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On the quantum-to-classical transition of a particle in a
box
Jamie E Paton1, Mark James Wootton2, and M.J. Everitt1,∗

The exact formulation of the correspondence principle and
in particular understanding the quantum-to-classical tran-
sition remains an open problem in quantum mechanics. In
this paper we present our investigation into the quantum-
to-classical transition of the most trivial of quantum sys-
tems — a particle in a box. Whilst it is perhaps surprising,
even this example can produce new physical insight into

these fundamental problems. With modern fabrication
techniques of nano-mechanical systems we will be able
to experimentally investigate these results and directly ob-
serve the quantum-to-classical transition. This will enable
us to build technologies that probe the fundamental ques-
tions of quantum mechanics, such as the maximum size of
a quantum object.

1 Introduction

Quantum mechanics is our best theory of reality [1, 2].
With the exception of gravity, its success in describing our
universe is remarkable [3]. The development of quantum
1.0 technologies such as the laser and microchip have al-
ready revolutionised the world around us. The emergence
of quantum 2.0 technologies [4, 5], that directly leverage
non-locality and entanglement as core components of
their operation, looks set to have a similar disruptive ef-
fect. Despite this technological success, the ontological
foundations of the subject remain unclear. The same tech-
nological sophistication that is enabling new quantum
technologies may also provide a route to understanding
aspects of these foundational problems. Of particular in-
terest is the correspondence principle, and the emergence
of the classical world. In textbook quantum mechanics
this is often presented in terms of being achieved by sys-
tems in high energy states or in terms of Planck’s con-
stant becoming vanishingly small — approaches that are
known for being problematic [6]. There has been a lot
of work on the correspondence principle that focuses
on reproducing chaotic dynamics of classical systems —
the interest arising because the Schrödinger equation is
strictly linear [7–20]. We note that there is a large body
of literature that takes a statistical random matrix the-
ory approach to the quantum-to-classical transition in
Hamiltonian systems. This is beyond the scope of our dis-

cussion and we will focus only on the stronger form of a
trajectory-level approach.

Perhaps because on a prima facie level they lack inter-
est, apparently simpler systems, such as a particle bounc-
ing off a barrier, have generally been overlooked in studies
on the quantum-to-classical transition. Recently there has
been significant progress in this problem [21]. This work
does not simply fill a well needed gap in the literature —
rather it is sophisticated, subtle and opens up some very
interesting lines of investigation.

It is well known that when a quantum particle has
enough energy to overcome a barrier, the wavefunction
splits into transmitted and reflected parts. This is con-
trary to the classical result where only transmission oc-
curs. Recent work by Halliwell and Bedingham [21] has
demonstrated the use of an open quantum system in the
suppression of the reflected part. Their work deals with
a single encounter with a finite barrier and is an inter-
esting exploration of the quantum to classical transition,
the the inherent subtleties, of simple systems. Here we
present work that uses a similar approach to the related
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problem of a particle in a box. The interesting additional
element now being that the size of the box also plays a
role in achieving the correspondence limit. Specifically
we seek to check, for this system, the suitability of the
version of the correspondence principle given in [6] that
states: “Consider ħ fixed (it is) and scale the Hamiltonian,
in such a way as to preserve the form of the classical phase
space, so that when compared with the minimum area ħ/2
in phase space: 1. the relative motion of the expectation
values of any observable (generalized) co-ordinate (and
hence the associated classical action) becomes large, and
2. the state vector is localized (in any representation); then,
under these circumstances, expectation values of operators
will behave like their classical counterparts.”.

In this work we begin to explore how an open sys-
tems approach, that can realise the required localisation
of the above statement of the correspondence princi-
ple, may lead to understanding the quantum-to-classical-
crossover, of such simple systems. The open quantum sys-
tem dynamics of a particle in a box displays a surprisingly
rich set of behaviours where the momentum and mass of
the particle, the relative size of the box, and magnitude
of environmental decoherence all play a part. We also
present an initial study of another interesting area for in-
vestigation regarding the quantum-to-classical transition
which is provided by the two dimensional Bunimovich
stadium — arguably the simplest example of Hamiltonian
chaos. This paper explores the question of whether or not
an open systems approach will yield a correspondence
limit for such trivial Hamiltonian systems. We discuss our
findings but a full understanding of the emergence of clas-
sical dynamics from these quantum objects is beyond the
scope of this paper.

Nano-mechanical realisations of a particle in a box
could well be an ideal choice of system for investigat-
ing the correspondence principle [22, 23]. The question
is, ‘can we understand the transition from quantum
carpets and their revivals to a “particle” bouncing in a
box?’ There have been a number of works that realise
nano-mechanical systems demonstrating quantum ef-
fects, which would form natural test systems for this sub-
ject (instead of considering analogies, we are now in a
position to actually look at real nano-mechanical quan-
tum particles in a box) [22, 24–28]. Applications of nano-
mechanical systems, such as the manipulation of sim-
ple quantum devices, have significant implications for
future quantum technologies. Recently it has been shown
that it is possible to hold and then control objects at
nano-scales [29–32]. An example application of charac-
terising the emergence of classical trajectories of nano-
mechanical systems would be to develop a ‘quantumness’
test. We could then establish the suitability of a given

nano-mechanical device for application in quantum tech-
nologies (in a similar fashion to using qubits as a probe to
test the ‘quantumness’ of a field mode [16]).

It is now possible in a laboratory environment to pro-
duce nanomechanical objects that exhibit quantum prop-
erties [24, 33]. Manipulation of these devices will allow us
to experimentally explore simple problems such as the
one dimensional particle in a box.

2 Quantum Particle in a Box

If we consider briefly a classical one-dimensional particle-
in-a-box. It is easy to see that as the particle simply
bounces between the two walls, it would trace out a ‘zig-
zag’ shape as it elastically bounces off each wall. As a stan-
dard textbook example it is well known that a quantum
one-dimensional particle-in-a-box displays markedly dif-
ferent properties to its classical counterpart [1, 2]. This
can be seen by solving the Schrödinger equation for the
particle where the initial state is as particle-like as it can
be – a coherent state with [34]

ψ(q) = [
2π(∆q̂)2]−1/4

exp

[
−

(
q −〈

q̂
〉

2(∆q̂)

)2

+ i
〈

p̂
〉

q

ħ

]
(1)

In Figure 1 we display one such solution, showing and
the expectation value of the position operator

〈
q̂
〉

. The
dynamics of

〈
q̂
〉

is shown as a white line in Figure 1 and
shares almost nothing in common with the "zig-zag" of
its classical counterpart. It is easy to see that if a quantum
particle is left in a box and then its position is measured
after a random time, there is a much higher chance that it
will be found in the middle of the box. This is a measur-
able difference between the quantum and classical sys-
tems — in the classical system every position in the box is
equiprobable. This behaviour is well known and we will
not discuss it further here. In addition to plotting

〈
q̂
〉

we
also plot the square of the amplitude of the wave-function,
|ψ(x)|2. The pattern displayed in this plot is known as a
‘quantum carpet’ following [35] as the pattern produced
by plotting |ψ(x)|2 as a function of time is reminiscent of
an intricately decorated carpet or rug. It’s conventional
in quantum carpet plots to plot time along the y-axis. A
quantum carpet allows one to very easily visually spot the
symmetries of the system, and to visually inspect the level
of ‘quantumness’. We can, for example, see that after a pe-
riod of time the system starts to "run backwards" until the
original Gaussian wavepacket is restored. This is known
as the revival of the system — as discussed by Berry et.
al. [35] — and is periodic with the period being referred
to as the revival time.
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Figure 1 Showing the evolution of |ψ(x)|2 for a particle in a 1-
D infinite potential well where its initial condition is a Gaussian
wave-packet with (∆q̂) = 1 and

〈
p̂

〉= 2. The white line plotted
is

〈
q̂
〉
.

Environmental decoherence has been successfully
shown to effectively suppress quantum-mechanical re-
flection [21] and to be a component part of achieving a
quantum-to-classical transition in another Hamiltonian
system [13, 14]. We model the effects of environmental de-
coherence by using quantum state diffusion (QSD). This
takes the form of a stochastic Itô increment equation that
is a single unravelling of the Linblad master equation

Figure 2 Showing the evolution of |ψ(x)|2 for a particle in a 1-
D infinite potential well subject to environmental decoherence
using the quantum state diffusion unravelling of the master
equation. The initial condition is a Gaussian wave-packet with
(∆q̂) = 1,

〈
p̂

〉= 2 and the decoherence factor is L̂1 = 0.01q̂ .
The white line plotted is

〈
q̂
〉
. Here we see the emergence of

behaviour that is more like that of a classical particle bounc-
ing around in a box, including localisation of the wave-packet,
rather than quantum-coherent carpets of the equivalent closed
quantum system.

given by

d
∣∣ψ〉=− i

ħ Ĥ
∣∣ψ〉

dt

+∑
j

[〈
L̂†

j

〉
L̂ j − 1

2
L̂†

j L̂ j − 1

2

〈
L̂†

j

〉〈
L̂ j

〉]∣∣ψ〉
dt

+∑
j

(
L̂ j −

〈
L̂ j

〉)∣∣ψ〉
dξ j

(2)
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Figure 3 Cross-section of the amplitude of the quantum state
at dimensionless time t ≈ 980 of Figures 1 and 2 showing local-
isation of the wave-packet for the example with decoherence.

Here the first term is regular Schrödinger evolution, the
second term models the drift of the wavefunction, and
the third term models the stochastic fluctuation effects.
The dξ j is a random complex Gaussian obeying dξ j = 0,

dξ j dξ†
j = 0 and |dξ j | = dt . These conditions ensure that

the random complex Gaussians are independent, not co-
variant (their real and imaginary parts are independent),
and that they are normalised [36]. QSD models continu-
ous measurement of the wavefunction [36] as a Markov
process, that is to say that the environment is sufficiently
large enough to have no memory, hence the independent
stochastic effects. For this example we choose, due to its
success in achieving a correspondence limit for another
conservative system [13,14], to have the one Linblad oper-
ator L̂1 = 0.01q̂ . We note that the numerical modelling of
equation (2) for the system under consideration is not well
suited to traditional methods of solving non-linear differ-
ential equations such as the split step Fourier method
or Heisenberg matrix representations. Our computations
were therefore conducted using a much slower finite vol-
ume method (FVM) of reference [37]. This has placed
some limitations of the computations that we were able
to perform.

In Figure 2 we show the dynamics of a particle in a 1-D
infinite potential well subject to environmental decoher-
ence modelled using quantum state diffusion. Here we
see the emergence of behaviour that is more like that of
localised particle bouncing around in a box rather than
quantum-coherent carpets of the equivalent closed quan-
tum system. To more clearly show this environmentally
induced localisation we show in Figure 3 the amplitude
of the quantum state at dimensionless time t ≈ 980 of Fig-
ures 1 and 2. Compared to the classical case of stochastic

Figure 4 Showing the evolution of position for a classical par-
ticle in a 1-D infinite potential well with environmental effects
(Brownian motion) [36].

environmental effects (Brownian motion) shown in Fig-
ure 4, the evolution of

〈
q̂
〉

is remarkably similar. Note that
a classical Brownian motion would arise from thermal
fluctuations and our current model assumes a zero tem-
perature. Figure 4 is therefore presented for qualitative
comparison. The addition of a thermal bath to our model
will be the subject of future work. The convergence is not
sufficiently good for us to be able to strongly claim that we
have achieved the correspondence limit. There are several
reasons for this. Firstly the box is only about an order of
magnitude or so larger than the wave-packet/Planck cell.
Indeed the box is sufficiently small that, in contrast to
the classical dynamics, the expectation value of position
always remains noticeably away from the box’s bound-
ary. Previous studies have observed that a large action is
needed and our simulations fall a fraction short of meet-
ing this requirement [6]. Secondly, we note that the initial
momentum (and therefore energy) of this particle is small.

4 Copyright line will be provided by the publisher
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Figure 5 Configuration space for a classical particle in the
Bunimovich stadium showing a typical example of Hamiltonian
chaos. Here the initial momenta were px = 1 and py = 0.6 and
the particle was initially in the centre of the stadium.

The noise from environmental fluctuations therefore has a
significant influence on the particle’s dynamics (as would
be the case for a classical particle subject to significant
Brownian motion). Previous studies of another Hamil-
tonian system, namely the three body problem [13, 14],
indicate that provided the initial energy is large enough
it should be possible to recover a quantum-to-classical
transition that can be, to good approximation, considered
to be conservative. The same conditions need to be met
for the particle in a one dimensional box. To achieve its
correspondence limit, the computations, requiring larger
boxes and initial momentum, have proved surprisingly
demanding and will be the subject of future work.

Caveats aside, our model is sufficiently good to show
(i) particle-like localisation of the wave-packet (ii) sup-
pression of quantum revivals and (iii) very good qualita-
tive agreement between

〈
q̂
〉

and the classical dynamics of
a particle-in-a-box subjected to a Brownian motion. For
these reasons we believe that we have demonstrated a pos-
sible mechanism for the quantum to classical crossover
of a particle in a one-dimensional box.

In understanding the quantum-to-classical transition
the emergence of classical chaos is often taken as a signa-
ture of achieving the correspondence limit [7–20]. Such
a test is not possible for a particle in a one dimensional
box. However, in two dimensions such an investigation
should be achievable through the use of boxes with cer-
tain boundary conditions such as the Bunimovich sta-
dium [38, 39]. In our view it should be possible to realise
nano-mechanical devices of this kind which should form
an ideal platform to test their quantumness. In the cor-
respondence limit we expect trajectories that look like
those of a classical particle, together with exponential
divergence of any two trajectories — very different be-

(a) Schrödinger Evolution

(b) Quantum State Diffusion

Figure 6 Showing the evolution of
(〈

q̂
〉

x ,
〈

q̂
〉

y

)
for a quantum

particle in the Bunimovich stadium with initial condition of a
Gaussian wave-packet centred in the stadium with

〈
p̂

〉
x =

0.6 and
〈

p̂
〉

y = 1 for (a) regular Schrödinger evolution and
(b) subject to environmental decoherence using the quantum
state diffusion with L̂1 = 0.01q̂x and L̂2 = 0.01q̂y . Here (a)
is consistent with the known phenomena of the amplitude of
the wave-packet spreading out to cover the entire configuration
space whilst in (b) there are the beginnings of the development
of classical like trajectories, albeit strongly influenced by noise,
and the dynamics are manifestly different from the quantum
coherent evolution.

haviour from the quantum limit. The Bunimovich sta-
dium has been the subject of numerous investigations of
weak forms of the correspondence principle based on a

Copyright line will be provided by the publisher 5
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statistical random matrix theory approach that we will
not discuss here as we are interested in the stronger —
trajectory level — realisations of the quantum to classical
transition. In Figure 5 we show the configuration space
for an example of a classical particle in a Bunimovich
stadium exhibiting Hamiltonian chaos. In Figure 6 we

display the evolution of
(〈

q̂
〉

x ,
〈

q̂
〉

y

)
for a quantum par-

ticle in the Bunimovich stadium. Initially the quantum
state is a Gaussian wave-packet centred in the stadium
with

〈
p̂

〉
x = 0.6 and

〈
p̂

〉
y = 1. In Figure 6(a) we consider

Schrödinger evolution and the dynamics of
〈

q̂
〉

x and
〈

q̂
〉

y .
This shows collapse-like behaviour similar to that seen in〈

q̂
〉

for the one-dimensional case. Such behaviour is typi-
cal and can clearly be seen to be very different from the
dynamics of a classical particle in the same stadium. We
might therefore ask if a similar open systems approach,
that has often proved to be effective, could be used to re-
alise the correspondence limit of the Bunimovich stadium
at a trajectories level.

Once more we can make use of quantum state diffu-
sion to model environmental decoherence, now using
the two Lindblad operators L̂1 = 0.01q̂x and L̂2 = 0.01q̂y .
While the noise is a strong influence, bouncing is evident
and the dynamics are manifestly different from the quan-
tum coherent evolution. The emergence of a classical cor-
respondence is supported by (i)

〈
q̂
〉

not drifting towards
the centre of the stadium and staying there, i.e. there is no
collapse and there are noticeable bounces (ii) although
not shown - that the environment induces a localisation
of the wave function to a particle-like Gaussian. Hence, as
in the one-dimensional case we can see the beginnings
of the development of classical-like trajectories. In order
to more fully explore this quantum to classical crossover
we will conduct further investigations that will make use
of larger stadia and initial states with greater momenta
which we will report on in due course. With the above
caveats in place, the open systems approach looks to be
a successful route to realising the quantum to classical
transition and should recover chaos from the simplest of
classically chaotic Hamiltonian systems.

3 Conclusion

We have studied the quantum-to-classical transition of
a particle in a one-dimensional-box using an quantum
state diffusion approach. Because of its apparent trivi-
ality this system has until now been overlooked (as dis-
cussed in the introduction, there have been many studies
on “more interesting” systems). Our work is related to a
recent study of the correspondence limit of particle sub-

ject to a finite barrier [21]. Here we observe that when
considering the quantum-to-classical transition of parti-
cles in a box, the of size of box (which needs to be large
relative to the action) should also be taken into account.
This is something that does not come across from the
study of a single barrier. We have also presented the first
study of a quantum trajectories approach to a particle in
a Bunimovich stadium (up until now studies of this sys-
tem have taken a random matrix theory approach). We
have observed the apparent beginnings of a quantum-to-
classical transition. Specifically, we see localisation of the
wave-packet and bouncing between the walls. More work
needs to be done in order to conclude that an arbitrarily
good correspondence limit can be achieved and recover
classical-like Hamiltonian chaotic dynamics, however the
key ingredients are all present and our prescription looks
to be a successful one. It would be interesting to explore
the possibility of extracting the measurement record from
the environmental decoherence. We have suggested, in
line with [22], that nano-mechanical systems would be a
good and appropriate platform for testing the quantum-
to-classical transition. Observing the quantum to classical
transition may be possible, following [16], using qubits
as a "quantumness" probe and an experimental setup
similar to that found in [40] where a nano-mechanical
device was used to measure a superconducting qubit (but
now reversing the role of the mechanical system and the
qubit).
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