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Abstract

Inert gases in metals can occur due to ion implantation, from a plasma in a magnetron
device or as a result of being by-products of nuclear reactions. Mainly because of the
nuclear applications, the properties of the inert gases, helium, argon and xenon in the body
centred cubic (bcc) iron crystal are examined theoretically using a combination of molecular
dynamics, static energy minimisation and long time scale techniques using empirical potential
functions. The same techniques are also used to investigate argon and xenon in aluminium.

The primary interest of the work occurred because of He produced in nuclear fission and
its effect on the structural materials of a fission reactor. This structure is modelled with
perfectly crystalline bcc Fe. In bcc iron, helium is shown to diffuse rapidly forming small
bubbles over picosecond time scales, which reach a certain optimum size. In the initial phase
of He accumulation, Fe interstitials are ejected. This occurs instantaneously for bubbles
containing 5 He atoms and as the more He accumulates, more Fe interstitials are ejected.
The most energetically favourable He to vacancy ratios at 0 K, vary from 1 : 1 for 5 vacancies
up to about 4 : 1 for larger numbers of vacancies. An existing He bubble can be enlarged
by a nearby collision cascade through the ejection of Fe interstitials, allowing more He to be
trapped.

Ar and Xe in bcc Fe prefer to be substitutional rather than interstitial and there are large
barriers to be overcome for the inert gas atoms to diffuse from a substitutional site. Bubbles
that form can again be enlarged by the presence of a nearby collision cascade or at very high
temperatures. In this case the most energetically favourable vacancy ratios in the bubbles is
1 : 1 for Ar and from 0.6 : 1 to 0.8 : 1 for Xe. For Ar and Xe, bubble formation is more likely
as a direct result of radiation or radiation enhanced diffusion rather than diffusion from a
substitutional site.

Ar in aluminium is also studied. Ar atoms in fcc Al prefer to be substitutional rather
than interstitial and evolution into substitutional occurs over picosecond time scales at room
temperature. Bubble formation can occur more easily than in bcc iron, mainly because the
barriers for vacancy diffusion are much lower but the time scales for bubble accumulation
are much longer than those for He. A vacancy assisted mechanism is found which allows
Ar to diffuse through the lattice. Finally some preliminary results on the energetics of
different geometrical structures of larger Xe bubbles in Al are investigated since experiment
has indicated that these can become facetted.
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Chapter 1

Introduction and Background

Rapidly growing energy demand and global depletion of fossils fuels force mankind to inves-

tigate other energy sources such as nuclear energy. Fission and fusion reactors are promising

because of producing energy without emitting greenhouse gasses.

Neutron irradiation of metals in fission and fusion reactors results in the production of a

high density of displacement defects such as vacancies and self-interstitials atoms (SIA) and

produces foreign atoms through nuclear transmutations. Among these atoms, helium, argon

and xenon are particularly detrimental to the mechanical properties of the materials.

These energetic particles during radiation interact with atoms of the target material and

induce a large number of point defects, which aggregate to form vacancy clusters, voids,

dislocation loops and stacking fault tetrahedron [1, 2, 3, 4]. Inert gases can produce swelling

which leads to macroscopic distortion and volume increase of fuel rods and structural ma-

terials and will also cause intergranular embrittlement resulting in severe degradation of

mechanical properties [5]. It is of great interest and technologically important to develop

radiation tolerant materials that can promote the annihilation of radiation induced defects.

It has been established that inert gases play an important role on the evolution of mi-

crostructures and mechanical properties of irradiated materials [6, 7, 8]. In crystalline metals

and alloys inert gas atoms can sometimes migrate interstitially below room temperature [9]



2 CHAPTER 1. INTRODUCTION AND BACKGROUND

and may form bubbles by a nucleation and growth process [10, 11, 12, 13, 14]. Vacancies

are involved in the nucleation process, whereas growth can occur by capturing mobile va-

cancies or in the prevacancy regime by loop punching [15]. Ultimately, it is the long-range

diffusion of vacancy, self-interstitial defects and impurity gas atoms over long times and in-

creasing length scales, which is responsible for nano/ microstructural evolution. Enhanced

defect transport leads to a re-distribution of inert gas atoms as a consequence of radiation

enhanced diffusion and segregation. This is thought by many people to occur as the result

of the migration and coalescence of small inert gas bubbles which are produced by nuclear

transmutation. Therefore it is necessary to understand and control those phenomena which

underlay the present limitations.

Experimental and theoretical investigations are performed to model these problems, such

as how inert gas atoms interact with the materials during the cascades and how ion beams

effect the alloy (details are introduced in the introductions of the following separate sections).

However, quantification of the inert gas atom diffusion, trapping and interaction mechanisms,

the importance of small cluster mobility, bubble nucleation processes and the evolution of

the bubbles in metals remain outstanding issues. A primary aim of the thesis is to investigate

these mechanisms for He, Ar and Xe in α-Fe using advanced computational techniques. In

addition, because of recent modelling work on the deposition of Al thin films in a magnetron

device [16] and experimental work on Xe bubbles in Al [17, 18, 19, 20, 21], bubble growth

in Al is also considered using the same computation techniques.

1.1 Computer Simulation

Computer simulation is an extremely powerful tool in materials science today. Generally,

various techniques are available depending on what you wish to model. Ab-initio methods,

such as density functional theory (DFT) [22] models on an atomistic level (Å) for very short

time scales (up to picoseconds). Continuum methods, such as finite elements, can be used
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to model situations on larger length and time scales (metres and seconds).

Classical molecular dynamics (MD) [23, 24] is also an atomistic technique used for the

range from femtosecond to nanoseconds. It was first introduced in the 1950s when Alder

and Wainwright studied phase transitions in a hard sphere system [23]. Vineyard et al. were

the first to model radiation damage using MD in the 1960s [25] to model radiation events in

systems containing approximately 500 atoms and MD is now one of the standard tools for

the investigation of radiation.

As computers have been developed more, the system sizes that can be modelled have

rapidly grown and more complex potential energy functions have been developed to model

the different materials. It is now possible to model millions of atoms, and reach simulation

times of the order of nanoseconds. However this is still some way short of time scales that

can be measured experimentally. Hybrid techniques can be used to model even longer time

scales. For example MD and on-the-fly kinetic Monte Carlo can be used together to reach

simulation times of the order of seconds [26].

1.2 Research Goals

This work is a part of an EPSRC project to investigate the mechanisms of the formation

and growth of inert gas bubbles in metals at the atomic level and look into the effects of

processing conditions and irradiation.

Simulations compared together with experiments help in providing a wider perspective

of the problem and give a deeper look into the processes that happen at the atomistic level.

The simulations can help to link the results obtained before and after irradiation events

that cannot be followed on an experimental time scale. Also, computer simulation allows

parameters to be changed without performing costly experiments, such as temperature,

energy and material composition.
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1.3 Implemented and Developed Software

Some of the techniques used in the thesis are briefly described in this section together with

their acronyms.

LBOMD (LoughBOrough Molecular Dynamics [27]) - collision cascades, potential en-

ergy function static minimisation.

KMC (Kinetic Monte Carlo technique [28, 29]) - bubble formation.

Atomic visualisation - a 3D visualiser written in the Python language has been used

to analyse the output from the simulations in this work.

NEB (Nudged Elastic Bands method) - calculate the diffusion barriers when the pathway

of the end states are known [30].

Saddle point searching methods - search the transition when the end state is not

known. These can be incorporated into an otf-KMC (on-the-fly Kinetic Monte Carlo tech-

nique [28, 29]) method to study long time scale dynamics.

1.4 Thesis Layout

Chapter 1 introduces the research problems and gives reference to some of the previous

work on the topic.

Chapter 2 is the methodology chapter. The first part explains the main concepts of the

MD technique, potential functions and the necessary extensions to it. The second part is

focussed on saddle point searching methods to determine the pathways for diffusion and the

corresponding energy barriers.

Chapter 3 describes the MD and KMC simulations that were used to study the formation

and growth of He bubbles in bcc Fe. The results compare two different potentials.

Chapter 4 is mainly focussed on the MD and KMC simulations that were used to study

the formation and growth of Ar bubbles in bcc Fe. The results are compared with the He

work in Chapter 3.
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Chapter 5 describes the static calculations and KMC simulations that were used to study

the formation of Xe bubbles and diffusion mechanisms in bcc Fe.

Chapter 6 is focussed on Ar in fcc Al. Some static calculations and diffusion mechanisms

are shown in this chapter.

Chapter 7 is the final chapter, where all the achieved results are summarised and the

potential future studies are highlighted.



6 CHAPTER 1. INTRODUCTION AND BACKGROUND



Chapter 2

Methodology

In this section the various computational methods used in the work are described.

2.1 Molecular Dynamics

2.1.1 Introduction

The Molecular Dynamics (MD) method is an atomistic computer simulation technique intro-

duced in the 1950s by B. J. Alder and T. E. Wainwright and has been used extensively since

then [31]. It is designed to use classical mechanics to describe the time evolution of physical

systems by modelling atomic and molecular interactions. The method has been proven to

be an extremely powerful tool to study lots of aspects in different subjects such as radiation

damage and biology.

The aim of the MD simulation is to model the motion of the N atoms in the system and

how the positions and the velocities change with time, based on Newton’s second law:

mi
d2xi

dt2
= −∇V (x1, ...,xN) , i = 1 . . . N, (2.1)

where mi is the mass of the i-th atom, whose position at time t is xi. Here the force



8 CHAPTER 2. METHODOLOGY

on each atom is assumed to be derived from a potential function V , which depends only

on the coordinates of the atoms. The MD code utilised in this work was the LBOMD

(LoughBOrough Molecular Dynamics) package. This section will outline the aspects of MD

used and their implementation in this thesis.

2.1.2 Time Integration

In order to obtain the movement of the N atoms in the simulation system, a time integration

algorithm is required to numerically solve the equations of motion:

Fi = miẍi, i = 1, . . . , N, (2.2)

where xi is the position of atom i and ẍi is its acceleration, mi is its mass and Fi is the force

acting upon the atom. Normally Fi is calculated from the gradient of the potential energy

function, V (discussed in the next section), with respect to the atom’s position:

Fi = −∇xiV. (2.3)

However, because of the complicated nature of the potential energy there is no analytical

solution for the Newton’s equations in MD; thus numerical algorithms must be employed.

The Verlet algorithm is the most widely used algorithm to integrate time in MD simulations,

which was promoted in MD simulations by L. Verlet in 1967 [31]. It combines two Taylor

expansions of the position vector x from time t forward to t+ ∆t and backward to t−∆t:

x(t+ ∆t) = x(t) +
dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 +

1

3!

d3x(t)

dt3
∆t3 + O(∆t4), (2.4)

x(t−∆t) = x(t)− dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 − 1

3!

d3x(t)

dt3
∆t3 + O(∆t4). (2.5)
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By adding these two expressions, odd-order terms have been eliminated:

x(t+ ∆t) = 2x(t)− x(t−∆t) +
d2x(t)

dt2
∆t2 + O(∆t4), (2.6)

Thus we make this integrator an order more accurate than the Taylor expansion alone and

also steps do not depend on velocities, only on acceleration d2x(t)
dt2

, which can be derived

from intermolecular forces and Newton’s second law. By employing the Taylor expansion an

alternative formulation, the Velocity Verlet algorithm can be derived as follows:

x(t+ ∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2 + O(∆t3), (2.7)

v(t+ ∆t) = v(t) + a(t)∆t+
1

2

da(t)

dt
∆t2 + O(∆t3), (2.8)

a(t+ ∆t) = a(t) +
da(t)

dt
∆t+ O(∆t2), (2.9)

where v(t) = dx(t)
dt

and a(t) = dv(t)
dt

. After updating the positions using (2.9) we can derive:

da(t)

dt
=

a(t+ ∆t)− a(t)

∆t
+ O(∆t2). (2.10)

By substituting the last expression into Equation 2.8 we will get an expression in Equation

2.11 to calculate the new velocities, that can be used in Equation 2.7.

v(t+ ∆t) = v(t) +
1

2
[a(t+ ∆t) + a(t)] ∆t+ O(∆t2). (2.11)

This is the form of the algorithm implemented in LBOMD (Loughborough molecular dynam-

ics) that is a package developed at Loughborough University [27] and is used throughout this

project to perform all MD simulations. The code was written to allow the user to monitor

the parameters of the simulation such as simulation time, system temperature, thermostat

type, the constraints of the boundary conditions, the frequency of data writing and the
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parameters required for the collision cascades.

LBOMD uses a variable time step dependant on the maximum kinetic energy and the

maximum positive potential energy:

∆t =
1.5√

1.5 + 0.1Ts
, (2.12)

where Ts is the sum of the maximum kinetic energy and maximum positive potential energy

in the system. A typical time step is 1 fs (1× 10−15 s).

2.1.3 Interatomic Potentials

Choosing the right interatomic potential V (x1, . . . ,xN) depending on the positions x1, . . . ,xN

of the N atoms in the system to represent the interaction is crucial in an MD simulation.

The general many-body form of the interatomic potential energy function is to sum over

increasing numbers of atoms [32]:

VTOT =
∑
i,j

V2(xi,xj) +
∑
i,j,k

V3(xi,xj,xk) + . . . , (2.13)

where V2 is the interaction between pairs of atoms {i, j}, V3 the interaction between triplets

of atoms {i, j, k}, and so on.

For the simulations presented here, two types of interatomic potentials were used: pair

potentials and Finnis-Sinclair type potentials [33].

2.1.3.1 Pair Potentials

The pair potential is the earliest and simplest form of potential:

U =
1

2

∑
i,j(i 6=j)

Vij (rij) , (2.14)
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where U is the total potential energy of the whole system, Vij is the pair potential energy

function and rij is the separation between atoms i and j.

It has been shown that a pair potential can represent the interaction of noble gases very

well, however, its drawbacks appear when used for metals, such as its inability to reproduce

elastic constants accurately [33]. The advantage of the pair potential is the ease to be

implemented and computed efficiently due to their simplicity.

2.1.3.1.1 L-J

The Lennard-Jones 6-12 potential is one of the pair potentials used to describe the interaction

of noble gases [34, 35]. It has the form:

φ(rij) = − A
r6ij

+
B

r12ij
, (2.15)

where A and B are positive constants, and rij is the distance between atoms. The potential

is usually written in the following form

φ(rij) = 4ε[(
σ

rij
)12 − (

σ

rij
)6], σ = (B/A)

1
6 , ε =

A2

4B
. (2.16)

The values of ε and σ that fit the solid gas phases are displayed in Table 2.1 [34].

Ar Kr Xe
ε(eV ) 0.0104 0.0140 0.02

σ(Å) 3.40 3.65 3.98

Table 2.1: Values of the Lennard-Jones Parameters for the noble gases.

However the repulsive part of the potential for small particle separation is inadequate and

so here another approach is required.

2.1.3.1.2 ZBL

At the short ranges, most of the potentials fail to correctly represent the interactions between

the atoms. Therefore, it is preferable to use another potential to describe the interactions at
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very small distances. The well-known screened Coulomb ZBL universal repulsive potential

[36] developed by Ziegler, Biersack and Littmark models this close range interaction by

multiplying the Coulombic potential between the atom cores with a screening function.

The ZBL potential is a function of the atomic numbers Z1, Z2 of atoms i and j, the inter-

atomic separation rij and the screening function ϕ and is shown in the following equation:

VZBL(rij) =
1

4πε0

Z1Z2e
2

rij
ϕ(
rij
a

), (2.17)

where e - electronic charge, ε0 the permittivity of free vacancy, a - a screening parameter.

The forms of screening function ϕ and parameter a are respectively given in Equations 2.18

and 2.19:

ϕ(x) = 0.1818e−3.2x + 0.5099e−0.9423x + 0.2802e−0.4029x + 0.02817e−0.2016x, (2.18)

a =
0.8854a0

Z0.23
1 + Z0.23

2

, (2.19)

where a0 - the Bohr atomic radius = 0.530Å.

The ZBL potential in this work was implemented to estimate interactions for Ar-Fe,

Xe-Fe and Ar-Al.

2.1.3.1.3 Aziz

The Aziz potential [37] is used to describe the He-He interaction in this thesis and has

the Hartree-Fock-dispersion form [38] and is reported to have a good agreement with the

ab-initio results.

VAziz(x) = ε

(
A exp

(
−αx+ βr2ij

)
− F (x)

2∑
j=0

c2j+6/x
2j+6

)
, (2.20)
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with

F (x) =

exp
[
−
(
D
x
− 1
)2]

, x < D

1, x ≥ D
, (2.21)

where x = rij/rm. The values of the constants are given in Table 2.2 and the form of the

potential is shown in Figure 2.1.

A α c6 c8 c10
1.86924404× 105 10.5717543 1.35186623 0.41495143 0.17151143

β(Å
−2

) D(Å) ε(eV) rm(Å)
−2.358 1.438 9.441093× 10−4 0.29683

Table 2.2: The constant values for the Aziz potential to describe the He-He interaction [37].
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Figure 2.1: The form of the Aziz potential.

A spline function is normally used to link the potential to the ZBL potential for short

ranges. There are numerous methods, but here a fifth order exponential polynomial is applied
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to make the function and its first and second derivatives smooth and continuous.

S(rij) = ef0+f1rij+f2r
2
ij+f3r

3
ij+f4r

4
ij+f5r

5
ij , a ≤ rij ≤ b (2.22)

where f0, . . . , f5 are splining coefficients and rij is the atomic separation.

Cutoff distances a and b that point out where the pair potential is splined to ZBL and

the outer potential are determined to ensure the functions are as smooth and continuous as

possible.

2.1.3.2 Many-body Potentials

An important potential is the Embedded Atomic Method (EAM) suggested by Finnis &

Sinclair (F-S) [33] and Daw & Baskes [32, 39] in 1980s. The idea behind this technique is

that each atom is treated as an impurity embedded in a sea of electrons of all remaining

atoms. The energy calculated by the F-S and EAM methods V EAM
i (rij) can be expressed as

V EAM
i (rij) =

1

2

∑
j

Vij(rij)−
∑
i

F (ρi(rij)), (2.23)

where Vij(rij) is a central pair potential, ρi(rij) - electron density and F - an embedding

function for the EAM potential specifically. Various forms for the electron density and the

embedding function F have been given.

2.1.3.2.1 Ackland-Mendelev Fe-Fe

In this work, the potential developed by Ackland et al. based on the earlier EAM and Finnis-

Sinclair type potentials is used to describe the interactions for Fe-Fe interaction. Three

different sets of parameters were used [40, 41, 42] where the general form of the potentials

to calculate the energy in a N atom system is :

E =
1

2

N∑
i 6=j=1

Vij(rij)−
N∑
i=1

F (ρi(rij)), (2.24)
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where the first term represents a pair potential and the second the embedded part. In this

thesis, we apply the Ackland 2004 [42] for computations give a better agreement with the

lattice parameter, elastic constants, point-defects energies etc, obtained experimentally and

by first-principles calculations. The details are given in Equations 2.25, 2.27, 2.28, 2.29 and

2.30 and Tables 2.3, 2.4 and 2.5.

V (rij) =
∑
k

akH (rk − rij) (rk − rij)3 , (2.25)

ak, rk are constants, with the values given in Table 2.4, rij is the atomic separation between

atoms i and j and H is the Heaviside function:

H(x) =

1, x ≥ 0,

0, x < 0.
(2.26)

F (ρi(rij)) = af0 [ρi(rij)]
1/2 + af1 [ρi(rij)]

2 + af2 [ρi(rij)]
4 . (2.27)

af0(eV/Å) af1(eV/Å
4
) af2(eV/Å

8
)

−1.0 −6.7314115586063× 10−4 7.6514905604792× 10−8

Table 2.3: Values of the parameters in Equation 2.27 for the Fe-Fe interaction described by the Ackland
2004 potential [42].

ρi(rij) =
N∑
j=1

Φij(rij) (2.28)

Φij(rij) =11.686859407970(2.4− rij)3H (2.4− rij)

− 0.01471074009883(3.2− rij)3H (3.2− rij)

+ 0.47193527075943(4.2− rij)3H (4.2− rij) (2.29)
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For the extreme short range repulsion, the screened electrostatic form of Biersack and Ziegler

[43] was adopted here as shown in Equation 2.30.

V (rij) =
∑
k

akH (rk − rij)H (rij − r2) (rk − rij)3

+H (r2 − rij)H (rij − r1) exp
(
B0 +B1rij +B2r

2
ij +B3r

3
ij

)
+H (r1 − rij)VZBL(rij), (2.30)

The parameters in Table 2.4 are splining coefficients used to link the pair potential to the

k Bk

0 7.4122709384068 eV

1 −0.64180690713367 eV/Å

2 −2.6043547961722 eV/Å
2

3 0.6262539393123 eV/Å
3

Table 2.4: Values of the parameters in Equation 2.30 for the Fe-Fe interaction described by the Ackland
2004 potential [42].

ZBL potential, which is calculated by Ackland et al. [42]. In fact, it would be better to

apply a fifth order exponential polynomial as shown in Equation 2.22.

2.1.3.2.2 Gao

A new Fe-He EAM potential was recently developed by F. Gao et al. [44] in combination

with the Ackland 2004 [42] and the Aziz [37] potentials. The potential based on an “s-band

model” shows an agreement with both ab-initio and the previous potential calculations.

The expression of the potential is very similar to the Ackland potential [42] and has the

same form of the pair potential (Equation 2.25) and the many-body interaction function

(Equation 2.27) with the parameters given in Tables 2.6 and 2.7 accordingly.

The total electron density is calculated in a different way to that of the Fe-Fe model. It
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k ak(eV/Å
3
) rk(Å)

1 1.0
2 2.05
3 −27.444805994228 2.2
4 15.738054058489 2.3
5 −2.2077118733936 2.4
6 −2.4989799053251 2.5
7 4.2099676494795 2.6
8 −0.77361294129713 2.7
9 0.80656414937789 2.8
10 −2.3194358924605 3.0
11 2.6577406128280 3.3
12 −1.0260416933564 3.7
13 0.35018615891957 4.2
14 −0.058531821042271 4.7
15 −0.0030458824556234 5.3

Table 2.5: Values of the parameters in Equation 2.30 for the Fe-Fe interaction described by the Ackland
2004 potential [42].

k 1 2 3 4 5 6 7

ak(eV/Å
3
) −45.91636 35.55031 164.31987 −1.72746 0.10677 0.07372 0.03824

rk(Å) 1.6155 1.6896 1.8017 2.0482 2.3816 3.5067 3.9028

Table 2.6: Parameters of the pair potential function in the many-body potential for the Fe-He interaction
described by the Gao potential [44].

af0(eV/Å) af1(eV/Å
4
) af2(eV/Å

8
)

0.22081 1.36751 3.38226

Table 2.7: Parameters of the many-body interaction function in the many-body potential for the Fe-He
interaction described by the Gao potential [44].
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is derived from the s-band model as follows:

ρi =
∑
j

Φij(rij), Φij(rij) = Nsr
3
ij exp (−2ξsrij), (2.31)

where ξs = 12.89363Å
−1

- an average from the 1s and 4s Hartee-Fock orbitals for He and Fe

and Ns = 20.0Å - represents the s-electron density at the first nearest neighbour distance.

For the short range interaction, the repulsive part of the pair potential was connected to

the ZBL universal function [43] and the final form of the interaction is:

V Fe−He
ij (rij) = Vij(rij)F (rij) + VBZ(rij) [1− F (rij)] , (2.32)

where F (rij) = 1/ (1 + exp (−bf (rij − rf ))) with bf = 10.0Å
−1

, rf = 0.25Å.

2.1.3.2.3 Stoller

A recently developed potential for He-Fe interactions, which was introduced by Stoller’s

group [45], includes a three-body term to stabilize the interstitial He defect in the tetrahedral

position in the Fe bcc system. This potential is tested and compared with the Gao potential.

To describe the atomic interaction of the helium-vacancy clusters HenVm in the bcc Fe

system, the Stoller potential is combined with the 1997 Ackland et al. potential [46] for the

Fe-Fe interactions whilst Gao’s uses the Ackland and Mendelev potential (AM-potential)

for the Fe-Fe interactions [42]. Both of the potentials use the Aziz helium potential for the

He-He interactions [37].

2.1.3.2.4 Voter-Chen

For the aluminium system, Voter and Chen’s EAM potential [47] was used to perform the

calculations. A universal function, scaling the cohesive energy of most metals, is taken here

to fit the embedding function. In their model, the pair interaction V (rij) was taken to be a
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Morse potential;

V (rij) = DM(1− exp(−αM(rij −RM)))2 −DM (2.33)

where parameters DM , RM and αM define depth, distance to the minimum and a measure

of curvature near the minimum. The density function is taken as;

ρi =
∑
j

Φij(rij) (2.34)

where

Φij(rij) = r6ij(exp(βrij) + 29 exp(−2βrij)) (2.35)

where β is adjustable and 29 is a relative normalisation factor, and the embedding function

F (ρi(rij)) (Equation 2.24) is fitted numerically from the Rose equation of the state [48].

To ensure continuity between the potential and first derivatives, a cut-off function is used

during the fitting procedure. The parameters for the Al potential can be found in [47]. For

our implementation tabulated values of the various functions were provided by A. Voter.

2.1.4 Boundary Conditions

Usually the atomic system under study is embedded in a larger system. In order for the

simulation to progress boundary conditions are required. Usually these are applied on planes

whose normals define the Cartesian axes.

2.1.4.1 Free Boundary Conditions

In an atomic system where particles are free to move, but confined due to strong interatomic

potentials, free boundary conditions allow the edge atoms to relax according to the same

rules as those internally. However, in this situation particles may be lost from the system.
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2.1.4.2 Fixed Boundary Conditions

Fixing the boundary condition means that edge atoms are not allowed to move. It helps

minimising the complexity of the simulation process, however, the boundary should be far

enough away that this has no or negligible effect on the accuracy of the simulation. Fixing

boundaries, is a common way to ensure process containment, such as when a large momentum

is imparted and atomic drift is to be avoided. This is depicted schematically in Figure 2.2.

Figure 2.2: Schematic representation of fixed boundary conditions in 2D with two outside atom layers fixed
(shown in red) and the rest of the atoms are allowed to move (shown in green).

2.1.4.3 Absorbing Boundary Conditions

In the case of radiation studies where a collision cascade reaches the boundary of the system,

it is possible to set the kinetic energy of the arriving cascade particles and the boundary

atoms to zero. This is the case of absorbing boundaries.

2.1.4.4 Periodic Boundary Conditions

An alternative to fixed boundaries are periodic boundary conditions (PBC). In this case the

simulation cell is replicated in each direction forming an infinite lattice (see Figure 2.3). This

helps simulating larger cells but only works well while the simulated event is contained in

the simulation box. Figure 2.3 represents the main principle of PBC: a particle which goes
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out of the primary cell through one side is brought back into the cell through the opposite

site.

Figure 2.3: Schematic representation of periodic boundary conditions, where the centre cell (primary cell) is
the simulated system and the cells around the primary cell (image cells) responsible for replicating the bulk
system effect. The main principle: if a particle leaves the primary cell on one side, it must re-enter the cell
on the opposite side.

These boundary conditions can be used in combination. In this thesis, the periodic

boundaries conditions are applied in three dimensions.

2.1.5 System minimisation

The results from simulations strongly depend on the initial state. Thus at the beginning

of a simulation it is necessary to make sure that the atoms are located at a global or at

least a local potential energy minimum, which is usually achieved by optimising the system’s

structure through the force field generated by the interatomic potentials. To minimise the

system, the minimisation method and required tolerance are the two main inputs. In this

work, two techniques were used for system minimisation: the conjugate gradient method

and L-BFGS-B.



22 CHAPTER 2. METHODOLOGY

2.1.5.1 Conjugate Gradient

The conjugate gradient (CG) method developed by Fletcher and Reeves [49] is an iterative

method with a high rate of convergence to find the minimum of a non-linear function f(x)

if its gradient vector g(x) can be calculated at any point x. This technique is used when the

lattice configuration was already close to a minimum energy configuration.

The first step is to calculate the initial gradient g(xn) ( g(xn) = −∇f(xn) ) which is

taken to be the initial search direction s0 from point x0, s0 = g(x0).

Then start the iterations

Step 1. Calculate α satisfying:

df(xn + αsn)

dα
= 0. (2.36)

Step 2. Compute a new point xn+1:

xn+1 = xn + αnsn. (2.37)

Step 3. Compute the new gradient g(xn+1):

g(xn+1) = −∇f(xn+1). (2.38)

Step 4. Compute the parameter β:

βn =
‖g(xn+1)‖2 − g(xn+1)

Tg(xn)

‖g(xn)‖2
. (2.39)

Step 5. Find the new direction sn+1:

sn+1 = g(xn+1) + βnsn. (2.40)

Step 6. Check the convergence by checking if the gradient is less than a tolerance ε to see
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if a minimum has been reached,

g(xn+1) ≤ ε. (2.41)

If the minimum is attained, terminate the iterations, if not - go to Step 1.

2.1.5.2 L-BFGS-B

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm is to approximate

the Hessian matrix by repeating using gradient evaluations.

The method starts with an initial guess x0 and the initial approximation of the Hessian

H0:

H0s0 = −∇f(x0), (2.42)

where f is the function being minimised.

Then iterations to approximate the Hessian Hn are given through:

• Step 1 - new direction - find a new direction sn by solving Hnsn = −∇f(xn),

• Step 2 - line search - find a reasonable step size αn (as in Equation 2.36) and get

xn+1 = xn + αnsn,

• Step 3 - new gradient - compute the new gradient g(xn+1):

g(xn+1) = −∇f(xn+1). (2.43)

• Step 4 - Hessian approximation - update the Hessian approximation:

Hn+1 = Hn −
(∇g(xn+1)−∇g(xn)) (∇g(xn+1)−∇g(xn))T

(∇g(xn+1)−∇g(xn))T αnsn
− (2.44)

Hn (αnsn) (αnsn)T Hn

(αnsn)T Hn (αnsn)
.

• Step 5 - repeat - if the convergence tolerance has not been achieved, go to Step 1.
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In this work, the improved BFGS method (L-BFGS-B) [50, 51] is applied. It uses only

a couple of vectors to represent the inverse Hessian matrix to improve the efficiency. The

L-BFGS-B method is implemented from the open source library SciPy 0.12.0 for the Python

programming language (http://www.scipy.org/).

2.1.6 System Thermalisation

In many cases, a thermostat is required to maintain the temperature of the system at the

desired temperature. When studying radiation damage in materials, this will be the case

when an excess energy is introduced in the system by collision cascades. Then the energy

of the system will increase causing the increase of temperature. Ideally, if a large enough

system is chosen, the energy from these impacts would dissipate throughout the system.

However, for small systems, thermal layers may be needed to remove the excess energy and

to bring the system to the required temperature.

To control a system’s temperature, so called thermostat algorithms are used. The actual

temperature can be calculated by

T =
2

3

EK
NkB

, (2.45)

where EK is the total kinetic energy, N is the number of moving atoms and kB is Boltzmann

constant.

There are quite a few thermostats and all of them have their advantages and disadvan-

tages. One of the most popular is the Nosé-Hoover thermostat [52]. It governs the atoms’

velocities by introducing a friction term coefficient in the equations of motion, which depends

on the actual and target kinetic energies. The coefficient is fairly easy to calculate and the

method can give a good canonical ensemble of the atoms. One of the drawbacks is that it

usually takes longer to reach the required temperature due to big oscillations.

Another popular thermostat follows Langevin dynamics [53]. In this case a small damping

constant is used in a modification of the Newton’s equations of motion proportional to the
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velocity, so that the actual temperature matches the target temperature.

In this work, the Berendsen thermostat [54] was used to control the temperature of the

systems by scaling the atoms’ velocities at each step in a way that the change in temperature

with respect to time is proportional to the difference between the actual temperature T and

the desired temperature T0,

dT (t)

dt
= 2γ (T0 − T (t)) , (2.46)

where T (t) is the temperature of the system at time t and where γ is a decay constant, which

controls the correction of the temperature.

It is proven that the velocity scaling factor per time step ∆t can be made exactly equal

to 2γ (T0 − T (t)) as follows:

λ =

√
1 +

∆T

τT
(
T0
T
− 1), (2.47)

where τT is a time constant, which is equal to 1
2γ

. Although a correct canonical ensemble gen-

erated by this thermostat cannot be achieved for a small system, in practise all thermostats

generate an approximate canonical ensemble for big systems.

2.2 Long Time Scale Dynamics

2.2.1 Introduction

While MD is an extremely powerful method for investigating many processes on an atomic

level, one of the major drawbacks it has is that simulations are generally limited to the order

of nanoseconds to microseconds. However diffusion processes occur on a much longer time

scale and are therefore out of reach of MD simulations.

In order to overcome this problem, we apply the on-the-fly Kinetic Monte Carlo (otf-

KMC) method, which was initially introduced by Henkelman [55]. This method differs

from the traditional KMC simulation in the way that all the transitions that can occur in

the system are not known before the simulation starts, but are calculated on-the-fly at the
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beginning of each KMC step. By this method, a simulation could be started from various

random system configurations, but this does not guarantee that all possible transitions will

be found during each step. When a list of transition events is generated, rates for each

transition are calculated from transition state theory, then a rate list is made and next the

system is evolved into a new state using the appropriate transition probability.

Point Defects

One way to quantify damage in a crystal lattice is to look for point defects. Basically

they can be classified into two types: an interstitial (an atom positioned away from a lattice

site) and a vacancy (an unoccupied lattice site). In this work, interstitials are visualized as

spheres and vacancies as cubes (see Figure 2.4).

(a) (b)

Figure 2.4: A visual representation of the main types of defects: (a) - He interstitial, (b) - Fe vacancy

The way to identify defects in the system is to compare the initial atom positions (ref-

erence lattice), with the current atom positions (input lattice). All the atoms that are not

located within a certain radius Rvac, named vacancy radius, are identified as defects, e.g. A

vacancy is simply a lattice site that should contain an atom within Rvac but does not, while

an interstitial is an atom that does not occupy a normal lattice site within Rvac.

Kinetic Monte Carlo

As an input KMC requires a list of all possible transitions the system can undergo along

with the associated energies. The algorithm can be expressed as an iterative procedure as

follows:

1. Set the initial time (usually t = 0),

2. Make a list of rates in the system ri regarding the possible events and sum them as
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R =
∑N

j=1 rj,

3. Generate a random number P between 0 and R,

4. Cumulatively step through all events until P is exceeded,

5. The transition is selected with respect to the current event and the system evolves into

a new state,

6. The time increment δt during the step is given by δt = − lnu
R

, where u is a random

number between 0 and 1,

7. Return to step 2.

Pre-definition of all possible events is sometimes feasible if simulating a simple crys-

tal structures. However, it becomes a problem when dealing with more complex systems.

Henkelman and Jónsson [55] attempted to overcome this problem with their on-the-fly ki-

netic Monte Carlo (otfKMC) method to carry out long time scale dynamics simulations

within the harmonic transition state theory (hTST) approximation to study Al (100) crystal

growth. They suggested to characterise a system by its local energy minimum, do multiple

saddle searches on the fly and calculate the rate of each transition using harmonic transition

theory, where the clock was advanced with a chosen transition.

The rate of each transition is calculated using the Arrhenius equation:

r = τ exp (−∆E/kBT ) , (2.48)

where ∆E is the energy barrier of the i’th transition, kB - Boltzmann’s constant, T - tem-

perature of the system and τ is the transition prefactor. For example, 0.3 eV implies a hop

time of 110 ps at 500 K with a prefactor of 1013 and 2 eV implies 0.46 years for a hop at 500

K with a prefactor of 1013, more examples are shown in Chapter 3.

As can be seen in Equation 2.48, transition rates mainly depend on the energy barrier

∆E and the prefactor τ . Further, ∆E is calculated by examining the initial minimum and
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saddle states of the transition. Therefore it is crucial to determine the saddle state accurately

since it connects two minima via the minimum energy pathway (MEP) and determines how

likely a transition will be picked to advance the system. Various methods are introduced to

find the saddle points. These are known as transition search methods.

2.2.2 Saddle Finding Methods

As mentioned earlier, saddle point finding methods are used in the otf-KMC scheme to find

possible transitions. The main feature is that they require only the initial configuration of

the system in order to return local saddle points. All these techniques work in a similar

way by locating and following the lowest curvature mode, along which the saddle point is a

maximum.

2.2.2.1 Dimer Method

The Dimer method developed by Henkelman and Jónsson [56] represents a system’s state

as two images (this pair of images is referred as a “dimer”) having almost the same set of

coordinates with small fixed displacement. It can be thought of as a two step algorithm,

where the first step is the dimer’s movement and the calculation of the acting forces and

energies on it (Figure 2.5a). The second step is the rotation of the dimer towards the mini-

mum energy configuration (Figure 2.5b). The advantage of the Dimer method is the usage

of only first derivatives of the potential energy since the inverse Hessian is computationally

expensive to calculate.

In Figure 2.5a R represents the coordinate of the system’s midpoint (state) in 3N di-

mensional space. Points R1 and R2 are the pair images separated from R by ∆R and are

orientated in the direction of a unit vector N̂. Initially and every time when the dimer is

moved to a new location, the corresponding energies (E1, E2) and forces (F1, F2) at (R1, R2)

are evaluated. The energy of the dimer is simply a sum of energies of the images E = E1+E2,

where the force and the energy at the midpoint R, FR and E0, are calculated from the two
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images (Equation 2.49) as follows:

FR = (F1 − F2) /2,

E0 =
E

2
+

∆R

4
(F1 − F2) · N̂. (2.49)

The dimer’s rotation towards the minimum energy configuration is based on the idea, that

minimising the dimer’s energy E is equal to finding the lowest curvature mode atR, estimated

using Equation 2.50. This is done by rotating the dimer along the rotational force F⊥ =

F⊥1 − F⊥2 , where F⊥i ≡ Fi − (Fi · N̂) · N̂, i = 1, 2, until the tangential force is zero.

C =
(F2 − F1) · N̂

2∆R
=
E − 2E0

(∆R)2
. (2.50)

(a) (b)

Figure 2.5: The Dimer method as in [56]. (a) - the definitions of the dimer’s midpoint, image points and
the acting component and rotational forces on them, (b) - the definitions of the quantities used during the
rotation of the dimer.

Figure 2.5b shows the basic steps of the dimer’s rotation. A new unit vector Θ̂, perpen-

dicular to N̂ and parallel to F⊥, is defined to form an orthonormal basis which spans the

rotation plane. At first, the dimer is rotated about a small angle dθ (see Figure 2.5b), then

using the orthonormal basis new image points are calculated (Equation 2.51) and the acting
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forces F∗1, F∗2, F∗ = F∗1 − F∗2 are estimated.

R∗1 = R +
(
N̂ cos dθ + Θ̂ sin dθ

)
∆R,

R∗2 = R∗1 − 2∆RN̂. (2.51)

The finite difference approximation of the derivative of the rotational force is given in Equa-

tion 2.52, which is to be minimised.

F ′ ≈

∣∣∣∣∣F∗ · Θ̂∗ − F · Θ̂
dθ

∣∣∣∣∣
θ=dθ/2

. (2.52)

In this work the harmonic approximation of the rotational force F = A sin [2(θ − θ0)],

where A, θ, θ0 are fitting constants and its derivative F ′ = 2A cos [2(θ − θ0)] are used to

approximate the rotation angle ∆θ as follows:

∆θ = −1

2
arctan

2F0

F0
′ , (2.53)

where F0 and F0
′ are values of F and F ′ evaluated at θ = 0.

Then ∆θ is used to minimise the dimer’s energy with the CG method using the modified

Newton method [56] as the line search.

After the minimisation by rotation, the dimer will be oriented along the local lowest

curvature mode and this is followed by the dimer’s translation. Depending on the curvature

value C, calculated using Equation 2.50, two schemes are used. First, when the curvature

value is positive, the dimer is allowed to move out of that region by relatively big steps.

Second, when the curvature has a negative value, the dimer is getting closer to the saddle

point and the saddle point is approached by smaller steps. The two cases can be expressed

as follows:

Ftrans =

 −F‖, C > 0,

F− 2F‖, C < 0,
(2.54)



2.2. LONG TIME SCALE DYNAMICS 31

where F is the real force acting on the dimer, F‖ - the component of the force parallel to the

N̂ and given by: F‖ = F
‖
1 + F

‖
2.

In the C < 0 region, the modified force is equivalent to converting the saddle point to a

local minimum and in this region the lowest curvature direction is calculated from the lowest

eigenvalue of the Hessian via the Lanczos method, followed by a CG minimisation.

2.2.2.2 Activation-Relaxation Technique (ART)

The Activation-Relaxation Technique (ART) was developed by Barkema and Mousseau [57,

58]. The ART algorithm requires only an initial state and consists of three main steps:

Escaping from a local minimum: this is done by an initial random displacement from

the minimum. The displacement could include one or more atoms, however, it will be more

efficient when atoms displaced are within the area surrounding the defect. The direction

of the displacement is chosen to be along the force resulting from the displacement, which

is done by checking that the increment in force components parallel to the displacement is

getting very small or the ratio between the parallel and perpendicular force components is

less than a given value. In this work a single point R is considered in 3N space and displaced

to R∗ using a random displacement vector ~N as shown in Figure 2.6.

Figure 2.6: This figure shows the components of force resulting from a random displacement from point R
to point R∗ using a random displacement vector ~N used in the ART method to escape from a basin. The
modified force vector is described below.



32 CHAPTER 2. METHODOLOGY

Moving to an adjacent saddle: the next step is to introduce a modified force vector:

Fmodified = F− (1 + α)F‖ (2.55)

where the total force F can be decomposed into parallel and perpendicular forces. α is a

control parameter usually set to be 0.15/displacement. After the modified force is determined

the point R∗ is moved to R∗∗ with a step size δt:

R∗∗ = R∗ + Fmodifiedδt (2.56)

The direction of the modified force is then followed until it finds a saddle point. Changing

the sign of the component of the force which is parallel to ~N is considered to be an indication

of crossing a saddle point.

Minimising to new minimum: once the saddle point is found, a minimisation technique

such as conjugate gradient can be used to bring this saddle to a new minimum on the other

side of the hill. To avoid the convergence to the original minimum it is usual to move slightly

past the saddle point before minimisation.

2.2.2.3 Relaxation and Translation Method

The relaxation and translation (RAT) method was developed by Vernon [28] (see Figure

2.7). The idea behind it was that the ART method gave lots of transition duplicates for the

calculations and thus larger number of searches would have to be done before all possible

transitions had been explored.

Unlike the ART method, in the RAT method, the vector Ni is constructed by tethering

the current position Ri to the previous historical step Ri−1. Similarly to the ART method,

the force acting on the search point is decomposed into perpendicular and horizontal forces

and the search point is relaxed along the perpendicular vectors to Ni. There are two main

steps involved in RAT method:
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In the first part, after an initial displacement or translation step, force minimisation is

applied. R′i is relaxed along the direction F⊥,j which is the perpendicular force to
−→
N′i and

moved to Ri, as shown in Figure 2.7, with a variable step size depending on force change,

which is given by:

Stepsizej+1 =

Stepsizej + 20%Stepsizej, ratio < 1.2,

Stepsizej − 50%Stepsizej, ratio > 1.2,
(2.57)

ratio =
‖F⊥,j+1 − F⊥,j‖
‖F⊥,j‖

(2.58)

Figure 2.7: Schematic illustration of force minimisation in the RAT method. Orange arrows indicate the
direction of the perpendicular force component. The initial displacement vector N′i tethers the current
position R′i to previous step Ri−1, while the relaxed displacement vector Ni tethers the relaxed position Ri

to Ri−1.

After the relaxation step, the point R′i is relaxed to Ri. Then the new normalised

translation vector can be constructed by:

N′i+1 =
N′i + Ni

|N′i + Ni|
(2.59)

where the vector N0 is a random unit vector, which for all the other steps Ni, i ≥ 1 is

constructed in this way.

The search point is then moved along this new direction N′i+1. The relaxation and
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translation procedure is replicated until the dot product of the parallel force component and

the displacement vector turns positive. The saddle point will then be crossed.

2.2.2.4 Minimum Mode Following Algorithm

The basic idea to find the saddle point with only the knowledge of the initial state is to

climb up from the initial minimum to the saddle using the vector of the lowest eigenvalue

(minimum mode) of the Hessian matrix when in a region close to a saddle. The biggest

drawback is the computationally expensive effort of finding the full Hessian matrix in order

to solve the eigenvalue problem.

A Minimum Mode Following Algorithm (MMFA) has been developed by A. Pederson

et al. [59] in 2011. The MMFA could be used to climb up from initial point to the saddle

without the need of constructing the Hessian matrix. This is done by introducing the effective

force:

Feff = F− 2 (F · vmin) vmin, (2.60)

where Feff is the effective force driving the system to a saddle point, F is the actual force

and vmin is the eigenvector corresponding to the lowest eigenvalue. With the Feff so defined,

the rank 1 saddles become local minima and local optimisation algorithms can be used to

found them.

vmin can be found by constructing the Hessian which includes the second derivatives

of the potential energy, diagonalising the matrix and find the lowest eigenvalue. However,

since to know the eigenvalues for the full Hessian matrix is wasteful, this construction can

be omitted from this process and the lowest eigenvalue only can be calculated during the

simulation. For instance, a similar technique used in the dimer method can be used here as

the dimer after rotation is along the minimum mode direction. Another approach which has

been used to obtain the lowest eigenvalue is using the Lanczos algorithm [60] without the

need of constructing the Hessian matrix.

For this work, the dimer method is used to approach the saddle and then the Lanczos
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algorithm is used for saddle convergence. The Lanczos algorithm is used to convert the

Hessian into a tridiagonal matrix where the Linear Algebra Package (LAPACK) is used to

find the lowest eigenvalue of the updated matrix. This reduces the computational time spent

by minimisation and finding the Minimum Energy pathway (MEP) using the NEB technique

given in Section 2.2.3.1.

2.2.2.5 Lanczos Algorithm

The Lanczos algorithm is a very powerful technique to save computational time while cal-

culating eigenvalues and eigenvectors of a symmetric matrix. The algorithm is an iterative

procedure [60] and operates on the idea of converting a symmetric matrix A to a tridiagonal

symmetric matrix as follows:

Listing 2.1: Lanczos algorithm

1 β1 = 0 ; v0 = 0 ; v1 = normal i sed random vecto r .

2 f o r i in range (1 , m)

3 wi = Avi

4 αi = wi · vi

5 wi = wi − αivi − βivi−1

6 βi+1 = ‖wi‖

7 vi+1 = wi/βi+1

8 end ;

where A is a symmetric matrix (in our case it is the Hessian at a certain phase space point

of the system), αi and βi are the elements of the tridiagonal result matrix (Equation 2.61),
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m - the size of the symmetric matrix and vi are the orthonormal Lanczos basis vectors.

T =



α0 β1 0 · · · 0

β1 α1 β2 · · · 0

0 β2 α2 · · · 0

0
. . . . . .

... 0

0 0 βn−2 αn−2 βn−1

0 0 0 βn−1 αn−1


(2.61)

The effectiveness of the Lanczos method also comes from the approximation of Avi by

the difference in the Taylor expansion forces around the phase space point x+ δvi with error

either O(δ2) (Equation 2.62) or O(δ3) (Equation 2.63) as follows:

Avi = −f (x + δvi)− f (x)

δ
+O

(
δ2
)

(2.62)

Avi = −f (x + δvi)− f (x− δvi)
2δ

+O
(
δ3
)

(2.63)

where δ � 1.

It is known, that due to the computational errors, the exact orthogonality of the Lanczos

basis is not exactly preserved [61]. To deal with this problem, the least squares method

(LSM) is used as follows:

vi = vi − Lisi, (2.64)

where Li is an orthonormal Lanczos basis consisting of i−1 Lanczos vectors vj (j = 1, i− 1)

and si is the least squares method’s (LSM) solution of the problem: Lisi = vi. Equation

2.64 removes the non-orthogonal error from the Lanczos vector.

Empirical tests showed that the orthogonal correction by the LSM is sufficient while the

number of the Lanczos basis vectors is lower than 50. Otherwise, the LSM method contri-

bution to the overall computational costs per Lanczos iteration increases significantly and
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the difference between time taken by the Lanczos method compared to explicit calculations

of the eigenvalues and eigenvectors of the Hessian matrix is small.

The iterative Lanzcos procedure is stopped when the desired convergence of the lowest

or other (specified by the user) eigenvalue (calculated using the QR method which is imple-

mented from the Linear Algebra PACKage (LAPACK) library and is special designed for

estimating eigenvalues/eigenvectors of a tridiagonal symmetric matrix, to calculate the low-

est eigenvalue and corresponding eigenvector of the tridiagonal symmetric matrix) is reached

by checking if the relative change of the eigenvalue is less than the specified value. The de-

fault tolerance used in the simulations is 0.01, since the tighter tolerance did not have a

significant impact on the results.

2.2.3 Barrier Calculating

The above techniques determine the height of the saddle and a path to the next local min-

imisation but they may only provide a loose estimate of the actual energy barrier associated

with the saddle. In fact, due to the way they work (searching up hill from a minimum)

they will often overestimate the height of the saddle point unless very small steps are taken.

Thus a different set of techniques are required to accurately determine the energy barrier

associated with a transition in a reasonable computing time. These techniques require both

the initial and final configurations of the transition to calculate the barrier and find the

Minimum Energy Pathway (MEP) more accurately.

2.2.3.1 Nudged Elastic Band Method

The Nudged Elastic Band Method (NEB) is a way to find the minimum energy pathway

between the initial and final system configurations (images). This is done by initially creating

a chain of evenly separated intermediate images (R1,R2, · · · ,Rm) and calculating acting

forces on them as shown in Figure 2.8. Spring interactions between neighbouring images are

added, thus imitating an elastic band and ensuring the continuity of the path. To prevent
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both the spring and the true force from effecting the convergence to the MEP, only the

perpendicular component of the true force and the tangential component of the spring force

are considered. The steps of implementation of the NEB method are summarised below:

Figure 2.8: Schematic representation of the NEB method; where the black points represent the initial NEB
images and the blue points are for the final NEB images joined by the MEP. Acting forces on images are
shown as green arrows. The green point depicts the saddle point.

In this work an improved tangent estimation is used, which was suggested by G. Henkel-

man and H. Jónsson [30]. They changed the original estimation by using different tangent

definitions according to the energies of the nearby images, thus eliminating some cases, when

the method did not converge to the MEP. The tangent to the path τi is given by

τi =



Ri+1 −Ri if Ei+1 > Ei > Ei−1,

Ri −Ri−1 if Ei+1 < Ei < Ei−1,

(Ri+1 −Ri)∆E
max
i + (Ri −Ri−1)∆E

min
i if Ei < Ei−1 < Ei+1,

(Ri+1 −Ri)∆E
min
i + (Ri −Ri−1)∆E

max
i if Ei > Ei−1 > Ei+1,

(2.65)

where Ri represents atoms’ positions of an image i, and ∆Emax
i = max (|Ei+1 − Ei| , |Ei−1 − Ei|),
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∆Emin
i = min (|Ei+1 − Ei| , |Ei−1 − Ei|). The NEB method defines the force acting on image

i as:

Fi = FS
i + FP

i , (2.66)

where FP
i is the projection of the true force acting on image i perpendicular to the tangent

vector, and FS
i is the spring force parallel to the unit tangent vector τ̂i, given by:

FS
i = k (|Ri+1 −Ri| − |Ri −Ri−1|) τ̂i, (2.67)

where k is a spring constant. Once all the forces have been calculated the images are relaxed

simultaneously by translating the m image points in 3N space to one point in 3Nm space.

In this way the band moves iteratively towards the MEP.

After the tangent vector and acting force evaluation for each image have been determined,

minimisation is carried out through simultaneous relaxation of each image. The saddle point

is interpolated from the force band images.

A good improvement of the NEB is the climbing image method [62] which is implemented

by movement of the image with the highest energy which can be identified after some itera-

tions of the original NEB perpendicularly to the band. This will result in images converging

to the MEP and the climbing image to the saddle point which will escape the interpolation

step by converging directly to the saddle point. The way is every few relaxation steps, the

force of the highest energy image is modified according to Equation 2.68, thus removing the

spring force and only the real force is reflected parallel to the tangent vector.

Fimax = Freal
imax
− 2 Fimax |‖τimax

. (2.68)

2.2.3.2 String Method

The NEB method uses a parameter, the spring constant k. If k is chosen too small, the

elastic band may be a poor description of the MEP, while if it is chosen too big, the method
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will converge only slowly and will require a lot of force calculations. The string method

[63, 64] avoids this issue by constraining the distances between images.

Similarly to the NEB method, the string method also starts with given initial and final

states and returns the saddle point and MEP. For any image in the potential field, it would

“fall” into the local minimum due to the potential force if there were no other restraints.

The NEB method assume the images are linked with elastic bands, the artificial spring force

along the path prevent the images from falling into the local minimum at the ends. For the

string method, this is done by enforcing a particular parameterisation. The string method

can also be viewed as the inextensible limit k →∞ of the elastic band method, i.e. replace

the elastic bands by strings in the elastic band method.

In each iteration of the string method, there are two main steps: an evolution step and

a reparameterisation step (interpolation step). The evolution step guides the string toward

the MEP, and the reparameterisation step redistributes the images along the string after

each evolution step. A schematic illustration is shown in Figure 2.9.

Figure 2.9: Schematic illustration of one iteration of the string method showing the initial string, the evolved
string and the evolved string after reparameterisation. Figure taken from [64].
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In the evolution step, the total force acting on the image is given by

Fi = FP
i + λiτ̂i. (2.69)

where λiτ̂i is a Lagrange multiplier term, which is added to enforce the particular parametri-

sation that we have chosen. Together with Equation 2.65, one can get the evolved string.

Then for the interpolation step, one can choose parametrisation by equal arc length or

by energy-weighted arc length.

In the original string method, the main difficulty is in the computation of the projected

force. Numerical stability requires changing the way that the tangent vector is computed

before and after the saddle points are crossed. To simplify the original string method, the

discrete points on the string are evolved over some time interval δt according to the full

potential force, i.e. replace Equation 2.69 by

R̈i = Fi = −∇V (Ri) (2.70)

Then Equation 2.70 can be integrated in time by any ODE solver.

During the calculation of the simplified string method, the images are first evolved and

then reparameterised (such as by interpolation to keep the images the same distance apart)

at every iteration step. These images eventually converge to MEP.

Typically what could happen in a practical implementation is that each image of the

string moves slightly at each step towards the nearest local minimum. The images are then

interpolated so that they are equidistant and the process repeated.

The simplified string method has one more advantage: the initial string can be chosen

arbitrarily, not necessary to be a string that connects two minima. The ends must only lie

on different sides of the saddle.

Based on the efficiency of the computation, the dimer method is chosen to approach the

saddle point and when the dimer’s curvature becomes negative, MMFA is applied to get the
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saddle point. The NEB method is also used for a double check of the energy barrier.

2.2.4 Atom Lists and Volumes

In order to save computational time during the force evaluation procedure in the saddle point

searching technique, different radii were used to create atom lists on which forces must be

evaluated without losing accuracy. It is possible to use such lists when interatomic potentials,

describing the system of interest, have a rather small cut-off. In this work, atom lists were

used when the α-Fe system was evolved using the KMC technique.

It was estimated, that in order to have accurate evaluations of the energy and forces

acting on an atom in bcc Fe, atoms within 8.5Å must be included, as it shown in Figure

2.10. This radius is called the “inclusion radius” throughout this work.

Figure 2.10: 2D representation of the inclusion radius: to have a good estimate of the energy and force
acting on the Fe atom (red), atoms within an 8.5Å radius must be included (green).

Also in order to speed up simulations, different types of atom lists (volumes) are created

to ensure minimum usage of computational power. The sizes of the volumes are controlled

by the user of the KMC code and are created around residual defects in the system. The

volumes are in ascending order of size as graphically presented in Figure 2.11.
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• Initial search radius - this radius serves two purposes. The first one is to group

residual defects into one cluster if defects are not separated by more than this value

(in this work, 2.9 Å is chosen). This region is termed as a “defect volume” (DV)

through this work and is one of the main characteristics in the otf-KMC technique.

The second purpose is to create an initial list of atoms to be randomly displaced and

used by one of the single-ended saddle search methods.

• Graph radius - this radius is used when building a graph network and it should

include the search initial radius. 3NN (third nearest neighbour) distance is used in

this work.

• Search move radius - this radius should be bigger than the graph radius and it

includes the atoms that can move during the search for possible transitions. A typical

value is 5.0Å.

• Saddle converge radius - sets an additional radius around the search move volume,

to include even more atoms for a better convergence to a saddle point with the minimum

mode following algorithm.

• Inclusion radius - this should include all atoms that are included in force evaluation

and it should be far more than all the above radii.

2.2.5 Prefactor

When a saddle state is determined by one of the transition search methods, the next issue is

to determine the prefactor for this particular transition, which describes how likely it jumps

between local minima through the saddle. In this work two options were considered - a fixed

prefactor with a value of 1013s−1 and a calculated one, using the Vineyard equation [65]:

τ =

∏N
j=1 υj∏N−1
j=1 υ

∗
j

, (2.71)
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Initial search volume

Graph volume

Search move volume

Saddle converge volume

Inclusion volume

Figure 2.11: Representation of different atomic volumes used throughout the KMC algorithm around a
vacancy defect: to create a defect volume (initial search volume), to classify a defect volume (graph volume),
to look for saddles (search move volume), to converge to a saddle (saddle converge volume) and to estimate
energetics of the saddle converge volume (inclusion volume).

where υ and υ∗ are the normal frequencies for vibrations at the initial (local minimum) and

saddle states respectively.

The normal frequencies used in Equation 2.71, at the initial and saddle states, are de-

rived from the eigenvalues using Equation 2.72. Eigenvalues are calculated by numerically

constructing the Hessian H (Equation 2.73) and then applying the DSYEV routine from the

Linear Algebra Package (LAPACK).

υ =

√
λ

2π
, (2.72)

here, λ is the eigenvalue of the Hessian matrix from which the normal frequency υ is derived.

This Hessian is determined numerically whose i-j th element is given by:

Hi,j =
1

2
√
mimj

(
F j+
i − F

j−
i

2δ
+
F i+
j − F i−

j

2δ

)
, (2.73)

where F j+
i is the force acting on i-th component due to the positive (‘-’ - negative) dis-

placement in the j-th components position, δ is the displacement (0.001Å) and mi is atomic

mass of the i-th atom. To gain accuracy, the element Hi,j is calculated as an average of the

symmetric elements, which can differ slightly due to rounding errors.
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2.2.6 Transition Search Algorithm

An eight step procedure was implemented to find transitions on a defect volume.

• Step 1: Initial displacement - displace atoms within the initial search radius in the

initial search volume, from a randomly picked atom in the volume.

• Step 2: Saddle search - after the initial displacement, the Dimer method is used

to approach a saddle state, which is connected with the initial minimum state via the

minimum energy path. The Dimer method was chosen because it is not only one of the

most robust methods that uses only first derivatives, but also it estimates the curvature,

which is directly linked with the lowest mode, without additional force evaluations.

• Step 3: Convergence to a saddle - when the Dimer approaches a saddle, the

procedure switches to use the minimum mode following algorithm when the Dimer’s

curvature becomes negative.

• Step 4: Estimate eigenvalues - if prefactors are calculated on the fly, the eigenvalues

at the saddle state are calculated and together with the initial eigenvalues are used to

calculate the prefactor for this transition later on.

• Step 5: Check of the saddle’s rank - if prefactors are calculated on the fly, it is

important to ensure that the rank of the saddle point is equal to 1, that means it has

only one negative eigenvalue. If the saddle has rank 2 (there are two negative eigen-

values), the Vineyard’s equation is invalid and the prefactor cannot be calculated. To

ensure, that the saddle has rank of 1, the original minimum mode following algorithm

suggested by Pedersen et al. [59] is used to climb down from a rank 2 saddle state, to

a rank 1.

• Step 6: Uniqueness check of the saddle - once the saddle state is approximated,

calculation of the separation of atoms in the defect volume determines if it is a valid
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result. If the separation is less then (0.5Å), the result is taken as a duplicate of one

already determined and the procedure is terminated.

• Step 7: Find the final minimum - to find the final minimum joined by the MEP

through the saddle state, the system at the saddle state is given a little push in the

direction of the vector from the initial minimum state to the saddle state. Then this

minor displacement is followed by a minimisation that uses two methods: the first one

is the classical steepest descent method with tolerance of 10−1eV/Å to approach the

final minimum quickly with as little computational costs as possible and the second

one is the L-BFGS-B method with a tight tolerance of (10−3eV/Å), which works best

when the initial system state is in the neighbourhood of a minimum.

• Step 8: Calculate the rate value - if the previous steps were successful, the tran-

sition search algorithm finishes by calculating the rate value for the found transition

using the Arrhenius equation (Equation 2.48). The prefactor is either calculated on

the fly or using the default value of 1013s−1. 1013s−1 was found to be a typical value

for many transitions and considerable computing time is saved using a fixed prefactor.

If in any of the steps the algorithms fail to complete their tasks, the transition search is

discarded as unsuccessful.

2.2.7 on-the-fly Kinetic Monte Carlo Algorithm

The fundamental steps of the otf-KMC method, suggested by Henkelman and Jónsson [55],

can be summarised as follows:

The first step is to identify defects present in the system. In our cases, this might be

an interstitial atom, a group of interstitials, a vacancy or a group of vacancies. It is crucial

to locate defects in order to minimise the search space by limiting the volume where the

searches are initiated, thus making transition search algorithms and the KMC technique

more efficient. The next step is where a saddle search method is employed to find possible
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transitions from the current state and estimate rate values for each of them. Then, the next

step is the KMC roulette technique, which picks a random transition as a new state and

calculates the elapsed simulation time between current state and the new one. Lastly, the

system is advanced to a new state. In this thesis, generally only one step otf-KMC was

applied for searching the transition but in principle the method can be repeatedly applied

to follow a system’s motion over long time scales.

2.2.8 Parallelisation

To efficiently perform the transition searches of the otf-KMC, it is necessary to parallelise

the computation over multiple processors.

During the parallelisation, the main applied steps that the main server will do are:

• Minimising the initial system.

• Identifying defects in the initial system.

• Building defect volumes.

After that, the server allocates jobs need to be done like transition searches for the defect

volumes on multiple processors. It establishes communication with these clients to send the

data needed to perform their tasks and to gather results for further actions.

During this project, between 8 and 60 processors were used in parallel on Loughborough

University’s high performance computer (Hydra).
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Chapter 3

Helium Bubble Formation and

Growth in bcc Fe

3.1 Introduction

Reduced-activation ferritic/martensitic steels are candidate materials for use in nuclear re-

actors [66, 67]. The presence of transmutation-created helium plays an important role in

the microstructural evolution of these steels under neutron irradiation. Interstitial helium

atoms increase the production of Frenkel pairs whilst substitutionals tend to decrease this

production [68].

Small helium-vacancy (HenVm) clusters may play an important role in the nucleation of

He bubbles. Helium bubbles will cause additional swelling and embrittlement [1, 69]. Helium

effects on microstructural evolution in tempered martensitic steels were characterised using

a novel in situ He-implanter technique by Yamamoto et al. [70] combined with neutron

irradiation at 500 ◦C. Most bubbles that formed had diameters of less than 2 nm (see Figure

3.1).

Ono [71] has studied the formation and migration of He bubbles in high purity Fe and

Fe-9Cr ferritic alloy by in situ transmission electron microscopy (TEM) observation, which
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Figure 3.1: (a) shows a representative micrograph for the AT F82H implanted to 380 appm He (nominal
He/dpa = 40 appm/dpa) imaged at a 768 nm under-focus condition. A map for the features identified as
bubbles by through-focus sequence examinations are shown in the white on black image in (b). It shows
that this irradiation condition produced ∼ 5.3×1022/m3 small bubbles with an average diameter of 2.0±1.4
(one standard deviation) nm. The image is taken from [70].
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shows bubbles preferentially form at dislocations in both materials at 200-400 ◦C. The size

distributions of bubbles formed at 400 and 600 ◦C were compared to show that adding Cr

could reduce the diffusion of He. Some bubbles that were not formed at dislocations, were

shown to grow in size at elevated temperatures and the motion of small bubbles (<≈ 3 nm

diameter) was observed over periods of seconds in pure Fe at 750 ◦C. However the energy

barrier for this motion to occur is very large, of the order of 3.5 eV.

Work by Henry et al. [72] demonstrated the effect of helium on the fracture properties of

a 9Cr martensitic steel. The large number of He bubbles observed in the TEM micrograph

were of the order of 0.5 nm in diameter and this small size was attributed also to the influence

of Cr inhibiting bubble growth. Finally experimental work from Yu et al. [73] in pure Fe

at room temperature has indicated that there is a distribution of sizes with a fairly narrow

spread and preferred He bubble size of the order of 1.3 nm in diameter (see Figure 3.2).

(a)

(b)

Figure 3.2: (a) Higher magnification cross-sectional TEM (XTEM) micrograph shows the formation of He
bubbles along a grain boundary. (b) Statistical distribution of He bubble sizes in 96 nm irradiated Fe films
with an average grain size of 700 nm show the average bubble size is 1.3 nm. The images are taken from
[73].

The conclusion of the experimental work is therefore that the bubbles in Fe prefer to

remain small at room temperature and especially so when chromium is added to the matrix.
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When the temperature is increased then smaller numbers of larger bubbles are formed.

However, the atomistic properties of He in metals are difficult to identify experimentally.

Thus atomistic simulations such as molecular dynamics (MD) and Kinetic Monte Carlo

(KMC) provide useful tools to study the formation and the stability of these clusters.

Because of the significance of the He bubble problem, there has been much recent work

on atomistic modelling and developing interatomic potentials to model dynamical processes

involving He in metals. Caro et al. [74, 75] investigated the properties of helium bubbles in Fe

and FeCr alloys, mainly focussing on their dimensions and determining the bubble pressure.

Gao et al. [76] carried out atomistic simulation to examine the clustering of helium in bcc iron

and the growth of an helium bubble in helium-rich, vacancy-poor conditions. It was shown

that a 1/2 < 111 > dislocation loop is formed as a sequential collection of < 111 > crowdions,

the latter being the most stable self-interstitial atom configuration in the presence of an over-

pressurized He cluster. Di et al. [77] found that helium bubbles in Au preferentially nucleate

at screw dislocation nodal points and result in helium bubble superlattice formation, which

is completely isomorphic with the screw dislocation network along the twist-grain boundary.

Stoller and coworkers investigated the pressure and compressibility for He vacancy clusters,

bubble size, He content and temperature effects based on the Stoller’s potential described

in Section 2.1.3.2 [45, 78, 79]. It was found that the equilibrium He content is rather low

and at a room temperature it is ∼ 0.38 to 0.5 He per vacancy for bubble diameters from

1 to 6 nm by adopting a mechanical bubble dilatation criterion in which the equilibrium

bubble does not produce any stress fields in the matrix [78]. Jourdan and Crocombette [80]

proposed a variable-gap energy model for helium bubbles in Fe, based on MD calculations

to determine quantities such as binding energies, solid to fluid transition and helium density

in the bubbles.

Hafez and Schäublin [81] investigate the basic mechanisms of the interaction between a

moving edge dislocation and a void or He bubble, as a function of its He content, temperature,

interatomic potentials and interaction geometry by MD simulation. The results show that
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the He bubble induces an inhomogeneous stress field in its surroundings, which strongly

influences the dislocation passage depending on the geometry of the interaction.

Hayward and Deo [82] investigated He-H bubbles to examine the synergistic effect be-

tween H and He and were able to show that this synergy arose as a consequence of bubble

growth through helium induced loop punching, aided by the presence of hydrogen, instead

of as a direct interaction between hydrogen and helium.

Terentyev et al. studied the diffusivity of small helium vacancy clusters and pure He

clusters and also investigated the dissociation energies for the He vacancy clusters [83].

Hepburn performed a first-principles study to show the binding of additional He and V to

existing HenVm clusters could lead to unbounded growth [84].

Yang et al. [85] considered the nucleation of He bubbles at 800 K in bcc Fe using a

methodology similar to that described here. They were able to conclude that He would

diffuse with a low energy barrier of 0.06 eV rapidly forming small clusters that in turn could

also diffuse and that He4 clusters could emit an Fe interstitial and bind with a vacancy. This

process is sometimes termed ‘trap mutation’ in the literature. However once an Hen cluster

formed with a vacancy it became effectively immobile. This was followed by work by Gao et

al. [86] who investigated the properties of single vacancy clusters (HenV ). The results show

that at 300 K the HenV cluster is stable up to n = 6 and up to n = 16, the HenV2 cluster

is stabilised by the emission of an Fe interstitial in the form of a < 110 > dumbbell.

Morishita also evaluated the displacement field around a helium-vacancy cluster in Fe by

molecular dynamics and molecular static calculations [87]. Through computing the pressure

of the He, it was found that when the He pressure of a He-V cluster is high, Fe displacements

are compressive in the direction away from the cluster, but many configurations exist where

the distortion is not radially symmetric.

Trinkaus studied the energetics and formation energetics of Helium bubbles in metals

[88]. It was pointed out that at low helium production rates and high temperatures, an

HenVm cluster or helium bubble can absorb a sufficient number of thermally-activated or
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irradiation-induced vacancies to keep the internal pressure below the threshold values for

metal self-interstitial emission and dislocation loop punching. He also declared that at low

temperature, the clustering of helium leads to spontaneous formation of a Frenkel pair and

emission of metal interstitial clusters by over-pressurized bubbles and this is energetically

more favourable than the emission of single interstitials .

In this chapter, the results of a study both on the statics of small helium-vacancy clusters

in a bcc iron and their interaction with nearby collision cascades are presented, which will

provide insight into how a helium bubble forms and grows. We also investigate the structure

of small He clusters in Fe and the energy barriers that need to be overcome before growth

by diffusion can occur. The main results have been published in [89, 90].

3.2 Potential

As mentioned in Section 2.1.3.2, we have used two different groups of potentials for He in

a bcc Fe system. The potentials will be compared in the following sections (Section 3.3

and Section 3.7) by two aspects: first is the formation energy of defects and various helium-

vacancy clusters HenVm, and the other is the behaviour under collision cascades. The results

for the potentials give consistent conclusions. We choose Gao’s potential for detailed study

as this has been applied more widely.

3.3 Formation Energy

The formation energy of an He-vacancy complex HenVm (n He in m Fe vacancies) is defined

[89] as the difference in total energy between a crystal containing a defect and a perfect

crystal of the same number of Fe atoms with the corresponding number of helium atoms at

infinity in their lowest energy structure. This structure was determined separately for the
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two potentials for comparison.

Ef = Eb + (n−m)Evac −NFeEFe − nEsub
He , (3.1)

where Ef is the formation energy; Eb is the energy of the lattice containing the bubble; Evac

is the formation energy of a single vacancy in bcc Fe lattice, defined as follows;

Evac = E(v,N − 1)− (N − 1)EFe, (3.2)

where E(v,N − 1) is the energy of the lattice containing one vacancy, N − 1 is the number

of Fe atoms in the system. NFe is the number of Fe atoms in the lattice containing the

bubble; EFe is the cohesive energy of Fe and Esub
He is the energy of a helium substitutional

atom, defined as follows,

Esub
He = Eref

sub −N
ref
Fe EFe. (3.3)

It is the energy difference between a perfect lattice with an He atom at infinity and the same

one that has an Fe atom replaced by the He, i.e. the energy difference from replacing an He

atom at infinity with an Fe atom at infinity.

In the calculations for the formation energy, the box size is usually set to 30a0 × 30a0 ×

30a0, where a0 is the bcc Fe lattice parameter. For all calculations periodic boundary con-

ditions and constant volume are used.

First, we list the formation energy of several defects in the system. The calculations

give similar results which show the helium atom is energetically favourable to locate in the

substitutional site while the tetrahedral interstitial is more stable than the octahedral.

Potential
Fe cohesive
energy

vacancy
formation
energy

He substitu-
tional forma-
tion energy

He tetrahe-
dral forma-
tion energy

He octahedral
formation en-
ergy

Stoller 4.32 eV 1.71 eV 3.70 eV 4.33 eV 4.70 eV

Gao 4.013 eV 1.72 eV 3.76 eV 4.38 eV 4.47 eV

Table 3.1: The formation energy of defects calculated in two potentials.
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However, it is later shown that the energy barrier for an isolated interstitial He to become

substitutional and emit an Fe interstitial is very high. In theory, Kittle demonstrates the

cohesive energy of Fe is 4.28 eV [91]. Although there are some errors according to this

calculation, both of the two potentials still show consistent results with the experimental

work as shown in the following. Gao’s potential is chosen due to that it shows better

statistical results in the cascade simulations.

Assuming that the He atoms are located in pre-existing vacancies in the bcc Fe system,

the formation energy of the helium-vacancy clustersHenVm is calculated in two different ways

for comparison. The first way is to use spherical voids for the approximation of the vacancies

and an initial fcc structure for the helium clusters. The clusters have been generated with

the following procedure. We start by creating the pure bcc Fe lattice, then remove atoms to

get an approximately spherical vacancy cluster. Next we generate an He bubble in the fcc

structure of approximately the same size as the vacancy cluster and place this into the Fe

lattice. The system is relaxed using a conjugate gradient algorithm. For each ratio several

initial random configurations are tested and the one with the lowest formation energy is

kept. The results determined in this way have been published in [89].

It was found that the previous method did not always produce the lowest energy system

and so a second method was adapted. For the second way, a Monte Carlo algorithm used to

determine the lowest energy configuration of the cluster [92] which is organised as follows.

First, the energetics of voids without helium are investigated. A vacancy is introduced into

the simulation cell and the system is minimised using a conjugate gradient algorithm, yielding

a single vacancy formation energy Evac of 1.72 eV. Next, the atom with the highest potential

energy is removed from the system and again the system is minimised. This scheme is

iteratively continued to create voids up to the number of target vacancies and the formation

energy of each is calculated. Next, helium atoms are introduced to the vacancies. The total

system energy is measured and recorded. At this point, a Metropolis MC scheme [93] is used

to find the low energy configurations. Every helium in the system is randomly displaced from
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its site up to a maximum of rmax (4.5 Å, the cut off distance for He-He interactions) in each

of the x, y and z directions and then minimised using the conjugate gradient algorithm. Each

bubble is evolved for a minimum of 10,000 steps. After that, the searches will be terminated

if the system energy does not drop within a further 10 steps. A schematic of this iterative

process is shown in Figure 3.3.

Figure 3.3: The process is shown for He3V1. First, He atoms are randomly inserted (a) and then minimised
(b). Next, He atoms are displaced randomly in the x, y, z directions (c) and minimised multiple times. The
final configurations are determined from the lowest energy of the minimised structures (d). The He atoms
are shown as red spheres and Fe atoms are green. The green cube is the vacancy of the bcc Fe cell.

Figure 3.4: The formation energy as a function of the number of helium atoms for different sizes of HenVm

clusters using two different potentials and computed in MC algorithm for the configuration of HenVm.

Figure 3.4 shows the formation energy of the HenVm clusters calculated from both the
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tested potentials from the MC algorithm at 0 K. Each curve is with a fixed number of

vacancies, which implies that all the bubbles locating on the same curve have the given

number of preformed vacancies before the He is inserted. To ensure the results can be

compared on a similar scale, the figure shows the formation energy per vacancy. It is clear

that each curve reveals the same trend; that is to say there is an optimal (lowest formation

energy per vacancy) He-to-vacancy ratio for each curve (calculated with a fixed number of

vacancies). The optimum bubble size is given by the minima on the curves in Figure 3.4.

It can be seen that the optimum ratio increases from around 1 : 1 for small bubbles up to

more than 4 : 1 for large bubbles. Further, each curve stops at the final point because the

bubble will be no longer stable to hold more helium with the given number of vacancies; in

other words, if extra helium is added it will cause the bubble to push the neighbouring Fe

atoms into split interstitials with more vacancies in the bubble. If we compare the previous

work in [89], it is clear that the second way using the MC algorithm gives lower energy

configurations rather than locating the helium atoms in fcc sites. Applying Gao’s potential

results in a lower formation energy than using Stoller’s potential. The lowest curve in Figure

3.4 is less smooth than the other curves. This is due to the large number of vacancies in the

system and the length of time required to undertake the calculations. The MC algorithm

would require more than 10,000 moves in order to obtain better statistics. However, the

computing time required for this would be several weeks and since the trend in the curve is

clear. These calculations were not undertaken.

Moreover, we have compared the volume of He bubbles (see Figure 3.5) using a Voronoi

algorithm with the work done by Caro et al. [74]. This gives a consistent curve of the volume

of the He bubble versus number of He to help verify the reliability of these potentials.
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Figure 3.5: The volume as a function of the number of helium atoms for different sizes of HenVm, 5 ≤ m ≤ 36
clusters using Gao’s potential. The error bars show the the minimum and maximum of the volume of the
He bubbles.

3.4 Diffusion of isolated defects without the presence

of He in bcc Fe

Before investigating how helium atoms diffuse and form into clusters, it is necessary to

understand the properties of an Fe vacancy and interstitial first.

The formation energies of several defects in the bcc Fe system are listed in Table 3.2.

Fe cohe-
sive en-
ergy

vacancy divacancy
Fe tetrahe-
dral inter-
stitial

Fe octahe-
dral inter-
stitial

Fe
< 110 >
dumbbell
interstitial

Fe
< 111 >
dumbbell
interstitial

4.013
eV

1.72 eV 3.3 eV 4.0 eV 4.17 eV 3.53 eV 3.94 eV

Table 3.2: The formation energy of Fe defects in bcc Fe.

Results reveal that the < 110 > Fe dumbbell interstitial has a more stable configuration

rather than < 111 >.
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Diffusion barriers of single vacancy and dumbbell interstitials to the first neighbour and

second neighbour are found using saddle point searches and checked with the NEB method

as shown in Table 3.3 with a schematic diagram illustrated in Figures 3.6 and 3.7.

defects
The energy barrier dif-
fuse to 1 N

The energy barrier dif-
fuse to 2 N

isolated vacancy 0.64 eV 2.61 eV

< 110 > dumbbell interstitial 0.31 eV 0.33 eV

Table 3.3: The diffusion barrier of Fe defects in bcc Fe.

The calculations in Table 3.2, Table 3.3 and Figure 3.7, Figure 3.8 are in agreement with

experimental results and ab-initio calculations [94, 95, 96, 97, 98].

Figure 3.6: Illustration of the diffusion of an isolated Fe vacancy. The green cube is the Fe vacancy. The
purple outline indicates the configuration after transition.

Fe interstitials can quickly turn into dumbbell interstitials as illustrated in Figures 3.9,

3.10 and 3.11.

We have also checked the case of the divacancy and find that the structure of the di-

vacancy allows one of the vacancies to diffuse with a lower energy barrier than an isolated

vacancy. Therefore, an extra vacancy nearby could help the vacancy diffuse more quickly.

In fact, two vacancies in second neighbour configuration is 0.1 eV lower than the divacancy

configuration (see Figure 3.12).

In summary, Fe vacancies and interstitials could diffuse within MD time scales at room

temperature if we assume a constant prefactor of 1013.
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Figure 3.7: Illustration of two diffusion mechanisms for the Fe < 110 > dumbbell interstitial. The green
sphere is the Fe interstitial and the green cube is the Fe vacancy. The purple outline represents the configu-
ration after transition.

Figure 3.8: Illustration of the reorientation of the Fe < 110 > dumbbell interstitial. The green sphere is the
Fe interstitial and the green cube is the Fe vacancy. The purple outline represents the configuration after
transition.
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Figure 3.9: The transition of the Fe tetrahedral interstitial to the < 110 > dumbbell interstitial with the
energy barrier of 0.1 eV and the reverse barrier of 0.57 eV. The green sphere is the Fe interstitial and the
green cube is the Fe vacancy. The purple outline indicts the configuration after transition.

Figure 3.10: The transition of the Fe octahedral interstitial to the < 110 > dumbbell interstitial with the
energy barrier of 0.034 eV and the reverse barrier of 0.68 eV. The green sphere is the Fe interstitial and the
green cube is the Fe vacancy. The purple outline indicts the configuration after transition.
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Figure 3.11: Two transitions of the Fe tetrahedral interstitial to the octahedral interstitial. The green sphere
is the Fe interstitial and the green cube is the Fe vacancy. The purple outline indicts the configuration after
transition.

(a) (b)

(c) (d)

Figure 3.12: Illustration of the diffusion of two vacancies. The green sphere is the Fe interstitial and the
green cube is the Fe vacancy. The purple outline indicts the configuration after transition. (a) The diffusion
between the Fe divacancy and two vacancies in second neighbour. (b) The diffusion between the Fe divacancy
and two vacancies in third neighbour. (c) The diffusion between the Fe divacancy and two vacancies in fifth
neighbour. (d) The diffusion between two vacancies in second neighbour and fourth neighbour.
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3.5 He substitutional atoms with vacancies nearby

3.5.1 He substitutional with a vacancy nearby

The He atom favours the substitutional site but the energy barrier to be overcome to form

this from an interstitial position is very high. It was calculated as 6.76 eV. It is therefore

useful to understand the stability of the He substitutional atom with some vacancies near by.

After the minimisation, the He substitutional atom is stable with a vacancy located in first

neighbour. If the vacancy sits in the second neighbour position, a direct swap between the

He and vacancy can occur within nanoseconds at room temperature. However, the vacancy

is energetically favourable to be in the first neighbour position (see Figure 3.13).

(a) (b)

Figure 3.13: Illustration of the diffusion of the He substitutional atom with an Fe vacancy nearby. The
green cube is the Fe vacancy. The orange sphere represents the He atom. The purple outline shows the
configuration after transition. The cross sign inside indicts the substitutional atom. (a) The vacancy diffuses
from first neighbour to the second neighbour. (b) The He substitutional atom swaps with the vacancy in
second neighbour site.

3.5.2 He substitutional with two vacancies nearby

An He substitutional atom with two vacancies has also been investigated. Some typical

transitions are shown in Figure 3.14. The lowest energy configuration that the He and

vacancies tend to form is a He1V3 cluster which is an isosceles triangle consisting of 3

vacancies where one sits as the first neighbour of the other two and the remaining two

are second neighbours with the He in the centre of the triangle. This cluster is stable since
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no successful transitions have been found in KMC searches and if we use the NEB method

to check the barrier of its diffusion, it is over 5 eV.

(a) (b)

Figure 3.14: Illustration of the transition of He substitutional atom with 2 vacancies. The green cube is
the Fe vacancy. The orange sphere represents the He atom. The purple outline shows the configuration
after transition. The cross sign inside indicts the substitutional atom. (a) One vacancy diffuse to the first
neighbour of the He and the other remains with the energy barrier of 0.51 eV and the reverse barrier of 1.07
eV. (b) The transition of the He substitutional atom with two vacancies nearby to the triangle structure of
He1V3 with the energy barrier of 0.31 eV and the reverse barrier of 1.08 eV.

Next we will focus on how an He interstitial cluster can evolve into bubbles.

3.6 Helium clustering and Bubble Formation

As in the last section, we only show the results using Gao’s potential. Although we also used

Stoller’s potential with similar results.

To investigate how helium atoms can form clusters or bubbles, first we randomly dis-

tribute helium interstitials into a pure bcc Fe system and evolve the system using MD. This

is similar to the methodology employed by Yang et al. [85]. Different concentrations of

helium atoms are selected for comparison. The temperature of the system is set at 500K.

The system is then evolved for up to 5 ns.

From Figure 3.15, we can see that most of the helium atoms accumulate into clusters over

nanosecond time scales. Furthermore, the system is observed to change very little between 4

and 5 ns. We find that isolated helium atoms are highly mobile and aggregate into clusters.

Some typical He clusters and bubbles are labelled in Figure 3.15. Here we define a bubble as
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Figure 3.15: The MD simulation of the bcc Fe system at 500 K with randomly distributed He (0.1 %
concentration) after (a) 1 ns and (b) 5 ns.
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an He cluster with an associated vacancy. We can see the helium clusters with a size bigger

than 3 can evolve into the helium bubbles. As found by Yang et al., after a trap mutation

process happened, the configuration becomes stabilised.

The resultant isolated He and small He clusters diffuse to form large clusters or bubbles.

Larger He complexes form by 5 ns. e.g. there is an He10V2 complex in Figure 3.15 (a) and

Figure 3.15 (b). In addition, we can see Fe split interstitials around He5V1 and He6V1 in (a)

and (b) of Figure 3.15.

We also find the concentration of the helium in the Fe system plays a non-negligible role

on the formation of the He clusters and bubbles. As the concentration increases, large He

bubbles (containing more than 10 He and multiple vacancies) appear within 1 ns (see Figure

3.16).

Figure 3.16: The MD simulation of the bcc Fe system at 500 K with randomly distributed He (1% concen-
tration) at 1 ns.

The energy barrier for a single interstitial helium to diffuse is calculated as 0.06 eV. This

shows that single helium is highly mobile at 500 K. Interstitial He diffusion occurs along the

pathway from one tetrahedral site to its neighbouring tetrahedral site (shown in Figure 3.17).
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In fact, by calculating the formation energy, single helium prefers to be substitutional rather

than interstitial, but this require that the vacancy is prepared for He to be substitutional

so that the He atom will instantly fall into the site since the energy barrier for an helium

interstitial to occupy the site, emitting an Fe dumbbell is 6.76 eV as shown in Table 3.4.

Thus an isolated He produced by a nuclear reaction would actually form as a tetrahedral

interstitial in the first instance.

Figure 3.17: The diffusion of an He tetrahedral interstitial in the bcc Fe system. The orange sphere represents
the He atom in the initial state. The purple outline indicts the configuration after transition.

The He complexes that form from clustering at 500 K contain fewer vacancies than the

He bubbles whose energies are plotted in Figure 3.4. For these bubble sizes that are optimum

at 0 K, larger energy barriers need to be overcome to form them. This point is discussed in

more details in the next section.

Typical energy barrier (eV) He He2 He3 He4 He5
To diffuse 0.06 0.12 0.2 0.48 -
To take over one vacancy with
ejecting an Fe interstitial

6.76 5.65 4.52 0.3 0

Table 3.4: The typical energy barrier for He clusters to diffuse, to eject an Fe atom into an interstitial site
and to take over one vacancy.

The energy barriers of some typical transitions observed in the MD simulations have

been calculated and these are summarised in Table 3.4. 0 eV implies the event takes place

directly after the minimisation of the configuration. Diffusion of He clusters is found for

clusters containing 2-4 He, but the mobility of the cluster reduces as the size increases.
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The diffusion of the He2 cluster is shown in Figure 3.18. These diffusion events of the

He2 cluster are found by the saddle searches and the barriers are checked with the NEB

method.

Figure 3.18: The diagram to show the diffusion of the cluster of 2 He with an energy barrier of 0.12 eV in
< 110 > direction and rotation with 0.09 eV in bcc Fe system. The orange sphere represents the He atom
in the initial state. The purple outline indicts the final state after transition.

When the size reaches 5 He, an Fe atom displaces into an interstitial position and the

cluster becomes pinned. The displacement of an Fe atom can also happen for the cluster of

4 He but recombination can also occur. The typical energy barrier for this is 0.3 eV (i.e. the

time scale for a hop at 500 K is about 110 ps) as shown in Figure 3.19. Having attained the

shared vacancy position, the cluster can evolve further by forming a split interstitial with an

energy barrier of 0.55 eV. The two-stage reverse process needs to overcome barriers of 0.4

eV and 0.013 eV respectively (see Figure 3.19). This phenomenon of Fe ejection observed in

MD simulation was never observed for clusters of size < 4 since the energy barriers are too

high (see Table 3.4).

Figure 3.19: Typical transitions for He4 at 500 K.

As noted, the He5 clusters can spontaneously eject an Fe atom into an interstitial position
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(see Figure 3.20). This shows the vacancy-free cluster is no longer the lowest energy state.

Different from the situation for the He4 cluster, it needs only 0.13 eV (i.e. the time scale for

a hop at 500 K is about 2 ps) to take over this vacancy and form an Fe split interstitial. On

the other hand, the energy barrier for the Fe interstitial to recombine back into the cluster

is 0.4 eV, which is larger than the barrier to diffuse in the Fe lattice. (i.e. the time scale for

a hop at 500 K is about 1.1 ns), which implies that the He5 cluster prefers to evolve into an

He bubble. When an He5 cluster has created a vacancy and a split interstitial, the He5V1

system is observed to be stable over MD time scales and the cluster of 5 He atoms becomes

the seed point of He bubble formation at 500 K.

Figure 3.20: Typical transitions for He5 at 500 K.

The binding energy Ebinding of the small clusters was also calculated as defined below, in

order to study the stability of these clusters.

Ebinding = Esystem − EFe ·NFe − EHe ·NHe, (3.4)

where EHe is the formation energy of a helium tetrahedral interstitial and EFe is the cohesive

energy of Fe, NFe and NHe is the number of Fe and He atoms in the system.

The binding energies of the smallest He clusters are shown in Table 3.5.

He2 He3 He4 He5
Binding Energy per He atom -0.125 eV -0.236 eV -0.317 eV -0.37 eV

Table 3.5: The binding energy of the He clusters for the lowest energy configurations
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The negative value means that it is energetically favourable for helium to be in the

cluster rather than stay isolated. The increasing binding energy per He atom shows stronger

stability for larger He clusters. The small binding energy for the He2 cluster and He3 cluster

implies the possibility of separation and thus we have examined the migration barriers for

the separation of the small He clusters (see Table 3.6).

Separation He2 He3 He4
He+He 0.3 eV
He+He2 0.48 eV
He+He3 0.6 eV

Table 3.6: The energy barrier for the small He clusters to separate

He interstitials can amalgamate into the small clusters (< 4 He) in different ways. All of

the barriers calculated were less than 0.2 eV, thus indicating that it is kinetically favourable

for the small He clusters to remain intact rather than separate. However, separation is also

possible at 500 K over MD time scales.

3.7 Helium Bubble Growth

3.7.1 Collision Cascades

To study radiation damage, collision cascades simulations are carried out by imparting an

atom usually called the Primary Knock-on Atom (PKA) with a given kinetic energy in a

certain direction. The system is then evolved using MD.

The system is first thermalised before a cascade event is initiated. We choose a value

of 500 K for the system temperature. After that a cascade is initiated near a bubble, by

imparting 1 keV energy to a PKA. 1 keV is chosen because it is sufficiently large to cause

well separated vacancies and interstitials and generate good statistics but not so large that

the computations become infeasible.

To analyse the results of cascade simulations it is necessary to define an interaction region

close to the bubble. We arbitrarily take this as a shell around the bubble up to the sixth
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nearest neighbour distance in the perfect bcc lattice. If an Fe vacancy or interstitial is

created in this region, the cascade is defined as having interacted with the bubble. Figure

3.21 illustrates this idea.

Figure 3.21: The red region represents the He bubble and the green region defines the volume where we are
interested in observing damage. d is the diameter of the bubble, s is the distance between the centre of the
bubble and the position of the primary knock-on atom (PKA). The trajectories of the cascades are chosen
over the half sphere.

The probability of the cascade to cause damage in the interaction region is dependent

on three factors: d, s and the direction of the cascade. For each chosen value of s and each

bubble size, 8000 1 keV collision cascades were initiated in order to generate good statistics.

To investigate the mechanism by which an He bubble may be enlarged, we examine the

increase/decrease in Fe vacancies in the bubble by averaging over all generated cascades. In

this section, we compare the two interatomic potentials defined in Section 2.1.3.

The procedure is shown in Figures 3.22 and 3.23 with some typical positions and direc-

tions of the cascades for three different sizes of He bubble. Figures 3.22 and 3.23 also gives

the cone angle within which the generated cascades will cause defects to form in the bubble

interaction region with a probability of 98%.

It can be seen that for the larger bubbles, no interaction with the cascade will occur if

the PKA is generated more than 6 nm from the bubble. For the small bubble this distance

drops to 4.4 nm. By targeting the trajectories within the cones, statistics can be obtained

without the necessity for lots of redundant trajectory calculations which produce no damage

near the bubble.

Calculations were performed using both potentials and these showed consistent results
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Figure 3.22: Gao’s potential: Representations of the cones for collision cascades that have a 98% probability
of interacting with the helium bubble. Different lines represent the cone angle as a function of separation
and bubble size.
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Figure 3.23: Stoller’s potential: Representations of the cones for collision cascades that have a 98% probabil-
ity of interacting with the helium bubble. Different lines represent the cone angle as a function of separation
and bubble size.
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for the interactions between bubbles and cascades.

Figure 3.24: Gao’s potential: Frequency of capture/loss of vacancies during the collision cascade for a system
containing 15 vacancies. The three sets of results show three cases of (1) below the ideal He-to-vacancy ratio,
(2) at the optimal (from Figure 3.4) ratio and (3) above the ideal ratio.

Figures 3.24 and 3.25 show how the number of vacancies in the cluster changes, for the

three sizes of He-vacancy clusters, where the initial number of vacancies is kept constant

at 15. As might be expected, at a low He-to-vacancy ratio, emission of vacancies is clearly

favoured. This changes at the optimal (from Figure 3.4) He-to-vacancy ratio, where the bub-

ble absorbs vacancies. Above the optimal (from Figure 3.4) ratio, vacancy capture becomes

more favoured. Figure 3.26 shows a typical example of the processes which occur in a typical

collision cascade. Therefore, radiation provides a process for an He bubble to be enlarged by

attracting vacancies or emitting Fe interstitials. As might be expected, both Fe-He poten-

tials demonstrate this conclusion with the Gao potential, showing the effect more strongly

than the Stoller’s potential.

3.7.2 Energy barriers for isolated He to join an existing bubble

Considering the behaviour of helium bubbles under radiation damage and the formation

energy of bubbles, we decided to use Gao’s potential to investigate the details of the various

mechanisms involved.
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Figure 3.25: Stoller’s potential: Frequency of capture/loss of vacancies during the collision cascade for a
system containing 15 vacancies. The three sets of results show three cases of (1) below the ideal He-to-
vacancy ratio, (2) at the optimal (from Figure 3.4) ratio and (3) above the ideal ratio.

Figure 3.26: Gao’s potential: Three frames in the MD simulation of a collision cascade near an He38V15

complex. The left image is after 100 fs, just as the cascade reaches the bubble; the centre image is after 1200
fs when the cascade has passed into the bubble and the right figure is the state after 10 ps, which shows
the vacancies (green cubes in the figure) absorbed by the He bubble (the small yellow spheres). Split Fe
interstitials can also be observed.
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In order to gain an understanding of He accumulation into bubbles, a study was carried

out to investigate the energetics of the barriers for He to diffuse into or outwards from an

existing bubble from an interstitial site near an existing bubble. To achieve that, we classified

He interstitials according to the distance between the interstitial and the surface of a bubble

as given in Table 3.7. For each position, at least 20 different positions of interstitials are

investigated and 4000 saddle point searches are carried out.

Neighbour (N) 1 2 3 4 5 6

Distance Å 1.0-1.9 1.9-2.8 2.8-3.5 3.5-4.2 4.2-5.1 5.1-6.0

Table 3.7: Classification of He interstitials with respect to the distance from an He bubble.

The average migration energy barriers were calculated for the He interstitials diffusing

towards He bubbles of different sizes. The initial positions of the interstitial He atoms were

varied from 1 to 6 nearest neighbour (N) distance from the edge of the bubble and the

summarised data is presented in Table 3.8.

Typically, He interstitial jumps occur to adjacent N positions, e.g. if an He interstitial is

initially positioned at 6N, then diffusion occurs by jumping to 5N, then from 5N to 4N and

so on, until from 1N the He interstitial joins the bubble configuration. Therefore in Table

3.8 we give migration barriers for jumping to adjacent N position in the direction towards

the bubble.

A barrier of 0 eV accounts for the cases when He interstitials instantaneously join the He

bubble, during equilibration (i.e. the barrier is less than 0.01 eV). It usually occurs in the

systems which consist of He bubbles which have a fairly low He-to-vacancy ratio (typically

less than 3 : 1). This suggests that bubbles with a low He-to-vacancy ratio have a strong

tendency to attract He interstitials that are in their vicinities.

An opposite behaviour was also observed for the cases of bubbles with a high He-to-

vacancy ratio (≥ 4 : 1). As can be seen in Table 3.8, with a growing He-to-vacancy ratio the

migration barrier heights to jump towards a bubble increase, suggesting a loss of attraction

to He interstitials. To investigate this effect and to complement the previous results, a similar
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Typical energy
barrier (eV)

Diameter
(Å)

1 N 2 N 3 N 4 N 5 N 6 N

HenV5 (n < 20) <6.3 0 0 0 0 0 0
He20V5 6.5 0 0 0 0.05 0.06 0.09
HenV9 (n < 27) <7.5 0 0 0 0 0 0
He27V9 7.6 0 0 0 0 0 0.019
He36V9 8.4 0.004 0.006 0.016 0.04 0.06 0.08
HenV15 (n < 30) <7.6 0 0 0 0 0 0
He30V15 7.8 0 0 0 0.02 0.055 0.033
He38V15 8.0 0 0 0.03 0.018 0.1 0.099
He45V15 8.6 0 0.031 0.035 0.048 0.13 0.126
He60V15 9.8 0.006 0.02 0.087 0.087 0.08 0.08
HenV25 (n < 50) <7.8 0 0 0 0 0 0
He50V25 7.9 0 0 0.04 0.039 0.044 0.047
He75V25 8.8 0 0 0.013 0.027 0.034 0.10
He98V25 10.4 0.012 0.02 0.094 0.362 0.056 0.046
He100V25 10.4 0.016 0.12 0.132 0.27 0.21 0.18
HenV36 (n < 72) <10.2 0 0 0 0 0 0
He72V36 10.3 0 0 0.005 0.013 0.013 0.051
He108V36 11.4 0 0 0.004 0.039 0.036 0.017
He144V36 13 0 0 0.65 0.091 0.098 0.051
He163V36 14 0 0 2.54 1.6 0.27 0.1
He98V98 10.5 0 0.01 0.06 0.058 0.06 0.052
He196V98 12 0 0.029 0.07 0.024 0.023 0.02
He294V98 13.8 0 0.013 0.07 0.11 0.033 0.05
He392V98 16.2 0 1.62 0.71 0.3 0.15 0.047
He169V169 11 0 0.0065 0.01 0.046 0.06 0.05
He338V169 12.5 0 0.008 0.086 0.062 0.066 0.056
He507V169 16.5 0 0 1.70 0.33 0.170 0.036
He676V169 20 0 0 2.42 0.99 0.40 0.26

Table 3.8: A summary of migration barriers (eV) of He interstitials diffusing towards He bubbles of different
configuration. The first column specifies the bubble size, where the following columns represent the initial
He interstitial position as specified in Table 3.7.
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study was performed by checking the migration barriers of He interstitials in the direction

away from the bubble. This is summarised in Table 3.9.

Typical energy barrier (eV) 1 N 2 N 3 N 4 N 5 N 6 N
He27V9 - - - - - 2.109
He36V9 1.8 0.01 0.02 0.06 0.08 0.12
He30V15 - - - 1.9 0.061 0.041
He38V15 - - 2.0 0.007 0.046 0.045
He45V15 - 2.2 0.01 0.001 0.064 0.052
He60V15 2.2 0.01 0.007 0.069 0.02 0.05
He50V25 - - 2.74 0.041 0.068 0.051
He75V25 - - 2.45 0.14 0.17 0.16
He98V25 2.96 0.13 0.127 0.007 0.015 0.016
He100V25 2.39 0.014 0.016 0.022 0.015 0.012
He72V36 - - 2.2 0.008 0.019 0.076
He108V36 - - 2.6 0.009 0.006 0.007
He144V36 - - 0.11 0.025 0.07 0.04
He163V36 - - 0.001 0.005 0.009 0.003
He98V98 - 3.4 0.09 0.064 0.062 0.061
He196V98 - 2.66 0.039 0.021 0.02 0.02
He294V98 - 2.645 0.045 0.018 0.025 0.026
He392V98 - 0.023 0.066 0.02 0.034 0.021
He169V169 - 3.53 0.03 0.056 0.065 0.06
He338V169 - 3.53 0.086 0.051 0.06 0.047
He507V169 - - 0.027 0.012 0.014 0.007
He676V169 - - 0.02 0.012 0.006 0.006

Table 3.9: A summary of migration barriers (eV) of He interstitials diffusing away from the He bubble. The
first column specifies the bubble size and the following columns represent the initial He interstitial position
as specified in Table 3.7.

He interstitials move from 1N to 2N, from 2N to 3N and so on as given in Table 3.9. The

“-” accounts for the cases when no valid migration processes of He interstitials were observed

because of instantaneously joining the bubble in these cases.

Table 3.9 also shows indications of a region around He bubble where an He atom is

repulsed by a bubble by having a migration barrier to jump away from it lower than the

barrier to jump towards the bubble. This is especially clear when bubbles have a high

He-to-vacancy ratio (≥ 4 : 1).
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The data also indicates that even though the bubbles may have a ratio above the optimal

(from Figure 3.4) configuration, they still can be enlarged in size, since most of the barriers

are only slightly higher compared to the He interstitial migration barrier in pure Fe. See,

e.g. the He38V15 case. For the cases with a high ratio, the migration barrier to move away

from the bubble is lower than the one to jump towards it, as in He45V15 case. Once the He

interstitial joins into the bubble, it cannot leave the bubble because of the huge barrier. It

is noticed that in Table 3.8, the barrier for He36V9 is higher than He27V9 but the ones for

He60V15 is slightly lower than He45V15. This may well be due to the round off error during

averaging the statistics of the calculations. As we only take the transition for He diffusion

to the surface of the bubble into account, it may cause a bit of variation of the results. In

any event the barriers in both the latter cases are so small that an He in the neighbourhood

is likely to join the bubble.

If the bubbles are enlarged up to 25 vacancies, even with the optimal ratio or above, the

additional He could still diffuse into the bubble but the maximum barrier here increases to

0.3 eV, which is more than 3 times of the one in bubbles containing 15 vacancies.

Further, if we investigate the bubbles with 36 vacancies, for the lower He-to-vacancy ratio

(< 2 : 1), jumping into the bubble happens instantaneously for the He interstitial at 6th

neighbour. For the bubbles with ratios between 2 : 1 and 3 : 1, it is kinetically favourable

for additional He to join as the migration barrier is lower than the diffusion barrier in pure

Fe. However, the barrier to jump away becomes lower than the barrier to jump in when the

ratio is more than 3 : 1. When the bubble attains a 4 : 1 ratio, there is a big energy barrier

for He to jump towards the bubble from the 3rd neighbour. This is even more clear when the

bubble reaches the optimal (from Figure 3.4) configuration. In these cases, it is kinetically

favourable for the He interstitial to stay outside the bubble. Similar conclusions can also be

drawn for the larger He bubbles e.g. HenV98 and HenV169 in Tables 3.8 and 3.9. In the case

of HenV98, only when the He-to-vacancy ratio is 1 : 1, well below optimal (from Figure 3.4),

is it more favourable for the He atom to diffuse towards the bubble than to diffuse away.
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In summary, for the bubbles with the diameter <≈ 11 Å, it is kinetically possible to

absorb additional He, even when the He-to-vacancy ratio is above optimal (from Figure 3.4),

but the He interstitial becomes less likely to jump towards the bubble when the diameter

>≈ 9 Å and the He-to-vacancy ratio ≥ 3 : 1. Isolated He diffusion into bubbles with a

diameter > 13 Å and the He-to-vacancy ratio > 4 : 1 occurs only very infrequently at room

temperature.

One of the reasons that the larger bubbles find it more difficult to absorb He is the

strain and distortion introduced into the Fe lattice. We can calculate the volume of material

around a bubble in which the Fe atoms are displaced from their lattice sites by using a

Voronoi algorithm. If we (arbitrarily) calculate this region as the region in which the atoms

are displaced by at least one third of the nearest neighbour distance, Figure 3.27 shows that

this volume increases non-linearly with bubble size.

Figure 3.27: The volume of distortion as a function of the number of helium atoms for different sizes of
HenVm clusters. For the He163V36 bubble, the volume of 400 Å3 corresponds to an annular region around
the bubble of between 2 and 3 Å in width.

Figure 3.28 shows the strained region for bubbles containing 36 vacancies. The region

is not spherical in shape but as with Figure 3.27 it indicates that the strained region grows

rapidly with increasing bubble size so there appears to be a direct correlation between the lat-
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tice strain and the energy barriers for isolated He to diffuse into the bubble. This calculation

is in agreement with the conclusion of Morishita’s work [87].

Figure 3.28: The distortion around the bubble He60V15, He144V36 and He163V36.

3.8 Conclusions

Single helium atoms prefer to be substitutional rather than interstitial but the energy barrier

for this to occur is large. Thus an isolated He atom injected into a bcc Fe lattice would be

expected to settle at a tetrahedral site. The He interstitial can diffuse quickly in the bcc

Fe system with a pathway between adjacent tetrahedral sites. These highly mobile He

interstitials lead to He clustering. Hen, n = 1, 2, 3 clusters are also mobile over MD time

scales at 500 K but a cluster of 5 He can eject an Fe interstitial and become the seed point

for less mobile bubbles. These less mobile bubbles can initially continue to grow through the

attraction of Hen, n = 1, 2, 3 clusters. The optimal (from Figure 3.4) He-to-vacancy ratio

has been determined and it has been shown how bubbles can also absorb additional vacancies

produced by irradiation to reduce the lattice strain around the bubble, which would reduce

the energy barriers and allow more He to join.

The energy barriers for a diffusing He atom to join an existing bubble have been shown

to increase rapidly as the size of the bubble increases and the strained region around the

bubble increases in size. Thus the Ostwald ripening process becomes kinetically limited as

the size of the bubble grows. These results are in good agreement with experimental work

[73] in pure Fe which show that bubbles of between 1 and 2 nm in diameter are preferentially

formed at room temperature.



Chapter 4

Argon Bubble Formation and Growth

in bcc Fe

4.1 Introduction

In this chapter argon bubbles in bcc Fe are studied using the same methodology as in

Chapter 3 with He. Before discussing the modelling, a review of a few experimental papers

is presented.

Microstructural evolution of P92 ferritic/martensitic steel irradiated by Ar+ ion beams at

doses from 0.6 to 230 displacements per atom (dpa) at room temperature was investigated

with a conventional transmission electron microscope technique by Jin et al. [99]. They

showed that the carbide particles became partly amorphous at an irradiation dose of 2.3 dpa

and were almost completely amorphous at the dose of 11.5 dpa. With the irradiation dose

increasing, the irradiation induced segregation and depletion became more severe, which

would influence the mechanical properties of the steel.

Klimenkov [100] presents the results of a quantitative evaluation of Ar gas inside nano-

bubbles formed during the preparation of ODS steel. The investigated bubbles with sizes

from 4-5 nm to 38 nm show a good stability in the thin TEM foil (see Figure 4.1). It was
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found that the Ar concentration inside the bubbles decreases with the increasing bubble

size. Below 1373 K the bubbles remain very stable, as they retain Ar inside during TEM

investigations. Other materials have also shown that Ar bubbles can form.

Figure 4.1: HRTEM micrograph of an ODS particle with marked Ar bubbles. The image is taken from 4.1.
The larger bubbles normally have a spherical or semi-spherical shape (arrow 1), whereas the small bubbles
often exhibit a faceted shape (arrow 2). This image indicates that an ODS particle may have two or even
more Ar bubbles at the interface.

Tyagi, Nandedkar and Krishan [101] investigated helium and argon ion damage in metallic

glasses at room temperature. In the case of argon irradiation, blisters disappear at high doses,

flaking was not observed and sputtering seemed to be the main process of surface erosion.

In contrast, blistering and flaking was found due to helium irradiation. Argon bubbles were

nearly 5 to 10 times the size of helium bubbles (The diameters of He bubbles range from 20
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- 50 Å, whereas Ar bubbles vary from 100 - 500 Å).

Sakamoto et al. [102] have investigated Ar ion irradiation effects on the physical proper-

ties of Au/Fe multilayers (MLs). The Au/Fe MLs prepared in the different batches under the

same condition show different physical properties, which have been observed by conversion

electron Mössbauer spectroscopy (CEMS). The 400 keV Ar ion irradiation at the dose of

3× 1013 − 2.56× 1016 ions/cm2 induces a change of the magnetic and structural properties

of the Au/Fe MLs, depending on the as-deposited state and the ion dose. They conclude

that the Ar ion irradiation induces an atomic mixture at the layer boundaries and causes

further breaks of Fe layers, resulting in the change in the magnetic properties being detected

sensitively by the CEMS.

Swijgenhoven et al. [9] deal with the observation of surface and subsurface damage of

Metglas 2826 MB (Fe38Ni40Mo4B18) during 5 keV Ar+-ion bombardment at room temper-

ature. They have shown that argon gas bubbles with a diameter between 2 nm and 4 nm

can form in an amorphous alloy. Once a bubble nucleus is formed, it will grow further by

capturing argon atoms and additional vacancies. The presence of gas bubbles in the surface

layer results in macroscopic deformation of the surface.

From the experimental references, we could deduce that argon atoms tend to form larger

bubbles than helium during irradiation but with more limited experimental data than for

He. In this chapter, the results of a study both on the statics of small argon-vacancy clusters

in bcc iron and their interaction with nearby collision cascades are presented, which will

provide insight into how an argon bubble forms and grows. We also investigate the energy

barriers that need to be overcome before growth by diffusion can occur.

4.2 Potential

For simulating the argon-vacancy clusters in the bcc iron system, we use the Lennard-Jones

potential for the Ar-Ar interaction, ZBL potential for Ar-Fe and the same Ackland-Mendelev
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potential used in helium-vacancy cluster in bcc Fe system for Fe-Fe here (see Section 2.1.3).

4.3 Formation Energy

The formation energy of the argon-vacancy clusters ArnVm is calculated using the Monte

Carlo algorithm, which was introduced in Section 3.3. First, we calculate the formation en-

ergy of several defects in the system. The calculation implies the argon atom is energetically

favourable to be located in the substitutional site while the tetrahedral interstitial is more

stable than the octahedral. Further, different from He in bcc Fe, an Ar substitutional atom

is stable with an Fe dumbbell interstitial in the vicinity.

Fe cohesive
energy

vacancy
formation
energy

Ar sub-
stitutional
formation
energy

Ar tetrahe-
dral forma-
tion energy

Ar octahedral
formation en-
ergy

4.013 eV 1.72 eV 12.20 eV 16.82 eV 17.61 eV

Table 4.1: The formation energy of defects for Ar in bcc Fe.

Figure 4.2 shows the formation energy of the ArnVm clusters at 0 K from Equations 3.1,

3.2 and 3.3. Each curve is with the fixed number of vacancies, which implies that all the

bubbles locating on the same curve have preformed vacancies before the Ar is inserted. To

ensure the results can be compared on a similar scale, the figure shows the formation energy

per vacancy. It is clear that there is an optimal (lowest formation energy per vacancy) Ar-

to-vacancy ratio for each curve (calculated with a fixed number of vacancies). The optimum

bubble size is given by the minima on the curves in Figure 4.2. It can be seen that the

optimum ratio is always around 1 : 1 ratio, which is different from the optimal ratio found

for helium. Further, each curve stops at the final point because the bubble will be no longer

stable to hold more argon with the given number of vacancies; in other words, adding extra

argon will cause the bubble to push the neighbouring Fe atoms into interstitials thus adding

more vacancies into the bubble. This is shown schematically for the 5 vacancy case in Figure

4.3.
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Figure 4.2: The formation energy as a function of the number of argon atoms for different sizes of ArnVm

clusters.

Figure 4.3: Illustration of the effect of adding an Ar atom to an Ar6V5 bubble.
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4.4 Argon clustering and Bubble Formation

4.4.1 Random inserted Ar in bcc Fe

To investigate how argon atoms can form clusters or bubbles, first we randomly distribute

argon interstitials into a pure bcc Fe system and evolve the system using MD, which is the

same process as done for He in Chapter 3.3. Different concentrations of argon atoms are

selected for comparison. The temperature of the system is set at 500K. The system is then

evolved for up to 5 ns.

(a) (b)

Figure 4.4: The MD simulation of the bcc Fe system with randomly distributed Ar (0.1 % concentration) at
(a) 10 ps and (b) 1 ns.

From Figure 4.4, we can see that there are no isolated interstitials but a large number

of substitutional Ar and some small Ar clusters after one nanosecond. The trap mutation

process dominates the movement of Ar atoms. The resulting configuration becomes stable

over a nanosecond time scale at 500 K. No diffusion of Ar substitutionals into neighbour

units has been found.

The energy barrier for a single argon interstitial to diffuse is calculated as 0.3 eV (shown

in Figure 4.5). This shows that single argon is not especially mobile at 500 K compared

to He. Diffusion occurs along the pathway from one tetrahedral site to its neighbouring

tetrahedral site. In fact, from Table 4.1, single argon prefers to be substitutional rather than
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interstitial and since the energy barrier for one argon interstitial to occupy the site of an Fe

atom emitting an Fe dumbbell is only 0.07 eV but the reverse barrier is up to 1.4 eV. An

isolated Ar interstitial would become a substitutional within MD time scales. After turning

into substitutional, it is unlikely to move back to interstitial. The Fe dumbbell is favoured

to be bound by the Ar substitutional atom in the its first neighbour (see Figure 4.6), with

the energy barriers for the dumbbell to diffuse away, being larger than the reverse barrier.

(a)
(b)

Figure 4.5: The diagram to show the diffusion from the Ar tetrahedral site in bcc Fe system. The red sphere
represents the Ar. The black outline shows the configuration after transition. The green sphere is the Fe
interstitial and the green cube is the Fe vacancy. The cross sign inside indicts the substitutional atom. (a)
The transition of the Ar tetrahedral interstitial to its neighbouring tetrahedral site with the forward and
reverse barrier of 0.3 eV. (b) The transition of the Ar tetrahedral interstitial to the Ar substitutional with
the < 110 > Fe dumbbell interstitial with the energy barrier of 0.07 eV and the reverse barrier of 1.4 eV.

(a)

(b)

Figure 4.6: Illustration of (a) the diffusion and (b) the reorientation of the Fe dumbbell interstitial with the
Ar substitutional atom. The red sphere represents the Ar. The black outline shows the configuration after
transition. The green sphere is the Fe interstitial and the green cube is the Fe vacancy. The cross sign inside
indicts the substitutional atom.
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4.4.2 Ar substitutional in bcc Fe

In this section, all the transition barriers and end states were calculated by saddle point

searches from the initial state without any assumption about the final state.

4.4.2.1 Ar substitutional with a vacancy nearby

In order to diffuse, an Ar substitutional atom has to become interstitial. However the barriers

for these events are high. It is therefore instructive to see what happens in the presence of

a nearby vacancy. After minimisation, the Ar substitutional atom is not stable with the

vacancy located in the first neighbour. It will instantaneously turn into the Ar split vacancy

shape (i.e. 2 vacancies in each other’s first neighbour with Ar sitting in the middle of them),

which is different from He since the He substitutional atom is stable with a vacancy in the

first neighbour (see Figure 3.13). The free vacancy is favoured to migrate towards the Ar

atom (see Figures 4.7a and 4.7b). Once the vacancy comes to the second neighbour, a swap

between this vacancy and substitutional will appear with a much smaller barrier than He in

bcc Fe (see Figure 4.7c). Then it can evolve into the split vacancy configuration (see Figure

4.7d) or it can directly form it with the vacancy moving from the further neighbour such as

the 4th neighbour as shown in Figure 4.7e. It was found that the split vacancy configuration

can diffuse with a high barrier at 1.89 eV (see Figure 4.7f).

4.4.2.2 Ar substitutional with two vacancies nearby

An Ar substitutional atom with two neighbouring vacancies has also been investigated. Some

typical transitions are shown in Figure 4.8. The lowest energy configuration that the Ar and

two vacancies tend to form is an Ar1V3 cluster which is an isosceles triangle consisting of

3 vacancies with one sitting in first neighbour of the other two and the remaining two as

second neighbours with the Ar in the centre of the triangle (see Figure 4.8c). The two

vacancies in fourth neighbour or closer could drag the Ar substitutional atom from its site

with a low energy barrier (see Figures 4.8 and 4.7). The split vacancy shape could form
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: The diagram to show the transitions from the initial Ar substitutional atom with a vacancy in
bcc Fe system. The red sphere represents the Ar. The black outline shows the configuration after transition.
The green cube is the Fe vacancy. The cross sign inside indicts the substitutional atom. The vacancies shown
as green cube without outline disappear after the transition. (a) The diffusion of the 8th neighbour vacancy
towards an Ar substitutional atom to its 4th neighbour with the forward and reverse barrier of 0.58 eV. (b)
The diffusion of the 4th neighbour vacancy to 2nd neighbour towards the Ar substitutional atom with the
barrier of 0.15 eV and the reverse barrier of 0.97 eV. (c) A swap between an Ar substitutional atom and the
vacancy in second neighbour with the forward and reverse barrier of 0.029 eV. (d) An Ar substitutional atom
with one vacancy in second neighbour moves to form a split vacancy configuration leaving a vacancy in the
original site. The forward barrier is 0.93 eV and the reverse barrier is 2.18 eV. (e) The initial configuration
shown in (b) can directly form the split vacancy shown in (d) but without the intermediate step. The
forward barrier is 0.58 eV and the reverse barrier is 2.65 eV. (f) The diffusion of the Ar split vacancy with
the forward and reverse barrier of 1.89 eV.
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with another vacancy nearby (see Figures 4.8a and 4.8d) or the system could directly go to

the triangle configuration (see Figure 4.8c). Once the split vacancy shape with one vacancy

nearby formed, it will also evolve directly into the Ar1V3 cluster (see Figure 4.8b) or make

it through first exchanging into an Ar substitutional atom with two vacancies in its first

neighbour (see Figures 4.8e and 4.8f). The Ar1V3 cluster can diffuse as shown in Figure 4.9,

but the barrier for diffusion is very high at 1.82 eV. In all these cases shown in Figure 4.8,

the lowest energy configuration is the Ar interstitial in the centre of a vacancy triangle.

In summary both the split vacancy complex and the Ar1V3 triangle complex give mech-

anisms by which an Ar atom can diffuse through the lattice but the barriers are very high.

The isolated Ar interstitial becomes substitutional and although the reverse pathway is lower

than the vacancy diffusion mechanisms, the likelihood is that another substitutional Ar will

be formed due to the low energy barrier to form the substitutional. As a result it seems

more likely that Ar bubble growth in Fe occurs through collision cascade effects rather than

direct diffusion. These are examined in the next section.

4.5 Argon Bubbles and Irradiation

4.5.1 Collision Cascades

To study radiation damage, collision cascades are initiated near an existing bubble as was

done for the bubbles in Section 3.7. It can be seen from Figure 4.10 that for the larger

bubbles, no interaction with a 1 keV cascade will occur if the PKA is generated more than

5.2 nm from the bubble. For the small bubble this distance drops to 4.4 nm. By targeting

the trajectories within the cones, good statistics can be obtained without the necessity for

lots of redundant trajectory calculations which produce no damage near the bubble.

Figure 4.11 shows how the number of vacancies in the cluster changes, for the three sizes

of Ar-vacancy cluster, where the initial number of vacancies is kept constant at 15. At a

low Ar-to-vacancy ratio, maintaining the ratio is clearly favoured, which is different from He
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Illustration of the transitions from the initial Ar substitutional atom with 2 vacancies. The red
sphere represents the Ar. The black outline shows the configuration after transition. The green cube is
the Fe vacancy. The cross sign inside indicts the substitutional atom. The vacancies shown as green cube
without outline disappear after the transition. (a) An Ar substitutional atom with 2 vacancies in the 4th
neighbour position moves to form a split vacancy configuration leaving a vacancy in the original site. The
forward barrier is 0.19 eV and the reverse barrier is 2.36 eV. (b) The configuration that occurs after the
transition shown in (a) forms a vacancy triangle with the Ar interstitial at its centre. The forward barrier
is 0.26 eV and the reverse barrier is 1.86 eV. (c) The initial configuration shown in (a) can directly form
the vacancy triangle system shown in (b) but without the intermediate step. The forward barrier is 0.53 eV
and the reverse barrier is 4.3 eV. (d) A similar transition to that shown in (a) when the Ar substitutional
atom forms a different split vacancy configuration. The forward barrier is 0.57 eV and the reverse barrier
is 2.74 eV. (e) The configuration shown at the end of (a) evolves into an Ar substitutional atom with 2 Fe
vacancies in the first neighbour. The forward barrier is 0.65 eV and the reverse barrier is 1.21 eV. (f) The
Ar substitutional atom with 2 vacancies in the first neighbour evolves into an Ar interstitial in the centre of
a vacancy triangle. The forward barrier is 0.74 eV and the reverse barrier is 1.78 eV.
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Figure 4.9: The diffusion of Ar triangle cluster Ar1V3 with the forward and reverse barrier of 1.82 eV.

Figure 4.10: Representations of the cones for collision cascades that have a 98% probability of interacting
with the argon bubble. Different lines represent the cone angle as a function of separation and bubble size,
using the same method in Section 3.7.1.
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Figure 4.11: Frequency of capture/loss of vacancies during the collision cascade for a system containing 15
vacancies. The three sets of results show three cases of (1) below the ideal Ar-to-vacancy ratio, (2) at the
optimal (from Figure 4.2) ratio and (3) above the ideal ratio.

where He bubbles can easily capture Fe atoms. This changes at the optimal (from Figure

4.2) Ar-to-vacancy ratio, where the bubble expels Fe atoms (i.e. absorbs vacancies). Above

the optimal (from Figure 4.2) ratio, vacancy capture becomes more favoured. Therefore,

radiation provides a process for an Ar bubble to be enlarged by expelling Fe atoms or by

attracting nearby vacancies.

4.5.2 Energy barriers for isolated Ar to join an existing bubble

In order to gain an understanding of Ar accumulation into bubbles, a study was carried out

to investigate the energetics of the barriers for Ar to diffuse into or outwards from an existing

bubble from an interstitial site near an existing bubble. To achieve that, we classified Ar

interstitials according to the distance between the interstitial and the surface of a bubble

as given in Table 4.2. For each neighbour, at least 20 different positions of interstitials are

investigated and 4000 saddle point searches are carried out.
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Neighbour (N) 1 2 3 4 5 6

Distance Å 1.0-1.9 1.9-2.8 2.8-3.5 3.5-4.2 4.2-4.9 4.9-5.5

Table 4.2: Classification of Ar interstitials with respect to the distance from an Ar bubble.

Migration energy barriers were calculated for the Ar interstitials diffusing towards Ar

bubbles of different sizes. The initial positions of the interstitial Ar atoms were varied from

1 to 6 nearest neighbour (N) distant from the edge of the bubble and the summarised data

is presented in Table 4.3.

Typical energy
barrier (eV)

Diameter
(Å)

1 N 2 N 3 N 4 N 5 N 6 N

Ar3V5 3.0 0 0 0 0 0 0.007
Ar5V5 5.2 0 0 0 0 0 0.07
Ar6V5 5.3 0 0 0 0 0 0.07
Ar5V9 3.8 0 0 0 0 0 0.006
Ar9V9 5.4 0 0 0 0 0 0.07
Ar10V9 6.4 0 0 0 0 0 0.07
Ar8V15 4.9 0 0 0 0 0 0.004
Ar15V15 6.7 0 0 0 0 0 0.07
Ar16V15 7.4 0 0 0 0 0 0.07
Ar18V36 8.1 0 0 0 0 0 0.004
Ar36V36 10.0 0 0 0 0 0 0.07
Ar37V36 10.5 0 0 0 0 0 0.07

Table 4.3: A summary of migration barriers (eV) of Ar interstitials diffusing towards Ar bubbles of different
configurations. The first column specifies the bubble size, where the following columns represent the initial Ar
interstitial position as specified in Table 4.2. For each neighbour, at least 20 different positions of interstitials
are investigated and 4000 saddle point searches are carried out.

Typically, the Ar interstitial jumps occur to adjacent N positions, e.g. if an Ar interstitial

is initially positioned at 6N, then diffusion occurs by jumping to 5N, then from 5N to 4N and

so on, until from 1N the Ar interstitial joins the bubble configuration. Therefore in Table

4.2 we give migration barriers for jumping to adjacent N position in the direction towards

the bubble.

In Table 4.3, a barrier of 0 eV accounts for the cases when Ar interstitials instantaneously

join the Ar bubble, during equilibration (i.e. the barrier is less than 0.003 eV). It usually

occurs in the systems which consist of Ar bubbles which have a fairly low Ar-to-vacancy
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ratio (typically less than 1 : 1). This suggests that bubbles with a low Ar-to-vacancy ratio

have a strong tendency to attract Ar interstitials that are in their vicinities. Further, for the

ratio > 1 : 1, although the barrier for additional Ar to join the bubbles is small, this extra

Ar will make the bubble emit Fe split interstitials so that the number of vacancies in the

bubble will increase, which means the previous configuration has been changed. Considering

that it is 0.07 eV for the isolated Ar interstitial atom to become substitutional, it is more

favoured for the nearby Ar interstitial to join the bubble rather than become substitutional.

Further, we have checked the energy barrier for the bubble with a 1 : 1 ratio to absorb an

additional Ar located in the 6th neighbour substitutional site is more than 1 eV but for the

Ar substitutional atom within the 5th neighbour (the 5th neighbour is included), it goes to

be attached by the existing bubble with leaving the vacancy in the original site after the

minimisation. This suggests the existence of a capture zone around an existing Ar bubble

which extends to 5th neighbour position. Table 4.4 shows also that even at the 6th neighbour

position the interstitial migration barriers away from the bubble are much higher than in

the perfect lattice.

To investigate this effect and to complement the previous results, a study was performed

by checking the migration barriers of Ar interstitials in the direction away from the bubble.

This is summarised in Table 4.4.

Ar interstitials move from 1N to 2N, from 2N to 3N and so on as given in Table 4.4. The

“-” accounts for the cases when no valid migration processes of Ar interstitials were observed

because of instantaneously joining the bubble in these cases (see Table 4.3). Comparing the

barrier for the Ar to join the bubble (see Table 4.3) with that to leave the bubble (see Table

4.4), interstitial Ar atoms favour joining the bubble, but if the Ar-to-vacancy ratio is above

optimal, after joining the bubble, the extra Ar will change the configuration of bubbles with

emission of Fe interstitials.

Moreover, we have also examined some large bubbles containing more than 90 vacancies,

whose diameter is more than 1.2 nm. The additional Ar will still join the bubble if the Ar-
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Typical energy barrier (eV) 1 N 2 N 3 N 4 N 5 N 6 N
Ar3V5 - - - - - 2.4
Ar5V5 - - - - - 2.2
Ar6V5 - - - - - 2.2
Ar5V9 - - - - - 2.3
Ar9V9 - - - - - 2.2
Ar10V9 - - - - - 2.2
Ar8V15 - - - - - 1.9
Ar15V15 - - - - - 1.7
Ar16V15 - - - - - 1.7
Ar18V36 - - - - - 1.9
Ar36V36 - - - - - 1.7
Ar37V36 - - - - - 1.7

Table 4.4: A summary of migration barriers (eV) of Ar interstitials diffusing away from the Ar bubble. The
first column specifies the bubble size and the following columns represent the initial Ar interstitial position
as specified in Table 4.2. For each neighbour, at least 20 different positions of interstitials are investigated
and 4000 saddle point searches are carried out.

to-vacancy ratio is below optimal, which means there are extra vacancies for Ar to locate to.

However, when the ratio reaches the optimal, instead of joining the bubble, the Ar interstitials

from the 5th neighbour outwards are kinetically favourable to become substitutional with

emitting Fe interstitials since the barrier is around 0.07 eV whereas to join the bubble needs

more than 1 eV.

In summary, for the bubbles with the diameter < 1.1 nm, it is kinetically possible to

absorb additional Ar, even when the Ar-to-vacancy ratio is above optimal (from Figure

4.2), but the Ar interstitial becomes less likely to jump towards the bubble with the Ar-to-

vacancy ratio above the optimal when the diameter >≈ 1.2 nm. Instead of that, isolated Ar

interstitials will become substitutional in the neighbourhood of the bubbles with the optimal

ratio or above if the diameter is more than 1.2 nm. Thus enlargement of the bubble appears

to be driven either by irradiation or vacancy capture.
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4.6 Conclusions

Single argon atoms prefer to be substitutional rather than interstitial and the energy barrier

to form the substitutional as 0.07 eV means this occurs generally at room temperature,

which is totally different from He in bcc Fe. Thus an isolated Ar atom injected into a bcc Fe

lattice would be expected to settle at a substitutional site. The optimal (from Figure 4.2)

Ar-to-vacancy ratio has been determined as 1 : 1 and it has been shown how bubbles can

also absorb additional vacancies produced by irradiation to reduce the lattice strain around

the bubble, which would reduce the energy barriers and allow more Ar to join. The energy

barriers for an interstitial Ar atom to join an existing bubble are tiny, and especially within

the fifth neighbour, joining occurs instantaneously. A mechanism for isolated Ar to diffuse

in bcc Fe in the absence of a nearby bubble is through a vacancy driven process but the

energy barrier for this to occur is very high.



100 CHAPTER 4. ARGON BUBBLE FORMATION AND GROWTH IN BCC FE



Chapter 5

Xenon Bubbles in bcc Fe

5.1 Introduction

TEM observations of Xe-implanted iron and molybdenum thin films were carried out by

Dinhut and Denanot [103]. They have detected solid Xe bubbles at room temperature.

Based on the measured lattice parameters and the atomic volume values, the fcc structure

is shown to be the most probable structure for the solid bubbles in both materials.

Templier et al. [104] studied xenon precipitation in bulk aluminium using TEM in order

to avoid the superposition of several different phenomena. At room temperature, TEM

diffraction patterns show that xenon is a solid crystallized with an fcc structure.

Gavarini et al. [105] investigated xenon migration behaviour in titanium nitride by im-

planting 800 keV Xe++ ions in sintered samples at an ion fluence of 5× 1015 cm2. Annealing

was performed at temperatures ranging from 1673 to 1923 K for 1 and 3 h. Xenon con-

centration profiles were studied by Rutherford backscattering spectrometry (RBS) using 2.5

MeV α-particles. The mean activation energy corresponding to the diffusion component was

found to be 2.2 ± 0.3 eV (i.e. 2.2 eV implies the time scale for a hop at 1923 K is about 58

ns with a prefactor of 1013).

Overall, the experimental references imply that the Xe atoms are only mobile at high
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Figure 5.1: Electron diffraction patterns and bright fields of iron thin films after 2 × 1016 Xe ion/cm2

implantation. The image is taken from [103]. The Xe bubbles appear as small black dots in the grains.

temperature. In this chapter, the results of a study both on the statics of small xenon-vacancy

clusters in bcc iron and their interaction with nearby collision cascades are presented, which

will provide insight into how a xenon bubble forms and grows. We also investigate the

structure of small Xe clusters in Fe and the energy barriers that need to be overcome before

growth by diffusion can occur.

5.2 Potential

For simulating the xenon-vacancy clusters in the bcc iron system, we use the Lennard-Jones

potential for Xe-Xe interaction, ZBL potential for Xe-Fe and the same Ackland-Mendelev

potential used in helium-vacancy cluster in bcc Fe system for Fe-Fe here (see Section 2.1.3).
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5.3 Formation Energy

The formation energy of the xenon-vacancy clusters XenVm is calculated using the Monte

Carlo algorithm, which is introduced in Section 3.3.

First, we list the formation energy of several defects in the system. The calculations

implies it is energetically favourable for the xenon atom to locate in the substitutional site

while the tetrahedral interstitial is more stable than the octahedral.

Fe cohesive
energy

vacancy
formation
energy

Xe substitu-
tional forma-
tion energy

Xe tetrahe-
dral forma-
tion energy

Xe octahedral
formation en-
ergy

4.013 eV 1.72 eV 15.45 eV 20.15 eV 20.43 eV

Table 5.1: The formation energy of defects for Xe in bcc Fe.

Before the calculations, we have checked the lattice parameter of Xe bubbles. In pure fcc

bubbles, the lattice parameter is 6.262 Å, while when embedded in bcc Fe matrix, it comes

to 5.67 Å for fcc Xe bubbles consistent with the experiment results [103].

Figure 5.2 shows the formation energy of the XenVm clusters at 0 K from Equations

3.1, 3.2 and 3.3. Each curve is with a fixed number of vacancies, which implies that all

the bubbles have preformed vacancies before Xe is inserted. To ensure the results can be

compared on a similar scale, the figure shows the formation energy per vacancy. It is clear

that each curve reveals an optimal (lowest formation energy per vacancy) Xe-to-vacancy

ratio (calculated with a fixed number of vacancies). The optimum bubble size is given by

the minima on the curves in Figure 5.2. It can be seen that the optimum ratio is varying

between 0.6 : 1 and 0.8 : 1. Further, each curve stops at the final point because the bubble

is no longer stable to hold more xenon with the given number of vacancies; in other words,

adding extra xenon will cause the bubble to push the neighbouring Fe atoms into interstitials

with increasing the number of vacancies in the bubbles, similar to Ar as shown in Figure 4.3.
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Figure 5.2: The formation energy as a function of the number of xenon atoms for different sizes of XenVm

clusters.
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5.4 Diffusion mechanisms

In this section, all the transition barriers and end states were calculated by saddle point

searches from the initial state without any assumption about the final state.

5.4.1 Xe tetrahedral interstitial

For xenon, the barrier for a single interstitial to diffuse to another interstitial site is found

as 0.5 eV (see Figure 5.3). Instead of diffusing into an interstitial site, it is kinetically

favourable for Xe to become substitutional with a smaller barrier of 0.15 eV; for the barrier

to be reversed, it is 1.83 eV.

(a)
(b)

Figure 5.3: The transitions from the initial Xe tetrahedra interstitial in bcc Fe system. The purple sphere
represents the Xe atom. The black outline shows the configuration after transition. The green sphere is the
Fe interstitial and the green cube is the Fe vacancy. The cross sign inside indicts the substitutional Xe atom.
(a) The transition of the Xe tetrahedral interstitial to its neighbouring tetrahedral site with the forward and
reverse barrier of 0.5 eV. (b) The transition of the Xe tetrahedral interstitial to the Xe substitutional with
the Fe dumbbell interstitial with the energy barrier of 0.15 eV and the reverse barrier of 1.83 eV.

5.4.2 Xe substitutional with an Fe dumbbell interstitial

Different from He in bcc Fe, the Xe substitutional atom is stable with the Fe dumbbell

interstitial as its neighbour. Diffusion of a substitutional Xe atom to enlarge a bubble is

possible within MD time scales and Xe shows even less mobility than the Ar atom in bcc Fe.

Figures 5.4 and 5.5 show that it is slightly energetically favourable for the Fe dumbbell to
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be located close to the Xe substitutional atom but the difference between the forward and

reverse barrier is small.

Figure 5.4: Illustration of the diffusion of the Fe dumbbell interstitial with a Xe substitutional atom. The
purple sphere represents the Xe atom. The black outline shows the configuration after transition. The
green sphere is the Fe interstitial and the green cube is the Fe vacancy. The cross sign inside indicts the
substitutional atom.

5.4.3 Xe substitutional with a vacancy nearby

Similar to Section 4.4.2.1, we have also checked the case where the Xe substitutional atom

locates with one free vacancy to see the mobility of Xe. We find the same conclusion as

with Ar, namely that the Xe substitutional is not stable with the vacancy located in first

neighbour. It will instantaneously turn into the Xe split vacancy shape. The split vacancy

configuration is stable during MD time scales and would diffuse with a high barrier 2.03 eV,

which relates to what Gavarini et al. found in TiN [105].

Different from the Ar substitutional atom which is stable with a vacancy in the second

neighbour, Xe would form a split vacancy configuration where Xe locates at the octahedral

interstitial site with the two vacancies as each other’s second neighbour. This can evolve

into the split vacancy shown in Figure 5.6. The transition barriers are shown in Figure 5.7.
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Figure 5.5: Illustration of the diffusion of the Fe dumbbell interstitial with a Xe substitutional atom. The
purple sphere represents the Xe atom. The black outline shows the configuration after transition. The
green sphere is the Fe interstitial and the green cube is the Fe vacancy. The cross sign inside indicts the
substitutional atom.

Figure 5.6: Illustration of the diffusion of the Xe split vacancy in bcc Fe with the forward and reverse barrier
of 2.03 eV. The purple sphere represents the Xe atom. The black outline shows the configuration after
transition. The green cube is the Fe vacancy. The cross sign inside indicts the substitutional atom.

Figure 5.7: The diffusion between two kinds of the Xe split vacancies in bcc Fe system. The purple sphere
represents the Xe atom. The black outline shows the configuration after transition. The green cube is the
Fe vacancy. The cross sign inside indicts the substitutional atom.
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The free vacancy is favoured to move towards the Xe atom (see Figure 5.8a). Once it

comes within the fourth neighbour, it will evolve into one of the two split vacancy con-

figurations (see Figures 5.8d, 5.8c and 5.8b). Typical transitions are illustrated in Figure

5.8.

(a) (b)

(c) (d)

Figure 5.8: The transitions from the initial Xe substitutional atom with a vacancy in bcc Fe system. The
purple sphere represents the Xe atom. The black outline shows the configuration after transition. The green
cube is the Fe vacancy. The cross sign inside indicts the substitutional atom. (a) The diffusion of the 8th
neighbour vacancy towards a Xe substitutional atom to its 4th neighbour. The forward barrier is 0.49 eV
and the reverse barrier is 0.51 eV. (b) The transition of Xe substitutional with a vacancy in fourth neighbour
to Xe split vacancy in Figure 5.7. The forward barrier is 0.15 eV and the reverse barrier is 1.87 eV. (c) The
transition of Xe substitutional with a vacancy in fourth neighbour to Xe split vacancy in Figure 5.6. The
forward barrier is 0.54 eV and the reverse barrier is 3.32 eV. (d) The transition of Xe substitutional with a
vacancy in third neighbour to Xe split vacancy in Figure 5.6. The forward barrier is 0.02 eV and the reverse
barrier is 2.03 eV.

5.4.4 Xe substitutional with two vacancies nearby

If two vacancies are located around a Xe substitutional atom, some typical transitions are

shown in Figure 5.9. The lowest energy configuration the Xe and two vacancies tend to

form is a Xe1V3 cluster like the isosceles triangle as we found with Ar. Two vacancies in
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fourth neighbour or closer could drag the Xe substitutional atom into an interstitial site. It

works similarly to the case with Ar but with lower energy barriers (see Figures 5.9 and 4.8).

The split vacancy shape with another vacancy nearby could be formed (see Figures 5.9a and

5.9d) or the triangle configuration (see Figure 5.9c). Once the split vacancy shape with one

vacancy nearby formed, it will also evolve directly into the Xe1V3 cluster (see Figure 5.9b)

or through exchanging the Xe substitutional atom with two vacancies in its first neighbour

(see Figures 5.9e and 5.9f). The Xe1V3 cluster can diffuse with a high barrier as 2.06 eV

(i.e. the time scale for a hop at 500 K is over 1.8 years), see Figure 5.10.

Compared with one Ar substitutional atom with a vacancy nearby (see Figures 4.7 and

4.8), Xe has a lower energy barrier to form the Xe1V2 or Xe1V3 clusters. Therefore, diffusion

of a Xe atom to enlarge a bubbles is more unlikely than Ar. Xe atoms are favoured to become

substitutional and attract free vacancies in the system to form small bubbles locally rather

than diffuse. Xe atoms show more attraction to Fe vacancies than Ar and He. When a Xe

atom becomes substitutional, vacancies close by can assist it to diffuse but only with large

barriers. Similar to Ar in bcc Fe, Xe bubble growth occurs more likely through irradiation

rather than direct diffusion. This is examined in the next section.

5.5 Xenon Bubble Growth

5.5.1 Collision Cascades

Figure 4.10 shows that for the larger bubbles, no interaction with a 1 keV cascade will occur

if the PKA is generated more than 6 nm from the bubble. For the small bubble this distance

drops to 4.4 nm. By targeting the trajectories within the cones shown in the figure, good

statistics can be obtained without the necessity for lots of redundant trajectory calculations

which produce no damage near the bubble.

Figure 5.12 shows how the number of vacancies in the cluster changes, for the three

sizes of Xe-vacancy cluster, where the initial number of vacancies is kept constant at 15.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: The transition of the Xe substitutional atom with two vacancies in bcc Fe system. The purple
sphere represents the Xe atom. The black outline shows the configuration after transition. The green cube
is the Fe vacancy. The cross sign inside indicts the substitutional atom. (a) One vacancy move with Xe
moving from the substitutional site to form the Xe split vacancy with the forward barrier of 0.03 eV and the
reverse barrier of 2.76 eV. (b) The transition of the Xe split vacancy with the vacancy nearby to Xe1V3 with
the forward barrier of 0.19 eV and the reverse barrier of 2.3 eV. (c) The Xe substitutional atom with two
vacancies directly turns into the triangle shape with the forward barrier of 0.49 eV and the reverse barrier of
5.5 eV. (d) One vacancy move with Xe moving from the substitutional site to form the Xe split vacancy with
the forward barrier of 0.51 eV and the reverse barrier of 3.23 eV. (e) The Xe split vacancy with the vacancy
nearby turns into a Xe substitutional atom with two vacancies in the first neighbour with the forward barrier
of 0.63 eV and the reverse barrier of 1.38 eV. (f) The Xe substitutional atom with two vacancies as first
neighbours evolves into the triangle shape with the forward barrier of 0.69 eV and the reverse barrier of 2.06
eV.
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Figure 5.10: The diffusion of Xe triangle cluster Xe1V3 with the forward and reverse barrier of 2.06 eV.

Figure 5.11: Representations of the cones for collision cascades that have a 98% probability of interacting
with the xenon bubble. Different lines represent the cone angle as a function of separation and bubble size,
using the same method as in Section 3.7.1.
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Figure 5.12: Frequency of capture/loss of vacancies during the collision cascade for a system containing 15
vacancies. The three sets of results show three cases of (1) below the ideal Xe-to-vacancy ratio, (2) at the
optimal (from Figure 5.2) ratio and (3) above the ideal ratio.
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As might be expected, the conclusion is similar to Ar in bcc Fe. At a low Xe-to-vacancy

ratio, retaining vacancies is clearly favoured. This changes at the optimal (from Figure 5.2)

Xe-to-vacancy ratio; even if the bubble contains extra vacancies at the optimal ratio, the

bubble can absorb vacancies. Above the optimal (from Figure 5.2) ratio, vacancy capture

(ejection of Fe interstitials) becomes more favoured. Therefore, radiation provides a process

for a Xe bubble can be enlarged by emitting Fe interstitials.

5.5.2 Energy barriers for isolated Xe to join an existing bubble

Similar calculations are computed for xenon using the same method in Section 3.7.2. The

migration energy barriers were calculated for the Xe interstitials diffusing towards Xe bubbles

of different sizes. The initial positions of the interstitial Xe atoms were varied from 1 to 6

nearest neighbour (N) distance from the edge of the bubble.

The calculations show that Xe interstitials instantaneously join the Xe bubble, during

equilibration. It occurs in the systems no matter whether the Xe-to-vacancy ratio is below

or above the optimal ratio. Further, for the 1 : 1 ratio, the extra Xe will make the bubble

emit one Fe split interstitial to maintain the 1 : 1 ratio.

Moreover, we have also examined the bubbles containing more than 90 vacancies, whose

diameter is more than 1.5 nm. The additional Xe located within the 6th neighbour distance

will still join the bubble if the Xe-to-vacancy ratio is below the 1 : 1 ratio. However, when the

ratio reaches 1 : 1, instead of joining the bubble to generate more vacancies, it is kinetically

favourable for the Xe interstitial to become substitutional in the 6th neighbour with emission

of an Fe split interstitial, rather than join into the bubble because the barrier to join is over

1 eV. Further the potential energy of the system with the large bubbles having the 1 : 1

ratio with the Xe substitutional atom in the 6th neighbour is more than 1 eV lower than the

case that this Xe is absorbed.

In summary, for the small Xe bubbles, it is kinetically possible to absorb additional Xe,

even when the Xe-to-vacancy ratio is above optimal (from Figure 5.2). When the Xe-to-
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vacancy ratio reaches 1 : 1, the additional Xe will join the bubble with emission of an Fe

split interstitial. However, the Xe interstitial becomes less likely to jump towards the bubble

with the Xe-to-vacancy ratio at the 1 : 1 ratio as the bubble diameter increases.

5.6 Conclusions

Single xenon atoms prefer to be substitutional rather than interstitial and the substitutional

can form from the interstitial site in picoseconds at 500 K. Thus an isolated Xe atom injected

into a bcc Fe lattice would be expected to settle at a substitutional site. The Xe interstitial

can diffuse in the bcc Fe system with a pathway between adjacent tetrahedral sites over

nanoseconds at room temperature. The optimal (from Figure 5.2) Xe-to-vacancy ratio has

been determined to be between 0.6 : 1 and 0.8 : 1. It has been shown how bubbles can emit

Fe interstitials produced by irradiation, which would allow more Xe to join. The energy

barriers for a diffusing Xe atom to join an existing bubble are tiny, especially when the

diameter of the bubble is less than 1.5 nm, so joining occurs instantaneously within the 6th

nearest neighbour region. If the Xe-to-vacancy ratio reaches 1 : 1, an additional Xe within

the 6th neighbour will join into the bubble by kicking out an Fe split interstitial to maintain

the 1 : 1 ratio. When the bubbles reaches a size of ∼ 1.5 nm, the Xe interstitials from the

5th neighbour outwards of bubbles with 1 : 1 ratio become substitutional rather than join

the bubble. A mechanism for isolated Xe to diffuse in bcc Fe is due to a vacancy driven

process but the energy barrier for this to occur is even higher than Ar in bcc Fe.



Chapter 6

Argon Bubble Formation and Growth

in fcc Al

6.1 Introduction

There is ample evidence in the literature that high-energy Ar ion bombardment can dam-

age Al substrates with the formation of subsurface Ar agglomeration [106, 107, 108, 109].

Blackwell et al. [16] have successfully carried out modelling work of magnetron sputtering

deposited Al and observed subsurface Ar agglomeration.

Cox and Goodhew observed the argon content of selected volumes of each aluminium

sample by X-ray analysis in the transmission electron microscope (TEM) [110]. Various

large Ar bubbles were found, which are bigger than He bubbles in Fe (see Figures 3.1 and

3.2). One sample with the generation of Ar bubbles ranging from 10 nm to 17 nm is shown

in Figure 6.1.

Ortega et al. [111] have done calculations using static and dynamic simulation in alu-

minium using the Ercolessi and Adams potential and Voter and Chen potential to determine

point defect energies in the fcc aluminium system. e.g. the isolated vacancy formation en-

ergy was calculated as 0.61 eV and the divacancy (two vacancies located in each other’s first
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Figure 6.1: Micrograph from an aluminium sample which shows that the argon bubbles are uniformly
distributed locally to the analysed region. The image is taken from [110].
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neighbour) formation energy was determined as 1.38 eV.

Klaver and Chen [112] showed by DFT calculation that the < 100 > dumbbell is the

natural configuration for Al self-interstitials. They also calculated the formation energies of

the Al < 100 > dumbbell and octahedral self-interstitial and showed that the difference is

no more than a few tenths of an eV.

Stumpf and Scheffler investigated several properties of Al dumbbell interstitials and Al

surfaces using density-functional theory. Results of formation energies of surfaces, steps,

adatoms and vacancies were reported in [113] and they find a very low energy barrier for Al

dumbbell self-diffusion as 0.04 eV.

From the previous findings, the fcc Al system has a lower activation energy for vacancies

to migrate in the system than bcc Fe lattice and also for the dumbbell interstitials (see

Section 3.4, which gives 0.64 eV for Fe vacancy migration and 0.31 eV for the dumbbell

interstitial migration barrier). The Ar bubbles in the fcc Al system appear more mobile.

In this chapter, the results of a study on the statics of small argon-vacancy clusters in

fcc aluminium are presented, which will provide insight into how an argon bubble forms and

grows. We also investigate the energy barriers that need to be overcome before growth by

diffusion can occur and the mechanism of argon bubble formation in fcc Al.

6.2 Potential

For simulating the argon-vacancy clusters in the fcc aluminium system, a Lennard Jones po-

tential modelled the interaction between Ar and the ZBL potential simulated the interaction

between both Ar and Al, the Voter and Chen potential [47] is applied for Al, which is the

same as used in [16] (see Section 2.1.3).
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6.3 Formation Energy

First, we calculate the formation energy of several defects in the fcc Al system using the

Voter-Chen potential.

Al cohe-
sive en-
ergy

vacancy divacancy

Al
tetra-
hedral
intersti-
tial

Al octahe-
dral inter-
stitial

Al
< 100 >
dumbbell
interstitial

Al
< 110 >
dumbbell
interstitial

Al
< 111 >
dumbbell
interstitial

3.33 eV 0.63 eV 1.24 eV 2.53 eV 2.10 eV 2.06 eV 2.24 eV 2.50 eV

Table 6.1: The formation energy of Al defects in fcc Al.

The calculations in Table 6.1 are in agreement with the Ortega et al. results [111]. Results

reveal that the < 100 > Al dumbbell interstitial is the most stable configuration. The energy

difference between the < 100 > Al dumbbell interstitial and Al octahedral interstitial is tiny,

which implies these two states could easily exchange at room temperature within MD time

scales.

Ar substi-
tutional

Ar tetrahedral
interstitial

Ar octahedral
interstitial

Ar substitutional with Al < 100 >
dumbbell interstitial in 1st neighbour

4.67 eV 7.07 eV 6.84 eV 6.36 eV

Table 6.2: The formation energy of Ar interstitials in fcc Al.

Table 6.2 shows that a single Ar atom in the fcc Al matrix is energetically favourable

to locate as substitutional. The Ar substitutional atom is stable next to an Al dumbbell

interstitial.

The formation energy of the argon-vacancy clusters ArnVm in the fcc Al system is calcu-

lated using the Monte Carlo algorithm, which was introduced in Section 3.3.

Figure 6.2 shows the formation energy of the ArnVm clusters at 0 K. Vacancies are

preformed before Ar is inserted to generate these bubbles. To ensure the results can be

compared on a similar scale, the figure shows the formation energy per vacancy. Each curve

cannot be continued beyond the final point because the bubble will no longer be stable to
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Figure 6.2: The formation energy as a function of the number of argon atoms for different sizes of ArnVm

clusters in fcc Al system.
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hold more argon with the given number of vacancies; in other words, adding extra argon

will push the neighbouring Al atoms into interstitials as shown in Figure 6.3. Each curve

reveals the same decreasing trend which terminates at the 1 : 1 ratio. Further, after that,

the bubbles will maintain the 1 : 1 ratio even adding extra Ar by emitting an Al dumbbell.

This implies the 1 : 1 ratio is the optimal ratio for Ar bubbles in fcc Al lattice.

Figure 6.3: Illustration of the addition of adding an Ar atom to an ArnVm bubble in Figure 6.2.

6.4 Diffusion mechanisms

To investigate the mechanism of Ar diffusion, saddle point searches have been done to find

the possible transitions and the NEB method has been used to determine the barriers more

accurately.
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6.4.1 Diffusion of isolated defects in fcc Al without the presence

of Ar

Before investigating how argon atoms diffuse in the fcc Al system, it is necessary to under-

stand how an Al vacancy and interstitial diffuse since it will provide a reference to compare

the Ar atoms’ movement.

The results for the diffusion barriers of a single vacancy, < 100 > dumbbell interstitial

and octahedral interstitial to first neighbour and second neighbour positions are as shown in

Table 6.3 and illustrated in Figures 6.4, 6.5 and 6.6.

defects
The energy barrier dif-
fuse to 1 N

The energy barrier dif-
fuse to 2 N

isolated vacancy 0.31 eV > 5 eV

< 100 > dumbbell interstitial 0.037 eV 0.098 eV

octahedral interstitial 0.05 eV 0.1 eV

octahedral interstitial to dumbbell interstitial 0.06 eV (< 001 >) 0.27 eV (< 010 >)

Table 6.3: The diffusion barrier of Al defects in fcc Al.

Figure 6.4: Illustration of the diffusion of an isolated Al vacancy with the forward and reverse barriers at
0.31 eV. The grey cube is the Al vacancy. The black outline represents the configuration after transition.

In Table 6.3, the barrier for an isolated Al vacancy to diffuse directly to its second

neighbour could not be obtained by saddle point searches. Using the NEB method shows

the barrier is more than 5 eV. This means a direct transition to 2nd neighbour is very

unlikely.
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(a)

(b)

Figure 6.5: Illustration of the diffusion the Al < 100 > dumbbell interstitial. The grey sphere is the
Al interstitial and the grey cube is the Al vacancy. The black outline represents the configuration after
transition. (a) Two diffusion mechanisms for the Al < 100 > dumbbell interstitial. (b) The reorientation of
the Al < 100 > dumbbell interstitial.

Figure 6.6: Illustration of diffusion of an Al octahedral interstitial. The grey sphere is the Al interstitial and
the grey cube is the Al vacancy. The black outline represents the configuration after transition.
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Figure 6.7: Illustration of the transition of Al octahedral interstitial to dumbbell interstitial. The grey sphere
is the Al interstitial and the grey cube is the Al vacancy. The black outline represents the configuration after
transition.

We have also checked the case of the divacancy. We find that the structure of divacancy

allows one of the vacancies to diffuse with a much lower energy barrier than the isolated

vacancy, see Figure 6.8.

Figure 6.8: Illustration of the diffusion of the Al divacancy. The grey cube is the Al vacancy. The black
outline represents the configuration after transition.

It is possible for both vacancies to diffuse within MD time scales. The energy barriers

are slightly higher than the one for an isolated vacancy to migrate as shown in Figure 6.9.

A structure has been found with 0.06 eV energy lower than divacancy. The structure is

consists of 3 vacancies located at each other’s first neighbour site with an Al interstitial at

the centre of this regular triangle as shown in Figure 6.10.

Due to the small energy barrier, the divacancy could exchange with the triangle config-

uration within 10 ps at room temperature and this triangle configuration could also diffuse
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Figure 6.9: Illustration of the diffusion of the Al divacancy. The grey cube is the Al vacancy. The black
outline represents the configuration after transition.

Figure 6.10: Illustration of the transition from the Al divacancy to the triangle cluster. The grey sphere is
the Al interstitial and the grey cube is the Al vacancy. The black outline represents the configuration after
transition.
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within picoseconds time scales (see Figure 6.11). Therefore 2 vacancies diffuse more quickly

than an isolated vacancy.

Figure 6.11: Illustration of the diffusion of the Al triangle cluster. The grey sphere is the Al interstitial and
the grey cube is the Al vacancy. The black outline represents the configuration after transition.

In summary, Al vacancies and interstitials could diffuse quickly within MD time scales

compared with the same defects in the bcc Fe system.

6.4.2 Ar in fcc Al

6.4.2.1 The Ar octahedral interstitial

In the fcc Al lattice, an Ar octahedral interstitial has a lower formation energy than the

tetrahedral (see Table 6.2), which is different from the Ar interstitial in the bcc Fe system.

The Ar octahedral interstitial could diffuse directly to another octahedral interstitial site

with a small barrier 0.057 eV and it could diffuse to a subtetrahedral interstitial (0.5 ∼ 0.7

Å to a tetrahedral interstitial) site by forming a crowdion with a barrier of 0.09 eV. If the Ar

interstitial goes into the substitutional site with an Al interstitial or Al dumbbell interstitial

emitted, the barrier is less than 0.1 eV but the reverse barrier is ∼ 0.3 eV, which implies

it is more kinetically favourable to become substitutional. The details of the transition is

illustrated in Figure 6.12.

Therefore, the Ar interstitial would generally become substitutional. The lowest energy

configuration is to form the substitutional Ar with an Al dumbbell interstitial.
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(a) (b)

(c) (d)

Figure 6.12: Illustration of the diffusion of Ar from the octahedral interstitial site with the associated forward
and reverse energy barrier. The grey sphere is the Al interstitial and the grey cube is the Al vacancy. The
black outline represents the configuration after transition. The red sphere is the Ar interstitial and the red
sphere with the cross sign inside depicts the Ar substitutional atom. (a) The diffusion of the Ar octahedral
interstitial to its neighbouring octahedral site with the forward and reverse energy barrier of 0.057 eV. (b)
The diffusion of the Ar octahedral interstitial to the Ar substitutional with the Al interstitial with the
energy barrier of 0.02 eV and reverse barrier 0.3 eV. (c) The diffusion of the Ar octahedral interstitial to the
subtetrahedral interstitial with the crowdion structure with the energy barrier of 0.09 eV and reverse barrier
0.14 eV. (d) The diffusion of the Ar octahedral interstitial to the Ar substitutional with the Al dumbbell
interstitial with the energy barrier of 0.07 eV and reverse barrier 0.33 eV.
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6.4.2.2 The Ar interstitial with crowdion structure

As shown in Figure 6.12 and Figure 6.13a, the Ar interstitial with the crowdion structure can

exchange with the Ar octahedral interstitial and the whole configuration could also diffuse

with a small barrier of 0.1 eV (see Figure 6.13b). But an even lower energy transition is for

an Ar to become substitutional with an Al dumbbell interstitial (0.07 eV). The details of

the transition are illustrated in Figures 6.12d and 6.13a.

(a)
(b)

(c) (d)

Figure 6.13: Illustration of the diffusion of the Ar interstitial from the crowdion initial position. The grey
sphere is the Al interstitial and the grey cube is the Al vacancy. The black outline represents the configuration
after transition. The red sphere is the Ar interstitial and the red sphere with the cross sign inside depicts the
Ar substitutional atom. (a) The diffusion of the Ar subtetrahedral interstitial with the crowdion structure to
the Ar octahedral interstitial with the energy barrier of 0.07 eV and reverse barrier 0.027 eV. (b) The diffusion
of the Ar subtetrahedral interstitial with the crowdion structure with the forward and reverse barrier of 0.1
eV. (c) The diffusion of the Ar subtetrahedral interstitial with the crowdion structure to the Ar substitutional
with the Al dumbbell interstitial with the energy barrier of 0.007 eV and reverse barrier 0.43 eV. (d) The
diffusion of the Ar subtetrahedral interstitial with the crowdion structure to the Ar substitutional with the
energy barrier of 0.005 eV and reverse barrier 0.23 eV.
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6.4.2.3 Ar substitutional

Since the Ar substitutional atom is more stable than the interstitial and can easily form, it

is necessary to understand transitions with an Al interstitial or dumbbell interstitial close

by. The details of some transitions are illustrated in Figures 6.14 and 6.15.

6.4.2.3.1 Ar substitutional with Al dumbbell interstitial

(a) (b)

(c) (d)

Figure 6.14: Illustration of the diffusion of the Al dumbbell interstitial with an Ar substitutional atom.
The grey sphere is the Al interstitial and the grey cube is the Al vacancy. The black outline represents the
configuration after transition. The red sphere is the Ar interstitial and the red sphere with the cross sign
inside depicts the Ar substitutional atom. (a) Barriers for the reorientation of the dumbbell Al interstitial
at different first neighbour cites of the Ar substitutional atom. (b) Barriers for the reorientation of the
dumbbell Al interstitial at the same first neighbourhood of the Ar substitutional atom.. (c) Diffusion of
the Al dumbbell interstitial away from the Ar substitutional atom. (d) Concerted joint motion of the Al
dumbbell interstitial together with the Ar substitutional atom.

Figures 6.14a and 6.14c show that a dumbbell interstitial close to an Ar substitutional

atom can diffuse away within nanoseconds at 500 K but it is kinetically favourable to sur-

round the substitutional Ar atom in the first neighbour. Figure 6.14d shows that the joint
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motion of an Ar substitutional with an Al dumbbell interstitial cannot occur within MD

time scales at room temperature, but the Al split interstitial could easily diffuse away from

the Ar substitutional as the barriers are low.

6.4.2.3.2 Ar substitutional with nearby Al interstitial

(a) (b)

(c) (d)

Figure 6.15: Illustration of the transition from an Ar substitutional atom with the Al interstitial. The grey
sphere is the Al interstitial and the grey cube is the Al vacancy. The black outline represents the configuration
after transition. The red sphere is the Ar interstitial and the red sphere with the cross sign inside depicts
the Ar substitutional atom. (a) The diffusion of the Ar substitutional with the Al interstitial to the Ar
octahedral interstitial with the energy barrier of 0.34 eV and reverse barrier 0.07 eV. (b) The diffusion of the
Ar substitutional with the Al interstitial to the Ar subtetrahedral interstitial with the crowdion structure
with the energy barrier of 0.34 eV and reverse barrier 0.12 eV. (c) Diffusion of the Al interstitial away from
the Ar substitutional into dumbbell interstitial. (d) Concerted joint motion of the Al interstitial together
with the Ar substitutional.

When close to the Ar substitutional atom, the Al interstitial can evolve into the dumbbell

interstitial in the first or second neighbour position, see Figure 6.14c. The barrier to turn

the Al interstitial into an Al dumbbell interstitial in the second neighbour is lower than

for the first neighbour. However, if we compare the migration barrier of Al interstitial or
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dumbbell interstitial in a pure fcc Al system (see Table 6.3), with the presence of Ar, the

barriers are higher. The Ar substitutional atom could also return to an interstitial site

within nanoseconds. It is possible for the Ar substitutional to diffuse with Al interstitial

over nanoseconds (see Figure 6.15d) but the initial configuration is unlikely to arise because

it is less favourable than the dumbbell configuration.

In summary, a substitutional Ar atom with an Al dumbbell interstitial is the lowest

energy configuration for Ar but for this configuration to move, the energy barrier is very

high as shown in Figure 6.14d.

6.4.2.3.3 Isolated Ar substitutional

So far, it is clear that the isolated Ar atom is favoured to become substitutional with a

bounded Al dumbbell interstitial in its first neighbour position. Although the dumbbell

interstitial is not favoured to diffuse away from the Ar, it is still possible to happen within

nanoseconds at room temperature. Hence we want to investigate the stability and mobility

of an isolated Ar substitutional.

It was found that the Ar substitutional atom can not move to the interstitial site within

the 3rd octahedral neighbouring positions (using the octahedral interstitial site is because

the Ar octahedral interstitial gets a lower energy than the tetrahedral interstitial, see Table

6.2). The reason is that the configuration of the Ar interstitial with a vacancy within the 3rd

neighbour is not stable after minimisation. In other words, the Ar atom will instantaneously

occupy the vacancy within its 3rd neighbour to become substitutional. The substitutional

Ar can move to the interstitial site from the 4th neighbour site with leaving the vacancy (see

Figure 6.16). However, the energy barrier is more than 2.8 eV. Further, the barrier for the

Ar substitutional atom to diffuse to the neighbour substitutional site is over 5 eV.

To investigate the further details, we have also checked the case that an Ar octahedral

interstitial atom with a vacancy in different neighbour position for a comparison. If the

vacancy sits within the 2nd neighbour position of the Ar interstitial, the Ar atom will
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Figure 6.16: Illustration of the possibility of the Ar substitutional atom to become an interstitial Ar leaving
a vacancy. The red sphere is the Ar interstitial and the red sphere with the cross sign inside depicts the
Ar substitutional atom. The grey cube is the Al vacancy and will disappear afterwards. The black outline
represents the configuration after transition. The red cross sign indicts the transition is impossible.

instantaneously move to the vacancy site to become substitutional, which we mentioned

above. When the vacancy locates at the the 3rd neighbour position, after minimisation,

the vacancy will move to the first neighbour position of the Ar interstitial and the Ar will

become substitutional there as shown in Figure 6.17a. When the vacancy sits from the 4th

neighbour outwards of the Ar, the Ar atom will become substitutional in the first neighbour

of its previous interstitial site as shown in Figure 6.17b. The forward barrier is only 0.04 eV

but the reverse barrier is 2.8 eV.

Therefore, the Ar substitutional is found to be unmovable at 500 K rather than diffusion.

Additional vacancies are needed for the diffusion of Ar, which will be explained in the

following section.

6.4.2.4 Ar substitutional with vacancies nearby

6.4.2.4.1 Ar substitutional with a vacancy nearby
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(a)
(b)

Figure 6.17: Illustration of the transition from an Ar interstitial atom with a vacancy nearby. The red sphere
is the Ar interstitial and the red sphere with the cross sign inside depicts the Ar substitutional atom. The
grey cube is the Al vacancy and will disappear afterwards. The black outline represents the configuration
after transition. (a) The Ar interstitial atom with a vacancy in the third neighbour position becomes a
substitutional Ar in the position of the first neighbour of the previous Ar interstitial site after minimisation.
(b) The Ar interstitial atom with a vacancy in the fourth neighbour position becomes a substitutional Ar
in the position of the first neighbour of the previous Ar interstitial site. The forward barrier is 0.04 eV and
the reverse barrier is 2.8 eV.

After minimisation, an Ar substitutional atom is not stable with a vacancy in the first

neighbour position. The configuration will change into a split vacancy shape (i.e. 2 vacancies

with the Ar interstitial in the middle of them). The argon substitutional becomes stable with

the vacancy located in the second neighbour position or further. The energy for this is 0.7

eV higher than the split vacancy configuration. The details of the transition for the split

vacancy is illustrated in Figure 6.18.

(a) (b)

Figure 6.18: Illustration of the transition from the initial Ar split vacancy. The grey sphere is the Al
interstitial and the grey cube is the Al vacancy. The black outline represents the configuration after transition.
The red sphere is the Ar interstitial and the red sphere with the cross sign inside depicts the Ar substitutional
atom. (a) The diffusion of the Ar substitutional atom with a vacancy in the second neighbour to the Ar
split vacancy with the energy barrier of 0.048 eV and reverse barrier 0.74 eV. (b) Diffusion of the Ar split
vacancy with the forward and reverse barrier 0.9 eV.
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The split vacancy configuration can diffuse with a barrier of 0.9 eV (see Figure 6.18b). A

free vacancy close to the substitutional Ar can drag the Ar atom away from the vacancy site

to form the split vacancy shape (see Figure 6.18a). Taking the energy barrier of migration

energy of Al vacancy into account (see Figure 6.4), the Ar substitutional atom in fcc Al is

not as stable as the substitutional Ar in bcc Fe.

6.4.2.4.2 Ar substitutional with 2 vacancies nearby

Two free vacancies can diffuse away from an Ar substitutional atom with a small barrier,

or they could form an Al triangle cluster which can also diffuse away with a small barrier.

But these transitions are not favoured. The details are shown in Figures 6.19 and 6.20.

(a) (b)

(c)

Figure 6.19: Illustration of the diffusion of the 2 vacancies in 2nd and 5th neighbour with an Ar substitutional
atom. The grey sphere is the Al interstitial and the grey cube is the Al vacancy. The black outline represents
the configuration after transition. The red sphere is the Ar interstitial and the red sphere with the cross sign
inside depicts the Ar substitutional atom. (a) The vacancy moves from the 2nd neighbour to 5th neighbour
with the forward barrier of 0.014 eV and reverse barrier of 0.005 eV. (b) The vacancy moves from the 5th
neighbour site to another 5th neighbour site with the forward and reverse barrier of 0.014 eV. (c) Both
vacancies move away from the Ar atom with the forward barrier of 0.33 eV and the reverse barrier is 0.29
eV.
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(a)

(b)
(c)

Figure 6.20: Illustration of the diffusion of the Al triangle cluster with an Ar substitutional atom. The
grey sphere is the Al interstitial and the grey cube is the Al vacancy. The black outline represents the
configuration after transition. The red sphere is the Ar interstitial and the red sphere with the cross sign
inside depicts the Ar substitutional atom. (a) The diffusion of the 2 vacancies in 2nd and 5th neighbour with
an Ar substitutional atom to the Al triangle cluster with keeping the Ar substitutional with the forward
barrier of 0.011 eV and the reverse barrier of 0.084 eV. (b) The diffusion of the Al triangle cluster with an
Ar substitutional atom. (c) The diffusion of the Al triangle cluster with an Ar substitutional atom.
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Compared with the two vacancies without the presence of Ar (see Figures 6.8, 6.9, 6.10

and 6.11), the two free vacancies are favoured to diffuse towards the Ar substitutional atom

with even a smaller barrier. Then the Ar substitutional is no longer stable; it will turn into

split vacancy configuration as shown in Figure 6.21.

(a)

(b)

Figure 6.21: Illustration of the transition of Ar substitutional with 2 vacancies in 2nd and 5th neighbour to
the Ar split vacancy with one free vacancy. The grey sphere is the Al interstitial and the grey cube is the Al
vacancy. The black outline represents the configuration after transition. The red sphere is the Ar interstitial
and the red sphere with the cross sign inside depicts the Ar substitutional atom. (a) The transition of an
Ar substitutional atom with 2 vacancies in 2nd and 5th neighbour sites to the Ar split vacancy with keeping
the previous vacancy in the 2nd neighbour with the forward barrier of 0.017 eV and the reverse barrier of
0.89 eV. (b) The transition of an Ar substitutional atom with 2 vacancies in 2nd and 5th neighbour sites to
the Ar split vacancy keeping the previous vacancy in the 5th neighbour site with the forward barrier of 0.1
eV and the reverse barrier of 0.78 eV.

After the split vacancy configuration has been generated, the free vacancy could diffuse

away but this is not favoured (see Figure 6.22). If the free vacancy is close to the split

vacancy configuration (see the initial configuration in Figure 6.22), the Ar could oscillate

locally with the movement of these vacancies surround it (see Figure 6.23). The structure

of the split vacancy will evolve into an Ar interstitial located in the centre of a triangle

consisting of 3 Al vacancies (see Figure 6.23e), which is the lowest energy configuration.

Figures 6.23a, 6.23b, 6.23c and 6.23d all show the identical configuration with the initial

configuration in Figure 6.23a. This structure is 0.7 eV higher than the vacancy triangle with

the Ar at its centre shown as the final configuration of Figure 6.23e. This triangle can diffuse

with a barrier of 0.85 eV (see Figure 6.24).
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Figure 6.22: Illustration of the vacancy away from the Ar split vacancy with the forward barrier of 0.29 eV
and the reverse barrier of 0.12 eV. The grey sphere is the Al interstitial and the grey cube is the Al vacancy.
The black outline represents the configuration after transition. The red sphere is the Ar interstitial and the
red sphere with the cross sign inside depicts the Ar substitutional atom.

Overall, two free vacancies are more activated than one vacancy; they can diffuse more

quickly towards the Ar and attract the Ar from the vacancy site to form small cluster. Then

the configuration can diffuse with a barrier around 0.85 eV, which is much lower than the

barrier found for Ar in bcc Fe (see Section 4.4.2).

6.5 Conclusions

Similar to Ar in the bcc Fe system, Ar atoms in fcc Al are also favoured to become substi-

tutional and the optimal Ar-to-vacancy ratio of Argon bubbles is also 1 : 1. However, the

Ar substitutional atom in fcc Al is not as stable as in bcc Fe. The barriers for an Ar sub-

stitutional atom with an Al interstitial or a dumbbell interstitial to diffuse or become only

an Ar interstitial is much smaller than the barriers found in bcc Fe. Further, the migration

energy barrier for vacancies in fcc Al could diffuse faster than in bcc Fe. When free vacancies

approach the Ar substitutional atom, they could attract the Ar from the substitutional site

to form an Ar-vacancy cluster, which could diffuse with a smaller barrier than the one we

found in bcc Fe. The hop time for this is around 2 seconds at room temperature. Thus Ar
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(a) (b)

(c) (d)

(e)

Figure 6.23: Illustration of the transition of the Ar split vacancy with a close by vacancy to the Ar triangle
cluster. The grey sphere is the Al interstitial and the grey cube is the Al vacancy. The black outline represents
the configuration after transition. The red sphere is the Ar interstitial and the red sphere with the cross
sign inside depicts the Ar substitutional atom. (a) The jump of the Ar between these three vacancies with
keeping the configuration of the Ar split vacancy with a vacancy with the forward and reverse barrier of 0.06
eV. (b) The initial configuration shown in (a) can have one vacancy moving to the first neighbour site of its
original position with a jump of the Ar between these three vacancies. The whole structure is still kept with
the forward and reverse barrier of 0.3 eV. (c) The initial configuration shown in (a) can have one vacancy
moving to the first neighbour site of its original position with a further jump of the Ar than (b). The whole
structure is still kept with the forward and reverse barrier of 0.33 eV. (d) The initial configuration shown in
(a) can reorient the structure with the movement of Ar and vacancies. The forward and reverse barrier is
0.81 eV. (e) The configuration shown in (a) forms a vacancy triangle with the Ar interstitial at its centre.
The forward barrier is 0.37 eV and the reverse barrier is 1.06 eV.
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(a)

(b)

Figure 6.24: Illustration of the diffusion of the Ar triangle cluster. The grey sphere is the Al interstitial and
the grey cube is the Al vacancy. The black outline represents the configuration after transition. The red
sphere is the Ar interstitial and the red sphere with the cross sign inside depicts the Ar substitutional atom.
(a) The diffusion of the Ar interstitial atom with the movement of one vacancy to the first neighbour site
of its original position. The forward and reverse barrier is 0.85 eV. (b) The diffusion of the Ar interstitial
atom with the movement of one vacancy to the second neighbour site of its original position. The forward
and reverse barrier is 0.85 eV. (a) and (b) show that this triangle cluster could diffuse in three dimensions.

can diffuse via a vacancy mechanism.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Static calculations show the optimal He-to-vacancy ratio at 0K varies from 1 : 1 up to 4 :

1 for different sizes of He-vacancy clusters in bcc Fe lattices. If such bubbles are subjected

to radiation, then they can be modified. At the optimal ratio or above, vacancy capture is

favoured, which gives a mechanism for He bubble growth. He interstitials are highly mobile

and could diffuse towards and join a bubble for a wide range of He : vacancy ratios if the

size is under ∼ 1.4 nm. When bubbles reach this size, He diffusion to enlarge the bubble

becomes unfavoured due to the lattice strain around it. For this size of the bubble, radiation

cascades provide a way to add the additional vacancies required for He to enlarge the bubble.

The Ar-vacancy clusters in bcc Fe are favoured in the 1 : 1 ratio at 0 K. Extra Ar added

into a bubble with a 1 : 1 ratio will cause the emission of Fe to keep the same ratio. At 500

K, with an interaction with 1 keV cascades, Ar bubbles with the optimal ratio could emit

Fe and gain additional vacancies to obtain a lower ratio than 1 : 1 to enlarge the bubbles.

Extra Ar interstitials in a neighbourhood of an existing Ar bubble with a diameter less than

1.2 nm will join the bubble with a small energy barrier. However, isolated Ar interstitials

diffuse more slowly than He in bcc Fe and they are favoured to become substitutional with
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a barrier of 0.07 eV. If the Ar bubble reaches a certain size, nearby Ar atoms will become

substitutional rather than join the bubble. The diffusion of isolated Ar relies on a vacancy

driven mechanism.

Xe atoms in bcc Fe have similar properties to Ar. The optimal Xe : vacancy ratio for Xe

bubbles varies from 0.6 to 0.8 : 1. Radiation events could enable the optimal Xe bubbles to

reduce the ratio by enlarging the bubble through emission of Fe. It is even more difficult for

the isolated Xe atom to diffuse in bcc Fe lattice than Ar. A vacancy driven mechanism can

make the diffusion possible with a high barrier.

Different from Ar in bcc Fe, in fcc Al, the Ar interstitials could diffuse with a lower

energy barrier. They are also favoured to become substitutional within picoseconds at room

temperature. After the trap mutation, the Ar substitutional is stable with the formed Al

dumbbell interstitial. Free vacancies can diffuse more quickly than those in the bcc Fe system.

They could attract the Ar from the substitutional site to form an Ar-vacancy triangle cluster.

The diffusion of these clusters is possible with a lower barrier than the one we found in bcc

Fe.

7.2 Future Work

7.2.1 The structure of Xenon Bubbles in fcc Al

Work over a number of years has been carried out by the group of Donnelly in the regard to

xenon particles embedded in Al crystals [17, 18, 19, 20, 21]. In [17], they point out the Xe

particle had an fcc structure with the same orientation as the Al matrix and also observed

the Xe bubbles in pure Al matrices [18, 21] with the cuboctahedral shape composed of {111}

and {200} facets.

Future work could examine these large clusters and compare the energetics of Xe embed-

ded in a sphere void and a cuboctahedral shape.

Some preliminary results are given simulating the xenon-vacancy clusters in the fcc alu-
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minium system, where the ZBL potential was used for the Xe-Al interaction.

A spherical void can be generated by removing atoms from a centre point in the crystal

with an adjustable radius. Thus there are two factors to determine the number of vacancies:

the position of the centre of the void and the radius of the sphere. This is illustrated in

Figure 7.1.

Figure 7.1: The 2D graph to illustrate the way to generate the spherical void. The grey atoms represent Al
atoms.

Compared with the universality of the spherical void, the regular cuboctahedral shape

is only valid for some fixed number of vacancies. If we relax the limitation in this way that

the cuboctahedron is nonregular, we could get more cases at the sacrifice of some symmetry

(see Figure 7.2). The following case could illustrate this.

We compare the system energy of both ways to generate the same bubbles and list in

Tables 7.1 and 7.2. The reason to choose the 1 : 1 ratio is empirical. Because the 1 : 1 ratio

is allowed for Xe in fcc Al and it could retain the cuboctahedral structure after minimisation.

It is clear that for the cases that the regular cuboctahedral shape could be applied, the

spherical configuration has a slightly higher energy, but by checking the energy per vacancy,

this difference is within the reasonable tolerance of statistics. If we check the other cases

that we relax the limitation, there is no clear conclusion to make a judgement. But the
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(a)

(b)

Figure 7.2: (a) is the diagram to show the regular cuboctahedral shape. (b) is using 2D to illustrate the way
to generate the nonregular cuboctahedral void. The grey cubes represent Al vacancies and pink spheres are
Xe atoms.

Bubble
system energy
(eV) in spherical
way

system energy
(eV) in cubocta-
hedral way

energy differ-
ence per vacancy
(eV)

Xe79V79 -359498.47 -359499.42 0.012

Xe201V201 -359064.97 -359070.05 0.025

Xe405V405 -358352.33 -358356.14 0.0094

Table 7.1: Comparison of two ways to form bubbles. The cuboctahedral here is regular.

Bubble
system energy
(eV) in spherical
way

system energy
(eV) in cubocta-
hedral way

energy differ-
ence per vacancy
(eV)

Xe201V170 -359163.72 -359161.27 0.014

Xe213V218 -359005.98 -359002.45 0.016

Xe250V247 -358902.17 -358904.51 0.011

Xe330V328 -358619.76 -358622.59 0.0086

Xe378V370 -358472.29 -358472.96 0.0018

Xe116V116 -359369.43 -359369.43 0

Table 7.2: Comparison of two ways to form bubbles.
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energy differences imply the consistent conclusion with the regular case. Even we found for

Xe116V116, the two ways of construction lead to an identical relaxed structure, which make

sense because for a small cuboctahedron, it could be taken as the approximation of the

sphere. However, in Figure 7.3, after minimisation, we have the nonregular cuboctahedral

shape for both ways.

Figure 7.3: The configurations of bubble Xe116V116. From left to right: spherical way before minimisa-
tion, spherical way after minimisation, cuboctahedral way before minimisation, cuboctahedral way after
minimisation. The grey cubes represent Al vacancies and pink spheres are Xe atoms.

In this preliminary investigation there is no significant difference between using spherical

void and cuboctahedron taking the statistics into account. For the smaller bubbles, the

cuboctahedral structure has approximately the same shape for the spherical configuration.

This problem can be investigated in more detail to obtain a much better understanding of

large Xe bubbles in Al and better statistics to draw informed conclusions.

7.2.2 Other potential work

The most detailed work in the thesis concerned He bubbles in bcc Fe since these are the

most problematical for causing structural weaknesses in reactor pressure vessels. However the

same detailed methodology as used for He could also be extended to other systems including

He, Ar, Kr and Xe. The reason that Kr was not considered in the thesis although it is

an important nuclear transmutation project was due to time considerations and because its

mass lies somewhere between those of the other inert gases. Besides the materials considered

in the thesis inert gas bubbles in an ODS alloys could be considered since ODS steels show

a good radiation resistance. Previous work by our group has shown that He can decorate

the surfaces of the nanoparticle inclusions without growing into large bubbles. So that this
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could be an important mechanism to avoid swelling and maintain high-temperature strength.

Other materials which should be considered include nuclear fuels where bubble growth is an

important problem. The role of defect should also be examined because experiment has

shown that the gases prefer to segregate to grain boundaries although they can also form

within the grains as shown in Figure 3.2.

One of the topics that was not considered in the thesis was the interaction with surfaces.

It is known that beams of energetic inert gases can cause blistering and flaking of surfaces.

The otf-KMC technique that was mentioned in Section 2.2 could be an ideal tool for investi-

gating these effects. Indeed in fusion reactors it has been demonstrated experimentally that

tungsten fuzz can form at high temperature due to the interaction of He with the walls of

a tokomak device. However thin film growth of surfaces in a magnetron sputtering device

also involve inert gas interactions and it would therefore be important to develop the work

to see the effect in these systems.

In our work generally only one step of the oft-KMC technique was applied but this could

be used in many different cases to examine the long time scale behaviour of inert gas diffusion

in materials when the diffusion barriers are high. This was not a problem with He in bcc

Fe since the diffusion of small He clusters could be investigated using MD since the energy

barriers were much lower. The oft-KMC technique is ideal for the investigation of such

surface effects.

The optimum gas to vacancy ratio has so far only been determined at 0 K. It should also be

possible to determine this at higher temperatures. However some preliminary investigations

to try to quantify and to calculate the pressure inside the bubble proved unsuccessful due to

the large amount of statistics required for the investigation. However this problem could be

revisited in a future study.

Finally as computing power increases ab-initio calculations become more feasible. So far

these calculations have only been used for parametrising empirical potentials rather than for

direct comparison with the results here. This is also a fruitful avenue for future investigation.
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