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Abstract: We study how excitation propagates in chains of inhibition-stabilized neural
networks with nearest-neighbor coupling. The excitation generated by local stimuli in such
networks propagates across space and time, forming spatiotemporal waves that affect the
dynamics of excitation generated by stimuli separated spatially and temporally. These
interactions form characteristic interference patterns, manifested as network preferences:
for spatial and temporal frequencies of stimulus intensity, for stimulus velocities, and as
contextual ("lateral") interactions between stimuli. Such preferences have been previously
attributed to distinct specialized mechanisms.
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1. Introduction

Waves propagating through a medium from difference sources may form patterns. When the wave
equations are linear, the waves interfere constructively or destructively, yielding local nodes and
antinodes that may retain their spatial positions (as in standing waves) or evolve in space and time
(producing dynamic patterns). Such effects were originally studied for acoustic and light waves [1–4]
followed by observations of interference for quantum particles [5,6].

More recently, propagation of activity in the neural tissue was studied in terms of the waves of neural
excitation [7,8]. One may expect that a wave generated in a sensory network at one stimulus location
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would interfere with the waves generated at other locations. Such "lateral" interactions between stimuli
are commonly observed in psychophysical and physiological studies of biological sensory systems,
where spatially separated stimuli produce patterns of facilitation and suppression in the intervening space
[9–11]. But these interactions have not been attributed to neural wave interference. Instead, they have
been commonly described in terms of filter characteristics of sensory systems and in terms of long-range
neuronal mechanisms [12].

On the description of sensory mechanisms as filters, the response of a biological sensory system
to a stimulus is predicted by convolving the stimulus with a kernel whose parameters are estimated in
psychophysical [13,14] or physiological [15] studies, or are selected for computational reasons in view of
the goals of the visual system (e.g., [16]). Mathematically, this approach is equivalent to describing the
system by a set of spatiotemporal differential equations, for which the solutions are found by convolving
the simulated inputs with the Green’s function of the neural network [17,18].

Here we propose that the commonly observed phenomena of suppression and facilitation of spatially
and temporally separated stimuli in biological sensory systems can be understood in terms of interference
of neural waves propagating through the network, and described by the spatiotemporal differential
equations supporting damped-wave solutions. We investigate the interference patterns created by the
waves of excitation in one-dimensional neural chains. We find that such patterns resemble several
salient properties of the sensory phenomena that have been attributed to distinct specialized mechanisms
[9–11,19,20]. We show that these phenomena can be controlled by a small number of parameters in the
interest of making the sensory system selectively tuned to useful properties of the optical environment.

2. Inhibition-stabilized networks with nearest-neighbor coupling

Neural networks underlying sensory processes have been modeled at different levels of abstraction,
including the models for local circuitry and for interactions between the local circuits [8,21]. Yet the
consequences of interference tend to depend more significantly on network geometry and topology (i.e.,

Figure 1. Generic circuit. An inhibitory-excitatory neuronal chain with nearest-neighbor coupling
[21,22]. The arrows indicate excitatory (red) and inhibitory (blue) interactions between neurons,
while currents iE(l) and iI(l) correspond to the inputs into each node generated by the stimulus.
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whether the network is one- or two-dimensional or whether it is fractal) than on the finer detail of local
circuitry: the "node" of the network. To illustrate basic principles of neural-wave interference, here
we consider a simple model: a chain of inhibition-excitation nodes with nearest-neighbor interactions
(Fig. 1). We use the Wilson-Cowan model [22] because even a single-node version of it (which consists
of one excitatory cell and one inhibitory cell) has proven useful for understanding behavior of small
cortical circuits [23], and its rich dynamical properties [24] have been helpful in studies of large-scale
neural phenomena [25,26].

Consider a nearest-neighbor chain of Wilson-Cowan nodes [22]:

τE
drE(l)

dt
= −rE(l) + g(WE)

drI(l)

dt
= −rI(l) + g(WI),

(1)

where

WE = wEErE(l) + w̃EErE(l + 1) + w̃EErE(l − 1)

−wEIrI(l)− w̃EIrI(l + 1)− w̃EIrI(l − 1) + iE(l), (2)

WI = wIErE(l) + w̃IErE(l + 1) + w̃IErE(l − 1)

−wIIrI(l)− w̃IIrI(l + 1)− w̃IIrI(l − 1) + iI(l), (3)

and where l is the number (or, equivalently, the discrete spatial coordinate) of an excitatory-inhibitory
node in the chain (Fig. 1). Variables rE(l) and rI(l) are the firing rates of the excitatory and inhibitory
cells at node l, respectively, and τE is the characteristic time of excitatory cells (while time is normalized
on the characteristic time of the inhibitory cells). Coefficients wEE , wEI , wIE and wII describe the
interactions of the excitatory and inhibitory cells within every node (as in [23]), and w̃EE , w̃EI , w̃IE , w̃II
represent the strength of coupling between the nearest nodes. Inputs iE(l) and iI(l) of the excitatory and
inhibitory cells are provided by the optical stimulation, while input ratio iE(l)/iI(l) = α is the same for
all the nodes (although it could be modeled as an additional parameter). Below we focus on the linear
regime of this system, where sigmoid function g is approximated by g(x) ≈ x. In other words, we
consider the following equations:

τE
drE(l)

dt
= −rE(l) +WE

drI(l)

dt
= −rI(l) +WI .

(4)
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Figure 2. Spatial interference. (a) Stationary response rE(l) to a static point stimulus, where iE(0) =
αj and iI(0) = (1 − α)j with α = 0.8, j = 0.01 and chain parameters τE = 4, wEE = 2, wIE =

1.5, w̃EE = w̃IE = w̃EI = 1, w̃II = 0.7 (i.e., K = −1.2), T = −0.8,M = 0.01. Chain length
was 200 nodes. The simulation time required to reach a stationary regime was 10,000 with time step
dt = 0.0001. (b) Map of responses rE(l) across location l for different distances l1 and l2 between
two static point stimuli iE(l1) = iE(l2) = αj and iI(l1) = iI(l1) = (1− α)j, with all other currents
set to zero. All the other parameters were as in (a). Different rows of the map represent different
simulations. The two yellow lines mark stimulus locations across the simulations. Because of the
neural wave interference, the middle point between the stimuli is either facilitated (warm colors)
or suppressed (cool colors), depending on the inter-stimulus distance and the spatial period of the
excitation wave. (c) Response rE(0) at the center of a "Gabor patch" stimulus plotted as a function
of stimulus spatial period n1, with all chain parameters as in (a) and stimulus parameters in (14) set
to n0 = 25 and j0 = 0.0005.

3. Analysis of stability

We begin by analyzing the stability of the linearized equations, since a similar analysis of two coupled
equations for a single node has been helpful for understanding the dynamical regimes observed in local
circuits: pairs of coupled excitatory and inhibitory cells [24]. Consider a perturbation around the solution
rE(t, l) = rI(t, l) = 0 at zero inputs iE = iI = 0. In contrast to the single-node configuration [24], we
must take into account the spatial dependence of the perturbations, namely

rE = ∆Ee
λt+ikl

rI = ∆Ie
λt+ikl (5)
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with constant amplitudes ∆E and ∆I , wave number k, and temporal rate λ. By substituting (5) in the
linearized equations (1) we observe:

(wEE + 2w̃EE cos k − 1− τEλ)∆E − (wEI + 2w̃EI cos k)∆I = 0,

(wIE + 2w̃IE cos k)∆E − (wII + 2w̃II cos k + 1 + λ)∆I = 0. (6)

This algebraic set has a solution if

λ± =
W̄EE − 1− τEW̄II − τE ±

√
A

2τE
, (7)

where
A = (W̄EE − 1− τEW̄II − τE)2 − 4τE[(W̄II + 1)(1− W̄EE) + W̄EIW̄IE], (8)

with
W̄s = ws + 2w̃s cos k,

and index s is EE,EI, IE, II . Note that results of [24] follow when all values of w̃s are zero.
Stability of the neural chain requires that Reλ±(k) < 0 for all k, resulting in conditions

wEE − 1− τEwII − τE + 2R cos k < 0 and

(wII + 1)(1− wEE) + wEIwIE −K cos2 k − 2KT cos k > 0, (9)

where
K = 4(w̃IIw̃EE − w̃EIw̃IE), R = w̃EE − τEw̃II , (10)

and
T = (w̃EE(wII + 1) + w̃II(wEE − 1)− w̃EIwIE − w̃IEwEI)/K. (11)

Since | cos k| < 1, the first stability equation in (9) can be rewritten as

Q = wEE − 1− τEwII − τE + 2|w̃EE − τEw̃II | < 0, (12)

where the slowest decaying perturbation has k ≈ 0 if R = w̃EE − τEw̃II > 0 or k ≈ π if R =

w̃EE − τEw̃II < 0 for A < 0.
In effect, if the chain is stimulated by a short pulse of current (a short-lived stimulus), the excitation

with either k ≈ 0 (all nodes oscillate "in-phase") or k ≈ π (all nodes oscillate "out of phase") can persist
for some time, when R > 0 or R < 0, respectively, for A < 0. This result is consistent with the
numerical simulations illustrated in Fig. 3.

Analyzing the second stability condition in (9), we obtain parameter regions where the set of
linearized equations (1) is stable. Namely, in addition to the constraint (4), the following conditions
should be satisfied:

(wII + 1)(1− wEE) + wEIwIE −K + 2KT > 0 if K > 0, T < 0,

(wII + 1)(1− wEE) + wEIwIE −K − 2KT > 0 if K > 0, T > 0,

(wII + 1)(1− wEE) + wEIwIE −K + 2KT > 0 if K < 0, T > 1,

(wII + 1)(1− wEE) + wEIwIE −K − 2KT > 0 if K < 0, T < −1,

(wII + 1)(1− wEE) + wEIwIE +KT 2 > 0 if K < 0, −1 < T < 1. (13)
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Eq. (13) defines the regime of stabilization by inhibition, including the terms responsible for stabilization
of individual nodes (the first additive terms in every row of (13)) and the terms responsible for
stabilization of the chain. As mentioned, under null interactions between the nodes (i.e., under
K = 0, KT = 0) we reproduce the results derived in [24].

In contrast to the single-node model, now the instability can occur over time by virtue of an
exponential increase of spatial amplitudes ∆E exp(−λ(k)t) and ∆I exp(−λ(k)t) of waves rE(t, l) and
rI(t, l) with different wave numbers k (i.e., spatial periods 2π/k). This so-called corrugation instability
is well known in physics, in particular in acoustics and hydrodynamics [1]. It arises because of mutual
excitation of the nodes in the chain. If neither (4) nor (13) is satisfied, the solution rE(t, l) = rI(t, l) = 0

at iE(l) = iI(l) = 0 becomes unstable. In this case, the system can be attracted to another fixed point,
or it can develop periodic, quasi-periodic, or chaotic oscillations. This behavior is different from the
behavior of the single-node model [24]. Now the oscillations occur both in space and time, and they can
be chaotic because of the mixing of oscillations with different wave numbers k (and thus different time
scales λ±(k)). In what follows, we focus on the interference of neural waves in stable regimes (4)–(13).

4. Parameters responsible for network behavior

To summarize, the preceding analysis of linearized equations (4), and the analysis of static responses of
the network to point stimuli, helped to reveal the parameters that underlie qualitatively different classes
of network behavior. These parameters are captured by the following coefficients:

K = 4(w̃IIw̃EE − w̃EIw̃IE),R = w̃EE − τEw̃II ,

T = (w̃EE(wII + 1) + w̃II(wEE − 1)− w̃EIwIE − w̃IEwEI)/K.

Q = wEE − 1− τEwII − τE + 2|w̃EE − τEw̃II | < 0,

M = (wII + 1)(1− wEE) + wEIwIE +KT 2,

k̃ = ± arccos(−T ), κ = ±
√
−M/[K(1− T 2)].

Although this modeling framework employs a large overall number of parameters, all stationary
solutions (the spatial distribution of network activity) are controlled by two quantities, T and M/K,
and the dynamical behavior of the network is additionally controlled by Q and R. In particular, T
determines whether the system has a purely decaying spatial response (for |T | > 1) or it shows decaying
oscillations (for |T | < 1) with wave number k̃ (e.g., Fig. 2). RatioM/K defines the exponent of spatial
decay (i.e., how fast the response decreases along the chain) away from the stimulus. Remarkably, when
we choose different sets of parameters that correspond to the same magnitudes of T and M/K, but
different magnitudes ofR, the network produces nearly the same responses for lasting stimuli, and very
different responses for short-lived stimuli (Fig. 3).
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5. Spatial interference and intrinsic tuning

First, we consider the steady-state response rE(l) to a spatially localized static stimulus ("point
stimulus")

iE(l 6= 0) = iI(l 6= 0) = 0, iE(0) = αj, iI(0) = (1− α)j

with total current j applied to the zeroth node. Depending on parameters T and M/K, the response
will have the form of either spatial damped oscillations (Fig. 2a) or purely exponential spatial decay (not
shown). For the regime of damped oscillations, the number of significant oscillations (i.e., oscillations
whose amplitudes are comparable to those at the locus of stimulation) is controlled by ratio k̃/κ and it
can be readily estimated using parameters T , M and K.

Applying two point stimuli, for which iE(l) = iI(l) = 0 for any l except l1 and l2, with

iE(l1) = iE(l2) = αj, iI(l1) = iI(l2) = (1− α)j,

we obtain an interference of two "static waves" generated by the two stimuli. Depending on distance
l1 − l2 between the stimuli, we obtain different interference responses rE(l), displayed in Fig. 2b as a
map in which the rows correspond to the simulations with different distances l1 − l2.

Fig. 2b reveals that the response at the middle position l = (l1 + l2)/2 between the point stimuli could
be either facilitated (warm colors) or suppressed (cool colors). These results suggest a new interpretative
framework for the experimental studies of visual sensitivity with different spatial arrangements of local
stimuli, such as strings [9] or rings [10] of Gabor patches, which had revealed strong modulations of
sensitivity between stimulus locations.

Next, consider the pattern of neuronal interference created by a spatially extended stimulus, such as
the commonly used "Gabor patch"

j(l) = j0 cos(2πl/n1) exp(−l2/n2
0) (14)

with spatial period n1, Gaussian width n0, and amplitude j0. As we show in Fig. 2c, spatial period n1

affects the response at the location of the strongest excitation rE(l = 0). As spatial period n1 increases,
the response first increases, reaches a maximum, and then decreases. This effect can be interpreted as
a constructive interference of neural waves. The maximal response rE(l = 0, n1) is reached when the
periodicity of the stimulus matches the periodicity of the neural wave. In other words, the maximal
response of the network is attained when a stimulus evokes oscillations whose period coincides with the
period of the stimulus. (This period of oscillation may be called "intrinsic" or "natural" period of the
network.)

Notably, the effect of inter-stimulus distance on the pattern of facilitation and suppression arises here
from the nearest-neighbor interactions alone, requiring no long-range interactions between neurons
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Figure 3. Spatiotemporal interference. (a-b) A map of spatiotemporal response rE(t, l) to short-lived
point stimulus. The abscissa is spatial coordinate l and the ordinate is time t after stimulus onset,
rE(0, i) = rI(0, i) = 0. The red, cyan, and blue regions represent highly positive, near zero, and
highly negative values of rE respectively. [Chain length was 200 nodes. Other chain parameters
were iE(t, l) = iI(t, l) = 0 for all l 6= 0; iE(t < tstim, 0) = αj, iI(t < tstim, 0) = (1 − α)j and
iE(t > tstim, 0) = 0, iI(t > tstim, 0) = 0, and wEE = 2, wIE = 1.5, M = 0.01, Q = −0.01,
T = −0.8, K = −0.1, α = 0.8 for both (a) and (b), where R = 1 (a), w̃EE = 1.3 (a), w̃IE = 1.7

(a) and R = −1 (b) w̃EE = 1.5 (b), w̃IE = 1.6 (b). Simulation time was 40, and the time step was
dt = 10−6. Stimulus duration was 1 and stimulus intensity was j = 4 × 10−4.] (c-d) Results of the
simulations as in (a) and (b), respectively, now displaying functions rE(t, 0), rE(t, 1)...rE(t, 5). The
nodes oscillate in phase when R > 0 and out of phase when R < 0. (e-f) Steady-state responses for
a static point stimulus iE(t, l) = iI(t, l) = 0 and iE(t, 0) = αj, iI(t, 0) = (1 − α)j for the same
chain parameters as in (a) and (b), respectively. (Stimulus intensity was j = 4 × 10−4.) Although
chain responses to short-lived and lasting stimuli differ (because of the different signs of R), the
steady-state responses are nearly identical, except for a slightly different amplitude rE(l = 0) (since
the steady-state response is controlled only by T ,M,K). (g) Maximal response maxt[rE(t, l = 0)]

over the entire observation period on the central node for a drifting Gabor patch (15) with parameters
n1 = 2, n0 = 20, j0 = 0.0005. The response is stronger than for static stimuli (vg = 0).

6. Spatiotemporal interference

Next, we briefly consider the spatiotemporal interference that arises in the network when the stimuli
appear at different locations and at different temporal instants. These conditions commonly occur in
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the studies that use short-lived and moving stimuli, where the latter may be equivalently described as
sequential presentation of a short-lived stimulus at spatially adjacent locations.

The time course of chain response r(l) after extinguishing the stimulus has the form of either a purely
exponential temporal decay or a damped temporal oscillation. Here we focus on the response regime of
temporal oscillation, which is similar to the response regime found in biological vision [13,14].

We simulated a short-lived point excitation with iE(t, l) = iI(t, l) = 0 for all t and l except l = 0, t <

tstim when
iE(t < tstim, l = 0) = αj, iI(t < tstim, l = 0) = (1− α)j.

For R > 0, the slowest decaying response under t > tstim corresponds to the case, where all the nodes
respond in phase (Fig. 3a,c) and the wave of neural excitation propagates with a very high velocity.

Interestingly, the maximum excitation at rE(t, l = 0) is reached long after extinguishing the stimulus.
(In Fig. 3, the stimulus was turned off at t = 1 whereas rE reached its maximum at t = 20.) Such
response delays must be taken into account in the studies that use rapidly alternating or short-lived
stimuli [27].

In case of R < 0, a long decay occurs for a fast spatial oscillating mode, resulting in out-of-phase
oscillations in the neighboring neurons (Fig. 3b,d) and yielding a well-defined velocity of the neural
wave. This makes the shape of the neural wave more complicated than in the case of R > 0, forming
multiple regions of facilitation and suppression in the l− t map (Fig. 3b) even for a single short pulse of
stimulation. We therefore expect that different stimuli (not shown) will generate non-trivial interference
patterns. For example, consider network response to a dynamic stimulus, a drifting Gabor patch:

j(l) = j0 cos(2π(l − vgt/n1)) exp(−l2/n2
0). (15)

The well-defined velocity of the wave forR < 0 suggests that the interference pattern will generate clear
maxima of rE(l) when the stimulus moves with the same velocity as the intrinsic ("natural") velocity
of the neural wave. This result agrees with the numerical stimulations illustrated in Fig. 3g, and it
suggests a simple neural mechanism for tuning the sensory system to stimulus velocity, as a special case
of spatiotemporal neural-wave interference, making unnecessary the assumption of specialized neural
circuits for sensing velocity (cf. [19,20]). Notably, and in spite of the very different spatiotemporal
responses of the system to short-lived stimuli (Fig. 3a,b), responses to static stimuli for R > 0 and
R < 0 are similar to one another (Fig. 3e,f). This is because the steady-state response of the network is
fully determined by terms K, T andM.

7. Conclusions

We have analyzed interference of the neural waves propagating through an inhibitory-excitatory neural
chain with nearest-neighbor coupling. First, we defined the region of stability of the corresponding
linearized coupled equations with respect to corrugation perturbations, and then derived the combinations
of parameters responsible for the shape of neural waves generated by static and short-lived stimuli.
We found that the interference patterns generated in this network have three properties commonly
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observed in biological vision: (1) selectivity for to spatial and temporal frequencies of stimulus intensity
modulation, (2) selectivity for stimulus velocity, and (3) "lateral interactions" between spatially separate
stimuli. It is plausible that neural wave interference is responsible for some of the basic visual
phenomena that had been attributed to specialized neural circuits [9–11,19,20].
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