAx)

∞∑
k=1

λkdf
(k)
i (x) = 0,

which is a particular case of (8). Therefore, by Corollary 2, the subspace dFa(x) ⊂ g spanned by

the differentials of the generators f
(k)
i at x ∈ g∗ admits a purely algebraic description in terms of

the pencil Ax+λa, namely dFa(x) coincides with the subspace L(x, a) ⊂ g defined by means of (7):

dFa(x) = L(x, a)
def
=
∑
λ/∈Λ

Ker (Ax + λAa) =
∑

x+λa/∈Sing

Ann (x+ λa).

The completeness of Fa means that L(x, a) is bi-Lagrangian for generic x ∈ g∗. According to
Corollary 5, this condition is equivalent to the property that g is of Kronecker type.

Notice that for Lie algebras of Kronecker type, the generalised argument shift conjecture holds
true automatically as the family of shifts Fa itself is complete and in bi-involution. Examples of
such Lie algebras include, first of all, semisimple Lie algebras [30] and semiderect sums g +ρ V ,
where g is simple, V is Abelian and ρ : g→ gl(V ) is irreducible [3], [41], [25] (see Section 11).

Remark 1. The proof of Theorem 3 contains the following statement which is important on its
own. Let a ∈ g∗ be regular, then the subspace dFa(x) = span{df(x) | f ∈ Fa} can be characterised
in terms of the pencil Ax+λa as L(x, a) =

∑
λ/∈Λ Ker (Ax + λAa). In particular, according to

Corollary 4, item 3 and formula (6)

dimL(x, a) =

s∑
i=1

ki(x, a) =
1

2
(dim g + ind g)− deg px,a(λ), (10)

where k1(x, a), . . . , ks(x, a) are the Kronecker indices and px,a(λ) is the characteristic polynomial
of Ax+λa.
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The next theorem is obvious and can be viewed as an interpretation of the notion of a Frobenius
Lie algebra ([14], [32]) in terms of JK invariants.

Theorem 4. The following properties of a Lie algebra g are equivalent:

1. g is of Jordan type,

2. a generic form Ax is non-degenerate, i.e., g is Frobenius,

3. the algebra Fa is trivial, i.e., Fa = C.

7 Kronecker blocks and Kronecker indices

Here we focus on Kronecker blocks and discuss some elementary results to illustrate a relationship
between Kronecker indices and properties of a Lie algebra g.

Proposition 2. Let P = {Ax+λa} be a generic pencil, x, a ∈ g∗. Then:

1. the number of Kronecker blocks in the JK decomposition for P equals the index of g;

2. the number of trivial Kronecker blocks is greater than or equal to the dimension of the centre
of g;

3. the number of algebraically independent polynomials in the algebra Fa of shifts equals
∑s
i=1 ki,

where k1, . . . , ks are Kronecker indices of g, s = ind g, i.e.,

tr.deg.Fa =

s∑
i=1

ki. (11)

Proof. Items 1 and 2 are obvious. The third statement follows from Remark 1.

It is interesting to notice that Kronecker indices give a simple and natural estimate for the
degrees of polynomial coadjoint invariants. This result has been recently obtained by A. Vorontsov.

Theorem 5 (A. Vorontsov [49]). Let f1(x), f2(x), . . . , fs(x) ∈ P (g) be algebraically independent
Ad∗-invariant polynomials, s = ind g, and m1 ≤ m2 ≤ · · · ≤ ms be their degrees, mi = deg fi.
Then

mi ≥ ki. (12)

where k1 ≤ k2 ≤ · · · ≤ ks are Kronecker indices of g.

Proof. This statement follows directly from Corollary 2. Indeed, choose a generic a ∈ g∗ such that
df1(a), . . . , dfs(a) generate KerAa and let (x, a) be a generic pair. Since fi are Ad∗-invariant, we
have the relations similar to (8):

(Aa + λAx)

mi∑
k=1

λkdf
(k)
i (x) = 0,

where fi(a + λx) =
∑mi

k=0 λ
kf

(k)
i (x), and we may apply Corollary 2. Since f

(0)
i is constant, after

differentiation this term disappears and we may divide the left hand side by λ. As a result, the
estimate from Corollary 2 becomes mi ≥ ki, as required.
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Remark 2. Theorem 5 still holds if the number of algebraically independent Ad∗-invariant poly-
nomials is smaller than ind g. In other words, if f1(x), . . . , fq(x) ∈ P (g)g, q < s = ind g, are
algebraically independent and deg f1 ≤ · · · ≤ deg fq, then deg fi ≥ ki, where k1 ≤ · · · ≤ ks are the
Kronecker indices of g.

Remark 3. This proof gives, in fact, a stronger result. Let f1, f2, . . . , fs ∈ P (g), s = ind g, be
algebraically independent Ad∗-invariant polynomials such that their differentials are independent
at a regular point a. Then for any x ∈ g∗ we have

deg fi ≥ ki(x, a)

where k1(x, a) ≤ · · · ≤ ks(x, a) are the Kronecker indices of the pencil Ax+λa.

Corollary 7. Let f1, . . . , fs, s = ind g be algebraically independent Ad∗-invariant polynomials
such that

s∑
i=1

deg fi =

s∑
i=1

ki, (13)

then
deg fi = ki.

This observation can sometimes be used to compute Kronecker indices for Lie algebras. For
example, if g is semisimple, then g is of Kronecker type and, therefore,

∑
ki = 1

2 (dim g + ind g).
On the other hand, the algebra of Ad∗-invariant polynomials is freely generated and its generators
f1, . . . , fs satisfy

∑
deg fi = 1

2 (dim g+ ind g) (the numbers ei = deg fi− 1 are known as exponents
of a semisimple Lie algebra g). Hence ki = deg fi = ei + 1 (A. Panasyuk [34]). See more examples
in Section 11.

Theorem 5 is related to the case when tr.deg.P (g)g = ind g, i.e., g admits a “complete set”
of independent polynomial Ad∗-invariants. However, in general, this is not true. Nevertheless, a
similar estimate still holds true. We only need to replace the degree of f by another characteristic
of an analytic function. Namely, let f be local analytic in a neighborhood of a generic point a ∈ g∗

and consider its Taylor expansion:

f(a+ λx) = g(0) + λg(1)(x) + λ2g(2)(x) + λ3g(3)(x) + . . .

where g(k) is a homogeneous polynomial in x of degree k. Denote by m(f) the number of alge-
braically independent polynomials among g(i)’s. If a is generic, then m(f) does not depend on a.

It is clear that if f is a polynomial, then m(f) ≤ deg f . Similarly, if f =
p

q
is a rational function,

then m(f) ≤ deg p+ deg q.
Now let f1, . . . , fs be independent local analytic Ad∗-invariants, s = ind g, and m(f1) ≤

m(f2) ≤ · · · ≤ m(fs), then we still have the same estimate

m(fi) ≥ ki, i = 1, . . . , s = ind g.

Moreover, if
∑s
i=1m(fi) =

∑s
i=1 ki, then m(fi) = ki. The proof given in [49] works in this case

without any changes.

8 Singular set, fundamental semi-invariant and
characteristic numbers

The singular set Sing ⊂ g∗ plays an important role in our construction. Here we briefly discuss
some of its elementary properties.
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As a subset of g∗, the singular set Sing is an algebraic variety given by the system of homoge-
neous polynomial equations of the form:

Pf Ci1i2...i2k = 0, 1 ≤ i1 < i2 < · · · < i2k ≤ dim g (14)

where Pf denotes the Pffafian, and Ci1i2...i2k is the diagonal submatrix of the skew-symmetric
matrix Ax = (ckijxk), related to the rows and columns with numbers i1, i2, . . . , i2k, 2k = dim g −
ind g. The case of Abelian Lie algebra should, perhaps, be considered as an exception: in this case
Sing = ∅. Otherwise, Sing is not empty and contains at least the zero element.

Sing may consist of several irreducible components which, in general, may have different dimen-
sions. One of the simplest examples is the direct sum g = g1⊕ g2, where the singular (non-empty)
sets Singi ⊂ g∗i (i = 1, 2) are irreducible and have different codimensions. Then the singular set for
g is Sing = (Sing1 × g∗2) ∪ (g∗1 × Sing2), i.e., consists of two components with different dimensions.

The codimension of Sing can be arbitrarily large. As an example, consider the semidirect sum of
a one-dimensional Lie algebra h and an n-dimensional vector space V , where a generator h ∈ h acts
on V as a regular semisimple operator. It is easy to check that Sing ⊂ (h+V )∗ is one-dimensional,
i.e., codim Sing = n.

If g is a semisimple Lie algebra, then codimSing = 3.
The structure of the singular set Sing becomes very important in the case when it has codi-

mension 1. Let us denote by fg(x) the fundamental semi-invariant of g, i.e. the greatest common
divisor of all the Pfaffians Pf Ci1i2...i2k(x). Then the singular set Sing can be represented as the
union of two subsets

Sing0 = {fg = 0} and Sing1 = {hi1i2...i2k = 0, 1 ≤ i1 < i2 < · · · < i2k ≤ dim g}, (15)

where Pf Ci1i2...i2k(x) = fg(x) · hi1i2...i2k(x). Notice that codim Sing1 ≥ 2 as the polynomials
hi1i2...i2k(x) do not have any nontrivial common divisor and Sing = Sing1, if fg = 1.

Clearly, the characteristic polynomial px,a(λ) of a generic pencil Ax+λa is just px,a(λ) = fg(x+
λa). In particular, from (6) and (11) we get

tr.deg.Fa =

ind g∑
i=1

ki =
1

2
(dim g + ind g)− deg fg. (16)

Also, in the context of the JK invariants, we can characterise Sing1 as follows. As above, given
a pencil Ax+λa, we use k1(x, a), . . . , ks(x, a) for its Kronecker indices, pa,x(λ) for its characteristic
polynomial and L(x, a) =

∑
λ/∈Λ KerAx+λa.

Proposition 3. Let a ∈ g∗ be regular. Then the following properties are equivalent:

1. the line x+ λa, λ ∈ C, does not intersect Sing1,

2. pa,x(λ) coincides with fg(x+ λa),

3. dimL(x, a) = 1
2 (dim g + ind g)− deg fg,

4.
∑
ki(x, a) =

∑
ki, where k1, . . . , ks are the Kronecker indices of g.

Proof. In view of (6) or, more specifically (10) and (16), items 2, 3 and 4 are obviously equivalent.
Thus, we only need to give a geometric interpretation of the condition pa,x(λ) = fg(x+ λa).

By definition, px,a(λ) is the greatest common divisor of all the Pfaffians Pf Ci1i2...i2k(x + λa)
considered as polynomials in λ with x and a fixed, see (14). Obviously, px,a(λ) is divisible by
fg(x+λa) but not necessarily coincides with it. In other words, in general px,a(λ) = fg(x+λa)·h(λ)
where h(λ) can be characterised as the greatest common divisor of the polynomials hi1i2...i2k(x+λa)
that define the subset Sing1 ⊂ Sing, see (15).
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Thus, the condition px,a(λ) = fg(x+ λa) can be rephrased by saying that hi1i2...i2k(x+ λa), as
polynomials in λ, have no common divisor. Geometrically, this condition simply means that the
line x+ λa does not intersect Sing1, as needed.

Let fg be non-trivial and

fg(x) = f1(x) · . . . · f1(x)︸ ︷︷ ︸
s1 times

· . . . · fk(x) · . . . · fk(x)︸ ︷︷ ︸
sk times

(17)

be its decomposition into irreducible polynomials so that Sing0 is the union k irreducible compo-
nents of codimension 1:

Sing0 = S1 ∪ · · · ∪ Sk, Si = {fi(x) = 0}.

Along with the polynomial fg, we will consider its reduced (or square free) version:

fg,red(x) = f1(x) · . . . · fk(x), (18)

i.e., each irreducible component appears with multiplicity one. Clearly, fg,red(x) = 0 still defines
the codimension one singular set Sing0.

The set Sing0 and polynomials fg, fg,red are closely related to the characteristic numbers of the
Lie algebra g. Indeed, the characteristic numbers λα = λα(x, a) of a generic pencil P = {Ax+λa}
can be characterised by the simple algebraic condition that x + λαa ∈ Sing. Since the pair (x, a)
is generic, Sing can be replaced by its codimension one part Sing0 and we come to the following
natural conclusion.

Proposition 4. Characteristic numbers of g exist if and only if codimSing = 1 and they are the
the roots of the characteristic polynomial px,a(λ) = fg(x+ λa).

According to (17) or (18), the characteristic numbers can be partitioned into k groups Λ1, . . . ,Λk
each of which naturally corresponds to one of these irreducible polynomials f1(x), . . . , fk(x), namely
Λi is the set of roots of pi(λ) = fi(x+ λa). Hence we immediately obtain

Proposition 5.

1. The number of distinct characteristic numbers λα of g equals the degree of fg,red. Similarly,
the degree of fg is the number of characteristic numbers with multiplicities.

2. More precisely, the number of characteristic numbers in each group Λi is equal to the degree
of fi. The multiplicity of a characteristic number λα ∈ Λi is equal to the multiplicity si of fi
in the decomposition (14). In particular, all characteristic numbers within a group Λi have
the same multiplicity.

3. If some of the characteristic numbers have different multiplicities, then Sing0 is reducible.

By using “general position” argument, it is not hard to show that for characteristic numbers
from a fixed group Λi, the structure of Jordan blocks is the same too.

Recall that speaking of characteristic numbers λα of g, we consider them as local analytic
functions λα(x, a) defined in a neighbourhood of a generic pair (x, a) ∈ g∗ × g∗. For applications,
however, we need globally defined invariants of the pencil Ax+λa. They can be easily constructed
by means of Viète’s theorem.

Proposition 6. The symmetric polynomials of characteristic numbers are rational functions of x
and a. Moreover, if a ∈ g∗ is regular and fixed, then they are polynomial in x.
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In this statement, we can consider all distinct characteristic numbers, or all characteristic
numbers with multiplicities, or all characteristic numbers from a certain group Λi. The conclusion
of this proposition holds true in each of these cases.

In the contest of the generalised argument shift conjecture, the role of characteristic numbers
and symmetric polynomials of them is explained by the following statement which is a partic-
ular case of the “shift of semi-invariants” method suggested by A.A. Arkhangelskii [2] and then
developed by V.V. Trofimov [44], see also [23] for an algebraic proof.

Proposition 7. Let us consider the fundamental semi-invariant fg(x) and take its Taylor expan-
sion at a point a ∈ g∗:

fg(a+ λx) = g(0) + λg(1)(x) + λ2g(2)(x) + · · ·+ λmg(m)(x).

Then the homogeneous polynomials g(1)(x), . . . , g(m)(x) are in bi-involution w.r.t. brackets (1) and
(2). Moreover, they are in bi-involution with the algebra Fa.

Remark 4. In this proposition, the fundamental semi-invariant fg can, of course, be replaced by

fg,red. Then we obtain a fewer number of functions, say, g
(1)
red(x), . . . , g

(m′)
red (x), m′ = deg fg,red ≤

m = deg fg, but g(i) will polynomially depend on g
(i)
red’s. In particular, the maximal number of

independent polynomials that we might expect to get in this way is deg fg,red but not deg fg.

Proof. Clearly, the polynomials g(1), . . . , g(m) up to a certain constant (that depends on a) are
exactly the symmetric polynomials of characteristic numbers. So this proposition is just a particular
case of a well-known statement from the theory of bi-Hamiltonian systems: for any pencil of
compatible Poisson structures P = {A + λB}, its characteristic numbers are in bi-involution.
It is also well known that the characteristic numbers are in bi-involution with the Casimirs of
every regular Poisson structure Aµ ∈ P, which immediately implies the second statement of the
proposition.

Thus, if codim Sing = 1 and therefore the algebra Fa of polynomial shifts is not complete, we
can always construct a “bigger” subalgebra F̃a ⊂ P (g), still in bi-involution, by adding to Fa
the “shifts” of the fundamental semi-invariant fg, i.e. the polynomials g(1), . . . , g(m) as additional

generators. Is this extended subalgebra F̃a complete?
First of all, formula (16) shows that to make Fa complete we need exactly m = deg fg ad-

ditional polynomials. However, our new generators g(1), . . . , g(m) must be not only algebraically
independent over the ground field, but they also must be algebraically independent over Fa. An
obvious necessary condition is that fg = fg,red which is equivalent to the fact that each character-
istic number has multiplicity one. The three dimensional Heisenberg Lie algebra shows that this
condition, in general, is not sufficient. Nevertheless, the completeness problem for F̃a admits a
quite natural algebraic solution.

First we consider the case when the Lie algebra g is Frobenius, i.e. its index is zero. Then Sing

is defined by one single polynomial, namely: fg(x) = Pf Ax =
√

det
(
ckijxk

)
. Assume that this

polynomial is square free, i.e., in its decomposition (14) into irreducibles polynomials, all si equal
1. This is equivalent to the fact that its degree deg f = 1

2 dim g coincides with the (geometric)
degree of the singular set Sing which can be understood as the number of distinct intersection
points of a generic line x+ λa with Sing. Under this assumption we have the following

Theorem 6. Let g be a Frobenius Lie algebra, and the (geometric) degree of Sing ⊂ g∗ be equal to
k = 1

2 dim g. Then a generic pencil Ax + λAa is diagonalisable (i.e. has no Jordan blocks of size
greater than 2×2), all characteristic numbers are distinct, and the coefficients of the characteristic
polynomial px,a(λ) = Pf Ax+λa form a complete family of polynomials in bi-involution.
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Proof. The diagonalisability of Ax+λAa is obvious as all characteristic numbers are distinct. The
second statement of the theorem contains one non-trivial ingredient: from the existence of k distinct
characteristic numbers4 we can immediately conclude that they are functionally independent (by
the way, it is for this reason that we need the Jacobi identity). The explanations of this “miracle”
comes from the theory of bi-Hamiltonian systems and compatible Poisson brackets. If we consider
the so-called recursion operator R = AxA−1

a , then the compatibility condition for the Poisson
structures Ax and Aa immediately implies vanishing the Nijenhuis tensor for R. It is a well-known
fact from local differential geometry that non-constant eigenvalues of such operators have to be
functionally independent. The point is that R (with zero Nijenhuis tensor) can locally be reduced
to a block-diagonal form where each block possesses exactly one eigenvalue and, moreover, this
eigenvalue depends only of the coordinates related to the block (see [24], or [9] for the general case)5.
Thus, the purely algebraic fact (algebraic independence of the coefficients of px,a(λ) = Pf Ax+λa)
which would probably be not so easy to prove by algebraic means, turns out to be almost obvious
from the viewpoint of bi-Poisson geometry.

Two examples of Lie algebras satisfying the assumptions of Theorem 6 are given in Section
11.6.

Notice that if the geometric degree of Sing is smaller than 1
2 dim g, then in the case of a

Frobenius Lie algebra g we can still assert that the coefficients of the reduced polynomial pred(λ) =
fg,red(x+ λa) are algebraically independent, i.e., in any case we obtain k independent functions in
bi-involution, where k is the geometric degree of Sing.

If g is not Frobenius, this statement, in general, fails. As an example, consider a two-step
nilpotent Lie algebra with basis e1, . . . , e8 and relations

[e1, e2] = e7, [e3, e4] = e8, [e5, e6] = e7 + e8.

The JK decomposition of a generic pencil consists of 2 trivial Kronecker blocks and 3 trivial Jordan
blocks with distinct characteristic numbers λ1 = x7

a7
, λ2 = x8

a8
, λ3 = x7+x8

a7+a8
. The fundamental semi-

invariant fg = x7x8(x7 + x8) gives only two independent shifts, but not three.

In the general case, a completeness criterion for F̃a follows from a beautiful construction due
to A. Izosimov [23]. As we noticed, a necessary condition for the completeness of F̃a is that each
characteristic number λi (of a generic pencil Ax+λa) has multiplicity one. This means that the JK
decomposition Ax+λa contains just one trivial 2 × 2 Jordan λi-block and therefore dim Ann (x +
λia) = ind g+2, moreover, ind Ann (x+λia) = ind g (see e.g. Proposition 12 below). If in addition,
the singular set Sing is smooth at the point x+ λia, then it can be shown that there are only two
possibilities: Ann (x+ λia) is isomorphic to either b2⊕Cs or h3⊕Cs−1 where b2 is a non-Abelian
two-dimensional Lie algebra, h3 is a Heisenberg Lie algebra of dimension 3 and s = ind g.

The difference between these two cases can be understood if we look at the differential of
λi considered as a function of x. It is a simple fact from bi-Poisson geometry that dλi(x) ∈
Ann (x + λia). In both cases, the centre z of Ann (x + λia) has codimension two. A. Izosimov
observed that dλi ∈ z if Ann (x + λa) ' h3 ⊕ Cs−1 and dλi /∈ z if Ann (x + λa) ' b2 ⊕ Cs.
From the viewpoint of differential geometry, the first case means that λi is functionally dependent
on the generators of Fa and therefore does not give any non-trivial contribution to F̃a. On the
contrary, the case Ann (x+λia) ' b2⊕Cs guarantees the independence of λi of Fa and, moreover,
independence of all λi’s modulo Fa . This leads us to the conclusion that a generic singular point
y ∈ Sing should satisfy the condition Ann (y) ' b2 ⊕ Cs and this condition is also sufficient.

To formulate this result rigorously, let us introduce the subset

Singb = {y ∈ Sing0 | Ann (y) ' b2 ⊕ Cs} ⊂ Sing0.

4To prove the theorem we can obviously pass from coefficients of fg(x+λa) to its roots, i.e., to the characteristic
numbers.

5Alternatively, one can use the normal form theorem for non-degenerate compatible Poisson structures by F.-
J.Turiel [45] from which the desired result immediately follows.
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In can be shown that Singb is always Zariski open in Sing0, but might be empty.

Theorem 7 (A.Izosimov [23]). The extended Mischenko-Fomenko subalgebra F̃a is complete if and
only if Singb is dense in Sing0.

9 Kronecker indices, Mischenko-Fomenko subalgebras and
polynomiality

As we have already noticed, the number of algebraically independent polynomials in Fa can be
easily found with the help of JK invariants, see (16). (Recall that speaking of Fa we always assume
that a ∈ g∗ is regular.)

In many cases, however, we need to estimate the dimension of the subspace dFa(x) ⊂ g gen-
erated by the differentials of polynomials f ∈ Fa at a certain point x ∈ g∗ without assuming that
(x, a) ∈ g∗ × g∗ is generic. For example, this question becomes important if we want to describe
the set of critical points of Fa, i.e. those points where the dimension of dFa(x) drops.

Using JK invariants makes the answer very natural. We just reformulate Proposition 3 by using
the interpretation of the subspace dFa(x) = L(x, a) in terms of the pencil Ax+λa from the proof
of Theorem 3 (see also Remark 1).

Proposition 8. Let a ∈ g∗ be regular and dFa(x) = span{df(x), f ∈ Fa} ⊂ g. Then

dim dFa(x) ≤ 1

2
(dim g + ind g)− deg fg (19)

with equality if and only if the line x+ λa, λ ∈ C does not intersect the subset Sing1.

The statement of Proposition 8 is similar to the Joseph–Shafrir formula [20] for the number of
algebraically independent polynomials in the classical Mischenko–Fomenko subalgebra Ya ⊂ P (g).
In many cases Ya coincides with our algebra Fa of polynomial shifts. If tr.deg.P (g)g = ind g, the
difference between Fa and Ya becomes subtle and is discussed in [6].

Unlike Fa, to define Ya one uses only polynomial Ad∗–invariants. Namely, let f ∈ P (g)g and
consider the expansion

f(x+ λa) =

deg f∑
k=0

λkf (k)(x).

The Mischenko–Fomenko subalgebra Ya is defined as a subalgebra of P (g) generated by the poly-
nomials f (k)(x), where f runs over P (g)g (or over the set of its generators). Notice that this
definition makes sense for all a ∈ g, both regular and singular.

On a formal level, the difference between Ya and Fa is that x and a are interchanged. In both
cases we consider the expansions of Ad∗-invariant functions into powers of λ but using two different
substitutions: x + λa for Ya and a + λx for Fa. (Notice, however, that the pencils Ax+λa and
Aa+λx are just two “simplified versions” of the same “full pencil” Aλ1a+λ2x and, of course, they
have the same algebraic type.)

Interchanging x and a in the proof of Theorem 3 immediately gives the following result which,
in different versions, was used by many authors.

Proposition 9. Let tr.deg. P (g)g = ind g and x ∈ g∗ be a regular element such that the differentials
df(x), f ∈ P (g)g generate Annx. Consider the subspace dYa(x) = span{df(x), f ∈ Ya} ⊂ g. Then

dYa(x) = L(a, x) =
∑
λ/∈Λ

Ker (Aa + λAx) = dFx(a)
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Hence, Proposition 8 can be reformulated, in terms of Ya, as follows. If x ∈ g∗ is a regular
element such that the differentials df(x), f ∈ P (g)g generate Annx, then

dim dYa(x) ≤ 1

2
(dim g + ind g)− deg fg

with equality if and only if the line a + λx, λ ∈ C does not intersect the subset Sing1. Since
codimSing1 ≥ 2, such a line a + λx exists if and only if the element a ∈ g∗ itself does not belong
to Sing1 and we get the Joseph–Shafrir result (Theorem 7.2 in [20]) in a slightly different form.

Theorem 8 (Joseph, Shafrir [20]). Let tr.deg. P (g)g = ind g and a ∈ g∗ (not necessarily regular).
Then

tr.deg.Ya(g) ≤ 1

2
(dim g + ind g)− deg fg

with equality if and only if a /∈ Sing1.

Remark 5. As mentioned above, Theorem 8 is formally different from the original Theorem 7.2
in [20]. Instead of Sing1, explicitly defined by (15), Joseph and Shafrir consider the complement
to a certain subset g∗wreg whose definition is different from ours. Of course, these two results imply
that Sing1 = g∗ \ g∗wreg, but this fact does not seem to be obvious.

Let f1, . . . , fs, s = ind g, be algebraically independent Ad∗-invariant polynomials. Then we
always have the estimate

∑s
i=1 deg fi ≥

∑s
i=1 ki = 1

2 (dim g+ ind g)− deg fg (one can use Theorem
5 (Vorontsov) or easily derive this from Theorem 8 (Joseph–Shafrir)).

For many classes of Lie algebras, this estimate becomes an equality, i.e.,

s∑
i=1

deg fi =
1

2
(dim g + ind g)− deg fg, (20)

known as a sum rule which is related to important algebraic properties of g (see [38], [33], [20] and
Theorem 5). Here we want to look at some of them from the viewpoint of JK invariants. First of
all, we notice that according to Corollary 7, the sum rule (20) implies ki = deg fi.

We also have the following result that resembles, in the case codimSing ≥ 2, one very interesting
result by D. Panyushev [38, Theorem 1.2].

Proposition 10. Let f1, . . . , fs, s = ind g, be algebraically independent homogeneous Ad∗-invariant
polynomials satisfying (20). Then the differentials df1, . . . , dfs are linearly independent at x ∈ g∗

if and only if x /∈ Sing1.

Proof. As noticed above, (20) implies that deg fi = ki. Let (x, a) be a generic pair such that x
is regular and the differentials of fi are linearly independent at x. Consider the vectors ui(λ) =
dfi(x+ λa). These are polynomial expressions in λ of degree ki − 1 (the degree drops by one after
differentiation), satisfying (Ax + λAa)ui(λ) = 0 and such that u1(0), . . . , us(0) form a basis of
KerAx. From Corollary 3, we get

Ax+λa ∧ · · · ∧ Ax+λa︸ ︷︷ ︸
k times

= c · fg(x+ λa) · ?
(
df1(x+ λa) ∧ · · · ∧ dfs(x+ λa)

)
(21)

where k = 1
2 (dim g− ind g) and c 6= 0 is a multiplier which, in general, might depend on both x and

a but not on λ. By substituting λ = 0, we see that c does not depend on a. But then c does not
depend on x either as, in fact, x and a are involved into this formula in a symmetric way. Hence
c is just a constant. Since (21) holds for generic pairs (x, a) (i.e., on a Zariski open set), then this
is an identify for all x, a and λ ∈ C̄.

20



Now let x /∈ Sing1, then we can find a regular a ∈ g∗ such that the line x+λa does not intersect
Sing1. The characteristic polynomial for Ax+λa is still fg(x+ λa) (see Proposition 3) and applying
Corollary 3 to this pencil, we see that the form df1(x+ λa)∧ · · · ∧ dfs(x+ λa) 6= 0 for all λ and in
particular for λ = 0, i.e. df1(x), . . . , dfs(x) are linearly independent.

Now consider a non-generic pencil Ax+λa (with a ∈ g∗ regular) such that the line x + λa
intersects Sing1. In this case, the characteristic polynomial of Ax+λa becomes “bigger” and can
be written as px,a(λ) = fg(x + λa)h(λ) (see the proof of Proposition 3). Moreover, if the point x
itself belongs to Sing1, then h(0) = 0. Hence, formula (9) applied to Ax+λa gives

Ax+λa ∧ · · · ∧ Ax+λa = fg(x+ λa)h(λ) · β (22)

where β is some exterior form which depends on λ polynomially. Comparing (21) and (22), we get

h(λ) · β = c · ?
(
df1(x+ λa) ∧ · · · ∧ dfs(x+ λa)

)
.

Substituting λ = 0 gives df1(x) ∧ · · · ∧ dfs(x) = 0, i.e., the differentials of f1, . . . , fs are linearly
dependent at x ∈ Sing1.

Taking into account [39, Theorem 1.1] by Premet, Panyushev and Yakimova, and the fact
that codim Sing1 ≥ 2, we conclude (just in the same way as it was done in [38]) that under
the assumptions of Proposition 10, the algebra P (g)g is polynomial on f1, . . . , fs. The same
observation, by using a different argument, has been obtained by A. Joseph and D. Shafrir as a
remark to the main result of [20] stating that for unimodular Lie algebras with fg an invariant, the
polynomiality of P (g)g on s = ind g generators f1, . . . , fs implies (20).

Thus, summarising these facts we come to the following conclusion (communicated to us by an
anonymous referee as a conjecture).

Theorem 9. Let k1 ≤ · · · ≤ ks be the Kronecker indices of g and f1, . . . , fs ∈ P (g)g be algebraically
independent Ad∗-invariant polynomials with deg f1 ≤ deg f2 ≤ · · · ≤ deg fs, s = ind g. Assume
that g is unimodular and fg ∈ P (g)g. Then the following conditions are equivalent:

1. ki = deg fi, i = 1. . . . , s;

2.
∑s
i=1 deg fi = 1

2 (dim g + ind g)− deg fg;

3. P (g)g is polynomial on f1, . . . , fs.

Remark 6. To be more precise, (1 ⇔ 2 ⇒ 3) holds for an arbitrary Lie algebra g, and the
additional assumptions on g are essential for the implication (3 ⇒ 2) only. The relationship
between (2) and (3) is due to Panyushev [38], Ooms and Van der Bergh [33] and Joseph and
Shafrir [20].

Remark 7. In this context, the following observation might be interesting. Let g satisfy condition
1 (or, equivalently, 2) from Theorem 9. Then for any pencil Ax+λa such that a is regular and the
line x + λa does not intersect Sing1 (but not necessarily generic), we have ki(x, a) = ki. In other
words, all such pencils have equal Kronecker indices. This follows immediately from Remark 3 and
Proposition 3. For example, if g is semisimple, then for all pencils Ax+λa such that x+ λa /∈ Sing,
λ ∈ C̄, the Kronecker indices are the same and such pencils are automatically generic.

On the other hand, if we can find two such pairs (x1, a1) and (x2, a2) (with ai regular and
xi + λai /∈ Sing1, λ ∈ C) having different Kronecker indices (i.e., ki(x1, a1) 6= ki(x2, a2) for some
i), then for any collection of algebraically independent polynomials f1, . . . , fs ∈ P (g)g, s = ind g,
we have the strict inequality

∑s
i=1 deg fi >

∑s
i=1 ki = 1

2 (dim g + ind g)− deg fg.
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10 Elashvili conjecture from the viewpoint of JK invariants

In this section, instead of a generic pair (x, a) ∈ g∗ × g∗ we consider a pair (y, a) where y ∈ g∗ is
singular and fixed, whereas a ∈ g∗ is still generic.

Let Ann y = {ξ ∈ g | ad∗ξy = 0} be the stationary subalgebra of y ∈ g∗ with respect to
the coadjoint representation. The following estimate is well-known (see, for example, Chapter 2,
Section 3.3 in [1]):

ind Ann y ≥ ind g. (23)

Notice that in the context of the Jordan-Kronecker decomposition theorem, this estimate is just a
particular case of item 1 of Corollary 6 (see below the proof of Proposition 11).

The Elashvili conjecture 6 states that if g is semisimple then for any y ∈ g∗ = g we have the
equality

ind Ann y = ind g. (24)

This conjecture was recently proved by J–Y. Charbonnel and A. Moreau [13], see also discussion in
[19, 37, 51].

Here is the reformulation of (24) in terms of JK decomposition:

Proposition 11. Let y ∈ g∗ be fixed and a ∈ g∗ be generic in the sense that the algebraic type of
the pencil Ay + λAa remains unchanged under small perturbation of a. Then

ind Ann y = ind g

if and only if the JK decomposition of Ay + λAa does not contain non-trivial Jordan blocks with
λi = 0. Otherwise, i.e. if there are non-trivial Jordan 0-blocks, we have strong inequality:

ind Ann y > ind g.

Proof. This result is a reformulation of item 2 of Corollary 6 for the pencil P = {Ay+λAa}. Indeed,
(23) is a particular case of item 1 (when µ = 0). For our pencil, corankP = ind g, KerA = Ann y
and B|KerA is just the skew-symmetric form on Ann y related to the element π(a) ∈ (Ann y)∗

where π : g∗ → (Ann y)∗ is the natural projection. In particular, Ker (B|KerA) = Ann Ann yπ(a)
and if a is generic, then we have

corank (B|KerA) = dim Ker (B|KerA) = ind Ann y.

Item 2 of Corollary 6 is then equivalent to the desired conclusion.

Notice that Corollary 6 also says that the difference ind Ann y − ind g is twice the number of
non-trivial Jordan blocks. An example of a strict inequality in (23) is given in the next section

where we discuss the Lie algebra gl(n) + Rn2

.
It would be interesting to understand if the observation made in Proposition 11 could lead to

another proof of the Elashvili conjecture and/or to its generalisation to other classes of Lie algebras
(not necessarily semisimple).

The above discussion can be helpful to answer the following question. Let λα = λα(x, a) be a
characteristic number of a generic pencil Ax+λa, i.e. x+ λαa ∈ Sing. What can we say about the
number and sizes of the corresponding Jordan λ-blocks?

6This conjecture has its origin in the theory of integrable systems on Lie algebras. Namely, in [4] it was proved
that the condition ind Ann y = ind g is equivalent to the completeness of the family of shifts on the singular coadjoint
orbit O(y) and it was pointed out that this equality holds for all singular elements y ∈ sl(n). While preparing [4] for
publication, the first author discussed his observation with A. G. Elashvili, which resulted in this conjecture, briefly
mentioned in [4] too.
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Proposition 12.
1) The number of Jordan λα-blocks is equal to 1

2 (dim Ann (x+ λαa)− ind g).
2) The number of non-trivial λα-blocks (i.e. of size greater than 2×2) is equal to 1

2 (ind Ann (x+
λαa)− ind g).

Proof. See items 3 and 4 of Corollary 6.

Recall that the factorisation (17) of the fundamental semi-invariant fg defines a decomposition
of the singular set Sing0 into irreducible components Si = {fi(x) = 0}, and induces a partition of
the set of characteristic numbers Λ into subsets Λi, i = 1, . . . , k. Namely, a characteristic number
λα of a generic pencil Ax+λa belongs to Λi if x + λαa ∈ Si or, equivalently, λα is a root of the
polynomial fi(x+ λa) = 0. As we pointed out after Proposition 5, the structure of Jordan blocks
for all λα’s within a group Λi is the same. Here is a reformulation of Proposition 12 for each
individual group Λi of characteristic numbers.

Consider a non-empty Zariski open subset of Ui ⊂ Si which is characterised by the property
that dim Ann y and ind Ann y are constant for all y ∈ Ui. We may call such points generic in Si.

Proposition 13. Let λα ∈ Λi be a characteristic number of a generic pencil Ax+λa and y ∈ Ui be
a generic point of Si. Then

1) the number of Jordan λα-blocks is equal to 1
2 (dim Ann y − ind g);

2) the number of non-trivial λα-blocks is equal to 1
2 (ind Ann y − ind g).

To derive one more fact from Corollary 6, we introduce a subset Vi ⊂ Si of (in some sense also
generic) points y ∈ Si satisfying the following conditions:

1. y is a smooth point of Si, that is dfi(y) 6= 0;

2. y /∈ Sj for j 6= i;

3. y /∈ Sing1.

These conditions guarantee that for a generic (regular) a, the characteristic polynomial of the
pencil Ay+λa is fg(y + λa) (see Proposition 3) and, moreover, the multiplicity of λ0 = 0 as a
characteristic number this pencil is exactly si.

Then for any y ∈ Vi we have
dim Ann y ≤ ind g + 2si

with equality if and only if ind Ann y = ind g, where si is the multiplicity of fi in (17). Indeed, the
number of Jordan 0-blocks cannot exceed the multiplicity of 0 and coincides with it in the case of
absence of non-trivial 0-blocks.

It is interesting to notice (see Section 11.4) that for a Frobenius Lie algebra g, a stronger result
holds: let y ∈ Vi, then ind Ann y = ind g if and only if si = 1.

11 Examples

There are only a few examples where JK invariants have been explicitly described. In this section
we discuss some types of Lie algebras for which this can be done. Notice that for all these Lie
algebras the generalised argument shift conjecture holds.
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11.1 Semisimple case

As was already mentioned, a semisimple Lie algebra g is of Kronecker type and its Kronecker
indices k1, . . . , ks, s = ind g = rank g coincide with the degrees of basis invariant polynomials of g.
Equivalently, ki = ei + 1, where e1, . . . , es are exponents of g.

For simple Lie algebras, the Kronecker indices are as follows:

• An: 2, 3, 4, . . . , n+ 1;

• Bn: 2, 4, 6, . . . , 2n;

• Cn: 2, 4, 6, . . . , 2n;

• Dn: 2, 4, 6, . . . , 2n− 2 and n;

• G2: 2, 6;

• F4: 2, 6, 8, 12;

• E6: 2, 5, 6, 8, 9, 12;

• E7: 2, 6, 8, 10, 12, 14, 18;

• E8: 2, 8, 12, 14, 18, 20, 24, 30.

11.2 Semidirect sums

As an example, consider first the Lie algebra e(n) = so(n) + Rn of the group of affine orthogonal
transformations. We know that the algebra Fa of shifts for this Lie algebra is complete [3]. This
means that e(n) is of Kronecker type. To determine the Kronecker indices ki of e(n), we may apply
Theorem 9. It is well known that the basis coadjoint invariants of e(n) have the same degrees mi

as those of so(n+1) (in fact, there is a natural relationship between the invariants of so(n+1) and
e(n) based on the fact that e(n) can be obtained from so(n+ 1) by the so-called Z2-contraction).
Since in this case we have the exact equality∑

mi =
1

2

(
dim e(n) + ind e(n)

)
=

1

2

(
dim so(n+ 1) + ind so(n+ 1)

)
,

then the Kronecker indices of e(n) are exactly ki = mi. In other words, the JK invariants of the
Lie algebras e(n) and so(n+ 1) coincide.

More generally, let g be a semisimple Lie algebra with Z2-grading:

g = k + p, [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

Then we can construct a new Lie algebra g̃ that coincides with g as vector space, but p becomes
a commutative ideal (whereas the commutation relations within k and between k and p remain the
same as in g). In such a situation, one says that g̃ is obtained from g by Z2-contraction. In the
above example, e(n) and so(n+1) are related exactly in this way. Is there any natural relationship
between the Jordan-Kronecker invariants of g and g̃?

In the context of polynomiality of the algebra of coadjoint invariants P (g̃)g̃, a similar question
was studied in [38] by D. Panyushev who conjectured that the polynomiality is preserved under
Z2-contractions and proved this property for the majority of pairs (g, k). His approach was based
on the implication (2 ⇒ 3) from Theorem 9 (proved in [38] in the case fg = 1) and, roughly
speaking, he showed that, in “good” cases, some appropriately chosen generators of P (g)g remain
independent under the Z2-contraction and preserve their degrees.
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However, he observed that at least in 4 cases, namely

(E6,F4), (E6,D5 ⊕ C), (E7,E6 ⊕ C) and (E8,E7 ⊕A1),

the degrees of free generators, if they at all exist for g̃, must change when passing from g to g̃.
Recently, O.Yakimova [52] proved that these four pairs could be the only possible exceptions: in
all other cases P (g̃)g̃ remains polynomial and, moreover, the degrees of generators for g̃ coincides
with those for g. In view of Theorem 9, the same is true for the Kronecker indices of g and g̃. The
situation with the exceptional four cases remained unclear for some time, but finally O.Yakimova
has succeeded to show that all of them are indeed counterexamples, i.e. the corresponding algebras
P (g̃)g̃ are not polynomial [53]. For these Z2-contractions, the question about Kronecker indices
remains open.

Another interesting example is the semidirect sum g = sl(n) + Rn with the natural action of
sl(n) on Rn. In this case, the algebra of Ad∗-invariant polynomials has only one generator. Its
degree m is exactly equal to 1

2 (dim g + ind g) = 1
2 (n2 + n). We also know that Fa is complete [3].

Hence we conclude that g = sl(n)+Rn is a Lie algebra of Kronecker type with one Kronecker block
whose size, therefore, equals to dim g. Notice, however, that for this conclusion the information
about the degree of the co-adjoint invariant is not essential.

More generally, consider the semidirect sum g +φ V , where g is simple and φ : g → End(V )
is irreducible. Such Lie algebras are all of Kronecker type. This fact amounts to the condition
codimSing ≥ 2 which is not obvious at all and follows from three papers [25], [3], [41]. In particular,
for these Lie algebras the algebra Fa of shifts is complete and in bi-involution. For some of them
the Kronecker indices can be found by using Theorem 5, but in general the question is open.

11.3 Lie algebra of upper triangular matrices

Let tn be the Lie algebra of upper triangular n×n matrices. The description of Jordan-Kronecker
invariants for tn easily follows from a very interesting paper [2] by A.Arkhangelskii. The main result
of [2] is a proof of the generalised argument shift conjecture for tn (the bracket { , }a was not
discussed in [2], but the complete family of commuting polynomials constructed by A.Arkhangelskii
is, in fact, in bi-involution).

If n is even, then tn is of mixed type, i.e., the JK decomposition of a generic pencil {Ax+λa}
contains both Kronecker and Jordan blocks. The Kronecker indices are closely related to the
coadjoint invariants of tn explicitly described in [2]. These invariants are rational functions fk =
Pk

Qk
, k = 1, . . . , n2 with degPk = k + 1 and degQk = k. The Kronecker indices are exactly

degPk + degQk (cf. discussion after Theorem 5), namely

1, 3, 5, . . . , n− 1.

The singular set Sing0 ⊂ t∗n is defined by an irreducible polynomial fg of degree n
2 . Therefore,

tn possesses n
2 distinct characteristic numbers, each of multiplicity one. In particular, the Jordan

part of a generic pencil Ax+λa is diagonalisable.
A complete family of polynomials in bi-involution is formed by the “shifts” Pk(x+λa), Qk(x+

λa) and fg(x + λa). Equivalently, we can say that the complete family of polynomials in bi-
involution for tn (n is even) is given by Proposition 7, i.e., we need to take the algebra Fa of shifts
and complete it with n

2 homogeneous polynomials g(j)(x), j = 1, . . . , n2 , defined as coefficients of
the Taylor expansion

fg(a+ λx) = g(0) + λg(1)(x) + λ2g(2)(x) + · · ·+ λ
n
2 g( n

2 )(x),

where fg is the fundamental semi-invariant.
If n is odd, then tn is of Kronecker type and the Kronecker indices are 1, 3, 5, . . . , n.
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11.4 Lie algebras with arbitrarily given JK invariants

Let P = {A+λB} be an arbitrary pencil of skew-symmetric bilinear forms. A natural question to
ask is whether P can be realised as a generic pencil Ax+λa for a suitable Lie algebra g? In other
words, we want to describe all admissible JK invariants of finite dimensional Lie algebras.

First of all, notice that the JK invariants of a direct sum g1⊕g2 can naturally be obtained from
those of g1 and g2 by “summation”. In particular, the set of characteristic numbers for g1 ⊕ g2

can be understood as the disjoint union of the corresponding sets for g1 and g2. Thus, first it is
natural to study the realisation problem for the following simplest cases:

• a single Kronecker block,

• a single λ-block which consists of several Jordan blocks.

Examples of such Lie algebras were constructed and communicated to us by I. Kozlov [27].
The first case is realised for the Lie algebra g with the basis e1, . . . ek, f1, . . . , fk+1 and com-

mutation relations:

[ei, fi] = fi, [ei, fi+1] = −fi+1, i = 1, . . . , k (all the other commutators equal 0).

This Lie algebra admits the following matrix representation(
A b
0 0

)
∈ gl(k + 2,C),

where A denotes the matrix diag(a1, a2−a1, a3−a2, . . . , ak−ak−1,−ak), i.e., an arbitrary diagonal
matrix with zero trace, and b is a column of length k + 1 with arbitrary entries.

The index of g equals 1. The singular set Sing consists of several connected components each of
which has codimension 2 and is defined by two linear equations fi = 0, fj = 0, i 6= j. The Casimir
function of the Lie-Poisson bracket on g∗ is f1f2 · . . . · fk+1.

The second case (a single λ-block) is realised for the following matrix Lie algebra

g =





a0 x1 x2 . . . xm b0
A1 0 . . . 0 y1

A2
. . .

...
...

. . . 0 ym−1

Am ym
0 0 0 . . . 0 0




.

Here xk is an arbitrary row of length nk, yk is an arbitrary column of length nk, and Ak is the
nk × nk-matrix related to the row xk = (x1

k, . . . , x
nk

k ) in the following way:

Ak =



a0 x1
k x2

k . . . xnk−2
k xnk−1

k

a0 x1
k

. . . xnk−2
k

a0
. . .

...
. . . x1

k x2
k

a0 x1
k

a0


This Lie algebra is Frobenius, its singular set Sing ⊂ g∗ is defined by the linear equation f0=0,

where f0 ∈ g is the matrix whose entries are all zero except for b0 = 1 in the upper right corner.
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Let n1 = maxk=1,...,m nk. Then the JK decomposition of a generic pencil Ax+λa consists of Jordan
blocks of sizes 2(n1 + 1), 2n2, . . . , 2nm.

Notice that the sizes of these Jordan blocks can be arbitrary with the only restriction that
the largest Jordan block is unique, as by construction n1 + 1 > nk. This restriction turns out to
be a general property of non-degenerate Poisson pencils with non-constant characteristic numbers
(see [45]) and, therefore, is unavoidable. In particular, there is no Frobenius Lie algebra with
diagonalisable λ-blocks if the multiplicity of λ is greater than 1. (It follows from this, by the way,
that if a characteristic number of a Frobenius Lie algebra g is multiple, then ind Ann y > ind g for
any generic singular y from the corresponding irreducible component of Sing).

However this restriction disappears if we allow Kronecker blocks. The simplest example which
illustrates this phenomenon is the Heisenberg algebra with the basis ei, fi, h (i = 1, . . . , n) and
relations [ei, fj ] = δijh. A generic pencil Ax+λa consists of one trivial Kronecker block and n

Jordan 2× 2 blocks with the same characteristic number λ(x, a) = − 〈h,x〉〈h,a〉 .

We hope that these observations will help to solve the realisation problem completely, but so
far this problem remains open. The difficulty consists in non-trivial relations between Casimir
functions and characteristic numbers. By “non-trivial” we mean that the characteristic numbers
can, in general, be functionally dependent of the Casimir functions. If it is not the case, then
the splitting theorem recently proved by F.-J.Turiel [46] implies that the JK invariants of a finite-
dimensional Lie algebra g obey the restriction described above: for each characteristic number, the
largest Jordan block is unique.

11.5 Lie algebras of low dimension

The Jordan–Kronecker invariants for Lie algebras of low dimension ≤ 5 have been explicitly com-
puted by Pumei Zhang [55] (the list of such Lie algebras with some additional useful information
can be found in [40] and [26]). The complete description of JK invariants can be found in [12]
together with complete sets Ga of polynomials in bi-involution.

11.6 Two examples of Frobenius Lie algebras

The first example is the Lie algebra aff(n) = gl(n) + Rn of the group of affine transformations.
This Lie algebra is Frobenius and, therefore, aff(n) is of Jordan type. To determine the sizes of
Jordan blocks, we need to describe the structure of the singular set. It can be shown that Sing
is defined by one irreducible polynomial fg of degree 1

2 dim aff(n). This polynomial is exactly the

Pfaffian of the form Ax =
(∑

ckijxk

)
which can be rewritten in a much nicer form (see [55] for

details). To that end, we use the standard matrix realisation of aff(n):(
M v
0n 0

)
where M is an arbitrary n × n matrix, v is a column vector of length n and 0n denotes the zero
row vector of length n. If we identify this Lie algebra aff(n) with its dual space aff(n)∗ by means
of (non-invariant) pairing

〈(M1, v1), (M2, v2)〉 = TrM1M2 + Tr v>1 v2

then Sing can be defined by the equation fg(x) = 0, where

fg(x) = det(v,Mv,M2v, . . . ,Mn−1v), x = (M, v) ∈ aff∗(n). (25)

Hence, by Theorem 6, this Lie algebra has 1
2 dim aff(n) distinct characteristic numbers. Each of

them has multiplicity 1, i.e., a generic pencil Ax+λa is diagonalisable, and the size of each Jordan
block in the JK decomposition is 2× 2.
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Also, by using Theorem 6, we get

Proposition 14. For the Lie algebra aff(n), the generalised argument shift conjecture holds true.
As a complete family of polynomials in bi-involution we can take the coefficients of the expansion
of fg(a+ λx) into powers of λ, where fg is given by (25).

Another interesting example is g = gl(n) +Rn2

, where the vector space Rn2

is realised by n×n
matrices, and gl(n) acts on it by left multiplication. The matrix realisation of g is as follows:(

A C
0 0

)
,

where all entries are n×n blocks, and A and C are arbitrary. The index of g is zero and, therefore,
this Lie algebra is of Jordan type. The set of singular elements is defined (after natural, but
not invariant identification of g and g∗ by means of the pairing 〈(A1, C1), (A2, C2)〉 = TrA1A2 +
TrC1C2, (Ai, Ci) ∈ g) by the equation7

fg,red(x) = detC = 0, x = (A,C) ∈ g∗.

Since the (geometric) degree of Sing is n, there are n distinct characteristic numbers λ1, . . . , λn.
Moreover, the irreducibility of Sing implies (Proposition 5, item 3) that all of them have the same
multiplicity n and the sizes of Jordan blocks are the same for each λi.

To compute the sizes of Jordan blocks, it is sufficient to describe the annihilator of a generic
singular point y ∈ Sing ⊂ g∗. Straightforward computation shows that dim Ann y = 2n− 2. Hence
(see Proposition 12) we have n − 1 Jordan blocks and there is only one possibility for their sizes,
namely8:

2, 2, . . . , 2︸ ︷︷ ︸
n−2 times

, 4.

Theorem 6 does not help to verify the generalised argument shift conjecture in this case, as
characteristic numbers have non-trivial multiplicity n > 1. But in this case the ideal h = Rn2 ⊂
gl(n) + Rn2

is commutative and therefore P (h) ⊂ P (g) can be taken as the desired algebra Ga of
polynomials in bi-involution. The completeness is obvious as n2 is exactly 1

2 (dim g + ind g).
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