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ABSTRACT 

The main aim of this thesis was to examine hamstrings anatomy and its influence on knee 
flexor muscle function in healthy young men. A secondary aim was to better understand the 
implications of hamstrings anatomy and function, and their variability, in relation to the risk 
of strain injury. 

The functional and conventional H:Q ratios (examined up to high angular velocities) as well 
as the knee joint angle-specific isometric H:Q ratio exhibited good test-retest reliability at 
joint positions that closely replicated the conditions of high injury risk. 

Football players did not exhibit any differences in angle-specific or peak torque H:Q ratios 
compared to recreationally active controls. Knee extensor and flexor strength, relative to 
body mass, of footballers and controls was similar for all velocities, except concentric knee 
flexor strength at 400° s-1 (footballers +40%; P < 0.01). 

Muscle volume explained 30-71% and 38-58% of the differences between individuals in knee 
extensors and flexors torque respectively across a range of velocities. A moderate correlation 
was also found between the volume of these antagonistic muscle groups (R2= 0.41). The 
relative volume of the knee extensors and flexors explained ~20% of the variance in the 
isometric H:Q ratio and ~31% in the high velocity functional H:Q ratio. 

Biceps femoris long head exhibited a balanced myosin heavy chain isoform distribution 
(47.1% type I and 52.9 % total type II) in young healthy men, while BFlh muscle 
composition was not related to any measure of knee flexor maximal or explosive strength. 

Biceps femoris long head proximal aponeurosis area varied considerably between participants 
(>4-fold) and was not related to biceps femoris long head maximal anatomical cross-sectional 
area (r= 0.04, P= 0.83). Consequently, the aponeurosis:muscle area ratio exhibited 6-fold 
variability (range, 0.53 to 3.09; CV= 32.5%). Aponeurosis size was not related to isometric or 
eccentric knee flexion strength. 

The findings of this thesis suggest that the main anatomical factor that contributes to knee 
flexors function in vivo is hamstrings muscle size, while muscle composition and aponeurosis 
size do not seem to have a significant influence. The high inter-individual variability of the 
biceps femoris long head proximal aponeurosis size suggests that a disproportionately small 
aponeurosis may be a risk factor for strain injury. In contrast, biceps femoris long head 
muscle composition does not seem to explain the high incidence of strain injuries in this 
muscle. Quadriceps and hamstrings muscle size imbalances contribute to functional 
imbalances that may predispose to strain injury and correction of any size imbalance may be 
a useful injury prevention tool. Finally, regular exposure to football training and match-play 
does not seem to influence the balance of muscle strength around the knee joint. 

Keywords: Hamstrings, anatomy, muscle size, muscle balance, aponeurosis size, muscle 
composition, hamstrings-to-quadriceps ratio, maximal strength, explosive strength, MRI  
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1 CHAPTER 1 - GENERAL INTRODUCTION 

High-speed running and jumping are integral to human locomotion and sports participation. 

The hamstrings muscle group, as the primary knee flexor and a major hip extensor, plays a 

leading role in these activities (Schache et al., 2014; Novacheck, 1998; Baratta et al., 1988). 

Furthermore, an active hamstrings muscle group provides dynamic knee joint control and 

stability, and thus it is necessary for maintaining joint integrity. Despite these important roles 

of the hamstrings there is limited knowledge about precise details and inter-individual 

differences in hamstrings anatomy and how these influence function in vivo. Hamstrings 

exhibit a notorious susceptibility to strain injuries, which are consistently reported as the most 

prevalent injury in sports that involve high-speed running or sprinting (12-17% of all injuries: 

Alonso et al., 2012; Ekstrand et al., 2011a, 2011b; Orchard and Seward, 2002). The impact of 

hamstrings strains on the affected athletes is further emphasized by the 12-40% recurrence 

rate (Alonso et al., 2012; Ekstrand et al., 2011a, 2011b; Elliot et al., 2011; Verrall et al., 

2006; Woods et al., 2004; Orchard and Seward, 2002). These alarming epidemiological data 

expose the limited current understanding of the aetiology, prevention and treatment of 

hamstrings strain injuries, which require fundamental knowledge about hamstrings anatomy 

and function. 

Whilst the exact time at which non-contact hamstrings strain injury occurs remains debatable 

(Chumanov et al., 2012; Orchard, 2012), it is believed that strains occur during the late swing 

phase of sprinting (Chumanov et al., 2012; Schache et al., 2012), when the biarticular 

hamstrings are at their peak stretch and exert high forces eccentrically to decelerate the 

forward movement of the shank prior to ground contact. The muscle most often injured is the 

biceps femoris long head (BFlh), often at its proximal myotendinous junction (MTJ) 

(Koulouris and Connell, 2003; De Smet and Best, 2000). 

Over recent decades, a large number of investigations have strived to determine the risk 

factors that predispose people to hamstrings strains. Although a plethora of risk factors have 

been suggested, only two are supported by substantial scientific evidence; the history of 

hamstrings injury (Hagglund et al., 2013; Gabbe et al., 2006; Orchard, 2001) and age 

(Arnason et al., 2004; Orchard, 2001). Strong evidence also exists for the muscle strength 

imbalances (unilateral and bilateral) as a risk factor (Croisier et al., 2008) yet there is still 

some controversy (Bennell et al., 1998). Other proposed risk factors include reduced 
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flexibility, hamstrings anatomy, fatigue and ethnicity (Opar et al., 2012); however, the 

existing evidence for these is inconclusive. It is commonly speculated that hamstrings 

anatomy contributes to their susceptibility to injury, yet there is a surprising lack of 

experimental data to substantiate these speculations. In addition, the structure-function 

relationship for the hamstrings working in vivo has received relatively little attention. 

Abnormalities in hamstrings morphology subsequent to injury, such as atrophy and persistent 

scar tissue (Silder et al., 2008), may preclude the valid investigation of structure and function 

relationships in previously injured individuals. Therefore, a first step would be to investigate 

the interrelations between hamstrings anatomy and function in a normal, uninjured 

population. The main aim of this thesis was to examine hamstrings anatomy and its influence 

on knee flexor muscle function in vivo within normal, young individuals. A secondary aim 

was to better understand the implications of hamstrings anatomy and function, and their 

variability, in relation to the risk of strain injury. A particular focus of this thesis was the 

BFlh muscle-tendon unit (MTU), due to its vulnerability to strain injuries. 

There is a long-standing belief that individuals with weak knee flexors relative to extensors 

are at an increased risk for hamstrings strains (Croisier et al., 2008; Heiser et al., 1984). The 

reciprocal strength balance of the muscles around the knee joint is routinely monitored with 

the hamstrings-to-quadriceps (H:Q) ratio derived from the peak isometric or dynamic torque 

values of joint extensors and flexors. Despite the wide use of the H:Q ratio as a potential risk 

factor for strain injury, it is usually obtained in conditions that ignore the biomechanical 

conditions related to strain injuries. During the late swing phase of sprinting, the hip joint is 

flexed at ~120-140° (Guex et al., 2012; Novacheck, 1998), while the knee joint angular 

velocity is very high (>1200° s-1, Higashihara et al., 2010). Simulating these conditions, to 

the greatest possible extent, in the assessment of the H:Q ratio would provide a more 

meaningful measure of the reciprocal strength balance at the knee joint. In addition, no study 

to date has accounted for the discrepancy between the knee joint angle and crank angle that 

occurs during isometric testing. It has been shown that this discrepancy can be up to 20° for 

knee extension (Tsaopoulos et al., 2011; Arampatzis et al., 2004), whilst a similarly large 

difference may be present for knee flexion resulting in a total offset in the assessed knee joint 

angle between knee extensors and flexors of up to 40°. Finally, even though the H:Q ratio is 

often calculated over a range of velocities, its reliability at high velocities has yet to be 

examined. The development of a testing protocol that addresses the aforementioned 

limitations would be expected to improve the ecological validity of the H:Q ratio. However, it 
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is important to first establish the reliability of such a protocol. The aim of the first study was 

to evaluate the inter-session reliability of the isometric (angle-specific) and isovelocity 

(functional and conventional) H:Q ratios using a protocol that included muscle function 

measurements with high angular velocities, and joint positions and muscle actions that 

closely replicate those of high injury risk. This involved first the assessment of the reliability 

of the knee flexors and extensors torque measurements across the torque-velocity relationship 

(Chapter 3). 

Whilst footballers are particularly affected by hamstrings strain injuries (Ekstrand et al., 

2011a; Woods et al., 2004), the findings in the literature are inconclusive regarding the 

influence of football participation on H:Q ratio, although there is some evidence to suggest a 

disproportionate development of either the knee extensors (Iga et al., 2009) or flexors 

(Fousekis et al., 2010; Cometti et al., 2001). To date all studies in footballers have examined 

the H:Q ratio using the peak torque of the reciprocal muscle groups for its calculation. This 

approach ignores the fact that knee extensors and flexors exert their peak torque at different 

knee joint angles (~115° and ~150° respectively, Knapik et al., 1983), which may reduce the 

validity of the H:Q ratio to assess the antagonistic muscle function at the more extended knee 

joint angles where hamstrings strains are thought to occur. It is possible that a hazardous 

muscle strength imbalance may be angle-specific and more pronounced at the extended knee 

joint positions. The aim of the second study was to compare the angle-specific H:Q ratios 

between football players and recreationally active controls up to high angular velocities 

(Chapter 4). 

Despite the extensive use of the H:Q ratio, there is limited knowledge of the factors that 

influence this ratio. Muscle size is a primary determinant of maximal strength (Fukunaga et 

al., 2001), and it would be expected that the relative size of antagonistic muscles, such as 

quadriceps and hamstrings, would directly influence their respective strength balance. 

However, to date the association between quadriceps and hamstrings muscle size has not 

been directly examined and the only two studies that have examined the influence of the H:Q 

muscle size ratio on their strength ratio did not find any relationship (Akagi et al., 2014, 

2012). However, they only examined the isometric H:Q ratio which may not reflect the 

distinct function of the reciprocal muscles during late swing phase in sprinting. The aim of 

the third study was to examine the relationship between knee extensors (quadriceps) and 

flexors (hamstrings) muscle size, the association of each muscle’s size with its strength, and 
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investigate if the muscle size ratio was related to the isometric and functional strength ratios 

(Chapter 5). 

An aspect of the hamstrings anatomy that has often been speculated to contribute to strain 

injuries is muscle composition. However, the only existing data on BFlh muscle composition 

are derived solely from cadavers (Dahmane et al., 2006; Garrett et al., 1984; Johnson et al., 

1973). In a much-cited study, Garret et al. (1984) reported that the hamstrings of a small 

number of cadavers had a ‘high proportion’ of type II fibres in the hamstrings (54.5%) 

compared to other leg muscles (quadriceps, 51.9%; adductor magnus, 44.8%) and suggested 

that this may contribute to their susceptibility to injury. However, vastus lateralis, an 

antagonist muscle to BFlh, has been found to contain a greater proportion of type II fibres 

within a large cohort of physically active, young men (66.1%; Staron et al., 2000); yet it does 

not exhibit a high frequency of strain injuries. In addition, as hamstrings muscle composition 

has only been determined within cadavers, its influence on knee flexor maximal and 

explosive strength remains unknown. The aim of the fourth study was to determine the BFlh 

myosin heavy chain (MHC) isoform distribution and to examine the association of 

hamstrings muscle size and BFlh MHC composition with knee flexor strength, including 

maximal strength measurements across the torque-velocity relationship (concentric, isometric 

and eccentric) as well as explosive isometric strength (Chapter 6). 

Recently, two studies calculated higher localised tissue strains for individuals with a narrow 

BFlh proximal aponeurosis using computational modelling and dynamic MR imaging and 

suggested that individuals with a narrow aponeurosis are at an increased risk of strain injury 

due to the increased strains near the proximal BFlh MTJ (Fiorentino et al., 2012; Rehorn and 

Blemker, 2010). Further, a preliminary report from the same research group (Handfield et al., 

2010) suggested that the width of the BFlh proximal aponeurosis was highly variable 

between individuals and unrelated to the size of the BFlh muscle. These results suggest, 

counterintuitively, that within the BFlh MTU, the size of the force generator (muscle) is not 

proportional to the size of the force transmitter (aponeurosis). The aim of the fifth study was 

to examine the relationship of BFlh proximal aponeurosis area with muscle size (maximal 

anatomical cross-sectional area and volume) and knee flexor strength (isometric and 

eccentric) (Chapter 7). 
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2 CHAPTER 2 – LITERATURE REVIEW 

2.1 INTRODUCTION 

This review is divided into four main parts; the first part gives a brief description of the 

muscle apparatus and its fundamental properties, as expressed at the sarcomere- and in vivo 

level. The following part presents the morphological and neural factors that determine muscle 

function. The third part gives a description of the anatomy of the hamstrings muscle group, 

while it also describes the function of hamstrings during sprinting, the activity during which 

the majority of strain injuries occur. The final part of this review describes and discusses the 

problem of the hamstrings strain injuries. 

2.2 PART I – BASIC MUSCLE STRUCTURE AND FUNCTION 

2.2.1 Overview of muscle structure 

Skeletal muscles are designed to produce force for human locomotion and skeletal support. 

Their structure exhibits a high level of organisation from the molecular to the whole-muscle 

level. The smallest functional unit of muscle is the sarcomere which is composed primarily of 

myosin and actin proteins and the interaction of these proteins is responsible for the 

production of force. Chains of sarcomeres form the myofibrils which are grouped into muscle 

fibres by the endomysium. Each muscle fibre contains thousands of sarcomeres in series (a 

hamstrings’ muscle fibre contains ~43,000 sarcomeres in series; Enoka, 2002), while the 

number of fibres contained within a muscle varies from a few hundreds up to >1,000,000 

(Enoka, 2002). Bundles of muscle fibres are surrounded by the perimysium and form the 

muscle fascicles. In turn, muscle fascicles are grouped together with the epimysium to form 

the muscle. Endomysium, perimysium and epimysium are layers of non-contractile 

connective tissue composed of collagen that also assist in force transmission (Huijing, 1999). 

Finally, muscles are attached through their aponeuroses and tendons onto the skeleton. 

Similar to the layers of connective tissue that envelop the muscle, tendons and aponeuroses 

also consist of collagen. In the examination of muscle function in vivo, the smallest functional 

unit is a muscle along with its tendons, collectively described as the muscle-tendon unit 

(MTU).  
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2.2.2 Muscle contraction (Excitation-contraction coupling) 

Muscle contraction is initiated upon arrival of a propagating neural impulse (action potential) 

from the motor neurons and through the neuromuscular junction (via the neurotransmitter 

acetylcholine) onto the muscle fibre membrane (sarcolemma). The action potential causes 

depolarisation of the sarcolemma and propagates longitudinally along the fibre length and 

transversely into the muscle cell, via the transverse tubules (T-tubules). As the action 

potential travels through the T-tubules, it causes Ca2+ to be released from the sarcoplasmic 

reticulum into the muscle cell. The released Ca2+ then binds onto the specialised area of the 

troponin and causes the troponin-tropomyosin complex to move and reveal the active sites on 

the actin filaments. Then, the already energised myosin heads - through hydrolysis of their 

adenosine triphosphate (ATP) molecule - bind to the exposed active sites and form the cross-

bridges. The stored energy from the ATP hydrolysis is then released causing a rotation of the 

myosin heads, called power stroke. The power stroke generates force causing the actin 

filament to slide towards the centre of the sarcomere and the sarcomere to shorten (sliding 

filament theory). Following the power stroke, a new ATP molecule binds onto the myosin 

heads which then detach from the initial active sites and are ready to attach on new ones 

further along the fibre, forming new cross-bridges. This cycle continues as long as the 

concentration of the intracellular Ca2+ remains elevated. When the action potential generation 

ceases, the intracellular Ca2+ returns back to the sarcoplasmic reticulum and the contraction 

ends. 

2.2.3 Muscle composition 

Muscle fibres can be classified according to their structural and functional properties. A 

commonly used histochemical method classifies fibres according to their myofibrillar 

ATPase activity into three main (I, IIA, IIX) and four intermediate (IC, IIC, IIAC, IIAX) 

types (Staron and Hikida, 1992). The more recent electrophoretic method separates and 

quantifies the different myosin heavy chain (MHC) isoforms. In human muscles, three main 

(MHC-I, MHC-IIA, MHC-IIX) and two hybrid (MHC-I-IIA, MHC-IIA-IIX) isoform types 

have been identified (Bottinelli and Reggiani, 2000). In vitro examination has shown that the 

maximum shortening velocity is ~4-fold greater in fibres expressing MHC-IIX isoform 

compared to fibres with MHC-I, while the maximum shortening velocities of the intermediate 

fibres fall within this range (Bottinelli et al., 1999). However, there is a degree of overlap in 

shortening velocities within the continuum of MHC isoforms. Similarly, fibres with MHC-
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IIX isoforms produce ~1.5-fold greater specific tension and >8-fold greater power than type I 

fibres (Bottinelli et al., 1996), with the MHC-IIA fibres being intermediate. Further, MHC-II 

fibres exhibit also ~6-fold greater rate of force development than MHC-I (Harridge et al., 

1996). Although MHC isoform content is a main determinant of function in vitro, its 

influence on muscle function in vivo is unclear (discussed further in 2.3.1.5 & 2.3.2.3). 

2.2.4 Muscle architecture 

Architecture of a muscle is the internal arrangement of its fibres. Muscle fibres can be 

arranged in series, in parallel and at an angle relative to the muscle’s line of action. The 

arrangement of sarcomeres in series and, thus longer fibre length, facilitates maximal 

excursion and shortening velocity, while the arrangement of sarcomeres in parallel (i.e. 

increased number of cross-bridges in parallel) is optimal for greater force production. Finally, 

the arrangement of the muscle fibres at an angle relative to the muscle’s line of action 

(pennation angle) is a trade-off between the force that can effectively be transmitted to the 

line of action (as a function of the cosine of the pennation angle) and the number of fibres 

that can be accommodated within a given muscle volume. It has been shown that the 

optimum pennation angle is 45° (Alexander and Vernon, 1975), however the majority of the 

human muscles exhibit a pennation angle that does not exceed 30° at rest. 

2.2.5 Fundamental muscle mechanics 

2.2.5.1 Force-length relationship 

The magnitude of force produced by a sarcomere is determined by the number of cross-

bridges formed and power strokes performed at any particular moment in time. The number 

of cross-bridges that can be formed is dictated by the degree of overlap between myosin and 

actin filaments (Gordon et al., 1966). The highest amount of force can be generated when this 

overlap is maximal and corresponds to a relatively narrow range of optimal sarcomere 

lengths (plateau region, Fig. 2.1). If the sarcomere is stretched beyond the plateau region 

(descending limb), then the myosin-actin overlap is reduced, fewer cross-bridges can be 

formed and, consequently, less force can be produced. Similarly, if the sarcomere length is 

shorter than optimal (ascending limb), the interaction between myosin and actin filaments 

becomes less efficient as the actin filaments move across the centre of the sarcomere and 

overlap with the actin filaments of the opposite side.  
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Figure 2.1. Force-length relationship. L0 corresponds to sarcomere optimal length where 

maximal actin-myosin overlap occurs and maximal tension is produced. Total force is the 

sum of active and passive force components (adapted from Kandel et al., 2012). 

The force-length (F-L) relationship of a whole muscle is smoother than that obtained from 

single fibres and sarcomeres due to the non-uniform sarcomere lengths. Similarly, at the in 

vivo level, the F-L relationship (reflected in the torque-length relationship, T-L) has a broader 

shape compared to the F-L. In addition to the non-uniform sarcomere lengths, the difference 

in the shape of T-L is due to the geometry of the tendons with which the muscle attaches onto 

the skeleton, the resultant moment arms and the contribution of other muscles. At muscle 

lengths longer than the optimal, the force produced is not solely due to the interaction of 

myosin and actin filaments (active force); rather, large structural proteins within the 

sarcomeres (titin), as well as the connective tissue (i.e. epimysium, perimysium, 

endomysium) and the cytoskeleton provide tension upon stretching (passive force) which 

increases at longer muscle lengths. The T-L relationship is obtained through maximal 

voluntary isometric contractions at different angles over the range of motion of the joint in 

examination. 

2.2.5.2 Force-velocity relationship 

Whilst the F-L relationship describes how changes in muscle length influence force 

generation, the force-velocity (F-V) relationship considers the influence of contraction 

velocity on muscle force (Fig. 2.2). The F-V relationship examined in isolated muscle 
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preparations dictates that the maximal force generation increases with decreasing shortening 

velocity (concentric contraction) in a hyperbolic manner (Hill, 1938). The highest point of 

this hyperbola is reached when the velocity is zero (isometric contraction). When a muscle is 

lengthened (eccentric contraction), the force that can be produced is approximately 1.5-1.9 

times the isometric force and remains relatively constant with increasing velocity (Katz, 

1939). A similar shape can be seen for the in vivo F-V relationship (reflected in the torque-

velocity relationship, T-V) when it is examined using evoked contractions. However, when 

voluntary contractions are examined, deviations from this pattern can be seen. While the 

concentric part of the T-V relationship is similar to that obtained during in vitro or evoked 

contractions, the eccentric force generating capacity increases only at a maximum of 1.1-1.2 

times above isometric force or even shows a depression below isometric force level (Pain et 

al., 2013; Kellis and Baltzopoulos, 1998; Dudley et al., 1990; Westing, 1988). This reduced 

capacity in eccentric force in voluntary contractions is attributed to neural inhibition (Westing 

et al., 1991). 

 
Figure 2.2. Force-velocity relationship (adapted from Kandel et al., 2012). 
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2.3 PART II – DETERMINANTS OF MUSCLE FUNCTION 

2.3.1 Determinants of maximum strength 

Maximum strength is the capacity of the muscles to produce maximal force (or torque). 

Maximal strength is influenced by a number of structural and neural factors. This section will 

give an overview of the main factors that determine maximal strength. 

2.3.1.1 Muscle size and architecture 

As muscle force in vitro is directly related to the number of contracting sarcomeres in 

parallel, it can be assumed that muscle size is the primary determinant of maximal strength in 

vivo. Examination of this relationship has shown that various indices of muscle size 

(specifically anatomical cross-sectional area (ACSA), physiological cross-sectional area 

(PCSA) or volume), explain a substantial proportion of the inter-individual variability in 

maximal isometric (elbox flexors, R2=0.58, Akagi et al., 2009; plantar flexors, R2= 0.42, 

Bamman et al., 2000; quadriceps, R2= 0.35, Maughan et al., 1983), concentric (plantar 

flexors, R2= 0.22-0.24, Baxter and Piazza, 2014; quadriceps R2= 0.39-0.74, Blazevich et al., 

2009; hamstrings, R2= 0.31-0.41, Masuda et al., 2003) and eccentric (knee extensors R2= 

0.35-0.46, knee flexors, R2= 0.47-0.48, Carvalho et al., 2012) strength of various muscles. 

Nevertheless, there is no consensus to which index of muscle size is a better predictor of 

maximal strength. The effective PCSA, which represents the total cross sectional area of all 

muscle fibres and also accounts for any angulation between the fibres and muscle’s line of 

action, is considered as the most theoretically appropriate measure of muscle size, as it best 

accounts for the muscle architecture. Yet, muscle volume and anatomical cross-sectional area 

have been found to be better determinants of maximal strength in vivo (Blazevich et al., 2009; 

Fukunaga et al., 2001; Bamman et al., 2000). This may be due to the difficulty of accurately 

measuring the architectural parameters needed for the calculation of PCSA as the 

measurement of muscle volume, pennation angle and fascicle length are required. 

Despite the relationship between muscle size and maximal strength, current data show a large 

variation in the strength of this relationship, while a substantial portion (26-78%) of the inter-

individual differences in strength remains unexplained. Therefore, other variables are likely 

to contribute to differences in maximal strength, including muscle architecture (Aagaard et 

al., 2001), moment arm (Baxter and Plazza, 2014; Blazevich et al., 2009), agonist neural 
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activation (Westing et al., 1990) and antagonist co-activation (Kellis and Baltzopoulos, 

1998). 

Pennation angle (PA) is related to muscle size (Ikegawa et al., 2008; Kawakami et al., 2006; 

Aagaard et al., 2001; Kawakami et al., 1993). For example, Kawakami et al. (2006) examined 

the relationship between PA and muscle thickness for triceps brachii, vastus lateralis and 

gastrocnemius muscles in 711 men and women (age: 3-94 years) and found that PA inter-

individual differences explained 31-66% of the differences in muscle thickness. This positive 

correlation between PA and muscle size reflects the fact that a greater PA allows for more 

muscle fibres to be accommodated within the same muscle volume (Kawakami et al., 1993), 

even though some of the force of the fibres is not resolved along the line of action of the 

aponeurosis/tendon (according to the cosine of the PA). This beneficial effect of increasing 

PA on isometric strength is thought to only exist up to a PA of 45º after which the loss of 

force resolved to the tendon exceeds any gains in force production from the fibres (Alexander 

& Vernon, 1975). Also, muscle contraction causes the muscle fibres to rotate and for a given 

muscle shortening the fibres shorten less and thus they operate at a length closer to their 

optimal. Finally, as the muscle fibres shorten less due to the fibre rotation (relative to their 

insertion point), they also shorten at a lower velocity relative to the total muscle shortening 

velocity and according to the F-V relationship, this facilitates the production of near-maximal 

forces. 

Fascicle length (FL) also influences the muscle’s force production capacity. A muscle with 

longer fascicles has more sarcomeres in-series and, therefore, has a higher maximal 

shortening velocity, while it can produce near-maximal forces over a greater muscle length 

range (Lieber and Friden, 2000). Experimental data showed that FL was related with sprint 

performance (Abe et al., 2001, 2000; Kumagai et al., 2000). In a study by Abe et al. (2000), 

sprinters exhibited greater FL compared to distance runners and controls. In another study, 

Kumagai et al. (2000) showed that longer FL of vastus lateralis and gastrocnemius muscles 

were significantly related to 100-m sprint performance (r= -0.40 to -0.57, P< 0.05). These 

authors suggested two possible mechanisms by which FL increases power and consequently 

sprint performance. First, longer FL increases shortening velocity and as power is the product 

of muscle force exerted by shortening velocity, longer FL would increase power. Second, at a 

given shortening velocity the sarcomeres of longer FL would shorten less over a range of 

motion and, therefore, they would operate closer to their optimum length. This would result 

in increased force production at that velocity which, in turn, would result in increased power 
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production. These findings suggest that FL may facilitate higher force production at higher 

velocities. However, further research is needed to elucidate the influence of FL on maximal 

isometric and dynamic strength. 

2.3.1.2 Moment arm 

The torque produced by a muscle is the product of the muscle force applied and the 

perpendicular distance between the joint centre of rotation and the line of muscle action. 

Therefore, it can be assumed that moment arm is a determinant factor of maximal strength. 

However, the existing data are mixed as Blazevich et al. (2009) reported a significant 

correlation between moment arm and maximal isometric (r= 0.50) but not concentric knee 

extensor torque (r= 0.43-0.44) in a mixed cohort of young men and women (n= 19). Also, 

when muscle volume was introduced into a regression analysis with moment arm, it did not 

improve the prediction of maximal isometric torque (Blazevich et al., 2009). In contrast, 

Baxter and Piazza (2014) found that, within 20 young men, plantar flexor moment arm was 

significantly related with isometric (r= 0.56) and concentric torque at various velocities (r= 

0.66–0.69) and these correlations were similar or stronger than the correlations between 

plantar flexor volume and torque (r= 0.47–0.57). Based on these results, the authors argued 

that moment arm was at least as important a determinant of maximal strength as muscle 

volume. 

2.3.1.3 Agonist activation 

Electromyography (EMG) and electrical stimulation studies have shown that even during 

maximal voluntary contractions, individuals cannot activate fully their agonist musculature 

(Tillin et al., 2011; Kooistra et al., 2007; de Ruiter et al., 2004). This is most pronounced in 

eccentric contractions during which peak torque has consistently been found to be lower in 

voluntary compared to evoked or superimposed contractions (Pain et al., 2013; Westing et al., 

1990; Dudley et al., 1990). Westing et al. (1990) reported an increased torque production by 

21-24% on average during eccentric contractions (60-360° s-1) with superimposed electrical 

stimulation compared to maximal voluntary contractions. In a different study, the same 

authors reported a decreased EMG activity of the superficial knee extensors during eccentric 

compared to concentric contractions at various velocities (45-360° s-1), suggesting the 

presence of neural inhibition for the agonist muscles (Westing et al., 1991). Interestingly, a 

difference between voluntary and superimposed eccentric contractions was evident in 

sedentary but not in elite high-jumpers, suggesting that any neural inhibition may be 
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attenuated by training (Amiridis et al., 1996). While the exact mechanism(s) remains 

unknown, it is believed that neural mechanisms at spinal and supraspinal levels inhibit 

neuromuscular activation during maximal eccentric efforts of untrained individuals. This 

neural inhibition is thought to protect the joint from potentially injurious high levels of force 

that can be produced during eccentric contractions (Duchateau and Baudry, 2014). 

2.3.1.4 Antagonist co-activation 

Upon activation, the net joint torque exerted is the result of the torque produced by the 

agonist muscle(s) and any opposing torque produced by the antagonist muscle(s). Therefore, 

it is clear that the level of antagonist co-activation has the potential to influence the resultant 

net joint torque. Aagaard et al. (2000) reported a 15-35% of hamstrings antagonist co-

activation during slow isokinetic knee extensions (30° s-1) compared to a 10% antagonist co-

activation of the quadriceps. The same authors reported that the level of hamstrings co-

activation was higher at the more extended knee joint angles compared to the mid-range joint 

positions. Yet, other studies did not confirm this effect of angular position in antagonistic co-

activation (Kellis and Baltzopoulos, 1997). Kellis and Baltzopoulos (1996) found that 

hamstrings antagonist co-activation during isokinetic knee extensions increased by 31% from 

30 to 150° s-1 i.e. it is velocity dependent, while antagonistic activity of both quadriceps and 

hamstrings was higher during concentric contractions than eccentric. Overall, it seems that 

the level of antagonist co-activation is muscle-specific, and depends on the type and velocity 

of contraction. 

The antagonistic co-activation is thought to be an injury preventing mechanism that reduces 

the net joint torque and also increases the stiffness of the joint (Kellis and Baltzopoulos, 

1998; Hagood et al., 1990; Baratta et al., 1988). For example, hamstrings co-activation during 

knee extension has been suggested to reduce the anterior shear of the tibia and thus the stress 

on the anterior cruciate ligament (ACL) (Aagaard et al., 2000; Baratta et al., 1988). 

Furthermore, the lower antagonistic co-activation during eccentric compared to concentric 

contractions may also partly explain the higher torques seen in eccentric (compared to 

concentric) contractions (Kellis and Baltzopoulos, 1996). 

2.3.1.5 Muscle composition 

As discussed in 2.2.3, type II fibres (i.e. fibres that express MHC-IIA and IIX isoforms) 

exhibit greater specific tension than type I in vitro (Bottinelli et al., 1996). As hamstrings 

muscle composition has only been determined within cadavers, its influence on muscle 
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function remains unknown. However, the influence of muscle composition on maximal 

strength in vivo has been examined in the vastus lateralis muscle in relation to knee extensors 

strength and a significant correlation has been reported in some of these studies (Gür et al., 

2003; Aagaard & Andersen 1998; Viitasalo & Komi, 1978; Thorstensson et al., 1976) while 

others did not confirm such a relationship (Maughan and Nimmo, 1984; Schantz et al., 1983; 

Viitasalo et al., 1981; Inbar et al., 1981). However, within the studies that reported a 

significant correlation several limitations may have confounded their results. For example, in 

order to ensure a large variability in the muscle composition of their examined cohorts, some 

investigators included highly diverse, athletic populations (Gür et al., 2003) where numerous 

other variables (e.g. hypertrophy) could be acting as confounding factors. Other confounding 

factors included examination of small cohorts (Aagaard & Andersen, 1998) or no 

consideration of gravitational effects or acceleration artefacts (Schantz et al., 1983; 

Thorstensson et al., 1976). In contrast to the above mentioned studies, Maughan and Nimmo 

(1984) did not find any relationship between knee extensors maximal strength and vastus 

lateralis muscle composition within physically active men. Overall, the existing data on the 

relationship between muscle composition and in vivo maximal strength are mixed and 

confounded by methodological limitations. 

2.3.1.6 Muscle-tendon unit stiffness 

Muscle force is transferred by the tendinous tissues (aponeuroses and tendons) to the skeleton 

for any action to occur at the joint level. Therefore, the interaction of the muscle-tendon unit 

has important effects on the in vivo function. This interaction is influenced by the mechanical 

properties of the aponeurosis and tendon tissues. Stiffness is an important mechanical 

property of these structures and can be defined as the resistance of a material to deformation. 

Therefore, a stiff tendon would resist any stretching while a more compliant tendon would 

change its length more for a given force. The implication of this property on muscle function 

is that a more compliant tendon will shift the T-L curve to the right and the optimum muscle 

length will be at a slightly longer position. 

In a computational modelling study, Lemos et al. (2008) measured the influence of tendon 

and aponeurosis compliance on F-L relationship and found that increased compliance 

resulted in a rightward shift of the F-L and the peak isometric force occurred at longer 

muscle-tendon unit lengths. They also found that increased compliance resulted in reduced 

peak isometric force. The authors discussed that whilst isometric contractions suggest a static 
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muscle-tendon unit length, this is not the case for the contractile elements. Therefore, from 

rest to contraction fibres shortened more (on average 4.59 mm) when the compliance of the 

tendinous tissues was increased compared to a muscle-tendon unit with stiffer tendon and 

aponeurosis (on average 2.74 mm). These findings were in accordance to the results of an in 

vivo study by Kubo et al. (2006) who found that both elongation and strain in vastus lateralis 

tendon and aponeurosis exhibited a weak but significant correlation with the knee extensor 

peak isometric torque exerted at 100° relative to 50° (i.e. an index of an individual’s optimal 

angle) (elongation, r= 0.48, P< 0.05; strain, r= 0.42, P< 0.05). This result suggested that 

increased MTU compliance is related to a greater force production at longer muscle lengths. 

Finally, significant positive relationships have been found between MTU stiffness and 

maximal isometric (r= 0.57-0.67, Hannah and Folland, 2014; r= 0.58, Stenroth et al., 2012) 

and dynamic strength (r= 0.54-0.60, Bojsen-Moller et al., 2005) suggesting that the MTU 

stiffness scales with muscle strength and the functional capacity of the muscle. If this is the 

case, the fibre shortening afforded by the tendon and aponeurosis compliance during the 

transition from rest to maximum torque would be similar irrespective of strength. 
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2.3.2 Determinants of explosive strength 

Explosive strength can be defined as the ‘capability to increase contractile force from a low 

or resting level as quickly as possible’ (Folland et al., 2013) and is typically assessed during 

isometric contractions. Determinants of explosive strength include maximal strength (Folland 

et al., 2013; Andersen and Aagaard, 2006), neural activation (Folland et al, 2013; Tillin et al., 

2010), fibre type composition (Harridge et al., 1996) and muscle-tendon unit stiffness 

(Bojsen-Moller et al., 2005). 

2.3.2.1 Maximal strength 

Maximal strength has been found to correlate well with explosive strength, especially during 

the later stages of an explosive contraction (Folland et al., 2013; Andersen and Aagaard, 

2006). Folland et al. (2013) showed that maximal voluntary strength explained 35-90% of the 

variance in explosive strength (measured as force at specific time points after contraction 

onset). The same authors also showed that the influence of maximal strength on explosive 

strength increased as the explosive contraction progressed and the highest correlation was 

seen at 150 ms (r= 0.95). Similar findings were presented by Andersen and Aagaard (2006) 

who also reported an increasing contribution of maximal strength to explained variance in 

explosive strength (measured as rate of force development in time epochs from contraction 

onset up to 250 ms). The lowest (yet significant) correlation was reported at 0-50 ms time 

epoch (r= 0.40, P< 0.05) and the highest at time intervals >150 ms (r> 0.80, P< 0.001). 

Overall, maximal strength seems to be a primary determinant of explosive strength during the 

later stages of an explosive contraction. This is probably expected, as maximal strength 

represents the maximal capacity of voluntary force production and it can be achieved in >400 

ms from contraction onset (Thorstensson et al., 1976). Therefore, as the explosive contraction 

progresses over time, the force levels achieved are increasingly influenced by the maximal 

voluntary force (Folland et al., 2014). 

2.3.2.2 Agonist activation 

Both cross-sectional and training studies have shown that explosive strength is influenced by 

agonist activation (Folland et al., 2013; Tillin et al., 2011, 2010; de Ruiter et al., 2007, 2006, 

2004; Aagaard et al., 2002). In a cohort of forty untrained individuals, agonist activation was 

found to be a significant determinant of explosive strength, particularly at the initial part of an 

explosive contraction (<75 ms) explaining 17-37% of the differences in absolute and 21-51% 

in relative (normalised to maximal strength) explosive strength (Folland et al., 2013). 
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Furthermore, the same authors reported large inter-individual variability in the agonist 

activation at the early stages of contraction (50 ms, CV= 38%) These results confirmed 

previous findings in smaller cohorts (n≤ 11, de Ruiter et al., 2007, 2006, 2004). In a 

comparison study between power athletes and untrained individuals, Tillin et al. (2010) 

reported that the greater normalised rate of force development exhibited by the athletes was 

explained by their higher neural activation (greater synchrony in the activation onset of the 

agonist muscles and greater EMG amplitude in the first 50 ms after contraction onset). 

Training studies have also provided some evidence of the relationship between agonist 

activation and explosive strength (Tillin and Folland, 2104; Tillin et al., 2011; Aagaard et al., 

2002). For example, Aagaard et al. (2002) found a concurrent increase in EMG amplitude 

and explosive strength after 14 weeks of heavy-resistance training. Overall, the level of 

agonist activation seems to be a significant determinant of explosive strength during the early 

stages of contraction. 

2.3.2.3 Muscle composition 

At the single-fibre level, rate of force development was found to be slower in MHC-I fibres 

compared to MHC-II fibres (Harridge et al., 1996). However, when these authors examined 

evoked contractions in vivo, there was no relationship between time to peak torque and 

muscle composition in three different muscles (vastus lateralis, triceps brachii and soleus). 

Only when the data from the individual muscles were pooled together, a significant 

relationship arose (r= 0.99) (Harridge et al., 1996). Other investigators have reported 

significant association between muscle composition and voluntary explosive force in vivo 

(Viitasalo et al., 1981; Viitasalo and Komi, 1978). For example, Viitasalo and Komi (1978) 

reported a significant correlation between % type I fibres and time to reach 30% maximal 

force in a double-leg press exercise (r= 0.48, P< 0.01). However, the inclusion of athletes 

from different training modalities and the testing procedures used (double-leg press) may 

have confounded their results. From the existing data, it remains unclear whether muscle 

composition influences explosive strength in vivo. 

2.3.2.4 Muscle-tendon unit stiffness 

Theoretically, a stiffer muscle-tendon unit would facilitate a more effective force 

transmission from muscle fibres to the skeleton. Therefore - ceteris paribus - individuals with 

a stiffer muscle-tendon unit would be expected to exhibit greater explosive strength. This 

hypothesis was confirmed by Bojsen-Moller et al. (2005) who found a moderate positive 
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correlation between knee extensor explosive isometric strength and vastus lateralis tendon-

aponeurosis stiffness (r= 0.55, P< 0.05). However, in that study there was no control for the 

influence of maximal strength in the examined relationship. As both explosive strength and 

muscle-tendon unit stiffness are influenced by maximal strength, their results may merely 

reflect the effect of maximal strength on these variables. Hannah and Folland (2014) also 

reported significant correlations of knee extensors voluntary and evoked explosive strength 

(measured as time to achieve specific levels of force) and vastus lateralis muscle-tendon unit 

stiffness (voluntary, r= -0.35 to -0.54, P< 0.05; evoked, r= -0.41 to -0.64, P< 0.05), but these 

relationships became non-significant when maximal strength was taken into account. These 

findings suggest that, when the influence of maximal strength is taken into account, muscle-

tendon stiffness is not an important determinant of explosive strength. 
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2.4 PART III – HAMSTRINGS ANATOMY AND FUNCTION DURING 

SPRINTING 

2.4.1 Hamstrings anatomy 

The term ‘hamstrings’ refers to three muscles located in the posterior thigh; the 

semitendinosus (ST) and the semimembranosus (SM) are located at the medial side, and the 

biceps femoris at the lateral side (Fig. 2.3). The biceps femoris has two anatomically and 

functionally distinct heads, the long (BFlh) and the short (BFsh) head. The BFlh, ST and SM 

cross the hip and the knee joint (biarticular muscles) and due to this configuration they are 

primary knee flexors and major hip extensors. The BFsh crosses only the knee joint (mono-

articular muscle) and, therefore, contributes only to knee flexion. The medial and lateral 

hamstrings also assist in knee and hip internal and external rotation respectively. 

 
Figure 2.3. Illustration of the hamstrings muscle group in the right leg (posterior view) 

(adapted from Schuenke et al., 2010). 

The proximal region of the hamstrings presents a complex morphology. The BFlh and ST are 

closely related sharing a common (conjoint) proximal tendon (van der Made et al., 2013; 

Battermann et al., 2011; Miller et al., 2007). The conjoint tendon arises from the medial facet 

of the ischial tuberosity (Battermann et al., 2011), while connections with the sarcotuberous 
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ligament have also been reported (Sato et al., 2013; Woodley and Mercer, 2005; Martin, 

1968). Also, some ST muscle fibres originate directly from the ischial tuberosity (Woodley 

and Mercer, 2005). The two muscles separate from their common tendon at ~9 cm distally 

from the ischium (Battermann et al., 2011; Miller et al., 2007). The origin of the SM is also 

located at the ischial tuberosity (lateral facet), with a lateral (Miller et al., 2007) or 

anterolateral (van der Made et al., 2013) position relative to the BFlh/ST conjoint tendon. 

Some studies described that the most proximal site of the SM tendon is also directly 

connected with the BFlh/ST conjoint tendon (van der Made et al., 2013) or by means of 

fibrous adhesions, however other studies did not report such connections (Sato et al., 2012; 

Woodley and Mercer, 2005). As the SM tendon extends distally, it twists from anterolateral 

to posteromedial position relative to the BFlh/ST tendon. Distally, the BFlh exhibits three 

insertion sites; the head of the fibula, the lateral condyle and the fascia of the leg (Koulouris 

and Connel, 2005). The BFsh originates from the linea aspera of the femur and shares the 

distal tendon of the BFlh for its attachment. The ST inserts via a long tendon onto the 

anteromedial part of the tibia while the SM inserts onto the posterior surface of the medial 

tibial condyle. 

The BFlh and SM have long proximal and distal tendons (including their aponeuroses) 

extending up to or more than half the total muscle length (Woodley and Mercer, 2005) so that 

they overlap, while the ST has a long distal but short proximal tendon with no overlap 

between the two (van der Made et al., 2013). Preliminary reports found the size of the 

proximal BFlh aponeurosis to be highly variable between individuals (Handsfield et al, 

2010), while computational modelling studies reported that a small BFlh aponeurosis 

concentrates high strains (Fig. 2.4, Fiorentino et al., 2014a, 2012; Rehorn and Blemker, 

2010). These findings suggest that the size of the proximal BFlh aponeurosis may be a risk 

factor for strain injury (discussed further in 2.5.3.3). Concerning the ST, it has a distinct V-

shaped tendinous inscription (or raphe) that divides the muscle into two regions (van der 

Made et al., 2013; Woodley and Mercer, 2005). 
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Figure 2.4. Individuals with narrow proximal BFlh aponeurosis experience higher strains 

(red colour) near the aponeurosis during active lengthening compared to individuals with 

wider aponeurosis (adapted from Fiorentino et al., 2014a). 

Innervation of the two heads of the biceps femoris comes from different branches of the 

sciatic nerve with the tibial division supplying the BFlh, and the peroneal division supplying 

the BFsh (Koulouris and Connel, 2005). This dual innervation has been speculated to 

contribute to hamstrings strain injuries via fatigue-induced altered coordination and 

asynchronous activation (Croisier et al., 2004; Woods et al., 2004; Sutton, 1984). Whilst this 

possibility has not been examined directly, supporting evidence has been provided recently 

by Timmins et al., (2014a), who reported a 10% reduction in BFlh EMG activity (no 

reduction in medial hamstrings activity), with a concomitant 15% reduction in knee flexor 

eccentric strength after overground repeated sprints in uninjured individuals. Finally, the ST 

and SM are both innervated by the tibial division of the sciatic nerve (Koulouris and Connel, 

2005). 

Hamstrings architectural data are derived mainly from cadavers (Kellis et al., 2012, 2010, 

2009; Ward et al., 2009; Woodley and Mercer, 2005), although comparable data have been 

obtained from in vivo measurements of the BFlh architecture (Timmins et al., 2014b; Potier 

et al., 2009; Chleboun et al., 2001). Despite the consideration of hamstrings as a functional 

group, its constituent muscles exhibit significant architectural differences (Table 2.1). In 

general, the SM is the largest of the hamstrings muscles and has the highest PA. In contrast, 
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the ST appears to have the longest fascicle lengths with the smallest pennation angle (van der 

Made et al., 2013; Kellis et al., 2012, 2010; Ward et al., 2009). In an effort to compare the 

muscle architecture within the hamstrings group, Kellis et al. (2012) calculated a difference 

index (δ, Blazevich et al., 2006; Lieber et al., 1992) based on muscle thickness, PA and FL 

measured in cadavers. The highest similarity was observed between BFlh and SM and the 

lowest between BFlh and ST. Kellis et al. (2012) also suggested that each of the lateral 

(BFlh-BFsh) and medial (ST-SM) hamstrings pairs is composed of one muscle designed for 

force production (short fascicle length and high pennation angle) and one for excursion (long 

fascicle length and small pennation angle). In addition to the differences between the 

hamstrings muscles, significant intramuscular variations have been found for the BFlh and 

ST architecture (Kellis et al., 2010). Namely, the BFlh exhibited 35% higher pennation angle 

(23.96° vs. 17.78°, P< 0.05) and 12% longer fascicle length (7.12 cm vs. 6.35 cm, P< 0.05) at 

its most proximal site (initial 20% of MTU length) compared to the most distal site (last 25% 

of the MTU length). In contrast, the ST exhibited 67% higher pennation angle (14.69° vs. 

8.81°, P< 0.05) and 18% longer fascicle length (15.49 cm vs. 13.10 cm, P< 0.05) distally 

compared to the most proximal site (Kellis et al., 2010). 

Table 2.1. Hamstrings muscles architectural data derived from cadaveric studies (Kellis et 

al., 2012, 2010, 2009; Ward et al., 2009; Woodley and Mercer, 2005). 

 

Currently, the limited data on the hamstrings muscle composition are derived solely from 

cadavers and the biceps femoris has been reported to contain 33.1-54.5% type II fibres 

(Dahmane et al., 2006; Garret et al., 1984; Johnson et al., 1973). In the only study that has 

examined the muscle composition of all hamstrings muscles, Garret et al. (1984) found an 

average of 54.5%, 58.2%, 57.5% and 50.5% type II fibres for the BFlh, BFsh, ST and SM 

respectively. In that study, hamstrings were reported to contain a higher proportion of type II 

fibres than other thigh muscles (quadriceps, 51.9% and adductor magnus, 44.8%) and the 

authors suggested that this muscle composition may contribute to the high susceptibility of 
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the hamstrings to strain injuries. Yet, in vivo studies have shown that the VL muscle, an 

antagonist to BFlh muscle function, contains a greater proportion of MHC-II isoform (66.1% 

total MHC-II in 95 physically active young men; Staron et al., 2000). The limited cadaver 

data on hamstrings composition do not provide any evidence on whether hamstrings 

composition is a risk factor for strain injuries. To elucidate whether such an association 

exists, the hamstrings muscle composition in healthy young adults needs to be determined 

first. 

2.4.2 Hamstrings function during sprinting 

Hamstrings strain injuries are suggested to occur primarily during high-speed running or 

sprinting at maximal or near maximal speed (Askling et al., 2013, 2007). Therefore, it is 

important to understand the function of hamstrings during this high-risk activity. The 

hamstrings muscle group is composed of three biarticular muscles (biceps femoris long head 

(BFlh), semitendinosus (ST) and semimembanosus (SM)) that cross the hip and knee joint 

and one mono-articular muscle (biceps femoris short head, BFsh) which crosses the knee 

joint. This configuration allows hamstrings to act as both hip extensors and knee flexors. 

During running, hamstrings activation starts at the mid-swing phase and continues through 

the late swing to the stance or early swing phase (Schache et al., 2012; Chumanov et al., 

2011; Higashihara et al., 2010; Yu et al., 2008; Kyrolaien et al., 1999). During the late swing 

phase, hamstrings undergo eccentric loading to decelerate the forward movement of both the 

thigh and the shank (Yu et al., 2008; Thelen et al., 2005). After the successful control of the 

knee extension, and prior to the subsequent foot contact, a transition of the hamstrings action 

from eccentric to concentric occurs as knee flexion commences (stretch-shortening cycle). 

This concentric activity continues throughout the stance phase (Schache et al., 2012; 

Chumanov et al., 2011) contributing to the hip extension as the body moves forwards. 

However, some eccentric activity has also been reported during the late stance phase for the 

BFlh and ST (Yu et al., 2008) or the BFsh (Schache et al., 2012). Yu et al. (2008) suggested 

that this discrepancy may be due to the differences in lower extremity kinematics between 

treadmill and overground sprinting used in these studies. This suggestion was based on 

results from Frishberg (1983), who found that during take-off the knee joint was at a more 

extended position in overground sprinting compared to treadmill sprinting, implying that the 

hamstrings MTU were at a longer length in the former case. 
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Modelling studies have shown that muscle-tendon unit stretch increases with increasing 

running velocity up to ~80% of maximum, but remains relatively constant at faster velocities 

(Schache et al., 2013; Thelen et al., 2005). However, the magnitude of strain differs between 

the hamstrings muscles. Musculoskeletal modelling studies have shown that, during the late 

swing phase, it is the BFlh muscle-tendon unit that exhibits the greatest extension (9.8-13.0% 

change in length relative to upright standing length) compared to SM (7.7-11.0%) and ST 

(8.4-11%) (Schache et al., 2013, 2012; Chumanov et al., 2011; Thelen et al., 2005). Recently, 

Fiorentino et al. (2014b) were the first to quantify the along-fibre strains in the BFlh during 

sprinting (at 70%, 85% and 100% of maximum speed) using computational modelling and 

predicted that, while the strain of the MTU and the whole-fibre remain relatively constant, the 

peak local fibre stains near the proximal MTJ increase at higher speeds. In addition, the local 

fibre strains were found to be increasingly non-uniform as the speed increased (Fiorentino et 

al., 2014a). 

Riley et al. (2010) calculated that, during low speed running (3.16 m s-1), the peak iliacus 

MTU length occurred simultaneously with the peak biceps femoris MTU length of the 

contralateral limb, and the authors suggested that the hip flexors of one limb may influence 

the hamstrings stretch of the contralateral limb. The implication of this timing is that tight hip 

flexors may cause increased anterior pelvis tilt, which would in turn stretch further the 

contralateral BFlh MTU and potentially increase the risk for strain injury in that muscle. The 

role of hip flexors in BFlh MTU stretch during running was also highlighted in another 

modelling study (Chumanov et al., 2007), which reported that hip flexors induced >20 mm 

increase in biceps femoris stretch of the contralateral limb at near maximal and maximal 

running speeds. 

In conclusion, current data show that hamstrings activation is greatest during the late swing 

and early stance phases. The former involves a stretch-shortening cycle with a large eccentric 

action of the hamstrings that imposes different loading on each of the different hamstrings 

muscles, while the latter involves a high concentric loading. The high biomechanical load 

imposed on this muscle group highlights their significance during high-speed running 

activity.  
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2.5 PART IV – HAMSTRINGS STRAIN INJURIES 

Hamstrings strain injuries are the most prevalent injuries in sprint-based sports (e.g. different 

codes of football and track sprinting; Alonso et al., 2012; Ekstrand et al., 2011; Orchard et al., 

2001) accounting for 12-17% of all injuries, while they also exhibit a high re-injury rate (12-

40%; Alonso et al., 2012; Ekstrand et al., 2011a, 2011b; Elliot et al., 2011; Verrall et al., 

2006; Woods et al., 2004; Orchard and Seward, 2002). A significant amount of research has 

been conducted in order to improve our understanding on hamstrings strain injuries; however 

their high rates of incidence and persistent nature highlight that our knowledge on the 

mechanisms, the risk factors and the rehabilitation process of strain injuries remains limited. 

2.5.1 Site of injury 

Hamstrings strain injuries affect predominantly the BFlh muscle (Malliaropoulos et al., 2010; 

Askling et al., 2013, 2007; Koulouris and Connell, 2003; Slavotinek et al., 2002; De Smet 

and Best, 2000; Garrett et al., 1989). In a carefully selected cohort (over a 3-year period) of 

18 sprinters who sustained a first-time hamstrings strain injury (verified by magnetic 

resonance imaging, MRI), Askling et al. (2007) reported that the BFlh was the primary site of 

injury for all individuals. Other studies that have used MRI to confirm the location of the 

injury, have reported that the BFlh was affected in 60-83% of the total hamstrings strains 

(Hallen and Ekstrand, 2014; Askling et al., 2013; Koulouris and Connell, 2003; Slavotinek et 

al., 2002; De Smet and Best, 2000). Despite the general agreement on the muscle that is 

mostly injured, controversy exists on the second most injured muscle with some studies 

reporting the ST (Askling et al., 2007; Slavotinek et al., 2002; De Smet and Best, 2000) while 

others the SM (Hallen and Ekstrand, 2014; Koulouris and Connell, 2003; Malliaropoulos et 

al., 2011). While it is unclear why this discrepancy in injury patterns exists, it is possible that 

the type of activity may determine the muscle involved (Askling et al., 2013, 2006, 2000). 

Interestingly, in a prospective randomised controlled trial Askling et al. (2013) reported that, 

within 75 football players that sustained an acute hamstrings strain injury, the BFlh was 

primarily affected in sprinting-type strains (94%) while the SM in stretching-type injuries 

(76%). However, currently there is no clear understanding why these muscles are injured at 

different conditions. Concerning the exact location of strain injuries, Garret et al. (1987) 

reported that all experimentally-induced strains examined in animal models occurred in the 

muscle tissue adjacent to the MTJ, even though other in vitro studies reported damage at the 

MTJ itself (Tidball and Chan, 1989). In vivo examinations in humans have shown that the 
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hamstrings strains are commonly located near a MTJ (proximal or distal) (Malliaropoulos et 

al., 2010; Koulouris and Connell, 2003; Slavotinek et al., 2002; De Smet and Best, 2000). 

Despite the fact that some studies specifically identified the BFlh proximal MTJ to be mostly 

affected (Askling et al., 2007; De Smet and Best, 2000), others provide only a general 

description of the ‘proximal’ BFlh (with no further details) as the most common injury site 

(Koulouris and Connell, 2003; Slavotinek et al., 2002; Garrett et al., 1989). It is unclear why 

strain injuries occur near the MTJ, however it has been reported that sarcomeres near the 

MTJ (within ~1 mm from the MTJ into the muscle) are stiffer compared to the central 

sarcomeres of the muscle fibre and therefore stretch less as a response to an applied force 

(Noonan, 1992). In addition, emerging evidence suggest that the morphology of the BFlh 

MTU may contribute to increased localised strains along the proximal MTJ and therefore 

increase the risk of a strain injury (discussed further in 2.5.3.3). 

In conclusion, current data suggest that the proximal BFlh is the primary site of hamstrings 

strain injuries, while the MTJ (proximal or distal) is typically involved irrespective of the 

muscle affected. 

2.5.2 The inciting mechanism of hamstrings strain injury 

The majority of the hamstrings strain injuries occur during high-speed running or sprinting 

(Askling et al., 2013, 2007; Brooks et al., 2006; Woods et al., 2004). However, the exact time 

of injury has yet to be clearly identified. Muscle strain injuries are the result of excessive 

stretch, either passive or more commonly active (i.e. eccentric contraction, Lieber and Fridén, 

1993; Garret et al., 1987). In sprinting, hamstrings undergo eccentric contraction during the 

mid- and late swing phases (Schache et al., 2012; Chumanov et al., 2011; Thelen et al., 2005) 

as well as during the late stance phase (Schache et al., 2012; Yu et al., 2008) (see 2.4.2). 

Modelling studies have calculated that all hamstrings muscles reach their peak stretch during 

the late swing phase, with the BFlh experiencing the highest strain of all hamstrings muscles. 

(Schache et al., 2012). Moreover, the BFlh highest peak local strains are located near the 

proximal MTJ (Fig. 2.5B, Fiorentino et al. 2014b), which is the site where strain injuries 

typically occur (see 2.5.1). Therefore, the late swing phase is believed to correspond to the 

time of injury (Higashihara et al., 2014; Schache et al., 2013, 2012; Chumanov et al., 2012, 

2011; Thelen et al., 2005). This belief is also supported by two case studies of hamstrings 

strain injuries that occurred during data collection in biomechanical studies (Schache et al., 
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2009; Heiderscheit et al., 2005). In both studies, the authors using kinematic data concluded 

that the inciting event for the injury occurred during the late swing phase. 

 
Figure 2.5. Example of the late swing phase during sprinting (A, photo adapted from 

AFP/Joe Klamar). Note that, towards the end of the late swing phase, the leading leg is 

slightly flexed at the hip (120-140°, 180°= full extension) and nearly fully extended at the 

knee joint. During this phase, all hamstrings muscles reach their peak strains, with BFlh 

experiencing the greatest strain (Schache et al., 2012). In addition, computational model 

simulations predict that, during the late swing phase, the BFlh peak local strains are located 

near the proximal MTJ and increase with running speed (B, picture adapted from Fiorentino 

et al., 2014b). These biomechanical conditions are believed to lead the predisposed athlete to 

a hamstrings strain injury (Fiorentino et al., 2014b, Chumanov et al., 2012; Schache et al., 

2012). 

Whilst the main body of the literature seems to agree, based on indirect evidence, that the late 

swing phase is the most probable time of injury, Orchard (2012) suggests that hamstrings are 

most susceptible during the early stance phase. Orchard (2012) argues that at the early stance 

phase, hamstrings have to counteract high hip flexion and knee extension moments, resulting 

from the large ground reaction forces (>300% of body weight). In contrast, there is no ground 

reaction force during the late swing phase, and hamstrings eccentric action is to control the 

forward movement of the shank (Orchard, 2012). Yet, animal studies have shown that muscle 
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damage is a result of the muscle fibre strain that occurs during active lengthening rather than 

the level of force per se (Lieber and Fridén, 1993). 

2.5.3 Risk factors 

Hamstrings strain injuries are a persistent problem for the athletes, teams and physicians 

involved, and the identification of the factors that can lead to these injuries is of high 

importance. The risk factors can be described as intrinsic and extrinsic. The intrinsic risk 

factors are those that relate to the individual/athlete (e.g. muscle strength and flexibility), 

while the extrinsic risk factors are related to the environment (e.g. the game conditions, other 

athletes, climate etc.). The multifactorial nature of the hamstrings strain injuries suggests that 

it is not the sole existence of a single risk factor that leads to injury; rather, an injury is the 

result of the accumulation of a number of risk factors in combination with exposure to high 

risk conditions and ultimately an inciting event. According to a model proposed by 

Meeuwisse et al. (2007), the risk factors are dynamic and change the susceptibility of an 

individual. For example, sprint training may provide adaptations that protect an individual 

from hamstrings strain injuries, and therefore decrease the risk of injury. On the other hand, 

residual fatigue, due to excessive training with inadequate rest, can cause reduced hamstrings 

eccentric strength that increases the risk for strain injury. Meeuwisse et al. (2007) suggest that 

an athlete is susceptible when ‘the intrinsic and extrinsic risk factors and the interactions 

between all of the risks accumulate’. 

Despite the significant research efforts over the last decades, there is a surprisingly limited 

knowledge of what constitutes a risk factor for hamstrings strain injury. Numerous potential 

risk factors have been suggested, however only a few of them are supported by robust 

scientific evidence. More high-quality studies (e.g. large, randomised controlled studies) are 

needed to improve our understanding of the risk factors for hamstrings strain injuries. This 

section presents an overview of the main risk factors proposed in the literature. 

2.5.3.1 Previous injury 

A previous hamstrings injury has been consistently reported as a significant risk factor for a 

subsequent strain injury, and athletes with a history of hamstrings strains have 2-5 times 

increased risk for a future injury (Hagglund et al., 2013; 2006; Engebretsen et al., 2010; 

Gabbe et al., 2006; Arnason et al., 2004; Orchard, 2001; Verrall et al., 2001). Silder et al. 

(2008) found evidence of scar tissue adjacent to the injury site up to 23 months after the 
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injury, and they suggested that it may increase the stiffness of the tissue. The implication is 

that, due to the presence of inelastic scar tissue, the muscle fibres would need to lengthen 

more for a given change in MTU length than before the injury. Using CINE phase contrast 

imaging, it was calculated that individuals with a prior proximal BFlh strain injury exhibited 

greater strains near the proximal BFlh MTJ under eccentric loading compared to healthy 

individuals (Silder et al., 2010). The greater localised strains may reflect the limited stretch 

capacity of the scar tissue present in the injured individuals, yet it cannot be precluded that 

these individuals exhibited stiffer aponeurosis-tendon complex before the injury (Silder et al., 

2010). 

Silder et al. (2008) reported that the previously injured athletes exhibited BFlh muscle 

atrophy (-10%) compared to their uninjured leg, while no atrophy was present in control 

individuals. Notably, all injured athletes had followed a supervised rehabilitation programme 

and had resumed their normal athletic activities for at least one month before taking part in 

that study. While strength was not assessed, the BFlh muscle atrophy would be expected to 

result in decreased knee flexor strength and H:Q strength imbalances which, in turn, are 

considered as risk factors for hamstrings strains (discussed below). Interestingly, some of the 

athletes with BFlh atrophy exhibited a hypertrophy in BFsh, suggesting an adaptive response 

to compensate for the lower BFlh strength capacity. This hypertrophic response may also 

suggest an underlying BFlh neuromuscular inhibition, despite the increased knee flexor 

loading that typically occurs during rehabilitation (Fyfe et al., 2013).  

Other investigations have reported that knee flexors angle of peak concentric (Brocket et al., 

2004) and eccentric (Proske et al., 2004; Croisier and Crielaard, 2000) torque shifted towards 

more flexed knee joint angles following a hamstrings strain injury, implying a shorter 

optimum muscle length. A shorter optimum length suggests that at more extended knee joint 

angles, hamstrings will operate at their descending part of their F-L curve. According to the 

‘popping sarcomere’ hypothesis (Morgan, 1990), at the descending part of the F-L curve 

some sarcomeres are stretched beyond their acto-myosin filament overlap. As these 

sarcomeres would be the weakest along the muscle fibre, further stretch during an eccentric 

contraction would result in an uncontrolled lengthening of these sarcomeres leading to 

microscopic muscle fibre damage. Brockett et al. (2001) suggested that accumulation of such 

microscopic damage may eventually lead to strain injury. Nevertheless, it remains unclear if 

the shift in angle of peak torque seen in previously injured individuals pre-existed or was a 

result of the injury. 
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Some interesting data emerged from a recent study reporting 18-20% reduced EMG activity 

during eccentric contractions for the previously injured BFlh but not for the medial 

hamstrings compared to the uninjured leg in recreational athletes (Opar et al., 2013b). This 

neural inhibition was accompanied with 10-11% lower eccentric strength compared to the 

uninjured leg. Again, all participants had undergone rehabilitation and were permitted to 

return to competition at the time of testing which was conducted at least 2 months after the 

injury. The authors discussed that previously injured BFlh may be less responsive to eccentric 

training (a widely recommended tool in hamstrings strains pre- and rehabilitation, 

Heiderscheit et al., 2010) and therefore more susceptible to a future injury. In another study 

by the same authors (Opar et al., 2013a), similar reductions in BFlh neural activation (but not 

the medial hamstrings) were reported along with lower knee flexor rate of torque 

development and reduced impulse at 50 ms and 100 ms after the contraction onset in slow 

eccentric contractions. However, these retrospective studies cannot elucidate whether the 

reduced BFlh neural activation was the cause or the result of the hamstrings injury and 

further prospective studies are needed. 

In summary, hamstrings injuries result in neuromuscular and functional alterations that may 

be present long after the injury occurrence and even when athletes are cleared to return to 

their usual athletic activities, while these changes may predispose them to re-current strain 

injuries. 

2.5.3.2 Strength imbalances 

Knee joint muscle strength imbalances are typically assessed by comparing the knee 

extensors or flexors strength between the two sides (bilateral imbalances) and/or by 

calculating the relative strength of the knee extensors and flexors (H:Q ratio) unilaterally. 

Originally, the H:Q ratio was calculated from the concentric peak torque of the knee 

extensors and flexors, known as the conventional ratio. Later, the dynamic strength ratio 

(Dvir et al., 1989) or functional ratio (Aagaard et al., 1998, 1995) was introduced, which 

calculates the ratio of hamstrings peak eccentric to quadriceps peak concentric torque, and it 

is thought to better reflect the reciprocal antagonistic function of these muscles during 

athletic activities such as sprinting and kicking. Despite the widespread use of the H:Q ratio, 

there are no objective cut-off ratio limits due to differences in isokinetic dynamometers and 

exercise protocols used (Croisier, 2002). 
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Strength imbalances, either bilateral for knee flexors or between knee extensors and flexors 

of the same leg, have been long considered a risk factor for strain injuries (Fousekis et al., 

2010; Yeung et al., 2009; Croisier et al., 2008, 2002, 2000; Orchard et al., 1997; Heiser et al., 

1984). Croisier et al. (2002) found that the most affected functional parameters in previously 

injured individuals were the hamstrings eccentric bilateral strength and the hamstrings 

eccentric to quadriceps concentric strength ratio (functional H:Q ratio). These authors 

highlighted the discriminating character of the eccentric strength deficits and discussed that 

had they only examined the concentric strength, 23% of the individuals with a history of 

strain injury would have not been identified with strength imbalances. In a large prospective 

study (n= 462) that examined the relationship between strength imbalances and injury risk, 

Croisier et al. (2008) recorded 35 hamstrings injuries and found that professional footballers 

with preseason strength imbalances that were left untreated, either bilateral hamstrings 

strength deficits >15% and/or a low conventional (<0.47-0.49) or functional (<0.80-0.89) 

H:Q strength ratio), had >4-fold increased risk of strain injury during the subsequent season 

compared to players with no strength imbalances. In addition, players with initial imbalances 

that were restored (according to statistically defined cut-off criteria) reduced their risk of 

injury to levels comparable to players with no imbalances. In a smaller prospective study, 

Yeung et al. (2009) examined forty-four sprinters over 1 year and recorded a total of 12 

hamstrings strain injuries in 8 athletes. Using Cox regression analysis, it was found that 

athletes with a conventional H:Q ratio <0.60 exhibit a 17-fold greater risk for a hamstrings 

strain injury. Another small prospective study (n= 37) has also reported that a conventional 

H:Q ratio <0.61 at 60° s-1 increases the risk of strain injury in American football players. In 

contrast to the aforementioned studies, Bennell et al. (1998) did not find any association 

between low bilateral hamstrings strength ratio (<0.90) or low H:Q strength ratio (<0.60) and 

increased risk of strain injury. However, they only recorded 9 injuries over a season in a 

cohort of 102 athletes. It is important to highlight that most of the above studies have used 

relatively small sample sizes and recorded a low number of hamstrings injuries. A number of 

20-50 injury cases are needed to detect a moderate to strong association with a potential risk 

factor (Bahr and Holme, 2003). Considering the multifactorial nature of the hamstrings strain 

injuries, it is unlikely that any single factor will exhibit a strong relationship with this type of 

injury. In that case, >200 injury cases are needed to detect small to moderate associations 

(Bahr and Holme, 2003). It is clear that further large-scale prospective studies are needed to 

better understand the relationship between strength imbalances and hamstrings strains. 
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Most studies that examined the knee joint muscle strength imbalances have focused on the 

H:Q peak torque ratio. However, the time needed to achieve peak isometric torque can be 

>400 ms (Thorstensson et al., 1976), which is substantially longer than the time available for 

the knee flexors to decelerate the shank during the late swing phase (<100 ms, Schache et al., 

2013). Therefore, examination of the explosive H:Q ratio could provide valuable information 

that would otherwise be undetected by a maximal strength ratio. Indeed, Hannah et al. (2014) 

examined the explosive H:Q ratio of the reciprocal muscle groups and found that at the initial 

50 ms from the activation onset, the explosive H:Q ratio was significantly lower compared to 

the maximal strength H:Q ratio (0.17 vs. 0.56, P< 0.001), suggesting that the knee joint is 

particularly vulnerable to injury at that time. Interestingly, this large difference was mainly 

attributed to the 2 times longer hamstrings electromechanical delay compared to quadriceps 

(44.0 vs. 22.6 ms, P< 0.001). It must be noted however that in that study the explosive H:Q 

ratio was examined isometrically, while hamstrings act eccentrically during the late swing 

phase. The type of contraction has been found to exhibit a differential influence on explosive 

torque production capacity (Tillin et al., 2012). 

2.5.3.3 Hamstrings anatomy 

Despite the common speculation that the anatomy of the hamstrings might influence injury 

risk, this has received surprisingly little attention. Only recently, two studies using 

computational modelling and dynamic MR imaging, calculated higher localised tissue strains 

for individuals with a narrow proximal BFlh aponeurosis and they suggested that a 

disproportionately small BFlh proximal aponeurosis may be a potential risk factor for strain 

injury (Fiorentino et al., 2012; Rehorn and Blemker, 2010). Initially, Rehorn and Blemker 

(2010) examined finite element models of BFlh based on MR images and examined the 

influence of proximal and distal aponeurosis dimensions on stretch distribution in the muscle 

during a simulated eccentric contraction and found that a decrease in proximal aponeurosis 

width by 80% resulted in 60% increase in peak stretches along the proximal MTJ. The 

findings of that study were confirmed by an in vivo study from the same laboratory that used 

CINE dynamic MR imaging to measure the BFlh strains during active and passive 

lengthening in 13 individuals (Fiorentino et al., 2012). Specifically, they found that 

individuals with a narrow BFlh proximal aponeurosis experienced the highest strains near the 

aponeurosis during active lengthening compared to individuals with a wider aponeurosis. 

These two studies provided the first evidence that aponeurosis size may contribute to 

hamstrings strain injuries and that individuals with a narrow aponeurosis may be at an 
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increased risk. However, to date the inter-individual variability of the BFlh proximal 

aponeurosis size has not been examined. Some preliminary data suggested that the width of 

the BFlh proximal aponeurosis is highly variable between individuals and unrelated to the 

size of the BFlh muscle (Handsfield et al., 2010), suggesting that within the BFlh MTU the 

force transmitter may not be proportional to the force generator. If this is the case a 

disproportionately small BFlh proximal aponeurosis may concentrate mechanical strain on 

the surrounding muscle tissue (Fiorentino et al., 2014a, 2012; Rehorn and Blemker, 2010) 

and be a risk factor for hamstrings strain injury. However, in that preliminary report 

aponeurosis width was measured at a single arbitrary point along the muscle, which may be a 

poor reflection of the size of the aponeurosis. In contrast, measuring the whole contact 

interface between the muscle and aponeurosis may better reflect the concentration of 

mechanical strain at this interface. Further research is needed to elucidate the variability of 

the proximal BFlh aponeurosis size and its relationship with muscle size. Hamstrings muscle 

composition and innervation has also been speculated as risk factors for strain injuries (see 

2.4.1), however to date no studies have examined these possibilities. Future prospective 

studies are needed to elucidate whether hamstrings anatomy is related to increased risk for 

strain injury. 

2.5.3.4 Fatigue 

Nearly half (47%) of the hamstrings strains sustained during a football match occur towards 

the end of each half period (Woods et al., 2004). This suggests that fatigue may induce 

changes in muscle strength and sprint mechanics that could contribute to the hamstrings 

injury susceptibility. Knee flexor maximal strength was significantly reduced in professional 

and amateur footballers after the completion of laboratory and field-based football-specific 

exercise (Greco et al., 2013; Delextrat et al., 2010; Small et al., 2010; Greig et al., 2008). 

Interestingly, some studies reported that only eccentric strength was affected (Small et al., 

2010; Greig et al., 2008), while other studies reported a decrease in isometric, concentric and 

eccentric knee flexor strength (Greco et al., 2013; Delextrat et al., 2010). Also, knee flexor 

rate of force development (RFD) at 0-50 and 0-100 ms from contraction onset was reduced 

after a laboratory-based soccer-specific exercise (Greco et al., 2013). In general agreement, 

the functional H:Q ratio was significantly reduced after exercise that simulated a soccer 

match (Greco et al., 2013; Delextrat et al., 2010; Small et al., 2010; Greig et al., 2008). In 

contrast, an unchanged (Small et al., 2010; Greig et al., 2008) or decreased (Greco et al., 

2013; Delextrat et al., 2010) conventional H:Q ratio has been reported after soccer-specific 
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exercise protocols. Despite the discrepancy in the results of the above studies, overall these 

results suggest that at the later stages of a football match, the knee flexors have a decreased 

capacity to absorb energy during the late swing phase of sprinting which may increase the 

risk of a strain injury (Schache et al., 2012). 

Changes in sprinting mechanics have also been observed due to fatigue (Small et al., 2009; 

Pinniger et al., 2000). Pinniger et al. (2000) reported a reduced hip and knee flexion, and 

reduced thigh and leg angular displacement during swing phase after a fatiguing protocol 

involving isolated knee flexion and 40-m repeated maximal sprints. These changes were 

accompanied with changes in neural activation patterns with the rectus femoris activation 

ceasing earlier while the hamstrings were activated earlier during the swing phase. The 

authors suggested that the observed kinematic changes may be protective mechanisms to 

reduce the fast eccentric action of the fatigued hamstrings during the late swing phase and, 

therefore, the stress and strains within the hamstrings. Similarly, the earlier activation of the 

hamstrings and their increased duration of activation may compensate for their reduced force 

production capacity, providing more time to the weaker hamstrings to successfully decelerate 

the shank before ground contact. In contrast to Pinniger et al. (2000), Small et al. (2009) 

found a reduced hip flexion but increased knee flexion and lower limb velocity after a 

football-specific field protocol also. Small et al. (2009) also reported an increased anterior 

pelvis tilt and suggested that these changes in sprint kinematics may predispose the 

hamstrings to strain injuries, as an increased anterior pelvis tilt would increase the hamstrings 

stretch and strain. The increased knee flexion may reflect the shift in angle of peak torque 

towards shorter muscle lengths after exercise-induced muscle damage (Proske and Morgan, 

2001). Forced lengthening of hamstrings to greater lengths, combined with the reduced 

eccentric capacity of hamstrings due to fatigue, could potentially result in a strain injury. 

Also, an increased anterior pelvis tilt suggests an increase in the hamstrings MTU length 

which again may predispose to a strain injury. 

2.5.3.5 Age 

Increasing age has been frequently reported to be related to higher risk of hamstrings strain 

injury (Henderson et al., 2010; Gabbe et al., 2006, 2005; Arnason et al., 2004; Orchard, 2001 

Verrall et al., 2001), even though this relationship was not always confirmed (Hagglund et 

al., 2013, 2006). Interestingly, older age remained a significant risk factor even when other 

confounding factors were controlled (e.g. previous injury, Arnason et al., 2004; Orchard et 
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al., 2001). Further, every additional year of age increases the risk of injury by 1.4-1.8 times in 

professional athletes such that a 30-year old athlete has 14-18 times greater risk than a 20-

year old (Henderson et al., 2010; Arnason et al., 2004). However, it remains unclear why 

older athletes are predisposed to strain injuries. In a prospective study, Gabbe et al. (2006) 

found that older athletes (≥25 years) had increased body mass and reduced hip flexibility 

compared to younger athletes (≤20 years) and multivariate analysis showed that these were 

independent risk factors for strain injury in the older athletes. Finally, Orchard et al. (2001) 

speculated that lumber degeneration leading to L5/S1 nerve impingement may result in 

hamstrings denervation and loss of muscle strength in older individuals. However, these 

suggestions are not supported by any scientific evidence and therefore it remains unclear why 

increasing age predisposes to hamstrings strains. 

2.5.3.6 Flexibility 

Current findings concerning the relationship between hamstrings flexibility and risk of strain 

injury are conflicting. Three prospective studies in professional footballers have found that 

decreased flexibility of hip and knee flexors increases the risk of hamstrings strain injury 

(Henderson et al., 2010; Bradley and Portas, 2007; Witvrouw et al., 2003), while other 

studies did not find any association (Engebretsen et al., 2010; Yeung et al., 2009; Gabbe et 

al., 2006, 2005; Arnason et al, 2004). While it is unclear why this discrepancy in the results 

exists, it may be partly due to the different methods used and the difficulty in differentiating 

hamstrings flexibility from flexibility in the lumbar spine and pelvis (Opar et al., 2013; 

Dallinga et al., 2012; Prior et al., 2009). 
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3 CHAPTER 3 – RELIABILITY OF ISOMETRIC AND 

ISOVELOCITY HAMSTRINGS-TO-QUADRICEPS RATIO AND 

STRENGTH MEASURES OF THE KNEE EXTENSORS AND 

FLEXORS 

3.1 INTRODUCTION 

Strength imbalance between the knee extensors and flexors has been suggested as a risk 

factor for hamstrings strains and anterior cruciate ligament injuries (Croisier et al., 2008, 

2002; Sugiura et al., 2008; Griffin et al., 2006). Typically, the strength balance around the 

knee joint is examined with the hamstrings-to-quadriceps peak torque ratio (H:Q) using 

isokinetic dynamometry. However, the assessment of the H:Q ratio is commonly performed 

in conditions that do not reflect the biomechanics of the activities where injuries occur (e.g. 

late swing phase of sprinting for strain injuries, Chumanov et al., 2012). Accounting for these 

conditions would be expected to improve the validity of the measurements; yet, the reliability 

of such protocol should be established before its employment. In addition, the ‘ideal’ protocol 

should require the minimum amount of time and involvement from the athletes, in order to 

minimise any disruption of their training schedule and maximise the frequency of 

performance monitoring. Therefore, the development of an ecologically valid, reliable 

protocol that assesses the strength balance of the knee extensors and flexors in the least time 

spent in the laboratory is critical. 

Three main variations of the H:Q ratio can be calculated: isometric, conventional and 

functional ratios. The conventional ratio is defined as the knee flexors to extensors concentric 

peak torque, whilst the functional ratio as the knee flexors eccentric to knee extensors 

concentric peak torque. Whilst the functional ratio is considered to reflect better the 

antagonistic function of these muscle groups (Aagaard et al., 1998, 1995), the ecological 

validity of the H:Q ratio remains limited. In most studies, knee extensor and flexor strength is 

assessed at a seated, upright position with the hip joint at 90-100° (180°= full extension). 

However, this position is far from the ~120-140° hip flexion during the late swing phase 

when strain injuries occur (Guex et al., 2012; Novacheck, 1998). Another limitation is the 

large discrepancy in the angular velocity of the knee joint during athletic activities (e.g. 

>1200° s-1 during kicking or sprinting, Higashihara et al., 2010; Kellis and Katis, 2007) and 
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that attainable in isokinetic dynamometry (≤500° s-1). Clearly, this limitation cannot be 

overcome with current dynamometers; however, the H:Q ratio has been examined at high 

isokinetic velocities, even though the reliability of measurements >240° s-1 has not been 

established. At higher isokinetic velocities, individuals may have a difficulty to maintain 

maximal neuromuscular activation due to the short available time resulting in greater torque 

variability at those velocities (Caruso et al., 2012; Iga et al., 2006). Therefore, it is important 

to ensure that muscle strength testing at velocities >240° s-1 produces reliable measurements. 

The adoption of a testing position that resembles the hip angle during the late swing phase 

along with the examination of H:Q ratio at the highest attainable velocities would improve 

the ecological validity of the reciprocal strength assessment. However it is essential to 

establish the reliability of these measurements. 

The isovelocity ratios are based on the peak torque of the reciprocal muscles, irrespective of 

the angle at which peak torque occurs. However, the isometric H:Q ratio is calculated at a 

specific angle that is the same for both muscle groups (Kong and Burns, 2010). A significant 

limitation of the isometric ratio is that during dynamometry measurements of ‘isometric’ 

knee flexion and extension contractions, movement occurs at the knee joint resulting in a 

discrepancy between the crank angle and the actual knee-joint angle (Tsaopoulos et al., 

2011). This movement is mainly due to the deformation of the soft tissue of the leg and the 

compliance of the dynamometer, and despite a fixed crank angle it has been found to afford 

up to 20° of discrepancy between crank angle and knee angle for knee extension (Tsaopoulos 

et al., 2011; Arampatzis et al., 2004). Similar differences would be expected for knee flexion, 

when the knee joint moves forwards and up relative to the dynamometer rotational axis. As 

knee flexion and extension contractions are in opposite directions, the discrepancy in actual 

knee joint angles between knee extensor and flexor peak torque could be as large as 40°. 

Therefore, valid isometric ratios that are genuinely angle specific require measurement of 

knee joint angle that is independent of crank angle. However, to date no studies have 

accounted for the discrepancy in the examination of the isometric H:Q ratio and thus the 

reliability of the isometric ratio obtained at true knee joint angles remains to be examined. 

Therefore, the aim of this study was to evaluate the inter-session reliability of the isometric 

(knee-joint angle-specific) and isovelocity (functional and conventional) H:Q ratios using a 

short protocol that included muscle function measurements up to high angular velocities and 

joint positions that closely replicate the conditions of high injury risk. This involved the 
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assessment of the reliability of the knee flexors and extensors torque measurements across the 

torque-velocity relationship.  
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3.2 METHODS 

3.2.1 Participants 

Nine healthy, recreationally active males (age 24 ± 3 years, height 178 ± 6 cm and body mass 

69.9 ± 8 kg, mean ± SD) volunteered to take part in this study. None of the participants were 

involved in systematic physical training or had any previous experience of strength/power 

training (i.e. weight training, plyometrics) of the lower body musculature. Their physical 

activity was assessed using the International Physical Activity Questionnaire short format 

[www.ipaq.ki.se/downloads.htm, (Craig et. al., 2003)] and their average energy expenditure 

was 2244 ± 1284 MET-minutes/week. After completing the physical activity and health 

screen questionnaires, participants provided written informed consent for their participation 

in this study, which was approved by the Loughborough University Ethical Advisory 

Committee. All participants were healthy with no musculo-skeletal problems or injuries of 

the lower back, pelvis or legs. Participants were instructed not to take part in any 

unaccustomed or strenuous physical activity for at least 2 days prior to each laboratory visit. 

3.2.2 Overview 

All participants visited the laboratory on four occasions, each separated by 7 days, at a 

consistent time of day. All sessions involved unilateral measurements of dominant leg knee 

flexor and extensor strength conducted with an isokinetic dynamometer (Con-Trex MJ, CMV 

AG, Duebendorf, Switzerland). The first and third session involved identical isometric knee 

flexor and extensor assessment while the second and fourth session involved identical 

dynamic assessment of both muscle groups. All isometric contractions performed in the first 

and third sessions, were recorded with a video camera in order to assess actual knee-joint 

angles during these isometric contractions, and also facilitate conversion of crank angles to 

actual knee-joint angles during all the contractions. Participants were familiarized with the 

procedures of the dynamic assessment during their first visit to the laboratory. All testing 

sessions were conducted by the same investigator to avoid inter-examiner variability. 

3.2.3 Dynamometer Procedures 

Participants were seated on the dynamometer chair with a hip angle of 120° (180°= full 

extension). Two 3-point belts secured the torso and additional straps tightly secured the pelvis 

and the distal thigh of their dominant leg. A brace was also placed in front of the non-

http://www.ipaq.ki.se/downloads.htm
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involved leg. The alignment of the knee joint with the dynamometer rotational axis during 

active muscle contractions was done separately for knee extension and flexion contractions. 

Specifically, in each case the alignment was done during isometric contractions of >50% 

MVF at a knee joint angle of ~115°. The dynamometer’s shin brace was placed ~2 cm above 

the medial malleolus, anterior to the shank for knee extension contractions and posterior for 

knee flexion contractions, prior to the shank being tightly secured to the dynamometer lever 

arm. During the knee extension contractions, an additional moulded rigid plastic shin pad, 

lined with 2 mm of high density foam, was tightly secured to the tibia to avoid any 

discomfort to the shin during maximum contractions. The range of motion was established 

passively and anatomical zero was set at the most extended position where participants felt 

comfortable and without excessive stretch of their hamstrings. Passive torque measurements 

were recorded while the tested leg was passively moved through the full range of motion and 

thereafter active torque values were corrected for passive torque by the dynamometer 

software. Participants were instructed to grasp the handles next to the seat during maximal 

contractions. Standardised verbal encouragement was given by the same investigator and 

online visual feedback of the crank torque was provided on a computer screen. Torque, crank 

angle and crank angular velocity were recorded at 512 Hz during all contractions. 

3.2.4 Torque-velocity relationship assessment 

3.2.4.1 Isometric strength 

Measurements were recorded first with the knee flexors and then the knee extensors. Prior to 

the recorded contractions for each muscle group, participants completed a standardized 

warm-up consisting of a progressive series of submaximal contractions. For the assessment of 

peak isometric torque of each muscle group, participants performed two sets of five 

maximum contractions, one at each of five different crank angles (165°, 150°, 135°, 120° and 

105° in a randomized order; 180°= full extension). Participants were instructed to “push” or 

“pull” as hard and as fast as possible for 3-5 s. One-minute rest was given between each 

contraction, with 2 min between sets and 5 min between muscle groups. 

3.2.4.2 Concentric and Eccentric strength 

Initially, participants performed a standardized warm-up protocol with five submaximal 

contractions of progressively higher intensity. Following the warm-up, first the knee 

extensors were tested for their concentric and eccentric torque at three velocities, and then the 

knee flexors were also tested at the same concentric and eccentric velocities. This involved a 
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protocol of concentric-eccentric contractions at low (60° s-1), medium (240° s-1) and high 

(400° s-1) angular velocities in this order. At each velocity participants performed 2 sets of 2 

(60° s-1), 3 (240° s-1) or 5 (400° s-1) concentric-eccentric contractions over approximately 80-

85° of range of motion. A minimum of one-minute rest was given between each set, with 2 

min between velocities and 5 min between muscle groups. 

3.2.5 Torque data analysis 

The isometric contraction with the highest torque at each crank angle was chosen for further 

analysis. Isometric peak torque was defined as the average over a 500 ms epoch around (250 

ms either side) the instantaneous highest torque. In order to account for the differences 

between crank angle and knee-joint angle between the two sessions, the isometric torque-

knee joint angle data for each muscle group was smoothed by performing 2nd order 

polynomial fitting to the raw torque values. Then the polynomial fit was used to interpolate 

torque values for knee joint angles at 105, 120, 135, 150 and 165°. The isometric torque for 

each muscle group and the isometric H:Q ratio data presented are the interpolated values. The 

concentric and eccentric contractions at each velocity with the highest torque and isovelocity 

range were chosen for further analysis. In order to control for the torque overshoot during the 

acceleration and deceleration phases (Schwartz et al., 2010), data during these phases were 

excluded and the constant isovelocity period (within ±10% of the prescribed crank angular 

velocity, Baltzopoulos et al., 2012) was identified. Peak torque was calculated by averaging 

the torque values over a 1-2° range of angles around the highest recorded torque value. 

3.2.6 Knee joint angle 

In order to account for the dynamometer compliance and the position change of the knee joint 

relative to the dynamometer crank during testing, the actual knee joint angle was determined 

during the isometric contractions. A video camera (Panasonic NV-GS200 mini-DV, Japan) 

was used to record sagittal plane images at a sampling rate of 50 Hz. The camera was 

positioned ~2.5 m perpendicular to the dynamometer and mounted on a tripod at a height of 

~2.2 m in order to have an unobstructed view of the knee joint. Joint centres were identified 

with 2 cm diameter circular marks drawn on the surface of the hip (greater trochanter), knee 

(lateral collateral ligament just below the lateral femoral epicondyle) and ankle (lateral 

malleolus of the fibula) joints. The knee joint angle was measured from the coordinates of the 

three anatomical reference points during each participant’s best isometric contraction at each 

angle. The camera tilt relative to the plane of movement, introduced a systematic error to the 
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knee joint angle measurements. To quantify this error, the horizontal and vertical sides of a 

right angle with known dimensions that was on the plane of movement, were digitised and 

used as a scaling factor. The error was found to be on average ±6° (range= 0-14°) over a 90° 

range of motion (90-180°, 180°= full extension). However, this systematic error was not 

expected to influence the reliability of the angle-specific torque measurement as the same 

camera position was replicated throughout the measurements. The measured knee joint angles 

were plotted against the respective crank angles and a quadratic equation was fitted in order 

to generate a knee joint angle-crank angle relationship for each muscle group. These 

relationships facilitated conversion of crank angles recorded during all contractions 

(isometric, concentric and eccentric) to actual knee joint angles. The coefficient of 

determination for these relationships (knee joint angle vs. crank angle), calculated for each 

muscle group of each participant, were very high (0.9729 ≤ R2 ≤ 1). 

3.2.7 Isometric Hamstrings-to-Quadriceps ratio 

The isometric hamstrings-to-quadriceps ratio (H:Qisom) was calculated by dividing the 

hamstrings torque at each knee-joint angle by the quadriceps torque at the same angle. 

3.2.8 Functional Hamstrings-to-Quadriceps ratio 

The dynamic hamstrings-to-quadriceps functional ratio (H:Qfunc) was calculated by dividing 

the hamstrings eccentric peak torque at each angular velocity by the quadriceps concentric 

peak torque at the same velocity. 

3.2.9 Conventional Hamstring-to-Quadriceps ratio 

The hamstrings-to-quadriceps conventional ratio (H:Qconv) was calculated by dividing the 

hamstrings concentric peak torque by the quadriceps concentric peak torque at the same 

angular velocity. 

3.2.10 Statistics 

Group data are presented as mean ± standard deviation (SD) between individuals. Differences 

between sessions for peak torque and H:Q ratios were examined with one-way repeated 

measures analysis of variance. Test-retest absolute reliability was assessed with the intra-

individual standard deviation (SDw) and the coefficient of variation (CVw, calculated as the 

SDw divided by the mean of the two sessions for each individual). No established cut-off 

criteria exist for the interpretation of the reliability statistics. In this study, the arbitrary 
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classification followed was: <10% high, 10-15% moderate and >15% low for the CV, and 

<0.60 low, 0.60-0.80 moderate and >0.80 high for the ICC. Differences in the CVw statistic 

were examined with repeated measures analysis of variance and post hoc comparisons were 

performed with paired t-tests with Bonferonni correction. The intra-class correlation 

coefficient (ICC; two-way random effects model with single measure reliability - 2,1) was 

used to assess the relative reliability. Differences in the ICC statistic between muscle groups 

were examined with paired t-tests. A P< 0.05 level of significance was used for all statistical 

tests.  
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3.3 RESULTS 

3.3.1 Torque-velocity relationship 

Knee extensor and flexor strength measurements did not exhibit any differences between the 

two sessions for isometric (Table 3.1), concentric or eccentric torque at any velocity (Table 

3.2). 

Overall, isometric torque measurements had a moderate to high absolute reliability (CVw= 

4.3-13.8%). Knee extensor isometric torque was more consistent at the mid-range angles 

(120°-135°; CVw= 5.3-5.9%, Table 3.1), compared to the extremes of the range of motion 

(105°, CVw= 12.4%; 165°, CVw= 13.8%), however these differences were not significant 

(P> 0.05). Similarly, knee flexors isometric torque exhibited high absolute reliability at most 

angles (105°-150°, CVw= 4.3-5.9%), while the most extended angle had lower but not 

significantly different absolute reliability (165°; CVw= 11.7%, P> 0.05). No difference in 

absolute reliability was found between the two muscle groups (P> 0.05). The isometric 

torque measurements exhibited a moderate-to-high relative reliability at all knee-joint angles 

for both muscle groups (ICC= 0.76-0.94, Table 3.1), and the relative reliability was similar 

for both muscle groups when the data were collapsed across knee joint angles (P= 0.417). 

Table 3.1. Isometric peak torque for knee extensors and flexors presented as mean ± SD with 

the respective reliability measures (n= 9). 
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The isovelocity (concentric and eccentric) strength measurements exhibited high absolute 

reliability for both knee extensors and flexors (CVw= 4.0–9.7%, Table 3.2). There was no 

difference in absolute reliability between muscle groups, contraction type or velocities 

examined (P> 0.05). However, the knee extensors had higher relative reliability than the knee 

flexors when the data were collapsed across velocities (ICC= 0.90 and 0.66 respectively, P= 

0.001). 

Table 3.2. Isovelocity peak torque for knee extensors and flexors for each measurement 

session presented as mean ± SD with the respective reliability measures (n= 9). 

 

3.3.2 Hamstring-to-quadriceps ratios 

The isometric H:Q ratio was not significantly different between sessions (Table 3.3). The 

absolute reliability at the most extended knee-joint angle (165°; CVw= 16.8%) was 

significantly lower compared to 135° (CVw= 5.7%, P= 0.046) and 150° (CVw= 8.4%, P= 

0.050), with a tendency to be lower than 120° (CVw= 4.8, P= 0.070). The relative reliability 

of the isometric H:Q ratio was high for 135° and 150° (ICC= 0.90) but moderate at the other 

knee-joint angles (ICC= 0.65-0.72, Table 3.3). 
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Table 3.3. Isometric H:Q ratio presented as mean ± SD for each measurement session with 

the respective reliability measures (n= 9). Different from 165°, * P< 0.05 

 

The functional and conventional H:Q ratios were not different between sessions. Both ratios 

exhibited moderate to high absolute reliability at all velocities (CVw= 7.8-11.8%, Table 3.4), 

while there were no differences between the two types of the H:Q ratio or between the 

angular velocities examined in each ratio (P> 0.05). The relative reliability was only low to 

moderate for the functional ratio (ICC= 0.45-0.75) and low for the conventional ratio (ICC= 

0.38–0.58), while the functional ratio exhibited a trend for higher relative reliability 

compared to the conventional ratio, when the data were collapsed across velocities (P= 

0.064). 

Table 3.4. Conventional and functional ratio at different angular velocities measured during 

two repeated measurement sessions together with the respective reliability measures. Data are 

presented as mean ± SD (n= 9). 
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3.4 DISCUSSION 

The main aim of this study was to examine the test-retest reliability of the isometric, 

functional and conventional H:Q ratio using a short protocol that replicated the hip and knee 

joint angles during conditions of high injury risk. We found that the functional and 

conventional H:Q ratio exhibited good absolute reliability but low to moderate relative 

reliability. Furthermore, the knee-joint angle-specific isometric H:Q ratio exhibited high 

absolute reliability at all mid-range angles, but it was less reliable at extreme knee joint 

angles. Overall, the applied protocol assessed the knee-joint strength balance with acceptable 

test-retest reliability similar to that reported in the literature. 

Even though the H:Q ratio is extensively used to identify potentially injurious knee-joint 

strength imbalances, it is often obtained in conditions that ignore the biomechanics of the 

hamstrings strain injury. The protocol employed in this study accounted for these conditions 

(i.e. relatively extended hip joint position and high knee-joint angular velocities) to the 

greatest possible extent, and produced reliable measurements of the isovelocity and isometric 

H:Q ratios. Both functional and conventional ratios had moderate to high absolute reliability 

at all examined velocities (CVw= 7.8-11.8%). The current investigation is the first to 

examine the reliability of the H:Q ratio at velocities >240° s-1, and found that it can be 

examined with acceptable reliability at velocities up to 400° s-1. Concerning the lower 

velocities, our results are within the range of previous findings (Ayala et al., 2012; 

Impellizzeri et al., 2008; Sole et al., 2007). However, absolute reliability for the isovelocity 

H:Q ratios has been found to vary significantly (60° s-1, CV= 5.1-7.1%; Impellizzeri et al., 

2008; 60-240° s-1, CV= 16.3-20.6%; Ayala et al., 2012). These studies thoroughly 

familiarised their participants using 3 testing sessions and more extensive protocols compared 

to the current study. However, Ayala et al. (2012) reported low reliability which may be due 

to the adoption of a prone testing position, as at that position it is more difficult to control for 

extraneous movement at the hip joint. Despite the good absolute reliability found for the H:Q 

ratios in our study, the relative reliability was generally low. Similar results have been 

reported previously (Ayala et al., 2012; Impellizzeri et al., 2008; Sole et al., 2007). 

Overall, concentric and eccentric strength measurements for the knee extensors and flexors 

had high absolute reliability (CVw= 4.0-9.7%) suggesting that this protocol accurately 

assessed the individuals’ torque-velocity relationship. These results are better (Ayala et al., 

2013) or similar to those reported in other studies (Sole et al., 2007; Pincivero et al., 1997). 
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However, higher absolute reliability has been found in studies that provided more thorough 

familiarisation (Impellizzeri et al., 2008; Maffiuletti et al., 2007; Gleeson and Mercer, 1992). 

In this study, a relatively short protocol was applied in an effort to reduce the time needed for 

the assessment of the reciprocal strength balance at the knee joint. While extensive 

familiarisation would be expected to improve the reliability of the measurements (Hopkins et 

al., 2001), it is not always feasible when assessing athletes. 

In our study, the relative reliability of isovelocity strength was higher for the knee extensors 

compared to knee flexors when collapsed across different contraction types and velocities 

(0.90 and 0.65 respectively, P= 0.001). Yet, other studies reported similar relative reliability 

between these muscle groups (Impellizzeri et al., 2008; Maffiuletti et al., 2007; Sole et al., 

2007; Gleeson and Mercer, 1992). These studies examined more heterogeneous cohorts 

including males and females compared to the current investigation. As the relative reliability 

examines how well the individuals maintain their rank within the cohort from session to 

session, individuals with similar peak torque values may change rank between sessions 

without exhibiting large intra-individual differences. This may explain the relatively low 

relative reliability (low ICC) in the current study, despite high absolute reliability (low CVw). 

This is the first study to examine the reliability of the measured angle-specific isometric H:Q 

ratio. The isometric ratio was highly consistent (CVw= 4.8-8.4%) at knee joint angles 

between 120° and 150°, but less reliable at the extended position of 165°. A similar pattern 

was noted for the angle-specific isometric torque which was consistent between sessions for 

the mid-range knee-joint angles (CVw= 4.3-5.9%) and more variable at the extremes, 

particularly for the knee extensors (CVw=11.7–13.8%). This may be partly explained by the 

need to extrapolate outside the range of measured angles for some individuals and therefore 

the predicted values may be considerably away from the real ones due to the inherent 

uncertainty of extrapolation (Chapra, 2008). Also, at these more extreme positions 

participants reported increased discomfort compared to the other angles and this may have 

also influenced their motivation. Similarly, there is evidence to suggest that voluntary 

activation of the knee extensors during maximum efforts may be inhibited at shorter muscle 

lengths/extended positions (Becker and Awiszus, 2001) potentially due to the shorter muscle 

spindle lengths which, in turn, decrease the Ia afferents discharge rate resulting in lower 

excitatory drive. Another possible mechanism is the increase in knee joint ligament tension 

that would alter the gamma drive to quadriceps spindles and finally the excitatory drive 

(Becker and Awiszus, 2001). The above-mentioned methodological and physiological factors 
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may explain the reduced consistency of knee extensor peak torque measurements at the most 

extended position. To our knowledge, the only other study that examined the isometric H:Q 

ratio reported lower absolute reliability at a single crank angle (120°, CVw= 10.6%; de 

Carvalho Froufe Andrade et al., 2013). For knee extensors and flexors isometric torque, our 

findings are in accordance with previous investigations (120°, knee extensors, CVw= 4.2-

5.5% knee flexors, CVw= 4.7-5.8 %, de Carvalho Froufe Andrade et al., 2013; Maffiuletti et 

al., 2007). In our study, the relative reliability of the isometric H:Q ratio was moderate to 

high suggesting that individuals maintained their position within the cohort well (ICC= 0.70-

0.90). However, de Carvalho Froufe Andrade et al. (2013) reported higher reliability (ICC= 

0.87). Generally, good relative reliability was found for the isometric strength assessment of 

the individual muscle groups (ICC= 0.76-0.94). However, Maffiuletti et al. (2007) reported 

very high relative reliability (ICC> 0.97) for both knee extensors and flexors. This difference 

is likely due to the examination of a more diverse cohort of males and females with high 

between-subjects variability (CV, 27.5% (extensors) and 30.7% (flexors) vs 5.3% for both 

muscle groups at 120° in the current study) resulting in high ICC scores. 

In conclusion, the protocol used in the present study produced consistent measurements 

between sessions of the functional, conventional and isometric H:Q ratio and the torque-

velocity relationship of the knee extensors and flexors up to high angular velocities. The 

lower relative reliability compared to other studies may be attributed to the small 

homogenous sample size and the limited familiarisation allowed. The results of this study 

supported the further use of the current protocol in the examination of the strength balance 

between footballers and normal individuals (Chapter 4). 
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4 CHAPTER 4 – ANGLE-SPECIFIC HAMSTRINGS-TO-

QUADRICEPS RATIO. A COMPARISON OF FOOTBALL 

PLAYERS AND RECREATIONALLY ACTIVE MALES 

4.1 INTRODUCTION 

Hamstrings strains have been reported as one of the most common injuries in a variety of 

football codes, accounting for 12-16% of all injuries (Woods et al., 2004). Woods et al (2004) 

found an average of 90 training days and 15 matches were missed per club per season due to 

hamstrings strains. This type of injury is thought to occur during the late swing phase of 

sprinting when the hamstrings are at their peak stretch and working eccentrically to 

decelerate the shank (Heiderscheit et al., 2005). 

Muscle imbalances and particularly hamstrings-to-quadriceps imbalances, have been widely 

suggested as potential risk factors for non-contact knee joint injuries and hamstrings strains 

(Yeung et al., 2009; Croisier et al., 2008, 2002). Hamstrings-to-quadriceps imbalances can be 

defined as disproportionately low hamstrings strength (maximal or explosive) relative to 

quadriceps strength (Hannah et al., 2014; Greco et al., 2013; Zebis et al., 2011). Furthermore, 

it has been shown that correcting muscle strength imbalances of football players decreased 

the incidence of hamstrings injuries during the subsequent season (Croisier et al., 2008). 

Regular football training and match play could induce an imbalance in hamstrings-to-

quadriceps function. For example, football participation involves running and jumping on 

soft turf as well as frequent kicking both of which may promote disproportionate quadriceps 

development. However, it remains unclear if football players present a systematic 

hamstrings-to-quadriceps imbalance that predisposes them to hamstrings strains. 

Muscle balance at the knee joint has typically been quantified by measuring the hamstrings-

to-quadriceps peak torque ratio. Originally, it was calculated from the concentric peak torque 

of the two muscle groups, known as the conventional ratio. Later the functional ratio was 

introduced (Aagaard et al., 1995), which calculates the ratio of hamstrings peak eccentric to 

quadriceps peak concentric torque, and it is thought to better reflect the reciprocal 

antagonistic function of the muscles during athletic activities such as sprinting and kicking. 

However, the opposing quadriceps and hamstrings muscles exert their peak torque at 

different knee joint angles (~115° and ~150° respectively, 180°= full extension) (Knapik et 
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al., 1983). This joint angle discrepancy inherent within any peak torque ratio may reduce the 

validity of the functional ratio to assess reciprocal antagonistic muscle function. Assessment 

of the knee flexors to extensors strength ratio at the same knee joint angle may provide a 

more functionally relevant measurement. This angle-specific functional strength ratio could 

be calculated throughout the range of motion, although measurements at extended knee joint 

positions, similar to those during the late swing phase, may be most relevant for hamstrings 

strain injury. It is possible that a hazardous muscle strength imbalance may be angle-specific 

and more pronounced at the extended knee joint positions. Therefore, monitoring the angle-

specific muscle strength balance over the range of motion, and particularly at extended knee 

joint positions where injuries usually occur, may be crucial for the detection of any strength 

imbalances. However, there are no data on the knee joint angle-specific strength balance over 

the range of motion of either footballers or healthy, recreationally active population. 

From the limited findings in the literature it is unclear how football participation influences 

hamstrings-to-quadriceps muscle balance, with evidence for disproportionate development of 

the knee extensors (Tourny-Chollet & Leroy, 2002; Iga et al., 2009) and the knee flexors 

(Cometti et al., 2001; Fousekis et al., 2010). A lower functional H:Q ratio at a range of 

different velocities has been reported for footballers compared to untrained males, with 

footballers presenting higher quadriceps concentric strength, but similar hamstrings eccentric 

strength to that of controls (Tourny-Chollet & Leroy, 2002; Iga et al., 2009). Based on these 

results it can be hypothesized that football participation develops quadriceps strength more 

than the hamstrings, leading to an imbalance that may predispose to injury. Contrary to this 

suggestion, two other studies have found professional players to have a higher functional H:Q 

ratio than players at a lower standard of competition (Cometti et al., 2001; Fousekis et al., 

2010). Therefore, it is currently unclear how football participation affects knee joint muscle 

balance, and in particular the angle-specific functional ratio at extended joint positions 

remains unknown. 

An angle-specific H:Q ratio across the range of motion and at a range of different velocities 

would provide a more complete understanding of the strength balance between the knee 

extensors and flexors and thoroughly examine whether footballers have a different muscle 

balance from that of normal, recreationally active individuals. Therefore the aim of this study 

was to compare the angle-specific H:Q ratios between football players and recreationally 

active controls up to high angular velocities. 

  



Chapter 4 – Angle-specific hamstrings-to-quadriceps ratio 

56 

4.2 METHODS 

4.2.1 Participants 

Ten male football players (age 21 ± 1 years, height 180.7 ± 6 cm, body mass 78 ± 8 kg, mean 

± SD) and fourteen healthy, recreationally active males (age 25 ± 3 years, height 177 ± 5 cm, 

body mass 69.7 ± 7 kg, mean ± SD) volunteered to take part in this study. The football 

players were members of Loughborough University’s 1st team which competed in Midlands 

Football Alliance (9th tier of English football) and BUCS Premier League (3rd place for 2011-

12), and had on average 8.5 ± 6 years of experience in football practice and competition. 

They completed 4-5 football training sessions and 1-2 matches per week. The players also 

performed limited strength training; 1-2 times per month during the season and up to 8 times 

per month during pre-season. All testing sessions for the football players took place during 

the season. None of the control group participants were involved in systematic physical 

training or had any previous experience of strength/power training (i.e. weight training, 

plyometrics) of the lower body musculature. The physical activity of the control group was 

assessed using the International Physical Activity Questionnaire short format 

[www.ipaq.ki.se/downloads.htm, (Craig et. al., 2003)] and their average energy expenditure 

was 1850 ± 1138 MET-minutes/week. Participants completed physical activity and health 

screen questionnaires before providing written informed consent for their participation in this 

study, which was approved by the Loughborough University Ethical Advisory Committee. 

All participants were healthy with no history of musculo-skeletal problems or injuries of the 

lower back, pelvis or legs. Participants were instructed not to take part in any unaccustomed 

or strenuous physical activity for at least 2 days prior to each laboratory visit. 

4.2.2 Overview 

All testing sessions were performed in the afternoon and each participant visited the 

laboratory at a consistent time of day on two occasions 7 days apart. These sessions involved 

unilateral measurements of the dominant leg (defined as the preferred leg when kicking a 

ball), specifically knee flexor and extensor strength assessed with an isokinetic dynamometer 

(Con-Trex MJ, CMV AG, Duebendorf, Switzerland). The first session involved 

anthropometric measurements and isometric knee flexor and extensor assessment, as well as 

familiarisation with the concentric and eccentric measurements of both muscle groups. The 

second session involved concentric and eccentric strength measurements of both muscle 

http://www.ipaq.ki.se/downloads.htm
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groups. Video images were recorded during the isometric contractions in session 1 and used 

to calculate the knee joint angle-crank angle relationships during extension and flexion 

contractions. These relationships were used to calculate knee joint angle from crank angle 

during the dynamic contractions. 

4.2.3 Dynamometer Procedures 

The participants were seated on the dynamometer chair with a hip angle of 120° (180°= full 

extension). This hip angle was selected because of its relevance to high injury risk situations 

i.e. similar to the hip angle during late swing phase in sprinting (Guex et al., 2012) when 

hamstrings strains are thought to occur. Two 3-point belts secured the torso and additional 

straps secured the pelvis and the distal thigh of their dominant leg. A brace was also placed in 

front of the non-involved leg. The alignment of the knee joint with the dynamometer 

rotational axis during active muscle contractions was done separately for knee extension and 

flexion contractions. Specifically, in each case the alignment was done during isometric 

contractions of >50% MVF at a knee joint angle of ~115°. The dynamometer’s shin brace 

was placed ~2 cm above the medial malleolus, anterior to the shank for knee extension 

contractions and posterior for knee flexion contractions, prior to the shank being tightly 

secured to the dynamometer lever arm. During the knee extension contractions, an additional 

moulded rigid plastic shin pad, lined with 2 mm of high density foam, was tightly secured to 

the tibia to avoid any discomfort to the shin during maximum contractions. The range of 

motion was established and anatomical zero was set at the most extended position where 

participants felt comfortable and without excessive stretch of their hamstrings. Passive torque 

measurements were recorded while the tested leg was passively moved through the full range 

of motion and thereafter active torque values were corrected for passive torque by the 

dynamometer software. Participants were instructed to grasp the handles next to the seat 

during maximal contractions. Standardized verbal encouragement was given by the same 

investigator and online visual feedback of the crank torque was provided on a computer 

screen. Torque, crank angle and crank angular velocity were recorded at 512 Hz during all 

contractions. 

4.2.4 Isometric Peak Torque assessment 

Measurements were recorded first with the knee flexors and then the knee extensors. Prior to 

the recorded contractions for each muscle group, participants completed a standardized 

warm-up consisting of a progressive series of submaximal contractions. For the assessment of 



Chapter 4 – Angle-specific hamstrings-to-quadriceps ratio 

58 

peak isometric torque of each muscle group, participants performed two sets of five 

maximum contractions, one at each of five different crank angles (165°, 150°, 135°, 120° and 

105° in a randomized order; 180°= full extension). Participants were instructed to “push” or 

“pull” as hard and as fast as possible for 3-5 s. One-minute rest was given between each 

contraction, with 2 min between sets and 5 min between muscle groups. 

4.2.5 Dynamic Peak Torque assessment 

Initially, participants performed a standardized warm-up protocol with five submaximal 

contractions of progressively higher intensity. Following the warm-up, first the knee 

extensors were tested for their isovelocity torque at three velocities, and then the knee flexors 

were also tested at the same velocities. This involved a protocol of concentric-eccentric 

contractions at low (60° s-1), medium (240° s-1) and high (400° s-1) angular velocities in this 

order. At each velocity participants performed 2 sets of 2 (60° s-1), 3 (240° s-1) or 5 (400° s-1) 

concentric-eccentric contractions over approximately 80-85° of range of motion. A minimum 

of one-minute rest was given between each set, with 2 min between velocities and 5 min 

between muscle groups. 

4.2.6 Data Analysis 

4.2.6.1 Peak Torque 

The isometric contraction with the highest torque at each crank angle was chosen for further 

analysis. Isometric peak torque was defined as the average over a 500 ms epoch around (250 

ms either side) the instantaneous highest torque. The concentric and eccentric contractions at 

each velocity with the highest torque and isovelocity range were chosen for further analysis. 

In order to control for the torque overshoot during the acceleration and deceleration phases 

(Schwartz et al., 2010), data during these phases were excluded and the constant isovelocity 

period (within ±10% of the prescribed crank angular velocity, Baltzopoulos et al., 2012) was 

identified. Peak torque was calculated by averaging the torque values over a 1-2° range of 

angles around the highest recorded torque value. 

4.2.6.2 Angle-specific torque 

The isometric torque-knee joint angle data for each muscle group was smoothed by 

performing 2nd order polynomial fitting to the raw torque values. Then the polynomial fit was 

used to interpolate torque values for knee joint angles at 105, 120, 135, 150 and 165°. The 

isovelocity torque-knee joint angle data at each velocity, for each muscle group was 
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smoothed by performing Gaussian fitting (Forrester et al., 2011) using a root mean square 

method to minimise the error to the raw torque values (Matlab, The Mathworks, Inc., Natick, 

MA, USA). Then the Gaussian fit was used to interpolate torque values for knee joint angles 

every 5° over the relevant isovelocity range for each angular velocity: 100-160° for 60° s-1; 

105-160° for 240° s-1; and 115-145° for 400° s-1. Data from contractions in which participants 

failed to maximally activate the examined muscle group throughout the range of motion were 

discarded. 

4.2.6.3 Knee joint angle 

In order to account for the dynamometer compliance and the position change of the knee joint 

relative to the dynamometer crank during testing, the actual knee joint angle was determined 

during the isometric contractions. A video camera (Panasonic NV-GS200 mini-DV, Japan) 

was used to record sagittal plane images at a sampling rate of 50 Hz. The camera was 

positioned ~2.5 m perpendicular to the dynamometer and mounted on a tripod at a height of 

~2.2 m in order to have an unobstructed view of the knee joint. Joint centres were identified 

with 2 cm diameter circular marks drawn on the surface of the hip (greater trochanter), knee 

(lateral collateral ligament just below the lateral femoral epicondyle) and ankle (lateral 

malleolus of the fibula) joints. The knee joint angle was measured from the coordinates of the 

three anatomical reference points during each participant’s best isometric contraction at each 

angle. The camera tilt relative to the plane of movement, introduced a systematic error to the 

knee joint angle measurements. To quantify this error, the horizontal and vertical sides of a 

right angle with known dimensions that was on the plane of movement, were digitised and 

used as a scaling factor. The error was found to be on average ±6° (range= 0-14°) over a 90° 

range of motion (90-180°, 180°= full extension). However, this systematic error was not 

expected to invalidate the comparison of the angle-specific torque and the H:Q ratios between 

the examined cohorts as the same camera position was replicated throughout the 

measurements. The measured knee joint angles were plotted against the respective crank 

angles and a quadratic equation was fitted in order to generate a knee joint angle-crank angle 

relationship for each muscle group. These relationships facilitated conversion of crank angles 

recorded during all contractions (isometric, concentric and eccentric) to actual knee joint 

angles. The coefficient of determination for these relationships (knee joint angle vs. crank 

angle), calculated for each muscle group of each participant, were very high (0.9729 ≤ R2 ≤ 

1), however on average the hamstrings regression line was slightly steeper than that of the 

quadriceps. 
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4.2.6.4 Isometric Hamstrings-to-Quadriceps ratio 

The isometric hamstrings-to-quadriceps ratio (H:Qisom) was calculated by dividing the 

hamstrings torque at each knee joint angle by the quadriceps torque at the same angle. 

4.2.6.5 Functional Hamstrings-to-Quadriceps ratio 

The non-angle specific dynamic hamstrings-to-quadriceps functional ratio (H:Qfunc) was 

calculated by dividing the hamstrings eccentric peak torque (Hecc) at each angular velocity 

by the quadriceps concentric peak torque (Qcon) at the same velocity. Peak torque was 

independent of knee joint angle, and thus the measurements of each muscle group were made 

at different angles. 

H:Qfunc= Hecc / Qcon 

The dynamic angle-specific hamstrings-to-quadriceps functional ratio (H:Qfuncθ) was 

calculated by dividing the hamstrings eccentric torque (Heccθ) at each angular velocity and 

knee joint angle by the quadriceps concentric torque (Qconθ) at the same velocity and knee 

joint angle. 

H:Qfuncθ= Heccθ / Qconθ 

4.2.6.6 Conventional Hamstrings-to-Quadriceps ratio 

The non-angle specific hamstrings-to-quadriceps conventional ratio (H:Qconv) was 

calculated by dividing the hamstrings concentric peak torque (Hcon) by the quadriceps 

concentric peak torque (Qcon) at the same angular velocity. Peak torque was independent of 

knee joint angle, and therefore the measurements of each muscle group were made at 

different angles. 

H:Qconv= Hcon / Qcon 

The angle-specific hamstrings-to-quadriceps conventional ratio (H:Qconvθ) was calculated by 

dividing the hamstrings concentric angle-specific torque (Hconθ) at each angular velocity and 

knee joint angle by the quadriceps concentric angle-specific torque (Qconθ) at the same 

velocity and knee joint angle. 

H:Qconvθ= Hconθ / Qconθ 
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4.2.7 Statistical Analysis 

Group data are presented as mean ± SD. Torque values were normalized to body mass to 

compare the two groups (Folland et al., 2008). A two-way repeated measures analysis of 

variance (ANOVA) was used to determine if there were differences between groups for 

angle-specific torque (groups x angle) and angle-specific H:Q ratios (groups x angle). For the 

non-angle-specific torque and ratios a two-way repeated measures ANOVA was used (groups 

x velocity). The assumption of sphericity was assessed with Mauchly’s test and the 

Greenhouse-Geisser correction was applied when needed. When differences were found by 

ANOVA, independent t-test with Holm-Bonferonni correction of the P level of significance 

for multiple comparisons was used as a post-hoc test. A P < 0.05 level of significance was 

used for all comparisons. The effect sizes were calculated using the Cohen’s d statistic. All 

statistical procedures were performed with IBM SPSS 19 (IBM Corporation, Armonk, NY). 
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4.3 RESULTS 

4.3.1 Anthropometric characteristics 

Football players had higher body mass compared to the controls (78 ± 8 vs. 69.7 ± 7 kg, t22= -

2.37, P= 0.027), but there were no differences in height between the groups, (footballers: 

180.7 ± 6 cm; controls: 177 ± 5 cm, t22= -0.37, P= 0.73). 

4.3.2 H:Q ratios 

The angle-specific isometric H:Q ratio was not different between groups, F1,22= 0.71, P= 0.41 

(Fig. 4.1; Table 4.1). Furthermore, the angle-specific functional H:Q ratio was similar for 

both groups at all three velocities (0.12 < P < 0.50) (Fig. 4.2). This was also the case for the 

angle-specific conventional H:Q ratio with no differences between the groups at any velocity 

(0.055 < P < 0.612) (Fig. 4.3). In addition, when non-angle-specific functional and 

conventional H:Q ratios were compared there were also no differences between groups 

(F1,22= 0.14, P= 0.71 and F1,22= 0.15, P= 0.71 respectively) (Fig. 4.4). 

 

Figure 4.1. Angle-specific isometric H:Q ratio for footballers (filled squares, n=10) and 

controls (open squares, n= 14). Data are presented as mean ± SD. 
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Figure 4.2. Angle-specific functional H:Q 

ratio for footballers (Fb, filled squares) and 

controls (Con, open squares) at: (A) 60° s-1 

(Fb, n= 10, Con, n= 14), (B) 240° s-1 (Fb, n= 

9; Con, n= 13) and (C) 400° s-1 (Fb, n= 10, 

Con, n= 14). Data are presented as mean ± 

SD. 

 
Figure 4.3. Angle-specific conventional H:Q 

ratio for footballers (Fb, filled squares) and 

controls (Con, open squares) at: (A) 60° s-1 

(Fb, n= 10, Con, n= 14), (B) 240° s-1 (Fb, n= 

9; Con, n= 13) and (C) 400° s-1 (Fb, n= 8, 

Con, n= 10). Data are presented as mean ± 

SD. 



Chapter 4 – Angle-specific hamstrings-to-quadriceps ratio 

64 
 

 
Figure 4.4. Non angle-specific functional (squares) and conventional (triangles) H:Q ratio for 

footballers (filled symbols, n= 10) and controls (open symbols,  n= 14). Data are presented as 

mean ± SD. 

4.3.3 Angle-specific torque 

No differences were found between the groups for angle-specific knee extensors torque 

relative to body mass during isometric (F1,22= 0.036, P= 0.85), concentric (0.29 < P < 0.75) 

(Fig. 4.5A-C) or eccentric (0.21 < P < 0.61) (Fig. 4.5D-F) contractions. Similarly, no 

differences between groups were found for knee flexors concentric and eccentric angle-

specific torque relative to body mass at 60° s-1 and 240° s-1 (0.1 < P < 0.321) as well as for 

the isometric contractions (F1,22= 0.09, P= 0.76). However, footballers presented on average a 

1.4 fold greater knee flexors concentric torque relative to body mass at 400° s-1, with higher 

values at all knee joint positions (P < 0.01), compared to the control group (Fig. 4.6C). A 

main effect was also found at the same velocity for the knee flexors eccentric angle-specific 

torque relative to body mass (F1,22= 5.939, P= 0.023) but the post-hoc comparisons did not 

reveal any differences in this measure at specific joint positions. 
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Figure 4.5. Knee extensors angle-specific torque relative to body mass for footballers (Fb, 

filled squares) and controls (Con, open squares) at concentric (A) 60° s-1 (Fb, n= 10; Con, n= 

14), (B) 240° s-1 (Fb, n= 9; Con, n= 13), (C) 400° s-1 (Fb, n= 10; Con, n= 14), and eccentric 

(D) 60° s-1 (Fb, n= 10; Con, n= 14), (E) 240° s-1 (Fb, n= 9; Con, n= 14), (F) 400° s-1 (Fb, n= 

10; Con, n= 14). Data are presented as mean ± SD. 
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Figure 4.6. Knee flexors angle-specific torque relative to body mass for footballers (Fb, filled 

squares) and controls (Con, open squares) at concentric (A) 60° s-1 (Fb, n= 10; Con, n= 14), 

(B) 240° s-1 (Fb, n= 10; Con, n= 14), (C) 400° s-1 (Fb, n= 8; Con, n= 10), and eccentric (D) 

60° s-1 (Fb, n= 10; Con, n= 14), (E) 240° s-1 (Fb, n= 10; Con, n= 14), (F) 400° s-1 (Fb, n= 10; 

Con, n= 14). Data are presented as mean ± SD. *: P < 0.01. 
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Table 4.1. P-values, confidence intervals (CI) and effect sizes for the differences between 

footballers (Fb) and controls (Con). 
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4.4 DISCUSSION 

The main finding of this study was that the H:Q ratios were not different between healthy 

football players and recreationally active males. The focus of this study was on the angle-

specific functional ratio, but neither this measurement nor any isometric, functional or 

conventional ratio showed any differences between the two groups. These similar ratios 

reflected the fact that the two groups exhibited similar angle-specific torque relative to body 

mass for both the knee extensors and flexors at all speeds and contraction types. The only 

exception was the higher concentric hamstrings torque exhibited by the football players at the 

highest velocity (400° s-1). 

In the present study, the functional angle-specific H:Q ratios of the footballers were similar to 

the controls throughout the range of motion. The current study considered angle-specific 

ratios, and calculated actual knee joint angles, rather than simply assuming the dynamometer 

crank angle reflected the knee joint angle as many previous studies have done (Pavol & 

Grabiner, 2000; Aagaard et al., 1998, 1995). Therefore, we consider the torque-angle 

relationships of each muscle group assessed in this study and the subsequent angle-specific 

ratios to provide a more robust comparison of knee joint muscle function for the two groups. 

The functional H:Q ratio for peak torque values found in the current study was similar to 

previous reports. In particular, at 60° s-1 the footballers in the current study had a functional 

H:Q ratio of 0.78 ± 0.13, and previous studies have found a functional H:Q ratio of 0.79-0.85 

for professional players (Fousekis et al., 2010) and 0.80 for national level amateur players 

(Tourny-Chollet & Leroy, 2002). For higher angular velocities, direct comparison of our 

results with the existing literature is difficult due to the different velocities used. Contrary to 

the results of the present study, it has been previously reported that football players have 

lower functional H:Q ratio compared to healthy untrained individuals (Tourny-Chollet & 

Leroy, 2002; Iga et al., 2009) and this was attributed to a disproportionally higher quadriceps 

concentric than hamstrings eccentric strength for the footballers compared to controls. The 

explanation for the contrasting findings of the current study with these previous findings is 

unclear. However, two other studies found professional players with a more extensive history 

of participation to have a higher functional H:Q ratio than players at a lower standard of 

competition (Fousekis et al., 2010; Cometti et al., 2001). This supports our finding that 

football participation does not seem to have a detrimental influence on H:Q ratio. 
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Besides the similar H:Q ratios between the footballers and the controls found in this study, 

with the exception of the knee flexors concentric torque at 400° s-1, there were no differences 

in the actual torque values relative to body mass between the groups. This is in contrast to 

other studies which have reported that footballers had higher concentric torque for both knee 

extensors and flexors compared to controls (Tourny-Chollet & Leroy, 2002; Ergun et al., 

2004). A possible explanation for the discrepancy in the results of the present study with 

previous findings may be the reference values to which the footballers were compared. In the 

present study, healthy recreationally active participants served as the reference group while in 

the above mentioned studies sedentary participants were used. The control group in the 

present study was stronger than that in the study of Tourny-Chollet & Leroy (2002) as they 

had higher normalized to body mass torque for knee extensors and flexors in both concentric 

and eccentric contractions at comparable angular velocities. Therefore, the selection of 

sedentary participants for the control group may have affected their results, as a sedentary 

lifestyle has been linked to reduced thigh muscle strength in healthy young adults (Manini et 

al., 2007). 

The lack of differences in strength relative to body mass between the footballers and the 

control group in the current investigation may also be partly explained by the fact that the 

footballers were tested during the season but their strength training was performed mainly 

during the pre-season with only a session of strength training every two weeks thereafter. 

This frequency is below the American College of Sports Medicine’s (ACSM) 

recommendations for strength development (ACSM position stand, 2011). However, the 

strength level of the footballers examined in this study was comparable to that reported for 

players of similar standard (Newman et al., 2004) but lower compared to the strength level of 

professionals (Fousekis et al., 2010). The only difference in strength between groups was 

found for the knee flexors concentric torque at the highest velocity (400° s-1) with the 

footballers being stronger than the controls. Differences in muscle composition (i.e more type 

II fibres, Aagaard and Andersen, 1998) and/or the greater familiarity of the players with high 

speed movements could potentially explain this difference. However, overall it seems that 

football training and match play were not sufficient to increase the footballers’ strength in 

relation to body mass when compared to controls. 

The most established risk factor for hamstrings injury is a prior hamstrings injury (Orchard, 

2001, Hagglund et al., 2006; Engebretsen et al., 2010) and previously injured athletes have 
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>2 times higher risk of sustaining a future hamstrings injury (Bennel et al., 1998; Verrall et 

al., 2001; Engebretsen et al., 2010). Moreover, athletes with a history of hamstrings injury 

often have a low functional H:Q ratio compared to their uninjured leg (Croisier et al., 2002). 

However, it is not clear whether the low H:Q ratio is the result or the cause of the previous 

injury. In the current study, in order to control for the confounding influence of previous 

injury on the H:Q ratio, players with a history of hamstrings injury were excluded. 

Consequently, if a low H:Q ratio is a risk factor for hamstrings injury, the exclusion of 

previously injured players may have inadvertently selected a group of players with a better 

muscle balance and a ‘normal’ H:Q ratio. Despite these issues, an extensive history of 

football training and competition was not associated with any differences in muscle balance 

within the footballers of this study. 

The generalization of the results presented in this study is limited by the small sample size 

examined. The standard of competition of the football players could potentially have also 

influenced the findings. The physical and technical demands increase with the standard of 

play and players who are regularly exposed to such conditions may exhibit more pronounced 

muscle strength gains and potentially a different muscle balance. The effect of level of play 

was highlighted in the study of Cometti et al. (2001) where professional footballers had 

stronger knee flexors, especially under eccentric conditions, and higher functional and 

conventional H:Q ratios compared to amateur players. Interestingly, they found no 

differences in knee extensors concentric strength at any angular velocity between the groups. 

Similarly, Fousekis et al. (2010) found that players with a longer experience in professional 

football (≥11 years) exhibited higher functional H:Q ratio compared to players with 

intermediate (8-10 years) and short (5-7 years) experience. In that study, the less experienced 

players had lower concentric strength for the knee extensors at 60° s-1 and lower concentric 

and eccentric strength for the knee flexors at 60° s-1and 180° s-1 than the more experienced 

players. It seems that experienced professional players at a high level exhibit a better strength 

balance around the knee joint and stronger knee flexors than the lower level players. 

The problem of hamstrings susceptibility to strain injuries is of multi-factorial nature. 

Prospective studies have identified a range of modifiable and non-modifiable risk factors 

including thigh muscle strength imbalances, muscle fatigue, flexibility, inadequate warm-up, 

older age, ethnicity and previous leg injuries (in addition to previous hamstrings strains) 

(Hagglund et al., 2013; Henderson et al., 2010; Gabbe et al., 2006, 2005; Arnason et al., 
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2004; Orchard et al., 2001; Verrall et al., 2001). Since knee joint muscle imbalances do not 

seem to be present in previously uninjured footballers, other factors must contribute to the 

high hamstrings injury rates seen in football. Regular exposure to football training and 

matches, that involve extensive sprinting and kicking, is likely to be important in the high 

incidence of hamstrings strains. Muscle fatigue has been proposed as a possible factor as half 

of the hamstrings injuries sustained during matches occur near the end of each half (Woods et 

al., 2004). Recent studies using protocols that induced soccer-specific fatigue found 

decreased functional H:Q ratios and reduced hamstrings eccentric torque at the end of each 

half (Small et al., 2010; Delextrat et al., 2010; Greig et al., 2008). 

In conclusion, in previously uninjured football players there was no intrinsic muscle 

imbalance and the high rate of hamstrings injuries seen in this sport may be due to other risk 

factors and/or simply regular exposure to a high risk activity (football training & match play). 
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5 CHAPTER 5 – QUADRICEPS AND HAMSTRINGS RELATIVE 

MUSCLE SIZE INFLUENCES KNEE-JOINT STRENGTH 

BALANCE 

5.1 INTRODUCTION 

Evidence from prospective studies suggests that athletes with strength imbalances between 

agonists and antagonists in the upper or lower body musculature may be at an increased risk 

of injury (Byram et al., 2010; Croisier et al., 2008). For the knee joint, such imbalances are 

typically measured with the hamstrings-to-quadriceps (H:Q) maximal strength ratio, and a 

low ratio is thought to indicate weakness of the knee flexors relative to the knee extensors 

(Yeung et al., 2009; Croisier et al., 2008, 2002). The H:Q ratio appears to be important as it 

has been found to contribute to a substantially increased risk of hamstrings strain injury 

(Croisier et al., 2008). Despite the utility of the H:Q strength ratio in the examination of 

strength imbalances and potential prevention of strain injuries, there is little understanding of 

which factors influence this ratio. 

Muscle size, expressed either as volume, anatomical or physiological cross-sectional area, is 

well established as a primary determinant of maximal strength for different muscles 

(Fukunaga et al., 2001; Bamman et al., 2000), and it would be expected that the relative size 

of antagonistic muscles, quadriceps and hamstrings, would directly influence their respective 

strength balance. To our knowledge how the size of the agonists relates to that of the 

antagonists muscles has not been documented, and it is therefore unclear how quadriceps size 

relates to hamstrings size. Furthermore, it is unclear whether the size ratio of these muscles 

influences their strength ratio. The plantarflexor:dorsiflexor volume ratio has been found to 

influence the isometric strength ratio of these muscles (r= 0.61-0.62, P< 0.01; Akagi et al., 

2014, 2012). However, both these studies found no relationship between the H:Q muscle 

volume ratio and the strength ratio of these muscles (Akagi et al., 2014, 2012). These 

investigations examined only the isometric H:Q strength ratio of the knee extensors and 

flexors. While isometric strength is a convenient measure of a muscle’s strength capacity, 

isometric measurements do not reflect the reciprocal functional activity of these muscles, 

where a forceful concentric contraction of one muscle is followed by a forceful eccentric 

contraction of the antagonist. For example, during the late swing phase of sprinting, when 
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hamstrings strains are thought to occur (Chumanov et al., 2012), a forceful eccentric 

contraction of the knee flexors is required to decelerate the shank after a forceful concentric 

contraction of the knee extensors. Furthermore, due to the force-velocity relationship and the 

high knee joint velocities involved in sprinting, the knee flexor eccentric strength is expected 

to remain relatively constant at high velocities compared to isometric strength while 

concentric strength is expected to decrease significantly (Pain et al., 2013; Kellis and 

Baltzopoulos, 1998). Isokinetic dynamometers clearly cannot replicate the knee joint 

velocities experienced during sprinting, yet the use of the knee flexors eccentric to knee 

extensors concentric strength (functional H:Q ratio) up to high velocities seems to provide a 

more functionally relevant assessment of the H:Q strength balance (Aagaard et al., 1998, 

1995; Dvir et al., 1989). Moreover, to date how the relative size of the knee extensors 

(quadriceps) and flexors (primarily hamstrings) influences their functional H:Q strength ratio 

has not been examined. 

The aim of the present study was to examine the relationship between knee extensors 

(quadriceps) and flexors (hamstrings) muscle size (volume and anatomical cross-sectional 

area), the association of each muscle’s size with its strength, and investigate if the muscle 

size ratio was related to the isometric and functional strength ratios. Based on previous 

observations of a strong relationship between the size and strength of individual muscles, we 

hypothesized that the H:Q muscle size ratio would be positively correlated to their functional 

strength ratio.  
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5.2 METHODS 

5.2.1 Participants 

Thirty-one healthy, recreationally active participants (age 20.6 ± 2.5 years; height 1.80 ± 0.07 

m; body mass 71.8 ± 7.3 kg; mean ± SD) took part in this study. Participants had a low to 

moderate level of physical activity and were not involved in systematic physical training or 

had any previous experience of strength/power training (i.e. weight training, plyometrics) of 

the lower body musculature. Their physical activity was assessed with the International 

Physical Activity Questionnaire short format (www.ipaq.ki.se/downloads.htm, Craig et. al., 

2003) and their average energy expenditure was 1739 ± 814 metabolic equivalent-minutes 

per week. After completing the physical activity and health screen questionnaires, 

participants provided written informed consent for their participation in this study, which was 

approved by the Loughborough University Ethical Advisory Committee. All participants 

were healthy with no history of musculo-skeletal problems or injuries of the lower back, 

pelvis or legs. Participants were instructed not to take part in any unaccustomed or strenuous 

physical activity for at least 2 days prior to each laboratory visit. 

5.2.2 Overview 

Participants visited the laboratory on six separate occasions, seven days apart at a consistent 

time of the day (11:00-16:00 h) and all measurements were performed on the participants’ 

dominant leg (defined as the preferred leg when kicking a ball). The first session involved the 

recording of the anthropometric data and familiarization with the procedures for the knee 

extension and flexion isometric strength testing which was conducted in the second session. 

During the third and fourth sessions, participants were familiarized with the isovelocity 

contractions and concentric and eccentric strength was measured in the fifth session. Finally, 

the sixth session involved magnetic resonance imaging (MRI) of the participants’ thigh to 

assess quadriceps and hamstrings muscle size. 

5.2.3 Measurements and Data analysis 

5.2.3.1 Dynamometer procedures 

The participants were seated on the dynamometer chair (Con-Trex MJ, CMV AG, 

Dübendorf, Switzerland) with a hip angle of 120° (180°= full extension). This hip angle is 

similar to that during late swing phase in sprinting (Guex et al., 2012) and was the most 

http://www.ipaq.ki.se/downloads.htm
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reclined position that could be obtained without participants sliding forwards during 

contractions. Two 3-point belts secured the torso and additional straps tightly secured the 

pelvis and the distal thigh of their dominant leg. A brace was also placed in front of the non-

involved leg. The alignment of the knee joint with the dynamometer rotational axis during 

active muscle contractions was done separately for knee extension and flexion contractions. 

Specifically, in each case the alignment was done during isometric contractions of >50% of 

isometric strength at a knee joint angle of ~115°. The dynamometer’s shin brace was placed 

~2 cm above the medial malleolus, anterior to the shank for knee extension contractions and 

posterior for knee flexion contractions, before the shank was tightly secured to the 

dynamometer lever arm. During the knee extension contractions, an additional moulded rigid 

plastic shin pad, lined with 2 mm of high density foam, was tightly secured to the tibia to 

avoid any discomfort to the shin during maximum contractions. The range of motion was 

established and anatomical zero was set at full extension of the knee joint. Passive torque 

measurements were recorded while the tested leg was passively moved through the full range 

of motion and thereafter active torque values were corrected for passive torque. For both 

isometric and isovelocity measurements, the knee flexors were assessed first and then the 

knee extensors. 

 

5.2.3.2 Isometric Strength 

Prior to the recorded contractions for each muscle group, participants completed a 

standardized warm-up consisting of a progressive series of submaximal contractions. For the 

assessment of peak isometric torque of each muscle group, participants performed two sets of 

three maximum contractions, one at each of three different crank angles (105°, 120°, 135° for 

knee extensors and 165°, 150°, 135° for knee flexors at this order; 180°= full extension). 

Participants were instructed to “push” or “pull” as hard and as fast as possible for 3-5 s. One-

minute rest was given between each contraction, with 2 min between sets and 5 min between 

muscle groups. The contraction with the highest torque irrespective of crank angle was 

selected for further analysis. Isometric strength was defined as the average torque over a 0.5 s 

period around the highest instantaneous torque. 
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5.2.3.3 Concentric and eccentric strength 

After the completion of a standardized warm-up protocol with five submaximal contractions 

of progressively higher intensity, participants performed 3 sets of 2, and 3 sets of 3, 

concentric-eccentric contractions at 50° s-1 and 350° s-1 respectively (in this order), over 

~100° of range of motion. There was ≥1 min rest between each set and ≥2 min rest between 

velocities. Participants were instructed to grasp the handles next to the seat during maximal 

contractions. Standardized verbal encouragement was given by the same investigator and 

online visual feedback of the crank torque was provided on a computer screen. 

The torque, crank angle and crank velocity signals were sampled at 2000 Hz with a PC using 

Spike 2 software (CED, Cambridge, UK) and smoothed with a finite impulse response filter 

at 15 Hz. The acceleration and deceleration phases were excluded in order to disregard torque 

overshoot during these phases (Schwartz et al., 2010) and the constant isovelocity period 

(within ±5% of the prescribed crank angular velocity) was identified. Finally, concentric and 

eccentric strength was defined as the highest instantaneous torque recorded within the 

isovelocity range of any concentric and eccentric contraction respectively. 

5.2.3.4 Magnetic resonance imaging (MRI) 

A 1.5 T MRI scanner (Signa HDxt, GE) was used to scan the dominant leg in the supine 

position with the hip and knee joints extended. T1-weighted axial plane images were acquired 

from the anterior superior iliac spine to the knee joint space in two blocks and oil filled 

capsules were placed on the lateral side of the participants’ thigh to help with the alignment 

of the blocks during analysis. The following imaging parameters were used: imaging matrix: 

512 x 512, field of view: 260 mm x 260 mm, spatial resolution: 0.508 mm x 0.508 mm, slice 

thickness: 5 mm, inter-slice gap: 0 mm. MR images were analysed with Osirix software 

(version 4.0, Pixmeo, Geneva, Switzerland). 

MR images were analysed with Osirix software (version 4.0, Pixmeo, Geneva, Switzerland). 

The hamstrings (biceps femoris long head, biceps femoris short head, semitendinosus, 

semimembranosus) and quadriceps (rectus femoris, vastus lateralis, vastus medialis, vastus 

intermedius) muscles were manually outlined in every third image starting from the most 

proximal image in which the muscle appeared. The largest anatomical cross-sectional area of 

each muscle was defined as ACSAmax and muscle volume was calculated using cubic spline 

interpolation (GraphPad Prism 6, GraphPad Software, Inc.). Two investigators conducted the 

image analysis and all manual segmentation measurements of each muscle were completed 

by the same investigator. To examine the reliability of the analysis procedures, the images 
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from 6 randomly selected participants were re-analysed a week later and the coefficient of 

variation (CV) was calculated. The CVs for measurements of muscle volume and ACSAmax 

were 0.5% and 1.2% (quadriceps), and 0.5% and 1.1% (hamstrings). 

5.2.4 Statistical analysis 

Data are presented as mean ± SD. Strength differences between muscle groups were 

examined with a two-way repeated measures ANOVA (muscle x velocity). A significant 

main effect was further examined with a post-hoc paired t-test with Holm-Bonferroni 

correction. Bivariate relationships were examined using Pearson product moment correlations 

between the dependent variables and the Holm-Bonferroni correction was used to control for 

multiple tests. The level of significance was set at P< 0.05. All statistical procedures were 

performed with IBM SPSS 22 (IBM Corporation, Armonk, NY). 
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5.3 RESULTS 

5.3.1 Descriptive data for muscle size and strength 

On average quadriceps had a ~2.5-fold larger muscle volume than hamstrings (1937.3 ± 

265.1 cm3 and 794.1 ± 122.2 cm3 respectively, Table 5.1) and both muscle groups exhibited 

moderate variability between individuals (CV, 13.7% [Q] and 15.4% [H]). Consequently the 

H:Q volume ratio was 0.41 ± 0.05 (CV= 11.5%). The difference in size between the opposing 

muscle groups was smaller when considering ACSAmax (< 2-fold) that was reflected by a 

H:Q ACSAmax ratio of 0.52 ± 0.06 (Table 5.1). 

Table 5.1. Descriptive data of the quadriceps and hamstrings muscle size measurements and 

the hamstrings-to-quadriceps muscle size ratio (H:Q) (n= 31). 

 

The knee extensors were stronger than flexors across the torque-velocity relationship (P< 

0.001, Fig. 5.1A). The highest torque occurred isometrically for knee extensors, but 

eccentrically (50° s-1) for knee flexors. When normalized to isometric values the shape of the 

torque-velocity relationships was quite distinct for the two muscle groups, with the knee 

flexors achieving higher concentric and eccentric torques than the extensors (P< 0.05, Fig. 

5.1B). 
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Figure 5.1. Torque-velocity relationship of the knee extensors (open squares) and flexors 

(filled squares) in A) absolute values and B) relative to isometric strength (n= 31). Knee 

extensors absolute strength was higher than knee flexors at all velocities (P< 0.001). In 

contrast, when strength was normalised to isometric values knee flexors had higher values 

than knee extensors at each velocity (-350° s-1, P= 0.016; -50° s-1, P= 0.023; 50° s-1, P< 

0.001; 350° s-1, P< 0.001). 

The greater isometric strength of knee extensors relative to flexors resulted in an isometric 

H:Q ratio of 0.50 ± 0.10 (CV= 19.8%). The functional H:Q ratio was greater at high 

contraction velocities (50° s-1, 0.79 ± 0.11 (CV 13.7%); 350° s-1, 1.20 ± 0.23 (CV 19.5%) P< 

0.001) reflecting the differential effect of increasing velocity on concentric (extension) and 

eccentric (flexion) torque. 

5.3.2 Relationships between muscle size, strength and HQ ratio 

A significant but moderate correlation was found between quadriceps and hamstrings volume 

(r= 0.64, P< 0.001, Fig. 5.2A). Quadriceps volume was strongly related to isometric knee 

extension strength (r= 0.84, P< 0.001, Table 5.2), moderately associated with concentric 

strength (50° s-1, r= 0.56, P= 0.004; 350° s-1, r= 0.55, P= 0.004), but unrelated to eccentric 

strength (50° s-1, r= 0.27, P= 0.149; 350° s-1, r= 0.33, P= 0.137). In contrast, hamstrings 

volume exhibited moderate to strong correlations with knee flexor strength across the range 

of velocities (r= 0.62–0.76, P< 0.001, Table 5.2). 
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Table 5.2. Bivariate correlations coefficients between quadriceps and hamstrings muscle 

volume with knee extensors and flexors maximal isometric, concentric and eccentric strength 

(n= 31). * P< 0.01, ** P< 0.001 

 

A moderate correlation was found between H:Q volume ratio and isometric H:Q ratio (r= 

0.45, P= 0.024) as well as functional H:Q ratio at 350° s-1 (r= 0.56, P= 0.003) (Fig. 5.3), 

while there was a tendency for a relationship between H:Q volume ratio and functional H:Q 

ratio at slow velocity (r= 0.34, P= 0.059). 
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Figure 5.2. Relationships between A) quadriceps and hamstrings muscle volume, B) 

quadriceps muscle volume and knee extensor isometric strength and C) hamstrings muscle 

volume and knee flexor isometric strength  (n= 31). 
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Figure 5.3. Correlations of H:Q volume ratio with A) isometric H:Q ratio, B) functional H:Q 

ratio at 50° s-1 and C) functional H:Q ratio at 350° s-1 (n= 31). 
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5.4 DISCUSSION 

This study examined the association between the size of the knee extensors and flexors, how 

the size of these muscle groups was related to their function across the torque-velocity 

relationship, and whether the muscle size ratio was associated with the H:Q strength ratios. 

We found that muscle volume explained 38-58% of the differences between individuals in 

knee flexor strength (isometric 38%, concentric 50-55%, eccentric 48-58%) and up to 71% of 

the variation in knee extensor strength (isometric 71%, concentric 30-31%, eccentric - not 

significant). Further, there was a moderate correlation between the size of these antagonistic 

muscle groups (R2= 0.41). Finally, in support of our hypothesis, we found that the relative 

size of the knee extensors and flexors explained 12-31% of the variability in H:Q strength 

ratios. These findings suggest that muscle size is not only an important determinant of the 

knee extensors and flexors’ strength, but it also influences the strength balance around the 

knee joint. 

Muscle size of the knee extensors (quadriceps) and flexors (hamstrings) exhibited strong 

correlations with their respective isometric strength (r= 0.62-0.84, P< 0.001). Interestingly, 

although hamstrings volume was strongly related to knee flexor strength at all velocities and 

contraction modes, quadriceps size was only moderately related to knee extensor concentric 

strength (r= 0.55-0.56, P< 0.01) and not related to eccentric strength (r= 0.27-0.33, P> 0.05). 

In voluntary eccentric contractions, neural factors have been suggested to inhibit knee 

extensor strength (Amiridis et al., 1996; Westing et al., 1991; 1990; Dudley et al., 1990) and 

may supersede any relationship of muscle size and eccentric strength. For example, in 

untrained individuals maximal voluntary eccentric contractions of the knee extensors appear 

to be inhibited by up to 24% (Amiridis et al., 1996; Westing et al., 1990). While this 

inhibition is not evident in highly trained athletes (Amiridis et al., 1996), normal individuals 

seem to be unable to achieve complete muscle activation in spite of their ‘maximal’ effort. 

While the exact mechanism(s) remains unknown, it is believed that neural mechanisms at 

spinal and supraspinal levels inhibit neuromuscular activation during maximal eccentric 

efforts of untrained individuals and this is thought to protect the joint from potentially 

injurious high levels of force that can be produced during eccentric contractions (Duchateau 

and Baudry, 2014). Nonetheless, hamstrings volume was strongly related to knee flexor 

eccentric strength (r= 0.69-0.76, P< 0.001) suggesting that neural inhibition during eccentric 

contractions may be muscle-specific. Overall, the results of this study suggest that muscle 
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size exhibits a differential influence on muscle strength depending on the contraction type 

and muscle group. 

The extensors and flexors clearly had a different shape to their torque-velocity relationship as 

shown by the differences in relative (to isometric) concentric and eccentric torques of the two 

muscle groups. Architectural differences between quadriceps and hamstrings may contribute 

to these differences. It has been suggested that hamstrings are designed for longer excursions 

and faster movement (long fibre lengths, moderate physiological cross-sectional areas 

(PCSAs)) while quadriceps muscles are designed for higher force production (short fibre 

lengths, large PCSA) (Ward et al., 2009; Lieber and Friden, 2000). At a given velocity, long 

fibres undergo smaller change in length for a given change in total muscle length and are 

expected to produce higher force compared to shorter fibres. This may partly explain the 

ability of hamstrings to maintain a relatively high torque capacity at all examined velocities 

compared to the quadriceps. The pronounced isometric torque recorded during the isometric 

knee extensions may be partly attributed to the slight forward movement of the femur as the 

pelvis and torso stabilise. This movement actually results in a slow eccentric contraction, a 

phenomenon previously reported (Pain et al., 2013; Forrester et al., 2011). 

Strength imbalance around the knee joint, defined as a low H:Q strength ratio, has been 

linked to increased risk for hamstrings strain injury (Yeung et al., 2009; Croisier et al., 2008). 

However, there has been limited consideration of the factors that determine this ratio. Due to 

the significant influence of a muscle’s size on its strength capacity (Fukunaga et al., 2001; 

Bamman et al., 2000), it seems logical that the size ratio between antagonistic muscles would 

also determine their strength ratio. Similarly, the size of antagonist muscles would also be 

expected to be related. Indeed, in the present study, quadriceps size was moderately related to 

that of hamstrings (R2= 0.41). In addition, the size balance of the knee extensors and flexors 

explained 20% of the isometric strength ratio and 12-31% of the functional H:Q ratios. 

However, these results are in contrast to the only previous investigations, as Akagi et al. 

(2012, 2014) reported no relationship between knee extensors and flexors muscle size ratio 

and isometric strength H:Q ratio (r= 0.13-0.14, P= 0.56-0.61). The smaller cohorts examined 

(n≤ 21), the prone testing position and the measurement of isometric strength at a single 

crank angle in the studies of Akagi et al. (2014, 2012) may have contributed to the 

discrepancy of their findings with our results. Overall, the results of the present study suggest 

that in young physically active men the relative size of the knee extensor and flexor muscles 

is an important determinant of their strength balance. The range of the H:Q volume ratio 
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(0.34-0.51) suggests that in some individuals hamstrings are 50% larger relative to quadriceps 

than other individuals. This would suggest that individuals with proportionately small 

hamstrings may be at greater risk of injury and they should be specifically targeted for 

prehabilitation training. 

In conclusion, as hypothesised the size of quadriceps and hamstrings muscles was related 

(R2= 0.41) and the relative size of the knee extensors and flexors explained the H:Q strength 

ratios. Therefore muscle size imbalances contribute to functional imbalances and may be an 

underlying risk factor for injury. For some individuals correcting an underlying muscle size 

imbalance through resistance training may be an appropriate injury prevention strategy. 
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6 CHAPTER 6 – DO MUSCLE SIZE AND COMPOSITION EXPLAIN 

KNEE FLEXOR MUSCLE FUNCTION IN MAN? 

6.1 INTRODUCTION 

Understanding the determinants of muscle function is important for maintaining and 

improving function and consequently athletic performance and human health, including 

injury, illness and ageing. The hamstrings muscle group is the primary knee flexor and a 

major hip extensor and therefore plays a leading role in human locomotion and athletic 

activities such as running and jumping (Schache et al., 2014; Novacheck, 1998; Baratta et al., 

1988). Hamstrings activation is also considered important for dynamic knee joint control and 

stability, and thus maintaining joint integrity. Furthermore, hamstrings strain injuries are the 

most common injury in a variety of sprint-based sports (e.g. different codes of football and 

track sprinting; Alonso et al., 2012; Ekstrand et al., 2011; Orchard et al., 2002), and these 

injuries predominantly affect the biceps femoris long head muscle (BFlh; Woodley & 

Mercer, 2004). Chapter 5 showed that hamstrings muscle size is an important determinant of 

knee flexors function. However, whether muscle composition would further explain the 

interindividual differences in knee flexors function remains unknown. 

In fact, hamstrings myosin heavy chain (MHC) composition in young healthy individuals 

remains unknown as current BFlh muscle composition data are derived solely from cadavers 

(Dahmane et al., 2006; Garrett et al., 1984; Johnson et al., 1973). Within cadaver specimens 

the histochemically examined biceps femoris fibre type II composition has been reported to 

be 33.1-54.5% (Dahmane et al., 2006; Garret et al., 1984; Johnson et al., 1973). The small 

sample size (n= 6-15), the old age and unknown physical activity history of these participants 

may limit the relevance of these data to young healthy, active populations. Nevertheless, 

Garret et al. (1984) reported that hamstrings contained a higher proportion of type II fibres 

(55.2%) than the quadriceps (51.9%) or adductor magnus (44.8%) and suggested that this 

muscle composition may contribute to the high susceptibility of the hamstrings to strain 

injuries. However, the methodological limitations of that study (small sample size (n= 10) of 

elderly cadavers) highlight the need to determine hamstrings muscle composition in healthy 

young adults in order to understand if their composition contributes to their high incidence of 

strain injury. 
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As hamstrings muscle composition has only been determined within cadavers, its influence 

on muscle function remains unknown. However, within the quadriceps femoris a significant 

correlation between maximum isometric or isovelocity (15-240° s-1) strength and 

composition of the vastus lateralis (VL) has often (Gür et al., 2003; Aagaard & Andersen 

1998; Viitasalo & Komi, 1978; Thorstensson et al., 1976) but not always been reported 

(Schantz et al., 1983; Inbar et al., 1981; Viitasalo et al., 1981). Some of these studies 

examined this relationship within diverse athletic and training populations (e.g. Gür et al., 

2003), where numerous other variables (e.g. hypertrophy) could be acting as confounding 

factors (Folland and Williams, 2007) while other studies examined small cohorts (n≤ 7; 

Aagaard & Andersen, 1998). Nevertheless, according to the balance of evidence from 

quadriceps studies, hamstrings muscle composition appears likely to influence maximum 

strength of the knee flexors. In addition, based on in-vitro studies fibre type composition has 

a more pronounced influence on function at high velocities (Bottinelli et al., 1999), however 

current investigations have used relatively slow velocities (≤ 240° s-1). Similarly, the rate of 

force development has been shown to be greater in type II fibres (based on their MHC 

composition) in rats (Metzger and Moss, 1990) and humans (Harridge et al., 1996). Previous 

research suggests that a correlation between explosive isometric strength in vivo and muscle 

composition might also be expected (Viitasalo et al., 1981; Viitasalo & Komi, 1978). 

Whilst the influence of hamstrings muscle composition on function in vivo remains to be 

elucidated, muscle size has been consistently found to be a substantial determinant of 

isometric strength in various muscles (e.g. elbox flexors, r= 0.76, Akagi et al., 2009; plantar 

flexors, r= 0.65, Bamman et al., 2000; knee extensors, r= 0.59, Maughan et al., 1983). 

Considering the hamstrings, the three studies we are aware of reported quite diverse 

relationships between muscle size and isometric/concentric strength measures (r= 0.41 to 

0.80; Akagi et al., 2012; Kanehisa et al., 1994; Masuda et al., 2003). However, none of these 

studies examined eccentric or explosive strength. It is also possible that the combined 

influence of muscle composition and muscle size may further explain the variability in 

hamstrings muscle function, however the combined influence of these factors has not been 

investigated. 

Therefore, the aim of this study was to determine the BFlh MHC isoform distribution and to 

examine the association of hamstrings muscle size and BFlh MHC composition with knee 

flexor strength, including maximal strength measurements across the torque-velocity 

relationship (concentric, isometric and eccentric) as well as explosive isometric strength.  
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6.2 METHODS 

6.2.1 Participants 

Thirty-one healthy, recreationally active participants (age 20.6 ± 2.5 years; height 1.79 ± 0.71 

m; body mass 71.8 ± 7.3 kg; mean ± SD) took part in this study. Participants had a low to 

moderate level of physical activity and were not involved in systematic physical training or 

had any previous experience of strength/power training (i.e. weight training, plyometrics) of 

the lower body musculature. Their physical activity was assessed with the International 

Physical Activity Questionnaire short format (www.ipaq.ki.se/downloads.htm, Craig et. al., 

2003) and their average energy expenditure was 1739 ± 814 metabolic equivalent-minutes 

per week. After completing the physical activity and health screen questionnaires, 

participants provided written informed consent for their participation in this study, which was 

approved by the Loughborough University Ethical Advisory Committee. All participants 

were healthy with no history of musculo-skeletal problems or injuries of the lower back, 

pelvis or legs. Participants were instructed not to take part in any unaccustomed or strenuous 

physical activity for at least 2 days prior to each laboratory visit and to refrain from alcohol 

and caffeine for the last 24 h before each visit. 

6.2.2 Overview 

Participants visited the laboratory on seven separate occasions, seven days apart at a 

consistent time of the day (11:00-16:00 h). All the measurements were conducted on the 

participants’ dominant leg (defined as their kicking leg). The first session involved recording 

anthropometric data and familiarization with the procedures for testing knee flexor explosive 

isometric strength that was measured during the second and third sessions. The third and 

fourth sessions involved familiarization with the isokinetic dynamometer procedures, while 

the knee flexor torque-velocity relationship was examined in the fifth session. The sixth 

session involved magnetic resonance imaging (MRI) of the participants’ thigh to assess the 

hamstrings muscle size. In the final session, muscle tissue samples were obtained from the 

BFlh muscle. 

http://www.ipaq.ki.se/downloads.htm
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6.2.3 Measurements and Data analysis 

6.2.3.1 Torque-velocity relationship 

The participants were seated on an isokinetic dynamometer chair (Con-Trex MJ, CMV AG, 

Dübendorf, Switzerland) with a hip angle of 120° (180°= full extension). This hip angle is 

similar to that during late swing phase during sprinting (Guex et al., 2012). Two 3-point belts 

secured the torso and additional straps tightly secured the pelvis and the distal thigh of their 

dominant leg. A brace was also placed in front of the non-involved leg. The alignment of the 

knee joint centre with the dynamometer rotational axis was performed during isometric 

contractions of >50% of maximal isometric voluntary torque (MVT) at a knee joint angle of 

~115°. The dynamometer’s shin brace was placed posterior to the shank ~2 cm above the 

medial malleolus before the shank was tightly secured to the dynamometer lever arm. The 

range of motion was established and anatomical zero was set at full extension of the knee 

joint. Passive torque measurements were recorded while the tested leg was passively moved 

through the full range of motion and thereafter active torque values were corrected for 

passive torque. Participants were instructed to grasp the handles next to the seat during 

maximal contractions. Standardized verbal encouragement was given by the same 

investigator and online visual feedback of the crank torque was provided on a computer 

screen. The torque, crank angle and crank velocity signals were sampled at 2000 Hz with a 

PC using Spike 2 software (CED, Cambridge, UK) and smoothed with a finite impulse 

response filter at 15 Hz before any further analysis. 

For isometric strength measurement, participants first completed a standardized warm-up 

consisting of a progressive series of submaximal contractions before they performed two sets 

of three maximum contractions, one at each of three different crank angles (165°, 145° and 

125° in a consistent order; 180°= full extension) near the angle where knee flexors exert their 

maximal torque (Knapik et al., 1983). Participants were instructed to flex their knee and 

“pull” as hard and as fast as possible for 3-5 s. One-minute rest was given between each 

contraction and 2 min between sets. The contraction with the highest torque irrespective of 

crank angle was selected for further analysis. Isometric strength was defined as the average 

torque over a 0.5 s period around the highest instantaneous torque. 

For the concentric and eccentric strength measurement, participants first completed a 

standardized warm-up protocol with five submaximal concentric-eccentric contractions of 

progressively higher intensity. Then, they performed knee flexors maximal concentric-

eccentric contractions at 50° s-1 (3 sets of 2 reciprocal contractions) and 350° s-1 (3 sets of 3 
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reciprocal contractions) over ~100° of range of motion. There was ≥1 min rest between each 

set and ≥2 min rest between velocities. For the concentric-eccentric contractions, the 

acceleration and deceleration phases were excluded in order to disregard torque overshoot 

during these phases (Schwartz et al., 2010) and the constant isovelocity period was identified 

(within ±5% of the prescribed crank angular velocity). Finally, concentric and eccentric 

strength at each velocity was defined as the highest instantaneous torque recorded within the 

isovelocity range of the relevant contractions. 

The high velocity torque ratio was defined as the concentric strength at 350° s-1 divided by 

the isometric strength (Tcon350/Tisom). A similar high-to-low velocity torque ratio has been 

found to correlate with muscle composition (Gür et al., 2003). 

6.2.3.2 Explosive isometric strength  

Participants lay in a prone position on a custom-made isometric dynamometer at fixed hip 

(140°, 180°= full extension) and knee (150°) joint angles selected to replicate the joint 

positions during the late swing phase of sprinting (Guex et al., 2012) when hamstrings strains 

are thought to occur. To minimize any extraneous movements, participants were fastened 

with two straps across the hips, a strap over the lower back and a strap over the distal thigh 

just above the knee joint. A metal ankle cuff with a lining of high density neoprene was 

placed ~4 cm above the medial malleolus and the distal leg was tightly secured to the cuff 

with straps. Force was measured with a calibrated strain gauge (linear response up to 500 N, 

Force Logic UK, UK) in series with the ankle cuff and perpendicular to the tibia. The force 

signal was amplified (x370) and sampled at 2000 Hz with an external analog-to-digital 

converter (Micro 1401-3, CED, Cambridge, UK). A PC recorded and displayed the data 

using the Spike 2 software (CED, Cambridge, UK). In order to remove the high-frequency 

oscillation in the signal (just above 500 Hz), the force signal was filtered with a 4th order 

Butterworth filter with a low pass cut-off frequency of 500 Hz (see Appendix B). The 

frequencies <500 Hz were used as a reference envelope for detecting the force onset during 

the explosive contractions. A lower frequency filter (e.g. 15-20 Hz) would transform the 

signal into a gradually rising asymptotic curve, and therefore the sudden transition from rest 

to force production would be removed resulting in subjective and unreliable recognition of 

the force onset (Tillin et al., 2013). The distance between the knee joint space and the centre 

of the ankle cuff was measured to calculate knee flexion torque. 

After a standardised warm-up, participants performed 3 maximal knee flexion contractions to 

establish the target torque for the subsequent explosive contractions (see below). A computer 
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screen provided real time visual feedback by displaying the torque response. Thereafter 

participants completed 10 explosive contractions with 30 s rest between contractions. They 

were instructed to contract ‘as fast and as hard as possible’ for ~1 s with an emphasis on 

‘fast’ without any countermovement or pre-tension. Real-time visual feedback was provided 

on the computer screen displaying the torque response, with specific performance feedback 

of the time from 1% to 80% of peak torque. For the detection of any countermovement or 

pre-tension, the resting torque was displayed on a sensitive scale. Standardized verbal 

encouragement was given throughout the maximal and explosive contractions. 

During offline analysis the three valid explosive contractions (achieved torque ≥80% of peak 

torque with no discernible counter-movement or pre-tension - change of baseline signal <0.2 

Nm for the 100 ms prior to the onset of contraction), with the fastest time from onset to 50% 

of peak torque were selected for further analysis. Analysis of these contractions consisted of 

measurement of the time from contraction onset to 10, 50, and 90 Nm and the time from 

contraction onset to 15, 45 and 75% of peak torque. Force onsets were identified manually by 

visual identification by a trained investigator using a systematic approach which is considered to 

be more valid than automated methods (Tillin et al., 2013; Tillin et al., 2010). The three analysed 

explosive contractions were averaged within each measurement session, before averaging 

across the two sessions when these measurements were made. 

6.2.3.3 Magnetic resonance imaging (MRI) 

A 1.5 T MRI scanner (Signa HDxt, GE) was used to scan the dominant leg in the supine 

position with the hip and knee joints extended. T1-weighted axial plane images were acquired 

from the anterior superior iliac spine to the knee joint space in two overlapping blocks and oil 

filled capsules were placed on the lateral side of the participants’ thigh to help with the 

alignment of the blocks during analysis. The following imaging parameters were used: 

imaging matrix: 512 x 512, field of view: 260 mm x 260 mm, spatial resolution: 0.508 mm x 

0.508 mm, slice thickness: 5 mm, inter-slice gap: 0 mm. 

MR images were analysed with Osirix software (version 4.0, Pixmeo, Geneva, Switzerland). 

The BFlh, biceps femoris short head, semitendinosus and semimembranosus muscles were 

manually outlined in every third image starting from the most proximal image in which the 

muscle appeared. All manual segmentation measurements were completed by the same 

investigator. Muscle volume was calculated using cubic spline interpolation (GraphPad Prism 

6, GraphPad Software, Inc.). To examine reliability of the analysis procedures, the images 
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from 6 randomly selected participants were re-analysed a week later and the coefficient of 

variation (CV) was calculated. The CV for muscle volume was on average 0.6%. 

6.2.3.4 Muscle sampling and myosin heavy chain composition 

Muscle samples (~0.04 g) from the mid-section BFlh (~50% thigh length) of the dominant 

leg were obtained under local anaesthesia (1% lidocaine) using the microbiopsy technique 

(Pro-Mag Ultra, Angiotech, Medical Device Technologies, FL, USA). Samples were 

immediately frozen in liquid nitrogen and stored at -80°C for further analysis. MHC content 

was determined by sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis using 

a method derived from that previously described (Fauteck & Kandarian, 1995). 

Electrophoresis (Mini-Protean 3, Bio-Rad) was performed on 6% (crosslinking 2.7%) 

polyacrylamide resolving gels with 4% (crosslinking 2.7%) stacking gels at ~4°C. The gels 

were electrophoresed at a constant 100 V for 1 h, and thereafter at a constant 6 mA for ~18 h. 

Gels were immediately silver stained (SilverQuest Silver Staining Kit, Invitrogen) and 

protein bands quantified by densitometry (ChemiDoc XRS+ System, Bio-Rad). Muscle 

samples were classified according to the relative expression of the three MHC isoforms: type 

I, IIA, and IIX (Fig. 6.1). The MHC analysis was run in duplicate and the mean of the 2 

analyses was taken. When the first 2 analyses had a difference >10% a third analysis was run. 

For each individual, the representative MHC distribution was defined as the mean of all 

repeats in which the different MHC isoforms were within 10% between analyses. The CV for 

repeat samples was 3.9% for MHC-I, 5.7% for MHC-IIA and 8.4% for MHC-IIX. 

 
Figure 6.1. Example sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis 

separation of the different myosin heavy chain (MHC) isoforms in biceps femoris long head 

muscle sampled from 5 participants. 
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6.2.4 Statistical analysis 

Data are presented as mean ± SD. One-way analysis of variance was used to examine for 

differences in muscle volume between the constituents muscles of hamstrings and in knee 

flexors torque at the different velocities. Bivariate relationships were examined using Pearson 

product moment correlations between the dependent variables and the Holm-Bonferroni 

correction was used to control for multiple tests. The level of significance was set at P< 0.05. 

All statistical procedures were performed with IBM SPSS 22 (IBM Corporation, Armonk, 

NY).  
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6.3 RESULTS 

6.3.1 Descriptive data on BFlh MHC isoform distribution, hamstrings muscle size 

and knee flexor strength 

On average, the BFlh muscle exhibited a balanced, mixed MHC distribution with 47.1 ± 

9.1% MHC-I, 35.5 ± 8.5% MHC-IIA and 17.4 ± 9.1% MHC-IIX, but with considerable 

variation between individuals (Table 6.1). Total hamstrings muscle volume was on average 

794.1 ± 122.2 cm3 (CV= 15.4%), while the BFlh had smaller volume (210.0 ± 37.9 cm3) than 

the other biarticular muscles (ST; 228.6 ± 45.4 cm3, P< 0.05 and SM; 234.8 ± 47.7 cm3, P< 

0.01, Table 6.1). 

Table 6.1. Descriptive data of biceps femoris muscle composition, hamstrings muscle 

volume, and knee flexor strength. The muscle volumes of the constituent muscles were 

compared to BFlh, and maximal strength measures were compared to isometric strength. * 

P< 0.05, ** P< 0.01 

 

The knee flexors exerted their highest torque during slow eccentric contractions (131.1 ± 27.4 

Nm), and there was considerable inter-individual variability at all contraction modes and 

velocities (CV= 16.9 - 22.3%, Table 6.1). The high velocity torque ratio (Tcon350/Tisom) was 
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0.51 ± 0.10 (CV= 18.6%). Knee flexor explosive strength, measured as time to specific 

torques, was found to vary between individuals, particularly during the later stages of the 

explosive contractions (Fig. 6.2). 

 
Figure 6.2. Knee flexion explosive strength expressed as time from zero to absolute (A) and 

relative (B) torque levels. Data are mean ± SD (n= 31) with inter-individual coefficient of 

variation (CV) presented at each torque level. 

6.3.2 Relationships of hamstrings muscle size and BFlh MHC isoform distribution 

with knee flexion strength 

Hamstrings muscle volume had moderate to strong correlations with knee flexor torque at all 

velocities (r= 0.62 – 0.76, P< 0.01, Table 6.2). In contrast, no relationship was found between 

BFlh muscle composition and maximal strength at any velocity (-0.22 < r < 0.24, P> 0.05, 

Fig. 6.3) or Tcon350/Tisom (-0.16 < r < 0.24, P> 0.05). When torque values at all velocities were 

expressed relative to muscle volume there remained no association with BFlh muscle 

composition (-0.29 < r < 0.35, P> 0.05). 
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Table 6.2. Bivariate correlation coefficients of knee flexor maximal strength with hamstrings 

muscle volume and biceps femoris long head muscle composition (n= 31). MHC: myosin 

heavy chain, ** P< 0.01, † P< 0.001 

 

Hamstrings muscle volume was unrelated to explosive strength (Table 6.3), measured as time 

to achieve low absolute levels or relative measures of torque, however it was associated with 

explosive strength (time) to high absolute levels of torque (90 Nm; r= -0.53, P< 0.05). BFlh 

MHC distribution was unrelated to any measure of explosive strength (-0.20 < r < 0.24, P> 

0.05, Table 6.3). 

Table 6.3. Bivariate correlation coefficients between knee flexor explosive strength (absolute 

and relative) measures with hamstrings muscle volume and biceps femoris long head 

composition. (n= 31). MHC: myosin heavy chain, * P< 0.05 
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Figure 6.3. Relationships between concentric strength at 350° s-1and (A) hamstrings volume 

and (B) BFlh total MHC-II isoform content (n= 31). BFlh: biceps femoris long head, MHC: 

myosin heavy chain. 
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6.4 DISCUSSION 

This study examined the influence of hamstrings muscle size and BFlh muscle composition 

on knee flexors maximal and explosive strength. We found that within the examined cohort, 

the BFlh exhibited on average a balanced MHC isoform distribution that appears very similar 

to that of the other thigh muscles (see below), and therefore does not support the suggestion 

that BFlh composition contributes to the high incidence of strain injury in this muscle. 

Further, we found that 38-58% of the variance in knee flexor maximum torque at isometric 

and at a range of concentric and eccentric velocities was attributable to differences in 

hamstrings muscle volume, while BFlh MHC distribution was not related to any measure of 

maximal or explosive strength. 

The present study is the first to directly examine the BFlh muscle composition in vivo and our 

results showed that, on average, the BFlh muscle had a balanced distribution of slow and fast 

MHC isoforms (47.1 ± 9.1% MHC-I and 52.9 ± 9.1% total MHC-II) in young healthy men. 

Hamstrings muscle composition has been linked to the high injury rate seen in this muscle 

(Garret et al., 1984). In a much cited study, Garret et al. reported a BFlh muscle composition 

within a small cohort of elderly cadavers to be similar to our data (54.5 ± 2.8% type II fibres 

and 45.5 ± 2.8% type I of total number of sampled fibres), yet based on small differences 

compared to other muscles (quadriceps, 51.9%; adductor magnus, 44.8% type II fibres) they 

argued that the ‘high proportion’ of fast fibres in the hamstrings compared to other leg 

muscles may contribute to their susceptibility to injury. However, the VL muscle, an 

antagonist to BFlh muscle function, has been reported to contain a greater proportion of 

MHC-II isoform (66.1% total MHC-II in 95 physically active young men; Staron et al., 2000) 

compared to the BFlh in our cohort. Consequently, the composition of the BFlh does not 

seem to explain the high incidence of strain injuries within this muscle compared to other 

muscles. Therefore, other aspects of hamstrings structure (e.g. aponeurosis size, Evangelidis 

et al., 2014) or function (eccentric actions at long lengths, Schache et al., 2012) are likely to 

explain the high incidence of strain injuries in this muscle. On an individual basis however, 

the proportion of MHC-II isoforms could still be a risk factor for hamstrings strain injury. 

Type II fibres are selectively affected by eccentric exercise-induced muscle damage in both 

animals and humans (Lieber and Friden, 1988; Friden et al., 1983), even after a single 

eccentric contraction (Lovering and Deyne, 2004). Structural differences between fibre types 

(e.g. thinner Z-disks in type II fibres; Luther, 2009) may contribute to the selective damage of 
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type II fibres (Friden and Lieber, 1992). Even though eccentric exercise-induced muscle 

damage is not synonymous to strain injury, it does cause disruption of the muscle structure at 

the microscopic level and it is possible that accumulation of such damage may eventually 

lead to a macroscopic injury (Brocket et al., 2004, 2001). Considering all the changes in the 

muscle apparatus as a result of eccentric exercise-induced damage (reduction of force-

generating capacity, shift of optimum fibre length and impairment of the excitation-

contraction coupling, Morgan and Allen, 1999), it would be logical to hypothesize that 

individuals with a high percentage of type II fibres in their hamstrings may be at an increased 

risk for strain injury when exposed to high-risk conditions. Within our cohort, total MHC-II 

isoform content ranged from 29.0-67.4% and it is possible that individuals with a high 

proportion of type II fibres could be at higher risk of injury. Future retrospective and 

prospective studies are needed to elucidate the relationship between muscle composition and 

the incidence of individual strain injuries. 

Whilst MHC composition is a major determinant of function in single fibres (Bottinelli et al., 

1996), in this study no correlation was found between BFlh muscle composition and knee 

flexors maximal or explosive strength in vivo. The lack of relevant previous data on the 

hamstrings prevents any direct comparison with our findings; however similar studies on 

knee extensors reported mixed results for the relationship of strength with muscle 

composition. Some studies examined this relationship within athletes with diverse training 

and competition backgrounds e.g. untrained, endurance, and strength and power athletes (Gür 

et al., 2003; Viitasalo et al., 1981; Viitasalo & Komi, 1978). Whilst this approach produces a 

wide range of muscle composition values, numerous other neuromuscular characteristics also 

likely vary between these groups (e.g. muscle size, architecture, neural drive) and these could 

confound any relationship of strength and muscle composition. Similar limitations confound 

the results of studies that reported a significant influence of muscle composition on explosive 

isometric strength in highly diverse cohorts (elite high jumpers vs. recreationally active 

individuals; Viitasalo et al., l981; elite athletes of various sports, Viitasalo and Komi, 1978). 

In vivo studies of muscle composition are typically limited to a single biopsy and it may not 

fully reflect the composition in other regions of the muscle (Elder et al., 1982), however fibre 

type distribution appears to be similar for biopsy samples taken from proximal and distal 

(Garret et al, 1984) as well as superficial and deep sites (Edgerton et al., 1975). In addition, 

BFlh muscle composition may not represent that of the other hamstrings muscles. 

Nevertheless, in the present study within a group of non-athletic young men, muscle 
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composition did not explain their differences in maximal or explosive strength despite the 

large inter-individual variability in these measures (CV; maximal strength: 16.9-22.3%; 

explosive strength: 15.7-44.1%). 

Our results revealed that hamstrings volume explained a significant portion of the variance in 

isometric (38%), concentric (50-55%) and eccentric (48-58%) knee flexor strength. These 

values are within the range of previous findings for the hamstrings (Akagi et al., 2012; 

Masuda et al., 2003; Kanehisa et al., 1994). Two small studies (n< 16) that examined the 

combined influence of muscle size and composition found that knee extensor strength was 

related to quadriceps ACSA (Johansson et al., 1987; Maughan and Nimmo, 1984), but only 

Johansson et al. (1987) reported a significant relationship of muscle composition with 

maximal concentric strength at 180° s-1 after accounting for muscle size. Despite the 

significant correlations found in this study, the variability in knee flexors torque-velocity 

relationship can be attributed only in part (38-58%) to differences in hamstrings muscle size. 

This may be partly due to the fact that other muscles (i.e. gastrocnemius, gracilis, sartorius 

and popliteus) also contribute to knee flexor torque but their volume was not measured. 

Whilst we found that MHC composition does not seem to be a determining factor, other 

variables likely to explain some of the remaining variance in knee flexors maximal strength 

include moment arm (Baxter and Piazza, 2014), muscle architecture (Aagaard et al., 2001), 

level of agonist activation (Westing et al., 1990) and antagonist co-activation (Kellis and 

Baltzopoulos, 1998). 

In contrast to maximal strength, explosive strength was not influenced by muscle size apart 

from at high levels of absolute torque (time from rest to 90 Nm; r= -0.53, P< 0.01). Whilst no 

similar data exist on hamstrings, elbow flexors isometric explosive strength has been related 

to muscle volume, but only during the later stages of contraction (150 ms, r= 0.69, P< 0.001) 

at relatively high levels of force (~80% MVF; Erskine et al., 2014). 

In conclusion, the balanced MHC distribution found in BFlh muscle which appears similar to 

other thigh muscles, and therefore seems unlikely to contribute to the high susceptibility of 

the BFlh to strain injury. Hamstrings muscle volume explained 38-58% of the inter-

individual differences in knee flexors torque at a range of velocities while BFlh muscle 

composition was not associated with maximal or explosive strength. 
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7 CHAPTER 7 – BICEPS FEMORIS APONEUROSIS SIZE: A 

POTENTIAL RISK FACTOR FOR STRAIN INJURY? 

7.1 INTRODUCTION 

The susceptibility of the hamstrings to strain injuries is well documented with the majority of 

these injuries located near the proximal myotendinous junction (MTJ) of the biceps femoris 

long head muscle (BFlh) (Woodley and Mercer, 2004). While some risk factors for 

hamstrings strain injuries have been identified (e.g. previous strain injury, strength 

imbalances and muscle fatigue) (van Beijsterveldt et al., 2013; Opar et al., 2012) whether the 

anatomical structure of the BFlh muscle-tendon unit (MTU), including the aponeurosis, 

might influence injury risk has received very little attention. Only recently has a 

disproportionately small BFlh proximal aponeurosis been suggested as a potential risk factor 

for hamstrings strain injury, following two studies that calculated higher localised tissue 

strains for individuals with a narrow proximal aponeurosis using computational modelling 

and dynamic MR imaging (Fiorentino et al., 2012; Rehorn and Blemker, 2010). 

In a pennate muscle the force from the muscle fibres is transmitted to the tendon primarily via 

the aponeurosis. It seems reasonable to assume that a bigger and stronger muscle would have 

a larger and stronger aponeurosis and tendon in order to effectively and safely transfer the 

contractile force to the bone. Therefore, a degree of scaling between the size of the force 

generator and force transmitters seems intuitive. Within the quadriceps the vastus lateralis 

(VL) aponeurosis area has been found to be in proportion to total quadriceps volume (Abe et 

al., 2012). However, whether this is the case for the hamstrings remains largely unknown. A 

preliminary report suggested that the width of the BFlh proximal aponeurosis was highly 

variable between individuals and unrelated to the size of the BFlh muscle (Handsfield et al., 

2010) suggesting that the force transmitter may not be proportional to the force generator. If 

this is the case, a disproportionately small BFlh proximal aponeurosis may concentrate 

mechanical strain on the surrounding muscle tissue (Fiorentino et al., 2014; Fiorentino et al., 

2012; Rehorn and Blemker, 2010) and be a risk factor for hamstrings strain injury. However, 

in this preliminary report aponeurosis width was measured at a single arbitrary point along 

the muscle, which may be a poor reflection of the size of the aponeurosis. In contrast, 

measuring the whole contact interface between the muscle and aponeurosis may better reflect 

the concentration of mechanical strain at this interface. 
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From a functional perspective, aponeurosis size might be expected to be most strongly related 

to the maximum force transmitted through these tissues, and thus muscle strength. Whilst, 

experimental measurement of the in vivo force generating capacity of the BFlh may not be 

possible, knee flexor torque, which is primarily due to hamstrings activation, can be assessed. 

Maximal isometric torque is a convenient measurement of muscle function, although higher 

torques can often be achieved eccentrically which likely contribute to the high risk of BFlh 

MTU strains during eccentric actions (Heiderscheit et al., 2005). However, the relationship 

between aponeurosis size and isometric or eccentric muscle strength has yet to be 

investigated. 

The aim of this study was to examine the relationship of BFlh proximal aponeurosis area with 

muscle size (maximal anatomical cross-sectional area and volume) and knee flexor strength 

(isometric and eccentric). Based on the role of the aponeurosis as a force transmitter within 

the MTU, we hypothesized that BFlh proximal aponeurosis area would be positively related 

to muscle size and strength. 
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7.2 METHODS 

7.2.1 Participants 

Thirty healthy, recreationally active participants (age 20.7 ± 2.6 years; height 1.79 ± 0.07 m; 

body mass 72.2 ± 7.2 kg; mean ± SD) took part in this study. Participants had a low to 

moderate level of physical activity and were not involved in systematic physical training or 

had any previous experience of strength/power training (i.e. weight training, plyometrics) of 

the lower body musculature. Their physical activity was assessed with the International 

Physical Activity Questionnaire short format (www.ipaq.ki.se/downloads.htm) (Craig et al., 

2003) and their average energy expenditure was 1826 ± 936 metabolic equivalent-

minutes/week. After completing the physical activity and health screen questionnaires, 

participants provided written informed consent for their participation in this study, which was 

approved by the Loughborough University Ethical Advisory Committee. All participants 

were healthy with no history of musculo-skeletal problems or injuries of the lower back, 

pelvis or legs. Participants were instructed not to take part in any unaccustomed or strenuous 

physical activity for at least 2 days prior to each laboratory visit. 

7.2.2 Overview 

All participants visited the laboratory on four separate occasions seven days apart at a 

consistent time of the day (11:00-16:00 h) for measurements on the knee flexors of their 

dominant leg (defined as the preferred leg when kicking a ball). The first session involved 

collection of the anthropometric data and familiarization with the isometric and eccentric 

strength measurements. The second session involved the measurement of the knee flexion 

isometric strength and further familiarisation with the eccentric strength measurements. In the 

third session, participants repeated the isometric strength testing and also performed the 

eccentric strength measurements. The final session involved magnetic resonance imaging 

(MRI) of the participants’ thigh to assess the BFlh proximal aponeurosis area, hamstrings 

maximal anatomical cross-sectional area (ACSAmax), and BFlh/semitendinosus (ST) 

conjoint proximal tendon CSA. 

http://www.ipaq.ki.se/downloads.htm
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7.2.3 Measurements and Data analysis 

7.2.3.1 Isometric strength 

Participants lay in a prone position on a custom-made isometric dynamometer with hip and 

knee joint angles of 40° and 30° respectively (0°= full extension) (Fig. 7.1). These angles 

were selected because of their relevance to the angles during the late swing phase in sprinting 

(Guex et al., 2012) when hamstrings strains are thought to occur. To minimize any 

extraneous movements, participants were fastened with two straps across the hips, a strap 

over the lower back and a strap over the distal thigh just above the knee joint. A metal ankle 

cuff with a lining of high density neoprene was placed ~2 cm above the medial malleolus and 

the distal leg was tightly secured to the cuff with straps. The distance between the knee joint 

space and the centre of the ankle cuff was measured and used for calculation of the knee 

flexion torque. Force was measured with a calibrated strain gauge (linear response up to 500 

N, Force Logic UK) connected in series to the ankle cuff and positioned perpendicularly to 

the tibia. The force signal was amplified (x370) and sampled at 2000 Hz with an external 

analog-to-digital converter (Micro 1401-3, CED, Cambridge, UK). A PC recorded and 

displayed the data using the Spike 2 software (CED, Cambridge, UK). The force signal was 

filtered with a 4th order Butterworth filter with a low pass cut-off frequency of 500 Hz. The 

frequencies <500 Hz were used as a reference envelope for detecting the force onset during 

the explosive contractions (see Appendix B). A lower frequency filter (e.g. 15-20 Hz) would 

transform the signal into a gradually rising asymptotic curve, and therefore the sudden 

transition from rest to force production would be removed resulting in subjective and 

unreliable recognition of the force onset (Tillin et al., 2013). 
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Figure 7.1. Isometric measurements of the knee flexors were made with this custom-made 

isometric dynamometer in the joint configuration shown. Isovelocity torque measurements 

were made with a Con-Trex isokinetic dynamometer. 

After a standardised warm-up of progressively harder contractions, participants performed 3 

maximal voluntary contractions (MVCs), in which they were instructed to flex the knee as 

‘hard’ as possible for 3-5 s with 30 s of rest between the contractions. A computer screen 

provided real time visual feedback by displaying the torque response. After the first MVC a 

target cursor was positioned at peak torque achieved so far and participants were encouraged 

to exceed this during subsequent attempts. Standardized verbal encouragement was given 

throughout the MVCs. All isometric torque values were gravity corrected by subtracting 

resting torque from peak torque. Isometric strength was defined as the highest instantaneous 

torque during any of the MVCs within that session. Data presented is an average of the two 

sessions. The repeatability of isometric strength measurements between the two testing 

sessions was high (coefficient of variation, CV= 3.9%). 

7.2.3.2 Eccentric strength 

The participants were seated on the dynamometer chair (Con-Trex MJ, CMV AG, 

Dübendorf, Switzerland) with a hip angle of 60° (0°= full extension). This was the most 

reclined position that could be obtained without participants sliding forwards during 

contractions. However, this hip angle is similar to that during late swing phase in sprinting 

(Guex et al., 2012). Two 3-point belts secured the torso and additional straps tightly secured 

the pelvis and the distal thigh of their dominant leg. A brace was also placed in front of the 

non-involved leg. The alignment of the knee joint with the dynamometer rotational axis was 
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performed during isometric contractions of >50% of isometric strength at a knee joint angle 

of ~65°. The dynamometer’s shin brace was placed posterior to the shank ~2 cm above the 

medial malleolus before the shank was tightly secured to the dynamometer lever arm. The 

range of motion was established and anatomical zero was set at full extension of the knee 

joint. Passive torque measurements were recorded while the tested leg was passively moved 

through the full range of motion and thereafter active torque values were corrected for 

passive torque. 

Participants performed a standardized warm-up protocol with five submaximal contractions 

of progressively higher intensity. Following the warm-up, the knee flexors were tested at two 

different velocities using a protocol of concentric-eccentric contractions at 50° s-1 and 350° s-

1 in this order. Participants performed 3 sets of 2, and 3 sets of 3, concentric-eccentric 

contractions at 50° s-1 and 350° s-1 respectively, over ~100° of range of motion. There was ≥1 

min rest between each set and ≥2 min rest between velocities. Participants were instructed to 

grasp the handles next to the seat during maximal contractions. Standardized verbal 

encouragement was given by the same investigator and online visual feedback of the crank 

torque was provided on a computer screen. 

The torque, crank angle and crank velocity signals were sampled at 2000 Hz with a PC using 

Spike 2 software (CED, Cambridge, UK) and the data were smoothed with a finite impulse 

response filter at 15 Hz. The acceleration and deceleration phases were excluded in order to 

disregard torque overshoot during these phases (Schwartz et al., 2010) and the constant 

isovelocity period (within ±5% of the prescribed crank angular velocity) was identified. 

Finally, eccentric strength was defined as the highest instantaneous torque recorded within 

the isovelocity range of any eccentric contraction. 

7.2.3.3 Magnetic resonance imaging (MRI) 

A 1.5 T MRI scanner (Signa HDxt, GE) was used to scan the dominant leg in the supine 

position with the hip and knee joints extended. T1-weighted axial plane images were acquired 

from the anterior superior iliac spine to the knee joint space in two blocks and oil filled 

capsules were placed on the lateral side of the participants’ thigh to help with the alignment 

of the blocks during analysis. The following imaging parameters were used: imaging matrix: 

512 x 512, field of view: 260 mm x 260 mm, spatial resolution: 0.508 mm x 0.508 mm, slice 

thickness: 5 mm, inter-slice gap: 0 mm. MR images were analysed with Osirix software 

(version 4.0, Pixmeo, Geneva, Switzerland). 
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BFlh aponeurosis area was defined as the contact interface distance between the BFlh muscle 

and the proximal aponeurosis outlined in each image where the aponeurosis was identifiable, 

multiplied by the slice thickness (Fig. 7.2A). The contact interface distance in each slice 

included both the internal and external aponeurosis. The BFlh aponeurosis:muscle area ratio 

was calculated by dividing the BFlh proximal aponeurosis area by the BFlh muscle 

ACSAmax (see below). In order to produce average muscle-aponeurosis contact interface 

distance data for the cohort, individual values were normalised to muscle length. This 

involved interpolation of individual muscle-aponeurosis contact interface data every 5% of 

muscle length. BFlh aponeurosis length was calculated as the sum of the slices where the 

aponeurosis was identifiable, multiplied by the slice thickness. For comparison with 

previously published data BFlh aponeurosis width was measured according to the methods of 

Handsfield et al. (2010) i.e. width of the aponeurosis in the most distal image at which the 

proximal aponeurosis was external of the BFlh. 

The BFlh, biceps femoris short head, semitendinosus and semimembranosus muscles were 

manually outlined in every third image starting from the most proximal image in which the 

muscle appeared. The largest anatomical cross-sectional area of each muscle was defined as 

ACSAmax and muscle volume was calculated using cubic spline interpolation (GraphPad 

Prism 6, GraphPad Software, Inc.). To validate the use of every third image for the volume 

calculations, all images from six randomly selected participants were analysed and the two 

methods (all images vs. every third image) were compared. The average difference between 

methods was 1.52% (0.22 cm2) for BFlh ACSAmax, 1.60% (0.20 cm2) for total hamstrings 

ACSAmax, 0.30% (0.66 cm3) for BFlh volume and 0.18% (1.52 cm3) for total hamstrings 

muscle volume. BFlh muscle length was calculated as the sum of all images where the 

muscle appeared multiplied by the slice thickness. BFlh/ST proximal tendon CSA was 

measured in the image immediately before the first image in which the ST muscle appeared 

(Fig 7.2B). All manual segmentation measurements were completed by the same investigator. 

To examine reliability of the analysis procedures, the images from 6 randomly selected 

participants were re-analysed a week later. The CV was on average 4.0% for the aponeurosis 

contact area, 0.6% for muscle volume, 1.1% for ACSAmax, and 5.5% for the BFlh/ST 

proximal tendon CSA. 
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Figure 7.2. Example MR images of (A) BFlh ACSA (main) and BFlh proximal aponeurosis 

to muscle contact distance (inset) and (B) measurement of the BFlh/ST proximal tendon 

CSA. 

7.2.4 Statistical analysis 

One participant did not complete the eccentric strength assessment. Data are presented as 

mean ± SD. The bivariate relationships between the size of the different MTU components 

and the relationships between the size of the MTU components and the knee flexor strength 

measures were examined using Pearson product moment correlations between the dependent 

variables and the level of significance was set at P< 0.05. All statistical procedures were 

performed with IBM SPSS 20 (IBM Corporation, Armonk, NY).  



Chapter 7 – Biceps femoris proximal aponeurosis size 

112 

7.3 RESULTS 

7.3.1 Descriptive data on size of the MTU components and knee flexor strength 

BFlh proximal aponeurosis area varied considerably (>4-fold) between participants ranging 

from 7.5 to 33.5 cm2 (20.4 ± 5.4 cm2, CV= 26.6%). This was a reflection of the fact that 

aponeurosis length was variable (16.7 ± 2.8 cm, range= 10.5-22.0 cm or 43–75% of muscle 

length) and muscle-aponeurosis contact interface distance was also variable along the 

aponeurosis length (Fig. 7.3). 

Individual aponeurosis width measurements using a previously published method (Handsfield 

et al., 2010) appeared to occur at an arbitrary point along the aponeurosis (Fig 7.3A, i.e. not 

at peak aponeurosis width or a consistent point along the aponeurosis). Aponeurosis width 

measured in this way was 0.43 ± 0.24 cm (range= 0.19–1.22 cm, CV= 56.4%). 

 
Figure 7.3. Muscle-aponeurosis contact interface distance along the length of the BFlh 

muscle (interpolated data every 5% of muscle length). (A) Three individual participants 
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(Maximum, minimum and typical (mid-range) aponeurosis area). The circles indicate the 

relative muscle length where the aponeurosis width measurement was performed on each 

individual. (B) Group mean + SD. 

Participants had a mean BFlh ACSAmax of 13.6 ± 2.2 cm2 (CV= 16.2%) while their BFlh 

muscle volume was 214.7 ± 37.2 cm3 (CV= 17.3%). BFlh muscle length was 29.3 ± 2.6 cm. 

Large inter-individual variability was also found in proximal BFlh/ST tendon CSA (0.43 ± 

0.14 cm2, range= 0.25-0.91 cm2, CV= 32.3%). In respect of the strength measurements, knee 

flexor isometric strength was 131.0 ± 19.9 Nm while eccentric strength was 134.3 ± 24.9 Nm 

at 50° s-1 and 118.2 ± 21.6 Nm at 350° s-1. 

7.3.2 Relationships between the size of the different MTU components 

BFlh proximal aponeurosis area was not related to BFlh ACSAmax (r= 0.04, P= 0.830; Fig. 

7.4) or volume (r= 0.35, P= 0.055). Consequently, the aponeurosis:muscle area ratio also 

exhibited high variability (6-fold), being 83% smaller in one individual than another (range 

0.53 to 3.09, CV= 32.5%). BFlh proximal aponeurosis area presented a weak correlation with 

proximal BFlh/ST tendon CSA (r= 0.36, P= 0.049). 

 
Figure 7.4. A scatter plot of BFlh proximal aponeurosis area and BFlh ACSAmax (n= 30). 

The individuals with the lowest and highest aponeurosis size (7.5 vs. 33.5 cm2; >4-fold 

difference), had very similar sized BFlh muscles (ACSAmax, 14.1 vs. 13.3 cm2) and thus 

aponeurosis:muscle size ratios of 0.53 vs. 2.52. 
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7.3.3 Relationships between the size of the MTU components with knee flexor 

strength 

Whilst isometric strength was related to BFlh muscle ACSAmax and tendon CSA, there was 

no relationship with aponeurosis area (Fig. 7.5). Eccentric strength at both slow and fast 

velocities was related to BFlh muscle ACSAmax but not to aponeurosis area or tendon CSA 

(Table 7.1). Finally, overall hamstrings ACSAmax was related to isometric strength as well 

as to eccentric strength at 50° s-1 and 350° s-1 (Table 7.1). 

Table 7.1. Bivariate correlations (r-values) between the size of the hamstrings muscle group 

and different components of the biceps femoris long head muscle-tendon unit with knee 

flexor isometric (n= 30) and eccentric (n= 29) strength. ACSAmax, maximal anatomical 

cross-sectional area; CSA, cross-sectional area. * P< 0.05, ** P< 0.01. 
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Figure 7.5. Scatter plots between knee flexors isometric strength and (A) BFlh ACSAmax, 

(B) BFlh proximal aponeurosis area and C) BFlh/ST proximal tendon CSA (n= 30). 
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7.4 DISCUSSION 

The present study examined the variability of the BFlh proximal aponeurosis size in healthy, 

recreationally active population and the relationships of the aponeurosis size with BFlh 

muscle size and knee flexor function. The main finding was that the proximal aponeurosis 

size was highly variable between individuals and, in contrast to our hypothesis, it was not 

related to muscle size or knee flexor maximal isometric or eccentric strength. The 

disproportion between aponeurosis size and muscle size/strength suggests that individuals 

with a relatively small aponeurosis will be subject to greater mechanical strain in the muscle 

tissue surrounding the aponeurosis which may predispose them to hamstrings strain injuries. 

Despite the homogenous nature of the recruited cohort there was a large 4.5-fold variability 

in BFlh proximal aponeurosis area between participants that was substantially greater than 

the variability in BFlh muscle ACSAmax (1.8-fold). Moreover, contrary to our hypothesis 

these two variables were unrelated, and consequently the aponeurosis:muscle area ratio in 

this study ranged from 0.53 to 3.09 exhibiting a 6-fold range, and being 83% smaller in one 

individual than another even within this relatively homogenous cohort. Interestingly, the 

individuals with the lowest and highest aponeurosis area in this study (7.5 and 33.5 cm2 

respectively) had similar BFlh ACSAmax (14.1 and 13.3 cm2; Fig. 7.4) and consequently 

their aponeurosis:muscle area ratios were 0.53 and 2.52. Similarly, from a functional 

perspective, our results showed that aponeurosis size was unrelated to knee flexor strength, 

whilst the size of the other components of the MTU (muscle and tendon area) was associated 

with muscle strength (Fig. 7.5). 

The lack of relationship between aponeurosis size and muscle size may have important 

implications for the mechanical strain within the muscle tissue surrounding the aponeurosis. 

Based on modelling and in vivo measurements of mechanical strain, individuals with a 

relatively small aponeurosis:muscle size ratio would be expected to experience greater 

mechanical strain in the muscle tissue adjacent to the aponeurosis with a greater potential for 

injurious muscle strains (Fiorentino et al., 2014; Fiorentino et al., 2012; Rehorn and Blemker, 

2010). Therefore, our results in combination with the fact that hamstrings strain injuries 

typically occur near the BFlh proximal MTJ (Koulouris and Connell, 2003) suggest that 

individuals with a low aponeurosis:muscle size ratio may be at an increased risk of 

hamstrings strain injury. 
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This study is the first to directly examine the relationship between BFlh muscle and 

aponeurosis size. The only similar data we are aware of examined a different muscle and 

found VL aponeurosis area in a cohort of elite weightlifters and recreationally active males to 

be strongly related to total quadriceps muscle volume (R2= 0.85) (Abe et al., 2012). Whilst 

the adaptation of tendon in response to resistance training has been shown with increases in 

size and stiffness (Kongsgaard et al., 2007; Seynnes et al., 2009), it remains unknown 

whether the aponeurosis shows similar plasticity. The greater VL aponeurosis area exhibited 

by the elite weightlifters compared to the recreationally active students in the study of Abe et 

al (2012) suggests that this difference may be an adaptive response to resistance training. If 

this were the case BFlh aponeurosis size may be modifiable through training and this could 

reduce the risk of strain injury. Interestingly, Wakahara et al. (2015) found a small increase in 

vastus lateralis aponeurosis width (1.9%, P= 0.050) after 12 weeks of resistance training. 

However, these results should be treated with caution due to methodological limitations in 

their study (small training cohort, n= 11, no correction for multiple tests). Nevertheless, the 

notion that strength training may increase the aponeurosis area has significant implications as 

individuals with a small aponeurosis relative to their BFlh muscle size may be able to 

increase their aponeurosis size and reduce the mechanical strains therein. This could be a 

powerful injury prevention tool that could be put in place prior to strain injury occurrence in 

at-risk individuals. Future studies should further examine the effect of strength training on 

aponeurosis size. 

For comparative reasons, we measured aponeurosis width replicating the methods of a 

preliminary report (Handsfield et al., 2010) and the range of values obtained here (0.19–1.22 

cm) were similar with their results. However, this method involved the measurement of 

aponeurosis width at an arbitrary point which corresponded to different relative positions 

along both the aponeurosis and muscle for each individual (Fig. 7.3A), nor was it the point of 

peak muscle-aponeurosis contact interface distance. These limitations in the width 

measurement do not allow for any valid comparison with aponeurosis area or examination of 

the differences between individuals. Furthermore, the individuals exhibiting the lowest and 

highest aponeurosis area (>4-fold difference) both had mid-range aponeurosis widths (0.32 

vs. 0.63 cm; <2-fold difference). Therefore the aponeurosis width measurement appeared to 

be a limited reflection of aponeurosis size and inter-individual variability in this study. 

Both aponeurosis and free tendon are considered to have a high safety factor (i.e. the ratio of 

failure stress to peak operating stress) such that the aponeurosis and tendon are capable of 
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accommodating a range of loads well beyond the normal functional range with no risk of 

injury to these structures (Azizi et al., 2009; Biewener et al., 2005). This may partly explain 

the lack of relationship between muscle strength and aponeurosis size. Nevertheless, strain 

injuries typically occur within the muscle tissue adjacent to the aponeurosis rather than within 

the aponeurosis. Therefore, whilst a small aponeurosis may have a sufficient safety factor to 

preclude aponeurosis injury it could make the adjacent muscle tissue vulnerable to injury. 

An interesting observation made during the analysis of the MR images was that the BFlh 

aponeurosis extends not only longitudinally along the side of the muscle belly but also 

transversely into the muscle (Fig. 7.2A), in agreement with a previous report (Fiorentino et 

al., 2012). Anecdotally, the proportion of the internal aponeurosis to the total aponeurosis 

area between our participants appeared highly variable. However, it is currently unknown 

how this aponeurosis morphology affects force transmission and stress distribution and 

further study is needed to elucidate its relationship with muscle size and strength. 

Despite the large number of studies examining possible risk factors for strain injuries, it is 

still unclear how to identify individuals at high risk of strain injury, especially those with no 

history of injury. The emerging evidence that aponeurosis size may be a risk factor for such 

injuries has significant implications. Establishment of such an anatomical feature as a risk 

factor would greatly help to distinguish at-risk individuals before an injury occurs. For that 

reason, a prospective study investigating aponeurosis area relative to muscle size and strength 

and recording which athletes go on to suffer a strain injury would provide valuable 

information. Also, the possible interaction of aponeurosis area with other established risk 

factors (e.g. previous strain injury and strength imbalances) should be considered. 

Some limitations of this study have to be considered. First, the knee joint axis of rotation was 

assumed to be passing through the knee joint space which was identified using superficial 

anatomy. It was also assumed that knee flexors strength measurement in vivo reflected the 

force generating capacity of BFlh muscle and the forces transmitted by the proximal 

aponeurosis. 

In conclusion, the present study showed that the BFlh proximal aponeurosis size exhibits high 

variability within a relatively homogenous cohort of healthy young men and it was not related 

to muscle size or knee flexor strength. Therefore, individuals with a relatively small 

aponeurosis may be at increased risk of hamstrings strain injury. 
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8 CHAPTER 8 – GENERAL DISCUSSION 

8.1 INTRODUCTION 

The main aim of this thesis was to examine the hamstrings anatomy and its influence on knee 

flexor muscle function in vivo within young healthy men. A secondary aim was to better 

understand the implications of hamstrings anatomy and function, and their variability, in 

relation to the risk of strain injury. To address these aims, a series of studies were conducted 

and the main findings are as follows: 

1. The functional, conventional and knee joint angle-specific isometric H:Q ratios exhibited 

good test-retest reliability examined with a short protocol that included muscle function 

measurements up to high angular velocities and joint positions that closely replicated the 

conditions of high injury risk (Chapter 3). 

2. Football players did not exhibit any difference in angle-specific or peak torque H:Q ratios 

(isometric, functional or conventional) compared to recreationally active controls. In 

addition, knee extensor and flexor strength, relative to body mass, of footballers and 

controls was similar for all velocities, except concentric knee flexor strength at 400° s-1 

(footballers +40%; P < 0.01) (Chapter 4). 

3. Muscle volume explained 30-71% and 38-58% of the differences between individuals in 

knee extensors and flexors torque respectively across a range of velocities. A moderate 

correlation was also found between the volume of these antagonistic muscle groups (R2= 

0.41). Finally, the relative volume of the knee extensors and flexors explained a 

significant proportion of the variance in both the isometric (~20%) and high velocity 

functional (~31%) H:Q ratio (Chapter 5). 

4. On average, BFlh exhibited a balanced MHC isoform distribution (47.1 ± 9.1% MHC-I 

and 52.9 ± 9.1% total MHC-II) in young healthy men, while BFlh MHC distribution was 

not related to any measure of knee flexor maximal or explosive strength (Chapter 6). 

5. BFlh proximal aponeurosis area varied considerably between participants (>4-fold) and 

was not related to BFlh ACSAmax (r= 0.04, P= 0.83). Consequently, the 

aponeurosis:muscle area ratio (defined as BFlh proximal aponeurosis area divided by 

BFlh ACSAmax) exhibited 6-fold variability (range, 0.53 to 3.09; CV= 32.5%), being 

83% smaller in one individual than another. Moreover, aponeurosis size was not related 



Chapter 8 – General Discussion 

121 

to isometric (r= 0.28, P= 0.13) or eccentric knee flexion strength (r= 0.24, P≥ 0.20) 

(Chapter 7). 

8.2 HAMSTRINGS MUSCLE FUNCTION: REPLICATING THE 

BIOMECHANICS OF THE LATE SWING PHASE OF SPRINTING 

The first step towards a better understanding of the role of knee flexors muscle function on 

hamstrings injuries is to assess muscle function in conditions that replicate the time when the 

injury occurs. Therefore, it is important to examine the knee flexors muscle function in 

biomechanical conditions that closely replicate those during the late swing phase of sprinting. 

However, most studies in the literature on hamstrings function have not accounted for these 

conditions. For this reason, an initial step was to develop and assess the reliability of a more 

ecologically valid protocol for the assessment of knee flexor function under relevant 

biomechanical conditions (Chapter 3). Isokinetic dynamometry, within its limitations, allows 

for the examination of muscle function across the torque-velocity relationship, and more 

importantly during eccentric contractions at controlled velocities, while the investigator can 

also control the hip and knee joint positions. The adoption of a seated position with a reclined 

back rest at 120° was selected as the most representative of the hip joint angle during the late 

swing phase (Fig. 2.5A), without the participants sliding forwards during contractions. 

Current isokinetic dynamometers cannot reach angular velocities higher than 500° s-1, which 

is less than half of that attained by the knee joint in sprinting (>1200° s-1, Higashihara et al., 

2010). However, valid isokinetic dynamometer data can be obtained only within the 

isovelocity phase, after the exclusion of the acceleration and deceleration phases 

(Baltzopoulos et al., 2012). Further, any increase of the target velocity will also increase the 

acceleration and deceleration phases, resulting in a progressively narrower isovelocity 

window. The isovelocity window for the highest angular velocity used in this thesis (400° s-1) 

was ~20°. The application of Gaussian fitting to the raw torque data allowed mild 

extrapolation (5° on each side) resulting in a final isovelocity window of 30° for that velocity. 

The results presented in Chapter 3 suggest that the assessment of hamstrings and quadriceps 

torque-velocity relationships exhibited acceptable test-retest reliability when examined using 

a testing position that resembled the hip and knee joint angles during the late swing phase and 

up to high angular velocities. Therefore this protocol was applied to a subsequent study 

(Chapter 4). 
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However, due to the specific aims of the later studies (Chapters 5-7) the isokinetic protocol 

used in these experiments was further amended as follows: 

1. Two familiarisation sessions were introduced before the isovelocity measurements. 

2. The highest angular velocity was reduced to 350° s-1 in order to provide a sufficient 

isovelocity range for the examination of muscle function. 

It has been shown that the discrepancy between crank angle and knee joint angle during 

isometric and isovelocity contractions can be up to 20° for knee extension (Tsaopoulos et al., 

2011; Arampatzis et al., 2004; Kaufman et al., 1995), while similar differences might be 

expected for knee flexion. These discrepancies would invalidate an angle-specific approach 

to the examination of reciprocal muscle function and specifically H:Q strength ratios which 

was the main focus of Chapter 4. Therefore, the actual knee joint angles were calculated from 

video analysis in Chapters 3 and 4. 

Any discrepancy between the knee joint and crank angle may also influence the torque 

measurements as the torque recorded by the dynamometer is different from that exerted by 

the muscle (or muscle group) under investigation (Herzog, 1988). The dynamometer torque is 

equal to the muscle force applied on the crank arm multiplied by the perpendicular distance 

from the axis of rotation of the crank to the line of force application (dynamometer moment 

arm). However, the torque exerted by the muscle is equal to the muscle force multiplied by 

the perpendicular distance from the knee joint axis of rotation to the line of force application 

(leg moment arm). A difference between the knee joint and the crank axis of rotation would 

influence the torque recorded by the dynamometer. The accurate identification of the knee 

joint axis can be achieved only with advanced imaging techniques not easily accessible (e.g. 

real-time X-ray video recordings, Tsaopoulos et al., 2011). For this reason, superficial 

anatomy was used and skin markers were drawn to assist the digitisation process. Although 

skin movement during the contractions may introduce additional error in the alignment of the 

knee joint with the crank, this technique is generally acceptable. While the torque values 

presented in this thesis correspond to the dynamometer recording, great care was taken to 

minimise the error due to misalignment. Specifically, the assumed knee joint centre was 

carefully aligned with the crank rotational axis during isometric contraction (>50% MVF). 

Furthermore, this was done separately for each muscle group, a procedure that to our 

knowledge is novel during isokinetic measurements of the antagonistic knee joint muscles for 
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the calculation of H:Q ratio. In addition, the participants’ torso, pelvis, thigh and lower leg 

were tightly secured to the dynamometer. 

Other factors that can influence the dynamometer torque measurements are the gravity effect 

and the moment of inertia of the crank and leg. The gravity effect has the most significant 

impact on torque measurements, and also influences knee extensor and flexor torque 

recording differently. For knee-joint angles between 90° and 180° (180°= full extension), 

gravity opposes the direction of force application during knee extensions and failing to 

correct for this effect, the knee extensor torque would be underestimated. The opposite is true 

for the knee flexor torque. To account for the effect of gravity, all torque measurements in 

this thesis were gravity corrected. Due to the exclusive use of the torque data within the 

isovelocity region (excluding the acceleration and deceleration phases), the effect of the 

moment of inertia of both the dynamometer crank and the leg were considered to be 

negligible (Herzog, 1988). It must be acknowledged however that a small discrepancy 

between the crank velocity and the leg velocity may have been present (Herzog, 1988). 

For the examination of the knee flexors explosive strength (Chapter 6), a low-compliance 

custom-made dynamometer was used. Similar to isokinetic dynamometer measurements, the 

hip and knee joint angles (140° and 150° respectively) were selected based on their relevance 

to the late swing phase.  
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8.3 STRENGTH BALANCE AROUND THE KNEE JOINT AND 

IMPLICATIONS FOR HAMSTRINGS STRAIN INJURIES 

Chapters 4 and 5 aimed to improve the understanding on the reciprocal strength balance 

around the knee joint and the factors that may influence this balance. Brocket et al. (2004) 

reported that athletes with a history of hamstrings strain injuries exhibited an angle of peak 

torque at more flexed knee joint angles compared to uninjured athletes, whilst there was no 

difference in peak torque H:Q strength ratio. While it is unclear whether the reduced angle of 

peak torque pre-existed or resulted from the injuries, this finding implies that a potentially 

harmful imbalance may be angle-specific and more pronounced at the extended knee joint 

angles. The angle-specific examination of the H:Q ratio of a high-risk cohort of university-

level footballers did not reveal any intrinsic strength imbalance compared to a recreationally 

active control group (Chapter 4). These results imply that football practice and play does not 

lead to potentially hazardous strength imbalances as other studies have suggested (Iga et al., 

2009; Tourny-Chollet and Leroy, 2002). In support to our results, professional football 

players also present higher functional H:Q ratio than lower level players (Fousekis et al., 

2010; Cometti et al., 2001). Nevertheless, hamstrings strains remain one of the most 

prevalent injuries in football. The fact that most hamstrings strains in football occur during 

running or sprinting (Woods et al., 2004) precludes the notion that football-specific activities 

(e.g. kicking, tackling) may explain the high injury rates. It seems that the sprint-specific 

biomechanical conditions can lead to injury. However, exposure alone to these conditions is 

unlikely to be singularly responsible for strain injuries, and more likely it is the summation of 

a number of risk factors combined with the high strains and eccentric forces in sprinting, that 

could lead to an injury. 

The angle-specific functional H:Q ratio in both football players and normal individuals was 

≥1.0 throughout the range of motion at the intermediate and high velocities (Chapter 4). A 

ratio of 1.0, described as point of equality (Coombs et al., 2002), suggests that the knee 

flexors strength is sufficient to counterbalance knee extensor strength. However, there are 

some limitations of the H:Q ratio measurements that should be highlighted. First, functional 

relevance of the angle-specific H:Q ratio would appear to rely on the assumption that the 

hamstrings and quadriceps muscles are active simultaneously at the specified angles, and not 

sequentially active in different phases of the gait cycle. Simulation and EMG studies have 

shown that simultaneous activation of the hamstrings and quadriceps occurs only at the more 
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extended knee joint angles, prior to the ground contact (Chumanov et al., 2007; Thelen et al., 

2005; Kyrolainen et al., 1999). Therefore, at these knee joint angles calculation of an angle-

specific H:Q strength ratio is relevant and informative of the reciprocal strength balance. In 

contrast, at the more flexed joint angles where no simultaneous activation of hamstrings and 

quadriceps occurs, the angle-specific ratio may not be functionally relevant. Another 

limitation of the H:Q ratio is that it assumes that the hamstrings function to counter knee 

extension generated by the quadriceps. However, during the late swing phase the knee 

extension occurs mainly due to the transfer of the angular momentum of the thigh to the 

shank (Yeow, 2013), and only at the more extended knee joint angles do the quadriceps 

actively contribute to the knee extension moment. Essentially, at the beginning of the late 

swing phase the hamstrings are counteracting the preceding hip flexor action (primarily due 

to rectus femoris and iliopsoas activation). Therefore a more complete examination of the 

strength balance, within the context of hamstrings strain injuries, should also account for the 

influence of the hip flexors. The above limitations of the H:Q ratio may explain the mixed 

results in the literature concerning its use as a risk factor for strain injuries. Prospective 

studies that include some measure of hip flexor strength may enhance our understanding of 

the association between strength imbalances and hamstrings strain injuries. 

Despite the extensive use of the H:Q ratio, there has been very little attention on the factors 

that determine this ratio. In contrast to previous investigations (Akagi et al., 2014, 2012), the 

present results showed that the muscle size ratio of the quadriceps and hamstrings contributed 

significantly to their strength ratio (isometric, r= 0.45, P= 0.024; functional 350° s-1, r= 0.56, 

P= 0.003, Chapter 5). In addition, examination of the range of H:Q volume ratio values 

(0.34-0.51) reveals that some individuals had 50% smaller hamstrings relative to quadriceps 

than other individuals. Together these results suggest that within normal, previously 

uninjured individuals some exhibit underlying size and strength imbalances that may 

predispose them to strain injury, and corrective strength training might be expected to 

mitigate this risk.  
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8.4 INFLUENCE OF HAMSTRINGS ANATOMY ON MUSCLE 

FUNCTION, AND POTENTIAL INFLUENCE ON INJURY 

PREDISPOSITION 

The findings in Chapters 5, 6 and 7 highlight the importance of hamstrings muscle size as the 

main anatomical factor that influences knee flexors function in vivo, while muscle 

composition and aponeurosis size do not seem to have a significant influence. 

An interesting finding in Chapter 5 was the differential influence of muscle size on 

hamstrings and quadriceps torque during different types of contractions and especially 

eccentric strength. Hamstrings muscle size explained ~50% (48-58%) of the interindividual 

differences in knee flexor eccentric strength, but quadriceps size did not influence knee 

extensors eccentric strength. This finding implies a much smaller influence of morphological 

factors on eccentric quadriceps strength and may suggest a greater influence of neural factors, 

compared to knee flexors. In this case neural inhibition could limit the eccentric activation of 

the quadriceps and effective utilisation of the available muscle mass. This suggestion is in 

contrast to previous studies where no difference in eccentric torque relative to isometric was 

found between the knee extensors and flexors (Pain et al., 2013). However, the smaller 

sample size examined in that study (n= 15), and the fact that their data for knee flexor were 

‘noticeably noisier’ compared to the extensors may have influenced their results. Direct 

examination of the hypothesis for a differential influence of neural inhibition on knee 

extensors and flexors eccentric strength would provide valuable information on muscle 

function of the main muscle groups around the knee joint. However, it is methodologically 

challenging as direct stimulation of hamstrings through the sciatic nerve is prevented by the 

overlying gluteus maximus muscle, while transcutaneous stimulation induces high discomfort 

at relatively low levels of stimulation (Pain et al., 2013). 

Chapter 6 provided some novel data on hamstrings MHC composition and revealed that in a 

relatively large, young population the BFlh muscle composition does not seem to be a likely 

explanation for the high rate of strain injuries in this muscle. In the literature, muscle 

composition has been speculated to be an explanation for the common incidence of 

hamstrings strain injury (Noonan and Garret, 1999; Garret et al., 1990, 1984), but there is no 

direct evidence to support these speculations. These speculations were largely based on an 

early examination of the hamstrings muscle composition in a small number of elderly 
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cadavers (n= 10, Garret et al., 1984). In that study, the total hamstrings (44.8% type I and 

55.2% type II fibres) and BFlh muscle composition (45.5% type I and 54.5% type II fibres) 

reported were very similar to the current study (47.1 ± 9.1% MHC-I and 52.9 ± 9.1% total 

MHC-II). However, based on small differences compared to other muscles (quadriceps, 

51.9%; adductor magnus, 44.8% type II fibres) Garrett et al. (1984) argued that the ‘high 

proportion’ of fast fibres in the hamstrings compared to these other leg muscles may 

contribute to their susceptibility to injury. Yet, their claim is not supported by the existing 

data on in vivo muscle composition of the thigh muscles. Specifically, within a large cohort 

of physically active young men (n= 95) the VL muscle was found to contain a greater 

proportion of MHC-II isoform (66.1% total MHC-II, Staron et al., 2000) compared to the 

BFlh in our cohort. Yet, the vastus lateralis does not exhibit high strain injury rates. 

Consequently, the composition of the BFlh does not seem to explain the high incidence of 

strain injuries within this muscle compared to other muscles. Nevertheless, it must be 

acknowledged that on an individual basis, a high proportion of MCH-II isoform could still be 

a risk factor for hamstrings strain injuries. In the current study, some individuals exhibited 

>65% of total type II fibres and they may be more susceptible to strain injuries. Future 

investigations are needed to elucidate any direct relationship between muscle composition 

and risk for strain injury. 

Chapter 6 also showed that BFlh muscle composition does not influence knee flexor maximal 

or explosive strength. Whilst no other data on in vivo hamstrings MHC or fibre type 

composition exist, these findings are in contrast to a number of studies reporting a significant 

influence for quadriceps (e.g. Gür et al., 2003; Aagaard & Andersen, 1998). This discrepancy 

can be largely explained by the examination of diverse athletic and training populations (Gür 

et al., 2003) or small cohorts (Aagaard & Andersen, 1998) in these previous investigations. 

The selection of individuals that were not involved in structured, systematic training in the 

current study is likely to have reduced the variability in other neuromuscular variables such 

as muscle size, architecture and neural drive that may confound the relationship between 

strength and muscle composition. 

An expected relationship between the size of the force generator (muscle) and the force 

transmitters (tendon and aponeurosis) was not confirmed for the BFlh MTU, and some 

important implications arise from these findings. Chapter 7 showed that the BFlh proximal 

aponeurosis size is highly variable between healthy individuals (up to 4-fold in the studied 

cohort), and some individuals have a disproportionally small aponeurosis relative to muscle 
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size, manifested by a low aponeurosis:muscle area ratio. These individuals would be expected 

to experience greater mechanical strains along the aponeurosis and potentially a greater risk 

of strain injury. Previous modelling and dynamic imaging studies support this suggestion as 

they have calculated increased strains in individuals with small proximal aponeurosis size 

(Fiorentino et al., 2012; Rehorn and Blemker, 2010). However, these studies based their 

calculations on a crude measurement of aponeurosis width (using a single MR image at an 

arbitrary point) that did not fully reflect the extent of the aponeurosis size variability. In 

contrast, the methods applied in the current study involved the delineation of the proximal 

aponeurosis-muscle contact interface distance in all images that the aponeurosis could be 

identified. In addition, this measurement included a previously observed (Fiorentino et al., 

2012) but not quantified portion of the aponeurosis that extends into the muscle belly and 

forms a significant part of the total aponeurosis area in some individuals. It must be noted 

that the proximal aponeurosis presents a complex morphology and in some individuals it was 

difficult to accurately distinguish the aponeurosis from other structures (e.g. epimysium). 

Therefore, higher resolution MR images (e.g. 3T) are recommended for future work to 

minimise these limitations. 

The results of a previous study on quadriceps imply that aponeurosis size may adapt in 

response to training load (Abe et al., 2012). Indeed, Wakahara et al. (2015) reported a small 

increase in vastus lateralis aponeurosis width (1.9%, P= 0.050) after 12 weeks of resistance 

training. However, the small training cohort (n= 11), the applied statistical methods (paired t-

tests with no correction for multiple tests) and the borderline P-value suggest that their 

findings should be treated with caution. Nevertheless, the notion that strength training may 

increase the aponeurosis area has significant implications as individuals with a small 

aponeurosis relative to their BFlh muscle size may be able to increase their aponeurosis size 

and reduce the mechanical strains therein. This could be a powerful injury prevention tool 

that could be put in place prior to strain injury occurrence in at-risk individuals. Clearly, 

future studies should further examine the effect of strength training on aponeurosis size.  
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8.5 FUTURE RESEARCH 

Following the findings in the present thesis, promising areas for further research on muscle 

function and hamstrings strain injury prevention have been revealed. Future research could: 

1. Examine prospectively the changes in angle-specific and peak torque H:Q ratio in 

response to football practice. 

2. Assess the hip and knee joint function and strength balance, and potential 

combinations to better understand the function of these muscles. 

3. A prospective study of muscle strength and balance as risk factors for hamstrings 

strain injury that includes the hip flexors, in addition to the knee extensors and 

flexors, would greatly enhance our understanding of the role of strength imbalances in 

hamstrings strains. 

4. Explore further the neuromuscular factors that contribute to the different relative 

eccentric strength of the knee extensors and flexors. A possible muscle-specific neural 

inhibition warrants further investigation. Development of an appropriate methodology 

for hamstrings electrical stimulation may be required. 

5. Examine the relationship between BFlh muscle composition and the incidence of 

strain injuries prospectively in high-risk athletic populations. 

6. Investigate prospectively the aponeurosis area relative to muscle size and strength and 

record which athletes go on to suffer a strain injury. Also, further investigations could 

explore the effect of strength training on BFlh proximal aponeurosis size. 
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9 APPENDICES 

9.1 APPENDIX A – ISOKINETIC DYNAMOMETRY 

9.1.1 Position and stabilisation 

The participants were seated on the dynamometer chair with a hip angle of 120° (180°= full 

extension). This hip angle was selected because of its relevance to high injury risk situations 

i.e. similar to the hip angle during late swing phase in sprinting (Guex et al., 2012) when 

hamstrings strains are thought to occur. While this hip joint angle is more ecologically valid 

compared to the hip angle typically used in isokinetic dynamometer testing of the knee joint 

muscles (95°-105°, Fig. 9.1), the more extended hip joint resulted in an increased difficulty to 

stabilise the hip joint during contractions. To minimise any excessive hip joint movement, a 

strap was placed across the pelvis, on the anterior superior iliac spine, that was in addition to 

the two 3-point built-in straps across the torso and pelvis. Care was taken not to cause any 

posterior pelvis tilt with the additional pelvis strap. 

 

Figure 9.1. Hip joint angle of A) 120° (180°= full extension) replicating the late swing phase 

of sprinting and adopted in this thesis) and B) 95° which is typically used in knee joint 

isokinetic dynamometry testing. 

To ensure maximal stabilisation of the participants, the distal thigh was also secured with a 

10-cm wide velcro strap while a brace was placed in front of the non-involved leg. Finally, 

participants were instructed to grasp the handles next to the seat during maximal contractions. 
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The dynamometer’s shin brace was placed ~2 cm above the medial malleolus, anterior to the 

shank for knee extension contractions and posterior for knee flexion contractions, prior to the 

shank being tightly secured to the dynamometer lever arm. During the knee extension 

contractions, an additional moulded rigid plastic shin pad, lined with 2 mm of high density 

foam, was tightly secured to the tibia to avoid any discomfort to the shin during maximum 

contractions. 

9.1.2 Knee joint alignment and gravity correction 

The alignment of the knee joint with the dynamometer rotational axis during active muscle 

contractions was done separately for knee extension and flexion contractions. Specifically, in 

each case the alignment was done during isometric contractions of >50% MVF at a knee joint 

angle of ~115°. 

The range of motion was established and anatomical zero was set at the most (passively) 

extended position where participants felt comfortable and without excessive stretch of their 

hamstrings. Passive torque measurements were recorded while the tested leg was passively 

moved through the full range of motion and thereafter active torque values were corrected for 

passive torque by the dynamometer software. Standardized verbal encouragement was given 

by the same investigator and online visual feedback of the crank torque was provided on a 

computer screen. 

9.1.3 Ankle-joint position during knee flexion contractions 

Gastrocnemius, due to its action at the knee joint as knee flexor, may influence the recorded 

torque during the isovelocity contractions. Therefore, the ankle-joint position during knee 

flexion contractions was consistent between participants. During pilot testing, it was observed 

that most participants preferred to maintain a dorsiflexed ankle joint during knee flexion 

contractions. Therefore, all individuals were instructed to maintain a dorsiflexed ankle joint 

during maximal knee flexion contractions (Fig 9.2). 



Appendix A 

133 

 

Figure 9.2. Example of the ankle-joint position during maximal knee flexion contraction. 

Participants were instructed to maintain a dorsiflexed ankle joint in order to control for the 

contribution of gastrocnemius to the knee flexor torque. 

9.1.4 Isovelocity range identification 

The acceleration and deceleration phases were excluded in order to disregard torque 

overshoot during these phases (Schwartz et al., 2010) and the constant isovelocity period 

(within ±10% (for Chapters 3 and 4) or ±5% (for Chapters 5-7) of the prescribed crank 

angular velocity) was identified (Fig.9.3-9.4). 
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Figure 9.3. Example of the torque (blue), crank velocity (green) and crank angle (red) raw 

data during knee extensors concentric (Con) and eccentric (Ecc) isokinetic contractions at 60, 

240 and 400° s-1. The isovelocity data within ±10% of the prescribed crank velocity was 

identified by removing the acceleration and deceleration phases (grey areas). 
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Figure 9.4. Example of the torque (blue), crank velocity (green) and crank angle (red) raw 

data during knee flexors concentric (Con) and eccentric (Ecc) isokinetic contractions at 60, 

240 and 400° s-1. The isovelocity data within ±10% of the prescribed crank velocity was 

identified by removing the acceleration and deceleration phases (grey areas). 

9.1.5 Angle-specific torque 

In Chapters 3 and 4, the angle-specific torque was calculated. For the isometric contractions 

(Chapter 3), this was done by smoothing torque-knee joint angle data for each muscle group 

by performing 2nd order polynomial fitting to the raw torque values. Then the polynomial fit 
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was used to interpolate torque values for knee joint angles at 105, 120, 135, 150 and 165°. 

For the concentric and eccentric contractions (Chapter 4), the isovelocity torque-knee joint 

angle data at each velocity, for each muscle group was smoothed by performing Gaussian 

fitting (Forrester et al., 2011) using a root mean square method to minimise the error to the 

raw torque values (Fig. 9.5-9.6, Matlab, The Mathworks, Inc., Natick, MA, USA). Then the 

Gaussian fit was used to interpolate torque values for knee joint angles every 5° over the 

relevant isovelocity range for each angular velocity: 100-160° for 60° s-1; 105-160° for 240° 

s-1; and 115-145° for 400° s-1. Data from contractions in which participants failed to 

maximally activate the examined muscle group throughout the range of motion were 

discarded.

 
Figure 9.5. Example of Gaussian fitting on raw knee extensor concentric (Con) and eccentric 

(Ecc) isovelocity strength data at 60, 240 and 400° s-1. 
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Figure 9.6. Example of Gaussian fitting on raw knee flexor concentric (Con) and eccentric 

(Ecc) isovelocity strength data at 60, 240 and 400° s-1. 
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9.2 APPENDIX B – FORCE SIGNAL FILTERING 

9.2.1 Explosive isometric contractions 

The force signal was filtered with a 4th order Butterworth filter with a low pass cut-off 

frequency of 500 Hz. The frequencies <500 Hz were used as a reference envelope for 

detecting the force onset during the explosive contractions (Fig 9.7). A lower frequency filter 

would transform the signal into a gradually rising asymptotic curve, and therefore the sudden 

transition from rest to force production would be removed resulting in subjective and 

unreliable recognition of the force onset (Tillin et al., 2013). 

 

Figure 9.7. The force signal during knee flexors explosive isometric contractions was filtered 

with a 4th order Butterworth filter with a low pass cut-off filter of 500 Hz (A). The inclusion 

of frequencies up to 500 Hz provided a reference envelope that facilitated the accurate and 

reliable identification of the force onset. In contrast, application of a low frequency 

smoothing filter (e.g. 100-point moving average, B) would result in an asymptotic curve, 

making the identification subjective and unreliable (adapted from Tillin et al., 2013). 
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9.3  APPENDIX C – MAGNETIC RESONANCE IMAGING 

9.3.1 Scanning parameters 

A 1.5 T MRI scanner (Signa HDxt, GE) was used to scan the dominant leg in the supine 

position with the hip and knee joints extended. T1-weighted axial plane images were acquired 

from the anterior superior iliac spine to the knee joint space in two blocks and oil filled 

capsules were placed on the lateral side of the participants’ thigh to help with the alignment 

of the blocks during analysis. The following imaging parameters were used: imaging matrix: 

512 x 512, field of view: 260 mm x 260 mm, spatial resolution: 0.508 mm x 0.508 mm, slice 

thickness: 5 mm, inter-slice gap: 0 mm. MR images were analysed with Osirix software 

(version 4.0, Pixmeo, Geneva, Switzerland). 

9.3.2 MR images analysis 

9.3.2.1 Muscle anatomical cross-sectional area and volume 

MR images were analysed with Osirix software (version 4.0, Pixmeo, Geneva, Switzerland). 

The hamstrings (biceps femoris long head, biceps femoris short head, semitendinosus, 

semimembranosus) and quadriceps (rectus femoris, vastus lateralis, vastus medialis, vastus 

intermedius) muscles were manually outlined in every third image starting from the most 

proximal image in which the muscle appeared (Fig. 9.8). The largest anatomical cross-

sectional area of each muscle was defined as ACSAmax and muscle volume was calculated 

using cubic spline interpolation to interpolate the CSA between the analysed images (Fig. 9.9, 

GraphPad Prism 6, GraphPad Software, Inc.). Two investigators conducted the image 

analysis and all manual segmentation measurements of each muscle were completed by the 

same investigator. To examine the reliability of the analysis procedures, the images from 6 

randomly selected participants were re-analysed a week later and the coefficient of variation 

(CV) was calculated. The CVs for measurements of muscle volume and ACSAmax were 

0.5% and 1.2% (quadriceps), and 0.5% and 1.1% (hamstrings). 

To validate the use of every third image for the volume calculations, all images from six 

randomly selected participants were analysed and the two methods (all images vs. every third 

image) were compared. The average difference between methods was 1.52% (0.22 cm2) for 

BFlh ACSAmax, 1.60% (0.20 cm2) for total hamstrings ACSAmax, 0.30% (0.66 cm3) for 

BFlh volume and 0.18% (1.52 cm3) for total hamstrings muscle volume. 
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Figure 9.8. A-D) Example of (left) hamstrings muscles (biceps femoris long head (red), 

biceps femoris short head (orange), semitendinosus (yellow), semimembranosus (green)) 

segmentation in magnetic resonance images at 20, 40, 60 and 80% of hamstrings length 

(defined as the distance from the most proximal to the most distal image in which hamstrings 

were identified). E) Three-dimensional reconstruction of the hamstrings muscles (posterior 

view of the left leg). 
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Figure 9.9. Example of hamstrings muscle volume calculation. Cubic spine interpolation was 

used to interpolate the muscle cross-sectional area (CSA) between the analysed magnetic 

resonance images and volume was calculated as the area under curve (grey area). BFlh: 

biceps femoris long head, BFsh: biceps femoris short head, ST: semitendinosus, SM: 

semimembranosus. 
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9.3.2.2 BFlh proximal aponeurosis area and BFlh/ST proximal tendon CSA 

BFlh aponeurosis area was defined as the contact interface distance between the BFlh muscle 

and the proximal aponeurosis outlined in each image where the aponeurosis was identifiable, 

multiplied by the slice thickness (Fig. 9.10). The contact interface distance in each slice 

included both the internal and external aponeurosis. The BFlh aponeurosis:muscle area ratio 

was calculated by dividing the BFlh proximal aponeurosis area by the BFlh muscle 

ACSAmax (see above). 

 

Figure 9.10. Example of biceps femoris long head (right) proximal muscle-aponeurosis 

contact interface distance delineation at 20, 40, 60 and 80% of proximal aponeurosis length. 
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In order to produce average muscle-aponeurosis contact interface distance data for the cohort, 

individual values were normalised to muscle length (Fig 9.11). This involved interpolation of 

individual muscle-aponeurosis contact interface data every 5% of muscle length. BFlh 

aponeurosis length was calculated as the sum of the slices where the aponeurosis was 

identifiable, multiplied by the slice thickness. BFlh muscle length was calculated as the sum 

of all images where the muscle appeared multiplied by the slice thickness. 

BFlh/ST proximal tendon CSA was measured in the image immediately before the first 

image in which the ST muscle appeared (Fig 9.12). 

All manual segmentation measurements were completed by the same investigator. To 

examine reliability of the analysis procedures, the images from 6 randomly selected 

participants were re-analysed a week later. The CV was on average 4.0% for the aponeurosis 

contact area and 5.5% for the BFlh/ST proximal tendon CSA. 

 
Figure 9.11. Muscle-aponeurosis contact interface distance along the length of the BFlh 

muscle (interpolated data every 5% of muscle length). Data presented as group mean + SD. 
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Figure 9.12. Example MR image of the BFlh/ST proximal tendon CSA. 



 

145 
 

 

 

 

 

 
 

References 

  



References 

146 

10 REFERENCES 

Aagaard P & Andersen JL. (1998). Correlation between contractile strength and myosin 
heavy chain isoform composition in human skeletal muscle. Medicine and Science in 
Sports and Exercise, 30(8), 1217-1222. 

Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, 
Halkjaer-Kristensen J, & Simonsen EB. (2001). A mechanism for increased contractile 
strength of human pennate muscle in response to strength training: changes in muscle 
architecture. The Journal of Physiology, 534, 613-623. 

Aagaard P, Simonsen EB, Andersen JL, Magnusson P, & Dyhre-Poulsen P. (2002). Increased 
rate of force development and neural drive of human skeletal muscle following resistance 
training. Journal of Applied Physiology, 93(4), 1318-1326. 

Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Bojsen-Møller F, & Dyhre-Poulsen 
P. (2000). Antagonist muscle coactivation during isokinetic knee extension. Scandinavian 
Journal of Medicine and Science in Sports, 10(2), 58-67. 

Aagaard P, Simonsen EB, Magnusson SP, Larsson B, & Dyhre-Poulsen P. (1998). A new 
concept for isokinetic hamstring: quadriceps muscle strength ratio. The American Journal 
of Sports Medicine, 26(2), 231-237. 

Aagaard P, Simonsen EB, Trolle M, Bangsbo J, & Klausen, K. (1995). Isokinetic 
hamstring/quadriceps strength ratio: influence from joint angular velocity, gravity 
correction and contraction mode. Acta Physiologica Scandinavica, 154(4), 421–427. 

Abe T, Fukashiro S, Harada Y, & Kawamoto K. (2001). Relationship between sprint 
performance and muscle fascicle length in female sprinters. Journal of Physiological 
Anthropology and Applied Human Science, 20(2), 141-147. 

Abe T, Kumagai K, & Bemben MG. (2012). Muscle aponeurosis area in hypertrophied and 
normal muscle. Journal of Trainology, 1(2), 23–27. 

Abe T, Kumagai K, & Brechue WF. (2000). Fascicle length of leg muscles is greater in 
sprinters than distance runners. Medicine and Science in Sports and Exercise, 32(6), 
1125-1129. 

Akagi R, Tohdoh Y, & Takahashi H. (2012). Muscle strength and size balances between 
reciprocal muscle groups in the thigh and lower leg for young men. International Journal 
of Sports Medicine, 33(5), 386-389.  

Akagi R, Tohdoh Y, & Takahashi H. (2014). Strength and size ratios between reciprocal 
muscle groups in the thigh and lower leg of male collegiate soccer players. Clinical 
Physiology and Functional Imaging, 34(2), 121-125. 

Akagi, R, Takai, Y, Kato, E, Fukuda, M, Wakahara, T, Ohta, M, Kanehisa, H, Kawakami, Y, 
& Fukunaga, T. (2009). Relationships between muscle strength and indices of muscle 
cross-sectional area determined during maximal voluntary contraction in middle-aged and 
elderly individuals. Journal of Strength and Conditioning Research, 23(4), 1258-1262. 



References 

147 

Alexander R McN & Vernon A. (1975). The dimensions of knee and ankle muscles and the 
forces they exert. Journal of Human Movement Studies, 1, 115-123. 

Alonso JM, Edouard P, Fischetto G, Adams B, Depiesse F, & Mountjoy M. (2012). 
Determination of future prevention strategies in elite track and field: analysis of Daegu 
2011 IAAF Championships injuries and illnesses surveillance. British Journal of Sports 
Medicine, 46(7), 505-514. 

American College of Sports Medicine. Position stand (2011). Quantity and quality of 
exercise for developing and maintaining cardiorespiratory, musculoskeletal, and 
neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. 
Medicine and Science in Sports and Exercise, 43, 1334-1359. 

Amiridis IG, Martin A, Morlon B, Martin L, Cometti G, Pousson M, & van Hoecke J. 
(1996). Co-activation and tension-regulating phenomena during isokinetic knee extension 
in sedentary and highly skilled humans. European Journal of Applied Physiology, 73(1-
2), 149-156. 

Andersen LL & Aagaard P. (2006). Influence of maximal muscle strength and intrinsic 
muscle contractile properties on contractile rate of force development. European Journal 
of Applied Physiology, 96(1), 46-52. 

Arampatzis A, Karamanidis K, De Monte G, Stafilidis S, Morey-Klapsing G, & Brüggemann 
GP. (2004). Differences between measured and resultant joint moments during voluntary 
and artificially elicited isometric knee extension contractions. Clinical Biomechanics, 
19(3), 277-83. 

Arnason A, Sigurdsson BS, Gudmundsson A, Holme I, Engebretsen L, & Bahr R. (2004). 
Risk factors for injuries in football. The American Journal of Sports Medicine, 32(1 
Suppl.), 5S–16S. 

Askling C, Saartok T, & Thorstensson A. (2006). Type of acute hamstring strain affects 
flexibility, strength, and time to return to pre-injury level. British Journal of Sports 
Medicine, 40(1), 40-4. 

Askling C, Tengvar M, Saartok T, & Thorstensson A. (2000). Sports related hamstring 
strains--two cases with different etiologies and injury sites. Scandinavian Journal of 
Medicine and Science in Sports, 10(5), 304-307. 

Askling CM, Tengvar M, & Thorstensson A. (2013). Acute hamstring injuries in Swedish 
elite football: a prospective randomised controlled clinical trial comparing two 
rehabilitation protocols. British Journal of Sports Medicine, 47(15), 953-9. 

Askling CM, Tengvar M, Saartok T, & Thorstensson A. (2007). Acute first-time hamstring 
strains during high-speed running: a longitudinal study including clinical and magnetic 
resonance imaging findings. The American Journal of Sports Medicine, 35(2), 197-206. 

Ayala F, De Ste Croix M, Sainz de Baranda P, & Santonja F. (2012). Absolute reliability of 
hamstring to quadriceps strength imbalance ratios calculated using peak torque, joint 
angle-specific torque and joint ROM-specific torque values. International Journal of 
Sports Medicine, 33(11), 909-916. 



References 

148 

Ayala F, De Ste Croix M, Sainz de Baranda P, & Santonja F. (2013). Absolute reliability of 
isokinetic knee flexion and extension measurements adopting a prone position. Clinical 
Physiology and Functional Imaging, 33(1), 45-54. 

Azizi E, Halenda GM, & Roberts TJ. (2009). Mechanical properties of the gastrocnemius 
aponeurosis in wild turkeys. Integrative and Comparative Biology, 49(1), 51-58. 

Bahr R & Holme I. (2003). Risk factors for sports injuries--a methodological approach. 
British Journal of Sports Medicine, 37(5), 384-392. 

Baltzopoulos B, King M, Gleeson N, & De Ste Croix M. (2012). The BASES expert 
statement on measurement of muscle strength with isokinetic dynamometry. The Sport 
and Exercise Scientist, 31, 12-13. 

Bamman MM, Newcomer BR, Larson-Meyer DE, Weinsier RL, & Hunter GR. (2000). 
Evaluation of the strength-size relationship in vivo using various muscle size indices. 
Medicine and Science in Sports and Exercise, 32(7), 1307-1313. 

Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, & D'Ambrosia R. (1988). 
Muscular coactivation. The role of the antagonist musculature in maintaining knee 
stability. The American Journal of Sports Medicine, 16(2), 113-122. 

Battermann N, Appell HJ, Dargel J, & Koebke J. (2011). An anatomical study of the 
proximal hamstring muscle complex to elucidate muscle strains in this region. 
International Journal of Sports Medicine, 32(3), 211-215. 

Baxter JR & Piazza SJ. (2014). Plantar flexor moment arm and muscle volume predict 
torque-generating capacity in young men. Journal of Applied Physiology, 116, 538–544. 

Becker R & Awiszus F. (2001). Physiological alterations of maximal voluntary quadriceps 
activation by changes of knee joint angle. Muscle & Nerve, 24(5), 667-672. 

Bennell K, Wajswelner H, Lew P, Schall-Riaucour A, Leslie S, Plant D, & Cirone J. (1998). 
Isokinetic strength testing does not predict hamstring injury in Australian Rules 
footballers. British Journal of Sports Medicine, 32, 309–314. 

Biewener AA. (2005). Biomechanical consequences of scaling. Journal of Experimental 
Biology, 208, 1665-1676. 

Blazevich AJ, Coleman DR, Horne S, & Cannavan D. (2009). Anatomical predictors of 
maximum isometric and concentric knee extensor moment. European Journal of Applied 
Physiology, 105(6), 869-878. 

Blazevich AJ, Gill ND, Zhou S. (2006). Intra- and intermuscular variation in human 
quadriceps femoris architecture assessed in vivo. Journal of Anatomy, 209(3), 289-310. 

Bojsen-Møller J, Magnusson SP, Rasmussen LR, Kjaer M, & Aagaard P. (2005). Muscle 
performance during maximal isometric and dynamic contractions is influenced by the 
stiffness of the tendinous structures. Journal of Applied Physiology, 99(3), 986-994. 

Bottinelli R & Reggiani C. (2000). Human skeletal muscle fibres: molecular and functional 
diversity. Progress in Biophysics and Molecular Biology, 73(2-4), 195-262. 



References 

149 

Bottinelli R, Canepari M, Pellegrino MA, & Reggiani C. (1996). Force-velocity properties of 
human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. 
The Journal of Physiology, 495, 573-586. 

Bottinelli R, Pellegrino MA, Canepari M, Rossi R, & Reggiani C. (1999). Specific 
contributions of various muscle fibre types to human muscle performance: an in vitro 
study. Journal of Electromyography and Kinesiology, 9(2), 87-95. 

Bradley PS & Portas MD. (2007). The relationship between preseason range of motion and 
muscle strain injury in elite soccer players. Journal of Strength and Conditioning 
Research, 21(4), 1155-1159. 

Brockett CL, Morgan DL, & Proske U. (2004). Predicting hamstring strain injury in elite 
athletes. Medicine and Science in Sports and Exercise. 36(3), 379-387. 

Brockett CL, Morgan DL, Proske U. (2001). Human hamstring muscles adapt to eccentric 
exercise by changing optimum length. Medicine and Science in Sports and Exercise, 
33(5), 783-790. 

Brooks JH, Fuller CW, Kemp SP, & Reddin DB. (2006). Incidence, risk, and prevention of 
hamstring muscle injuries in professional rugby union. The American Journal of Sports 
Medicine, 34(8), 1297-1306. 

Byram IR, Bushnell BD, Dugger K, Charron K, Harrell FE Jr, & Noonan TJ. (2010). 
Preseason shoulder strength measurements in professional baseball pitchers:identifying 
players at risk for injury. The American Journal of Sports Medicine, 38(7), 1375-1382. 

Caruso JF, Brown LE, & Tufano JJ. (2012). The reproducibility of isokinetic dynamometry 
data. Isokinetics and Exercise Science, 20, 239-253. 

Carvalho HM, Coelho-e-Silva M, Valente-dos-Santos J, Gonçalves RS, Philippaerts R, 
Malina R. (2012). Scaling lower-limb isokinetic strength for biological maturation and 
body size in adolescent basketball players. European Journal of Applied Physiology, 
112(8), 2881-2889. 

Chapra SC. (2008). Applied numerical methods with MATLAB for engineers and scientists. 
2nd ed. McGraw-Hill. 

Chleboun GS, France AR, Crill MT, Braddock HK, & Howell JN. (2001). In vivo 
measurement of fascicle length and pennation angle of the human biceps femoris muscle. 
Cells, Tissues, Organs, 169(4), 401-409. 

Chumanov ES, Heiderscheit BC, & Thelen DG. (2011). Hamstring musculotendon dynamics 
during stance and swing phases of high-speed running. Medicine and Science in Sports 
and Exercise, 43(3), 525-532. 

Chumanov ES, Heiderscheit BC, Thelen DG. (2007). The effect of speed and influence of 
individual muscles on hamstring mechanics during the swing phase of sprinting. Journal 
of Biomechanics, 40(16), 3555-3562. 

Chumanov ES, Schache AG, Heiderscheit BC, & Thelen DG. (2012). Hamstrings are most 
susceptible to injury during the late swing phase of sprinting. British Journal of Sports 
Medicine, 46(2), 90. 



References 

150 

Cometti G, Maffiuletti N A, Pousson M, Chatard J-C, & Maffulli N. (2001). Isokinetic 
strength and anaerobic power of elite, subelite and amateur French soccer players. 
International Journal of Sports Medicine, 22(1), 45–51. 

Coombs R & Garbutt G. (2002). Developments in the use of the hamstring/quadriceps ratio 
for the assessment of muscle balance. Journal of Sports Science and Medicine, 1(3), 56-
62. 

Craig CL, Marshall AL., Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M., 
Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical activity 
questionnaire: 12-country reliability and validity. Medicine and Science in Sports and 
Exercise, 35(8), 1381-1395. 

Croisier J, Forthomme B, Namurois M-H, Vanderthommen M, & Criellaard J-M. (2002). 
Hamstring muscle strain recurrence and strength performance disorders. The American 
Journal of Sports Medicine, 30(2), 199–203. 

Croisier JL & Crielaard JM. (2000). Hamstring muscle tear with recurrent complaints: An 
isokinetic profile. Isokinetics and Exercise Science, 8(3), 175-180. 

Croisier JL, Ganteaume S, Binet J, Genty M, & Ferret J-M. (2008). Strength imbalances and 
prevention of hamstring injury in professional soccer players: a prospective study. The 
American Journal of Sports Medicine, 36(8), 1469–1475. 

Croisier JL. (2004). Factors associated with recurrent hamstring injuries. Sports Medicine, 
34(10), 681-695. 

Dahmane R, Djordjevic S, & Smerdu V. (2006). Adaptive potential of human biceps femoris 
muscle demonstrated by histochemical, immunohistochemical and mechanomyographical 
methods. Medical and Biological Engineering and Computing, 44(11), 999-1006. 

Dallinga JM, Benjaminse A, & Lemmink KA. (2012). Which screening tools can predict 
injury to the lower extremities in team sports?: a systematic review. Sports Medicine, 
42(9), 791-815. 

de Carvalho Froufe Andrade AC, Caserotti P, de Carvalho CM, de Azevedo Abade EA, & da 
Eira Sampaio AJ. (2013). Reliability of concentric, eccentric and isometric knee 
extension and flexion when using the REV9000 isokinetic dynamometer. Journal of 
Human Kinetics, 37, 47-53. 

de Ruiter CJ, Kooistra RD, Paalman MI, & de Haan A. (2004). Initial phase of maximal 
voluntary and electrically stimulated knee extension torque development at different knee 
angles. Journal of Applied Physiology, 97(5), 1693-1701. 

de Ruiter CJ, Van Leeuwen D, Heijblom A, Bobbert MF, & de Haan A. (2006). Fast 
unilateral isometric knee extension torque development and bilateral jump height. 
Medicine and Science in Sports and Exercise, 38(10), 1843-1852. 

de Ruiter CJ, Vermeulen G, Toussaint HM, & de Haan A. (2007). Isometric knee-extensor 
torque development and jump height in volleyball players. Medicine and Science in 
Sports and Exercise, 39(8), 1336-1346. 



References 

151 

De Smet AA & Best TM. (2000). MR imaging of the distribution and location of acute 
hamstring injuries in athletes. AJR American Journal of Roentgenology, 174(2), 393-399. 

Delextrat A, Gregory J, & Cohen D. (2010). The use of the functional H:Q ratio to assess 
fatigue in soccer. International Journal of Sports Medicine, 31, 192–197. 

Duchateau J & Baudry S. (2014). Insights into the neural control of eccentric contractions. 
Journal of Applied Physiology, 116(11), 1418-1425. 

Dudley GA, Harris RT, Duvoisin MR, Hather BM, & Buchanan P. (1990). Effect of 
voluntary vs. artificial activation on the relationship of muscle torque to speed. Journal of 
Applied Physiology, 69(6), 2215-2221. 

Dvir Z, Eger G, Halperin N, & Shklar A. (1989). Thigh muscle activity and anterior cruciate 
ligament insufficiency. Clinical Biomechanics, 4(2), 87-91. 

Edgerton VR, Smith JL, & Simpson DR. (1975). Muscle fibre type populations of human leg 
muscles. Histochemichal Journal, 7(3), 259-266. 

Ekstrand J, Hägglund M, & Waldén M. (2011a). Injury incidence and injury patterns in 
professional football: the UEFA injury study. British Journal of Sports Medicine, 45(7), 
553-558. 

Ekstrand J, Hägglund M, & Waldén M. (2011b). Epidemiology of muscle injuries in 
professional football (soccer). The American Journal of Sports Medicine, 39(6), 1226-
1232. 

Elder GC, Bradbury K, & Roberts R. (1982). Variability of fiber type distributions within 
human muscles. Journal of Applied Physiology, 53(6), 1473-1480. 

Elliott MC, Zarins B, Powell JW, & Kenyon CD. (2011). Hamstring muscle strains in 
professional football players: a 10-year review. The American Journal of Sports 
Medicine, 39(4), 843-850. 

Engebretsen AH, Myklebust G, Holme I, Engebretsen L, & Bahr R. (2010). Intrinsic risk 
factors for hamstring injuries among male soccer players: a prospective cohort study. The 
American Journal of Sports Medicine, 38(6), 1147–1153. 

Enoka RM. (2002). Neuromechanics of human movement. 3rd ed. Campaign, IL: Human 
Kinetics. 

Ergün M, Işlegen C, & Taşkiran E. (2004). A cross-sectional analysis of sagittal knee laxity 
and isokinetic muscle strength in soccer players. International Journal of Sports 
Medicine, 25(8), 594–598. 

Erskine RM, Fletcher G, & Folland JP. (2014). The contribution of muscle hypertrophy to 
strength changes following resistance training. European Journal of Applied Physiology, 
114(6), 1239-1249. 

Evangelidis PE, Massey GJ, Pain MT, & Folland JP. (2014). Biceps femoris aponeurosis 
size: A potential risk factor for strain injury? Medicine and Science in Sports and 
Exercise, (Ahead of print), doi: 10.1249/mss.0000000000000550. 



References 

152 

Fauteck SP & Kandarian SC. (1995). Sensitive detection of myosin heavy chain composition 
in skeletal muscle under different loading conditions. The American Journal of 
Physiology, 268, 419-424. 

Fiorentino NM & Blemker SS. (2014a). Musculotendon variability influences tissue strains 
experienced by the biceps femoris long head muscle during high-speed running. Journal 
of Biomechanics, 47(13), 3325-3333. 

Fiorentino NM, Epstein FH, & Blemker SS. (2012). Activation and aponeurosis morphology 
affect in vivo muscle tissue strains near the myotendinous junction. Journal of 
Biomechanics, 45(4), 647-652. 

Fiorentino NM, Rehorn MR, Chumanov ES, Thelen DG, & Blemker SS. (2014b). 
Computational models predict larger muscle tissue strains at faster sprinting speeds. 
Medicine and Science in Sports and Exercise, 46(4), 776-786. 

Folland JP & Williams AG. (2007). The adaptations to strength training: morphological and 
neurological contributions to increased strength. Sports Medicine, 37(2), 145-168. 

Folland JP, Buckthorpe MW, & Hannah R. (2014). Human capacity for explosive force 
production: Neural and contractile determinants, Scandinavian Journal of Medicine and 
Science in Sports, 24(6), 894-906. 

Folland JP, Mc Cauley TM, & Williams AG. (2008). Allometric scaling of strength 
measurements to body size. European Journal of Applied Physiology. 102(6), 739-745. 

Forrester SE, Yeadon MR, King MA, & Pain MTG. (2011). Comparing different approaches 
for determining joint torque parameters for isovelocity dynamometer measurements. 
Journal of Biomechanics, 44, 955-961. 

Fousekis K, Τsepis E, & Vagenas G. (2010). Lower limb strength in professional soccer 
players: profile, asymmetry, and training age. Journal of Sports Science and Medicine, 9, 
364–373. 

Fridén J & Lieber RL. (1992). Structural and mechanical basis of exercise-induced muscle 
injury. Medicine and Science in Sports and Exercise. 24(5), 521-530. 

Fridén J, Sjöström M, & Ekblom B. (1983). Myofibrillar damage following intense eccentric 
exercise in man. International Journal of Sports Medicine, 4(3), 170-176. 

Frishberg BA. (1983). An analysis of overground and treadmill sprinting. Medicine and 
Science in Sports and Exercise, 15(6), 478-485. 

Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, & Kanehisa H. (2001). 
Muscle volume is a major determinant of joint torque in humans. Acta Physiologica 
Scandinavica, 172(4), 249-255. 

Fyfe JJ, Opar DA, Williams MD, Shield AJ. (2013). The role of neuromuscular inhibition in 
hamstring strain injury recurrence. Journal of Electromyography and Kinesiology, 23(3), 
523-530. 



References 

153 

Gabbe BJ, Bennell KL, & Finch CF. (2006). Why are older Australian football players at 
greater risk of hamstring injury? Journal of Science and Medicine in Sport, 9(4), 327–
333. 

Gabbe BJ, Finch CF, Bennell KL, & Wajswelner H. (2005). Risk factors for hamstring 
injuries in community level Australian football. British Journal of Sports Medicine, 39, 
106–110. 

Garrett WE Jr, Califf JC, & Bassett FH 3rd. (1984). Histochemical correlates of hamstring 
injuries. The American Journal of Sports Medicine, 12(2), 98-103. 

Garrett WE Jr, Rich FR, Nikolaou PK, & Vogler JB 3rd. (1989). Computed tomography of 
hamstring muscle strains. Medicine and Science in Sports Exercise, 21(5), 506-514. 

Garrett WE Jr, Safran MR, Seaber AV, Glisson RR, & Ribbeck BM. (1987). Biomechanical 
comparison of stimulated and nonstimulated skeletal muscle pulled to failure. The 
American Journal of Sports Medicine, 15(5), 448-454. 

Garrett WE Jr. (1990). Muscle strain injuries: clinical and basic aspects. Medicine and 
Science in Sports Exercise, 22(4), 436-443. 

Gleeson NP & Mercer TH. (1992). Reproducibility of isokinetic leg strength and endurance 
characteristics of adult men and women. European Journal of Applied Physiology, 65(3), 
221-228. 

Gordon AM, Huxley AF, & Julian FJ. (1966). The variation in isometric tension with 
sarcomere length in vertebrate muscle fibres. The Journal of Physiology, 184(1), 170-92. 

Greco CC, da Silva WL, Camarda SR, & Denadai, BS. (2013). Fatigue and rapid 
hamstring/quadriceps force capacity in professional soccer players. Clinical Physiology 
and Functional Imaging, 33(1), 18-23. 

Greig M. (2008). The Influence of Soccer-Specific Fatigue on Peak Isokinetic Torque 
Production of the Knee Flexors and Extensors. The American Journal of Sports Medicine, 
36(7), 1403–1409. 

Griffin LY, Albohm MJ, Arendt EA, et al. (2006). Understanding and preventing noncontact 
anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. 
The American Journal of Sports Medicine, 34(9), 1512-1532. 

Guex K, Gojanovic B, & Millet GP. (2012). Influence of hip-flexion angle on hamstrings 
isokinetic activity in sprinters. Journal of Athletic Training, 47(4), 390-395. 

Gür H, Gransberg L, vanDyke D, Knutsson E, & Larsson L. (2003). Relationship between in 
vivo muscle force at different speeds of isokinetic movements and myosin isoform 
expression in men and women. European Journal of Applied Physiology, 88(6), 487-496. 

Hägglund M, Waldén M, & Ekstrand J. (2006). Previous injury as a risk factor for injury in 
elite football: a prospective study over two consecutive seasons. British Journal of Sports 
Medicine, 40(9), 767–772. 



References 

154 

Hägglund M, Waldén M, & Ekstrand J. (2013). Risk factors for lower extremity muscle 
injury in professional soccer: the UEFA injury study. The American journal of sports 
medicine, 41(2), 327–335. 

Hagood S, Solomonow M, Baratta R, Zhou BH, & D'Ambrosia R. (1990). The effect of joint 
velocity on the contribution of the antagonist musculature to knee stiffness and laxity. The 
American Journal of Sports Medicine, 18(2), 182-187. 

Hallén A & Ekstrand J. (2014). Return to play following muscle injuries in professional 
footballers. Journal of Sports Sciences, 32(13), 1229-1236. 

Handsfield G, Fiorentino N, & Blemker SS. (2010). Variability in Biceps Femoris Long 
Head Muscle-Tendon Morphology. In: Proceedings of the 34th Annual Meeting of the 
American Society of Biomechanics, Providence (USA), Brown University, pp.690-691. 

Hannah R & Folland JP. (2015). Muscle-tendon unit stiffness does not independently affect 
voluntary explosive force production or muscle intrinsic contractile properties. Applied 
Physiology, Nutrition and Metabolism, 40, 1-9. 

Hannah R, Minshull C, Smith SL, & Folland JP. (2014). Longer electromechanical delay 
impairs hamstrings explosive force versus quadriceps. Medicine and Science in Sports & 
Exercise, 46, 963-972. 

Harridge SD, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjörnsson M, & Saltin 
B. (1996). Whole-muscle and single-fibre contractile properties and myosin heavy chain 
isoforms in humans. European Journal of Applied Physiology, 432(5), 913-920. 

Heiderscheit BC, Hoerth DM, Chumanov ES, Swanson SC, Thelen BJ, & Thelen DG (2005). 
Identifying the time of occurrence of a hamstring strain injury during treadmill running: a 
case study. Clinical Biomechanics, 20(10), 1072–1078. 

Heiderscheit BC, Sherry MA, Silder A, Chumanov ES, Thelen DG. (2010). Hamstring strain 
injuries: recommendations for diagnosis, rehabilitation, and injury prevention. The 
Journal of Orthopaedic and Sports Physical Therapy, 40(2), 67-81. 

Heiser TM, Weber J, Sullivan G, Clare P, & Jacobs RR. (1984). Prophylaxis and 
management of hamstring muscle injuries in intercollegiate football players. The 
American Journal of Sports Medicine, 12(5), 368-370. 

Henderson G, Barnes CA, & Portas MD. (2010). Factors associated with increased 
propensity for hamstring injury in English Premier League soccer players. Journal of 
Science and Medicine in Sport, 13(4), 397-402. 

Herzog W. (1988). The relation between the resultant moments at a joint and the moments 
measured by an isokinetic dynamometer. Journal of Biomechanics, 21(1), 5-12. 

Higashihara A, Nagano Y, & Ono T, (2014). Fukubayashi T. Relationship between the peak 
time of hamstring stretch and activation during sprinting. European Journal of Sport 
Science, (Ahead of print), doi: 10.1080/17461391.2014.973913. 



References 

155 

Higashihara A, Ono T, Kubota J, Okuwaki T, & Fukubayashi T. (2010). Functional 
differences in the activity of the hamstring muscles with increasing running speed. 
Journal of Sports Sciences, 28(10), 1085-1092. 

Hill AV (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of 
the Royal Society of London Series B, 126, 136-195. 

Hopkins WG, Schabort EJ, & Hawley JA. (2001). Reliability of power in physical 
performance tests. Sports Medicine, 31(3), 211-234. 

Huijing PA. (1999). Muscle as a collagen fiber reinforced composite: a review of force 
transmission in muscle and whole limb. Journal of Biomechanics, 32(4), 329-345. 

Iga J, George K, Lees A, & Reilly T. (2009). Cross-sectional investigation of indices of 
isokinetic leg strength in youth soccer players and untrained individuals. Scandinavian 
Journal of Medicine & Science in Sports, 19, 714–719. 

Ikegawa S, Funato K, Tsunoda N, Kanehisa H, Fukunaga T, & Kawakami Y. (2008). Muscle 
force per cross-sectional area is inversely related with pennation angle in strength trained 
athletes. Journal of Strength and Conditioning Research, 22(1), 128-131. 

Impellizzeri FM, Bizzini M, Rampinini E, Cereda F, & Maffiuletti NA. (2008). Reliability of 
isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. 
Clinical Physiology and Functional Imaging, 28(2), 113-119. 

Inbar O, Kaiser P, & Tesch P. (1981). Relationships between leg muscle fiber type 
distribution and leg exercise performance. International Journal of Sports Medicine, 2(3), 
154-159. 

Johansson C, Lorentzon R, Sjöström M, Fagerlund M, & Fugl-Meyer AR. (1987). Sprinters 
and marathon runners. Does isokinetic knee extensor performance reflect muscle size and 
structure? Acta Physiologica Scandinavica, 130(4), 663-669. 

Johnson MA, Polgar J, Weightman D, & Appleton D. (1973). Data on the distribution of 
fibre types in thirty-six human muscles. An autopsy study. Journal of the Neurological 
Sciences, 18(1), 111-129. 

Kandel ER, Schwartz JH, Jessell TM. (2000). Principles of Neural Science. 5th ed. McGraw-
Hill, New York. 

Kanehisa H, Ikegawa S, & Fukunaga T. (1994). Comparison of muscle cross-sectional area 
and strength between untrained women and men. European Journal of Applied 
Physiology, 68(2), 148-154. 

Katz B. (1939). The relation between force and speed in muscular contraction. The Journal of 
Physiology, 96(1), 45-64. 

Kaufman KR, An KN, Chao EY. (1995). A comparison of intersegmental joint dynamics to 
isokinetic dynamometer measurements. Journal of Biomechanics, 28(10), 1243-1256. 

Kawakami Y, Abe T, & Fukunaga T. (1993). Muscle-fiber pennation angles are greater in 
hypertrophied than in normal muscles. Journal of Applied Physiology, 74(6), 2740-2744. 



References 

156 

Kawakami Y, Abe T, Kanehisa H, & Fukunaga T. (2006). Human skeletal muscle size and 
architecture: variability and interdependence. American Journal of Human Biology, 18(6), 
845-848. 

Kellis E & Baltzopoulos V. (1996). The effects of normalization method on antagonistic 
activity patterns during eccentric and concentric isokinetic knee extension and flexion. 
Journal of Electromyography and Kinesiology, 6(4), 235-245. 

Kellis E & Baltzopoulos V. (1997). The effects of antagonist moment on the resultant knee 
joint moment during isokinetic testing of the knee extensors. European Journal of 
Applied Physiology, 76(3), 253-259. 

Kellis E & Baltzopoulos V. (1998). Muscle activation differences between eccentric and 
concentric isokinetic exercise. Medicine and Science in Sports Exercise, 30(11), 1616-
1623. 

Kellis E & Katis A. (2007). Biomechanical characteristics and determinants of instep soccer 
kick. Journal of Sports Science & Medicine, 6(2), 154-165. 

Kellis E, Galanis N, Kapetanos G, & Natsis K. (2012). Architectural differences between the 
hamstring muscles. Journal of Electromyography and Kinesiology, 22(4), 520-526. 

Kellis E, Galanis N, Natsis K, & Kapetanos G. (2009). Validity of architectural properties of 
the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. 
Journal of Biomechanics, 42(15), 2549-2554. 

Kellis E, Galanis N, Natsis K, & Kapetanos G. (2010). Muscle architecture variations along 
the human semitendinosus and biceps femoris (long head) length. Journal of 
Electromyography and Kinesiology, 20(6), 1237-1243. 

Knapik JJ, Wright JE, Mawdsley RH, & Braun J. (1983). Isometric , isotonic , and isokinetic 
torque variations in four muscle groups through a range of joint motion. Physical 
Therapy, 63(6), 938–947. 

Kong PW & Burns SF. (2010). Bilateral difference in hamstrings to quadriceps ratio in 
healthy males and females. Physical Therapy in Sport, 11(1), 12-17. 

Kongsgaard M, Reitelseder S, Pedersen TG, et al. (2007). Region specific patellar tendon 
hypertrophy in humans following resistance training. Acta Physiologica, 191(2), 111-121. 

Kooistra RD, de Ruiter CJ, & de Haan A. (2007). Conventionally assessed voluntary 
activation does not represent relative voluntary torque production. European Journal of 
Applied Physiology, 100(3), 309-320. 

Koulouris G & Connell D. (2003). Evaluation of the hamstring muscle complex following 
acute injury. Skeletal Radiology, 32(10), 582-589. 

Koulouris G & Connell D. (2005). Hamstring muscle complex: an imaging review. 
Radiographics, 25(3), 571-586. 

Kubo K, Ohgo K, Takeishi R, Yoshinaga K, Tsunoda N, Kanehisa H, & Fukunaga T. (2006). 
Effects of series elasticity on the human knee extension torque-angle relationship in vivo. 
Research Quarterly for Exercise and Sport, 77(4), 408-416. 



References 

157 

Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, & Mizuno M. (2000). Sprint 
performance is related to muscle fascicle length in male 100-m sprinters. Journal of 
Applied Physiology, 88(3), 811-816. 

Kyrolainen H, Komi PV, & Belli A. (1999). Changes in muscle activity with increasing 
running speed. Journal of Strength and Conditioning Research, 13(4), 400-406. 

Lemos RR, Epstein M, & Herzog W. (2008). Modeling of skeletal muscle: the influence of 
tendon and aponeuroses compliance on the force-length relationship. Medical & 
Biological Engineering & Computing, 46(1), 23-32. 

Lieber RL & Fridén J. (1988) Selective damage of fast glycolytic muscle fibres with 
eccentric contraction of the rabbit tibialis anterior. Acta Physiologica Scandinavica, 
133(4), 587-588. 

Lieber RL & Fridén J. (1993). Muscle damage is not a function of muscle force but active 
muscle strain. Journal of Applied Physiology (1985), 74(2), 520-526. 

Lieber RL & Fridén J. (2000). Functional and clinical significance of skeletal muscle 
architecture. Muscle & Nerve, 23(11), 1647-1666. 

Lieber RL. (1993). Skeletal muscle architecture: implications for muscle function and 
surgical tendon transfer. Journal of Hand Therapy, 6(2), 105-113. 

Lovering RM & De Deyne PG. (2004). Contractile function, sarcolemma integrity, and the 
loss of dystrophin after skeletal muscle eccentric contraction-induced injury. American 
Journal of Physiology. Cell Physiology, 286(2), C230-238. 

Luther PK. (2009). The vertebrate muscle Z-disc: sarcomere anchor for structure and 
signalling. Journal of Muscle Research and Cell Motility, 30(5-6), 171-185. 

Maffiuletti NA, Bizzini M, Desbrosses K, Babault N, & Munzinger U. (2007). Reliability of 
knee extension and flexion measurements using the Con-Trex isokinetic dynamometer. 
Clinical Physiology and Functional Imaging, 27(6), 346-353. 

Malliaropoulos N, Isinkaye T, Tsitas K, & Maffulli N. (2011). Reinjury after acute posterior 
thigh muscle injuries in elite track and field athletes. The American Journal of Sports 
Medicine, 39(2), 304-310. 

Malliaropoulos N, Papacostas E, Kiritsi O, Papalada A, Gougoulias N, & Maffulli N. (2010). 
Posterior thigh muscle injuries in elite track and field athletes. The American Journal of 
Sports Medicine, 38(9), 1813-1819. 

Manini TM, Clark BC, Nalls MA, Goodpaster BH, Ploutz-Snyder LL, & Harris TB. (2007). 
Reduced physical activity increases intermuscular adipose tissue in healthy young adults. 
American Journal of Clinical Nutrition, 85(2), 377–384. 

Martin BF. (1968). The origins of the hamstring muscles. Journal of Anatomy, 102(Pt2), 345-
352. 

Masuda K, Kikuhara N, Takahashi H, & Yamanaka K. (2003). The relationship between 
muscle cross-sectional area and strength in various isokinetic movements among soccer 
players. Journal of Sports Sciences, 21(10), 851-858. 



References 

158 

Maughan RJ & Nimmo MA. (1984). The influence of variations in muscle fibre composition 
on muscle strength and cross-sectional area in untrained males. The Journal of 
Physiology, 351, 299-311. 

Maughan RJ, Watson JS, & Weir J. (1983). Strength and cross-sectional area of human 
skeletal muscle. The Journal of Physiology, 338, 37-49. 

Meeuwisse WH, Tyreman H, Hagel B, & Emery C. (2007). A dynamic model of etiology in 
sport injury: the recursive nature of risk and causation. Clinical Journal of Sport 
Medicine, 17(3), 215-219. 

Metzger JM & Moss RL. (1990). Calcium-sensitive cross-bridge transitions in mammalian 
fast and slow skeletal muscle fibers. Science, 247, 1088-1090. 

Miller SL, Gill J, Webb GR. (2007). The proximal origin of the hamstrings and surrounding 
anatomy encountered during repair. A cadaveric study. The Journal of Bone and Joint 
Surgery. American Volume, 89(1), 44-48. 

Morgan DL & Allen DG. (1999). Early events in stretch-induced muscle damage. Journal of 
Applied Physiology (1985), 87(6), 2007-2015. 

Morgan DL. (1990). New insights into the behavior of muscle during active lengthening. 
Biophysical Journal, 57(2), 209-221. 

Newman MA, Tarpenning KM, & Marino FE. (2004). Relationships between isokinetic knee 
strength, single-sprint performance, and repeated-sprint ability in football players. 
Journal of Strength and Conditioning Research, 18(4), 867-872. 

Noonan TJ & Garrett WE Jr. (1992). Injuries at the myotendinous junction. Clinics in Sports 
Medicine, 11(4), 783-806. 

Noonan TJ & Garrett WE Jr. (1999). Muscle strain injury: diagnosis and treatment. The 
Journal of the American Academy of Orthopaedic Surgeons, 7(4), 262-269. 

Novacheck TF. (1998). The biomechanics of running. Gait & Posture. 7(1), 77-95. 

Opar DA, Williams MD, & Shield AJ. (2012). Hamstring strain injuries: factors that lead to 
injury and re-injury. Sports Medicine, 42(3), 209-226. 

Opar DA, Williams MD, Timmins RG, Dear NM, & Shield AJ. (2013a). Rate of torque and 
electromyographic development during anticipated eccentric contraction is lower in 
previously strained hamstrings. The American Journal of Sports Medicine, 41(1), 116-
125. 

Opar DA, Williams MD, Timmins RG, Dear NM, & Shield AJ. (2013b). Knee flexor 
strength and bicep femoris electromyographical activity is lower in previously strained 
hamstrings. Journal of Electromyography and Kinesiology, 23(3), 696-703. 

Orchard J & Seward H. (2002). Epidemiology of injuries in the Australian Football League, 
seasons 1997-2000. British Journal of Sports Medicine, 36(1), 39-44. 



References 

159 

Orchard J, Marsden J, Lord S, & Garlick D. (1997). Preseason hamstring muscle weakness 
associated with hamstring muscle injury in Australian footballers. The American Journal 
of Sports Medicine, 25(1), 81-85. 

Orchard JW. (2001). Intrinsic and extrinsic risk factors for muscle strains in Australian 
football. The American Journal of Sports Medicine, 29(3), 300–303. 

Orchard JW. (2012). Hamstrings are most susceptible to injury during the early stance phase 
of sprinting. British Journal of Sports Medicine, 46(2), 88-89. 

Pain MT, Young F, Kim J, & Forrester SE. (2013). The torque-velocity relationship in large 
human muscles: maximum voluntary versus electrically stimulated behaviour. Journal of 
Biomechanics, 46(4), 645-650. 

Pavol MJ & Grabiner MD. (2000). Knee strength variability between individuals across 
ranges of motion and hip angles. Medicine and Science in Sports and Exercise, 32(5), 
985-992. 

Pincivero DM, Lephart SM, & Karunakara RA. (1997). Reliability and precision of 
isokinetic strength and muscular endurance for the quadriceps and hamstrings. 
International Journal of Sports Medicine, 18(2), 113-117. 

Pinniger GJ, Steele JR, & Groeller H. (2000). Does fatigue induced by repeated dynamic 
efforts affect hamstring muscle function? Medicine and Science in Sports Exercise, 32(3), 
647-653. 

Potier TG, Alexander CM, & Seynnes OR. (2009). Effects of eccentric strength training on 
biceps femoris muscle architecture and knee joint range of movement. European Journal 
of Applied Physiology, 105(6), 939-944. 

Prior M, Guerin M, & Grimmer K. (2009). An evidence-based approach to hamstring strain 
injury: a systematic review of the literature. Sports Health, 1(2), 154-164. 

Proske U & Morgan DL. (2001). Muscle damage from eccentric exercise: mechanism, 
mechanical signs, adaptation and clinical applications. Journal of Physiology, 537(Pt 2), 
333-345. 

Proske U, Morgan DL, Brockett CL, & Percival P. (2004). Identifying athletes at risk of 
hamstring strains and how to protect them. Clinical and Experimental Pharmacology & 
Physiology, 31(8), 546-550. 

Rehorn MR & Blemker SS. (2010) The effects of aponeurosis geometry on strain injury 
susceptibility explored with a 3D muscle model. Journal of Biomechanics, 43(13), 2574-
2581. 

Riley PO, Franz J, Dicharry J, Kerrigan DC. (2010). Changes in hip joint muscle-tendon 
lengths with mode of locomotion. Gait & Posture, 31(2), 279-283. 

Sato K, Nimura A, Yamaguchi K, & Akita K. (2012). Anatomical study of the proximal 
origin of hamstring muscles. Journal of Orthopaedic Science, 17(5), 614-618. 



References 

160 

Schache AG, Dorn TW, Blanch PD, Brown NA, & Pandy MG. (2012). Mechanics of the 
human hamstring muscles during sprinting. Medicine and Science in Sports Exercise, 
44(4), 647-658. 

Schache AG, Dorn TW, Williams GP, Brown NA, & Pandy MG. (2014). Lower-limb 
muscular strategies for increasing running speed. The Journal of Orthopaedic and Sports 
Physical Therapy, 44(10), 813-824. 

Schache AG, Dorn TW, Wrigley TV, Brown NA, & Pandy MG. (2013). Stretch and 
activation of the human biarticular hamstrings across a range of running speeds. 
European Journal of Applied Physiology, 113(11), 2813-2828. 

Schache AG, Wrigley TV, Baker R, & Pandy MG. (2009). Biomechanical response to 
hamstring muscle strain injury. Gait & Posture, 29(2), 332-338. 

Schantz P, Randall-Fox E, Hutchison W, Tydén A, & Astrand PO. (1983). Muscle fibre type 
distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta 
Physiologica Scandinavica, 117(2), 219-226. 

Schuenke M, Schulte E, Schumacher U, Ross LM, Lamperti ED, Voll M. (2010). General 
anatomy and musculoskeletal system (Thieme Atlas of Anatomy), 1st ed. Thieme. 

Schwartz FP, Bottaro M, Celes RS, Brown LE, & Nascimento FA. (2010). The influence of 
velocity overshoot movement artifact on isokinetic knee extension tests. Journal of Sports 
Science and Medicine, 9(1), 140-146. 

Seynnes OR, Erskine RM, Maganaris CN, Longo S, Simoneau EM, Grosset JF, & Narici 
MV. (2009). Training-induced changes in structural and mechanical properties of the 
patellar tendon are related to muscle hypertrophy but not to strength gains. Journal of 
Applied Physiology, 107(2), 523-530. 

Silder A, Heiderscheit BC, Thelen DG, Enright T, & Tuite MJ. (2008). MR observations of 
long-term musculotendon remodeling following a hamstring strain injury. Skeletal 
Radiology, 37(12), 1101-1109. 

Silder A, Reeder SB, & Thelen DG. (2010). The influence of prior hamstring injury on 
lengthening muscle tissue mechanics. Journal of Biomechanics, 43(12), 2254-2260. 

Slavotinek JP, Verrall GM, & Fon GT. (2002). Hamstring injury in athletes: using MR 
imaging measurements to compare extent of muscle injury with amount of time lost from 
competition. AJR. American Journal of Roentgenology, 179(6), 1621-1628. 

Small K, McNaughton L, Greig M, & Lovell R. (2010). The effects of multidirectional 
soccer-specific fatigue on markers of hamstring injury risk. Journal of Science and 
Medicine in Sport, 13, 120–125. 

Small K, McNaughton LR, Greig M, Lohkamp M, & Lovell R. (2009). Soccer fatigue, 
sprinting and hamstring injury risk. International Journal of Sports Medicine, 30(8), 573-
578. 



References 

161 

Sole G, Hamrén J, Milosavljevic S, Nicholson H, & Sullivan SJ. (2007). Test-retest 
reliability of isokinetic knee extension and flexion. Archive of Physical Medicine and 
Rehabilitation, 88(5), 626-631. 

Staron RS & Hikida RS. (1992). Histochemical, biochemical, and ultrastructural analyses of 
single human muscle fibers, with special reference to the C-fiber population. The Journal 
of Histochemistry and Cytochemistry, 40(4), 563-568. 

Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE, & Toma 
K. (2000). Fiber type composition of the vastus lateralis muscle of young men and 
women. Journal of Histochemistry & Cytochemistry, 48(5), 623-629. 

Sugiura Y, Saito T, Sakuraba K, Sakuma K, & Suzuki E. (2008). Strength deficits identified 
with concentric action of the hip extensors and eccentric action of the hamstrings 
predispose to hamstring injury in elite sprinters. Journal of Orthopaedic and Sports 
Physical Therapy, 38(8), 457-464. 

Sutton G. (1984). Hamstrung by hamstring strains: a review of the literature*. The Journal of 
Orthopaedic and Sports Physical Therapy, 5(4), 184-95. 

Thelen DG, Chumanov ES, Best TM, Swanson SC, & Heiderscheit BC. (2005). Simulation 
of biceps femoris musculotendon mechanics during the swing phase of sprinting. 
Medicine and Science in Sports and Exercise, 37(11), 1931-1938. 

Thorstensson A, Grimby G, & Karlsson J. (1976). Force-velocity relations and fiber 
composition in human knee extensor muscles. Journal of Applied Physiology, 40(1), 12-
16. 

Tidball JG & Chan M. (1989). Adhesive strength of single muscle cells to basement 
membrane at myotendinous junctions. Journal of Applied Physiology, 67(3), 1063-1069. 

Tillin NA & Folland JP. (2014). Maximal and explosive strength training elicit distinct 
neuromuscular adaptations, specific to the training stimulus. European Journal of Applied 
Physiology, 114(2), 365-374. 

Tillin NA, Jimenez-Reyes P, Pain MT, & Folland JP. (2010). Neuromuscular performance of 
explosive power athletes versus untrained individuals. Medicine and Science in Sports 
Exercise, 42(4), 781-790. 

Tillin NA, Pain MT, & Folland JP. (2011). Short-term unilateral resistance training affects 
the agonist-antagonist but not the force-agonist activation relationship. Muscle & Nerve, 
43(3), 375-384. 

Tillin NA, Pain MT, & Folland JP. (2013). Identification of contraction onset during 
explosive contractions. Response to Thompson et al. "Consistency of rapid muscle force 
characteristics: influence of muscle contraction onset detection methodology" [J 
Electromyogr Kinesiol 2012;22(6):893-900]. Journal of Electromyography and 
Kinesiology, 23(4), 991-994. 

Timmins RG, Opar DA, Williams MD, Schache AG, Dear NM, Shield AJ. (2014a). Reduced 
biceps femoris myoelectrical activity influences eccentric knee flexor weakness after 



References 

162 

repeat sprint running. Scandinavian Journal of Medicine and Science in Sports, (Ahead of 
print), doi: 10.1111/sms.12171. 

Timmins RG, Shield AJ, Williams MD, Lorenzen C, & Opar DA. (2014b). Biceps femoris 
long-head architecture: a reliability and retrospective injury study. Medicine and Science 
in Sports and Exercise, (Ahead of print), doi: 10.1249/MSS.0000000000000507 

Tourny-Chollet C & Leroy D. (2002). Conventional vs. dynamic hamstring-quadriceps 
strength ratios: a comparison between players and sedentary subjects. Isokinetics and 
Exercise Science, 10, 183–192. 

Tsaopoulos DE, Baltzopoulos V, Richards PJ, & Maganaris CN. (2011). Mechanical 
correction of dynamometer moment for the effects of segment motion during isometric 
knee-extension tests. Journal of Applied Physiology, 111(1), 68-74. 

van Beijsterveldt AM, van de Port IG, Vereijken AJ, & Backx FJ. (2013). Risk factors for 
hamstring injuries in male soccer players: a systematic review of prospective studies. 
Scandinavian Journal of Medicine and Science in Sports, 23(3), 253-262. 

van der Made AD, Wieldraaijer T, Kerkhoffs GM, Kleipool RP, Engebretsen L, van Dijk 
CN, & Golanó P. (2013). The hamstring muscle complex. Knee Surgery, Sports 
Traumatology, Arthroscopy. (Ahead of print), doi: 10.1007/s00167-013-2744-0. 

Verrall GM, Slavotinek JP, Barnes PG, Fon GT, & Esterman A. (2006). Assessment of 
physical examination and magnetic resonance imaging findings of hamstring injury as 
predictors for recurrent injury. The Journal of Orthopaedic and Sports Physical Therapy, 
36(4), 215-224. 

Verrall GM, Slavotinek JP, Barnes PG, Fon, GT, & Spriggins AJ. (2001). Clinical risk 
factors for hamstring muscle strain injury: a prospective study with correlation of injury 
by magnetic resonance imaging. British Journal of Sports Medicine, 35, 435–440. 

Viitasalo JT & Komi PV. (1978). Force-time characteristics and fiber composition in human 
leg extensor muscles. European Journal of Applied Physiology, 40(1), 7-15. 

Viitasalo JT & Komi PV. (1981). Effects of fatigue on isometric force- and relaxation-time 
characteristics in human muscle. Acta Physiologica Scandinavica, 111(1), 87-95. 

Wakahara T, Ema R, Miyamoto N, & Kawakami Y. (2015). Increase in vastus lateralis 
aponeurosis width induced by resistance training: implications for a hypertrophic model 
of pennate muscle. European Journal of Applied Physiology, 115(2), 309-316. 

Ward SR, Eng CM, Smallwood LH, & Lieber RL. (2009). Are current measurements of 
lower extremity muscle architecture accurate? Clinical Orthopaedics and Related 
Research, 467(4), 1074-1082. 

Westing SH, Cresswell AG, & Thorstensson A. (1991). Muscle activation during maximal 
voluntary eccentric and concentric knee extension. European Journal of Applied 
Physiology, 62(2), 104-108. 



References 

163 

Westing SH, Seger JY, & Thorstensson A. (1990). Effects of electrical stimulation on 
eccentric and concentric torque-velocity relationships during knee extension in man. Acta 
Physiologica Scandinavica, 140(1), 17-22. 

Westing SH, Seger JY, Karlson E, & Ekblom B. (1988). Eccentric and concentric torque-
velocity characteristics of the quadriceps femoris in man. European Journal of Applied 
Physiology, 58(1-2), 100-104. 

Witvrouw E, Danneels L, Asselman P, D'Have T, & Cambier D. (2003). Muscle flexibility as 
a risk factor for developing muscle injuries in male professional soccer players. A 
prospective study. The American Journal of Sports Medicine, 31(1), 41-46. 

Woodley SJ & Mercer SR. (2004). Hamstring strains - Where do they occur ? New Zealand 
Journal of Physiotherapy, 32(1), 22–28. 

Woodley SJ & Mercer SR. (2005). Hamstring muscles: architecture and innervation. Cells, 
Tissues, Organs, 179(3), 125-141. 

Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, & Hodson A. (2004). The Football 
Association Medical Research Programme: an audit of injuries in professional football - 
analysis of hamstring injuries. British Journal of Sports Medicine, 38, 36–41. 

Yeow CH. (2013). Hamstrings and quadriceps muscle contributions to energy generation and 
dissipation at the knee joint during stance, swing and flight phases of level running. The 
Knee, 20(2), 100-105. 

Yeung SS, Suen AM, & Yeung EW. (2009). A prospective cohort study of hamstring injuries 
in competitive sprinters: preseason muscle imbalance as a possible risk factor. British 
Journal of Sports Medicine, 43(8), 589-594. 

Yu B, Queen RM, Abbey AN, Liu Y, Moorman CT, & Garrett WE. (2008). Hamstring 
muscle kinematics and activation during overground sprinting. Journal of Biomechanics, 
41(15), 3121-3126. 

Zebis MK, Andersen LL, Ellingsgaard H, & Aagaard P. (2011). Rapid hamstring/quadriceps 
force capacity in male vs. female elite soccer players. Journal of Strength and 
Conditioning Research, 25(7), 1989-1993. 

 


	1 CHAPTER 1 - GENERAL INTRODUCTION
	2 CHAPTER 2 – LITERATURE REVIEW
	2.1 INTRODUCTION
	2.2 PART I – BASIC MUSCLE STRUCTURE AND FUNCTION
	2.2.1 Overview of muscle structure
	2.2.2 Muscle contraction (Excitation-contraction coupling)
	2.2.3 Muscle composition
	2.2.4 Muscle architecture
	2.2.5 Fundamental muscle mechanics
	2.2.5.1 Force-length relationship
	2.2.5.2 Force-velocity relationship


	2.3 PART II – DETERMINANTS OF MUSCLE FUNCTION
	2.3.1 Determinants of maximum strength
	2.3.1.1 Muscle size and architecture
	2.3.1.2 Moment arm
	2.3.1.3 Agonist activation
	2.3.1.4 Antagonist co-activation
	2.3.1.5 Muscle composition
	2.3.1.6 Muscle-tendon unit stiffness

	2.3.2 Determinants of explosive strength
	2.3.2.1 Maximal strength
	2.3.2.2 Agonist activation
	2.3.2.3 Muscle composition
	2.3.2.4 Muscle-tendon unit stiffness


	2.4 PART III – HAMSTRINGS ANATOMY AND FUNCTION DURING SPRINTING
	2.4.1 Hamstrings anatomy
	2.4.2 Hamstrings function during sprinting

	2.5 PART IV – HAMSTRINGS STRAIN INJURIES
	2.5.1 Site of injury
	2.5.2 The inciting mechanism of hamstrings strain injury
	2.5.3 Risk factors
	2.5.3.1 Previous injury
	2.5.3.2 Strength imbalances
	2.5.3.3 Hamstrings anatomy
	2.5.3.4 Fatigue
	2.5.3.5 Age
	2.5.3.6 Flexibility



	3 CHAPTER 3 – RELIABILITY OF ISOMETRIC AND ISOVELOCITY HAMSTRINGS-TO-QUADRICEPS RATIO AND STRENGTH MEASURES OF THE KNEE EXTENSORS AND FLEXORS
	3.1 INTRODUCTION
	3.2 METHODS
	3.2.1 Participants
	3.2.2 Overview
	3.2.3 Dynamometer Procedures
	3.2.4 Torque-velocity relationship assessment
	3.2.4.1 Isometric strength
	3.2.4.2 Concentric and Eccentric strength

	3.2.5 Torque data analysis
	3.2.6 Knee joint angle
	3.2.7 Isometric Hamstrings-to-Quadriceps ratio
	3.2.8 Functional Hamstrings-to-Quadriceps ratio
	3.2.9 Conventional Hamstring-to-Quadriceps ratio
	3.2.10 Statistics

	3.3 RESULTS
	3.3.1 Torque-velocity relationship
	3.3.2 Hamstring-to-quadriceps ratios

	3.4 DISCUSSION

	4 CHAPTER 4 – ANGLE-SPECIFIC HAMSTRINGS-TO-QUADRICEPS RATIO. A COMPARISON OF FOOTBALL PLAYERS AND RECREATIONALLY ACTIVE MALES
	4.1 INTRODUCTION
	4.2 METHODS
	4.2.1 Participants
	4.2.2 Overview
	4.2.3 Dynamometer Procedures
	4.2.4 Isometric Peak Torque assessment
	4.2.5 Dynamic Peak Torque assessment
	4.2.6 Data Analysis
	4.2.6.1 Peak Torque
	4.2.6.2 Angle-specific torque
	4.2.6.3 Knee joint angle
	4.2.6.4 Isometric Hamstrings-to-Quadriceps ratio
	4.2.6.5 Functional Hamstrings-to-Quadriceps ratio
	4.2.6.6 Conventional Hamstrings-to-Quadriceps ratio

	4.2.7 Statistical Analysis

	4.3 RESULTS
	4.3.1 Anthropometric characteristics
	4.3.2 H:Q ratios
	4.3.3 Angle-specific torque

	4.4 DISCUSSION

	5 CHAPTER 5 – QUADRICEPS AND HAMSTRINGS RELATIVE MUSCLE SIZE INFLUENCES KNEE-JOINT STRENGTH BALANCE
	5.1 INTRODUCTION
	5.2 METHODS
	5.2.1 Participants
	5.2.2 Overview
	5.2.3 Measurements and Data analysis
	5.2.3.1 Dynamometer procedures
	5.2.3.2 Isometric Strength
	5.2.3.3 Concentric and eccentric strength
	5.2.3.4 Magnetic resonance imaging (MRI)

	5.2.4 Statistical analysis

	5.3 RESULTS
	5.3.1 Descriptive data for muscle size and strength
	5.3.2 Relationships between muscle size, strength and HQ ratio

	5.4 DISCUSSION

	6 CHAPTER 6 – DO MUSCLE SIZE AND COMPOSITION EXPLAIN KNEE FLEXOR MUSCLE FUNCTION IN MAN?
	6.1 INTRODUCTION
	6.2 METHODS
	6.2.1 Participants
	6.2.2 Overview
	6.2.3 Measurements and Data analysis
	6.2.3.1 Torque-velocity relationship
	6.2.3.2 Explosive isometric strength
	6.2.3.3 Magnetic resonance imaging (MRI)
	6.2.3.4 Muscle sampling and myosin heavy chain composition

	6.2.4 Statistical analysis

	6.3 RESULTS
	6.3.1 Descriptive data on BFlh MHC isoform distribution, hamstrings muscle size and knee flexor strength
	6.3.2 Relationships of hamstrings muscle size and BFlh MHC isoform distribution with knee flexion strength

	6.4 DISCUSSION

	7 CHAPTER 7 – BICEPS FEMORIS APONEUROSIS SIZE: A POTENTIAL RISK FACTOR FOR STRAIN INJURY?
	7.1 INTRODUCTION
	7.2 METHODS
	7.2.1 Participants
	7.2.2 Overview
	7.2.3 Measurements and Data analysis
	7.2.3.1 Isometric strength
	7.2.3.2 Eccentric strength
	7.2.3.3 Magnetic resonance imaging (MRI)

	7.2.4 Statistical analysis

	7.3 RESULTS
	7.3.1 Descriptive data on size of the MTU components and knee flexor strength
	7.3.2 Relationships between the size of the different MTU components
	7.3.3 Relationships between the size of the MTU components with knee flexor strength

	7.4 DISCUSSION

	8 CHAPTER 8 – GENERAL DISCUSSION
	8.1 INTRODUCTION
	8.2 Hamstrings muscle function: Replicating the biomechanics of the late swing phase of sprinting
	8.3 Strength balance around the knee joint and implications for hamstrings strain injuries
	8.4 Influence of hamstrings anatomy on muscle function, and potential influence on injury predisposition
	8.5 Future research

	9 APPENDICES
	9.1 APPENDIX A – ISOKINETIC DYNAMOMETRY
	9.1.1 Position and stabilisation
	9.1.2 Knee joint alignment and gravity correction
	9.1.3 Ankle-joint position during knee flexion contractions
	9.1.4 Isovelocity range identification
	9.1.5 Angle-specific torque

	9.2 APPENDIX B – FORCE SIGNAL FILTERING
	9.2.1 Explosive isometric contractions

	9.3  APPENDIX C – MAGNETIC RESONANCE IMAGING
	9.3.1 Scanning parameters
	9.3.2 MR images analysis
	9.3.2.1 Muscle anatomical cross-sectional area and volume
	9.3.2.2 BFlh proximal aponeurosis area and BFlh/ST proximal tendon CSA



	10 REFERENCES

