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Abstract 

Portfolio selection theory, developed by Markowitz (1952), is one of the best 

known and widely applied methods for allocating funds among possible investment 

choices, where investment decision making is a trade-off between the expected return 

and risk of the portfolio. Many portfolio selection models have been developed on the 

basis of Markowitz’s theory. Most of them assume that complete investment information 

is available and that it can be accurately extracted from the historical data. However, 

this complete information never exists in reality. There are many kinds of ambiguity and 

vagueness which cannot be dealt with in the historical data but still need to be considered 

in portfolio selection. For example, to address the issue of uncertainty caused by 

estimation errors, the robust counterpart approach of Ben-Tal and Nemirovski (1998) 

has been employed frequently in recent years. Robustification, however, often leads to 

a more conservative solution. As a consequence, one of the most common critiques 

against the robust counterpart approach is the excessively pessimistic character of the 

robust asset allocation.  

This thesis attempts to develop new approaches to improve on the respective 

performances of the robust counterpart approach by incorporating additional investment 

information sources, so that the optimal portfolio can be more reliable and, at the same 

time, achieve a greater return. Among various methods developed in recent decades for 

improving on the performance of the classical portfolio selection approach in Markowitz 

(1952), the multi-expert approach of Lutgens and Schotman (2010) is of particular 

interest because this approach doesn’t require the user to have any prior knowledge 

regarding the reliability of the chosen experts. However, the multi-expert approach 
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cannot be applied directly in practice, because the approach doesn’t account for the 

actual characteristics of the expert recommendations. 

This thesis is based on the research framework developed in Lutgens and Schotman 

(2010), and it incorporates financial analysts’ forecasts into the portfolio selection 

process. To deal with the ambiguities and vagueness associated with analysts’ forecasts, 

fuzzy set theory is applied to modify the multi-expert approach so that it is capable of 

adopting ambiguous investment forecasts and expressing vague aspirations of the 

investor. On the basis of this, a multi-analyst approach to fuzzy portfolio selection is 

developed. Next, this multi-analyst approach is further extended using the concept of 

robust counterpart approach to account for the uncertainty in the return estimates. 

Finally, the developed approaches are tested by using real-world investment forecasts to 

assess the performances of the proposed approaches. It is shown that the proposed multi-

analyst approaches outperformed the conventional investment strategies in terms of 

expected and realised returns for risk-loving investment. In addition, the advantage of 

employing multi-analyst approaches is more significant for shorter investment holding 

periods. This suggests that the proposed methods are more beneficial to risk-loving 

investors for short term investment.  

 

 

Keywords: fuzzy variable, multi-analyst approach, mean-variance, portfolio selection, 

robust counterpart, uncertainties. 
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Chapter 1 

Introduction 

One of the major breakthroughs for modern finance is the portfolio selection theory 

developed by Harry Markowitz in 1952. This well-known investment theory employs 

two input parameters, the expected return and the risk of the underlying assets as 

measured by the corresponding variance, to determine the asset allocation and, on the 

basis of a trade-off between the expected return and the risk, the optimal portfolio 

allocation can then be obtained. However, to generate a satisfactory outcome from 

applying this theory, one needs to assess the accuracy of the input parameters, as this 

would influence the portfolio performance under any circumstance (Best & Grauer, 

1991; Chopra & Ziemba, 1993; Schöttle & Werner, 2009).  

In most practical applications it is very difficult, and can be impossible, to know 

the ‘true’ values of these parameters. In fact, the values of the parameters will only be 

realised in the future or, in any case, cannot be measured at the time that the portfolio 

selection problem needs to be solved. Therefore, some approximated or estimated values 

of the parameter are usually adopted. In addition, the framework of Markowitz’s return-

risk portfolio selection problem is very sensitive to even small changes in the input 

parameters, and thus, the optimal portfolio allocation generated by this model is not very 

reliable if the incorrect or inaccurate parameter values are adopted (Michaud, 1998; 

Schöttle & Werner, 2009).  

Aside from using sophisticated statistical approaches to improve on the accuracy 

of the input parameter estimates, there have been many other methods proposed for 
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eliminating or at least reducing the possibility of obtaining unwanted portfolio outcomes, 

such as the resampling approach and the fuzzy optimisation approach (Michaud, 1998; 

Liu, 2011). In particular, the robust counterpart approach solves an optimisation problem 

by including a wide possible range of input parameter values, hence it is guaranteed that 

its solution is good for all possible values of the input parameters. In addition, among 

all the different methods in the literature, the implementation of the robust counterpart 

approach is relatively straightforward, hence computationally cheaper (Ben-Tal & 

Nemirovski, 1998; Fa., 2007; Quaranta & Zaffaroni, 2008; Scherer, 2002). Due to these 

distinguishing features, the robust counterpart approach has attracted lots of attention in 

both academic research and practical application.  

However, one must bear in mind that, when making decisions under uncertainty, 

there is a distinction between a good decision and a good outcome. The robust 

counterpart approach in general tends to give a conservative solution, hence the 

performance of the resulting robust portfolio is usually not ideal in practice, especially 

in terms of portfolio returns. Different suggestions and improvements have been 

proposed from various aspects, but none of them has appropriately incorporated 

additional investment information sources into the decision making process to improve 

robust portfolio performance. With this in mind, we outline the objectives of this thesis. 

1.1 Objectives and Motivations of the Thesis 

The purpose of applying the robust counterpart approach for asset allocation is to 

construct an optimal portfolio under the worst possible investment situation. This is 

achieved by including a set of possible values of parameters (i.e., an uncertainty set) in 

the optimisation framework and optimising the portfolio selection problem with the 

worst-case scenario. On the one hand, the robust effect provides protection against 
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estimation errors and parameter uncertainties, but on the other hand, the robust effect 

can be too conservative and therefore lead to a rather pessimistic outcome.  

To improve on this outcome, the existing studies of the robust counterpart approach 

to the portfolio selection problem have focused more on the structured restrictions or 

other parameter estimators for the uncertainty set (Fabozzi et al., 2010; Gabrel et al., 

2014); only a few studies have considered adding extra elements to improve the quality 

of the robust portfolio allocation (Garlappi et al., 2007; Lutgens & Schotman, 2010). 

Without incorporating additional market information, no matter how sophisticated or 

specialised these suggested robust portfolio optimisation models are, they are all based 

on the historical data and are, therefore, restrictive and facing similar limitations to the 

classical portfolio selection theory of Markowitz. This is because the past performances 

of assets didn’t contain information good enough for predicting future values of assets. 

Furthermore, the movement of the financial market could also be influenced by many 

other factors, such as new policies announced by the government that may affect the 

global markets. Retail investors often have limited time and resources to help them make 

investment decisions. In contrast, the professional analysts are well trained in 

researching and analysing market information for investment decision making purposes. 

Therefore, adopting investment forecasts from professionals would be beneficial in 

improving the performance outcome of the robust portfolios. 

There are some existing studies in the literature on robust counterpart approaches 

that are developed for optimising portfolio problems with experts’ recommendations 

(Garlappi et al., 2007; Lutgens & Schotman, 2010). However, they all have their 

weaknesses. The common issue is that they use return-generating models as the experts’ 

recommendations. Unlike the return-generating model which obtains numerical 

estimates for asset returns, the investment forecasts provided by the financial analysts 

are seldom expressed in a precise and clear format. Despite the obvious difference in 
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the format between the return models and the experts’ recommendations, there is another 

issue regarding the volume of asset recommendations provided by the analysts. In reality, 

unlike the return models, which provide one estimate for every individual asset, a 

professional analyst usually provides a general market view of the entire stock market 

and then comments on a few specific stocks. This is illustrated by Figure 1.1, which 

displays the monthly volume of stock recommendations on the Taiwan Stock Exchange 

(TWSE) provided by two analysts during the sample period. Note that at the end of 2013, 

there are 809 stocks listed on the TWSE.  

Figure 1.1  Monthly Volume of Stock Recommendations 

Note: This figure reports the monthly volume of stock recommendations provided by two stock market 

analysts from April 2012 to April 2014. The data are obtained from the analysts selected for the empirical 

investigation in Chapter 6. Details of the analysts are contained in Chapter 5. 
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The aim of this study is to improve on the existing robust counterpart approach of 

the portfolio selection problem by incorporating additional investment information 

sources from stock market analysts. The following figure illustrates the portfolio 

selection models considered in this thesis. See Section 1.3 for detailed description of 

these approaches. 

Figure 1.2  Diagram of Various Portfolio Selection Models 
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1.2 Contributions to Knowledge 

This thesis aims to contribute to the literature of robust portfolio selection in the 

following aspects:  

 We propose a portfolio selection approach that takes into account various 

professional investment forecasts, using fuzzy set theory. This is because the 

investment recommendations of financial analysts are usually expressed vaguely 

in words, and the existing studies of the robust multi-prior approach (Garlappi 

et al., 2007; Lutgens & Schotman, 2010) mainly focus on the fundamental 

structure of the optimisation framework, without paying attention to the nature 

of the investment forecasts of financial analysts. Unlike the other related studies 

in the existing literature, which use return-generating models or simulated data 

as the recommendations of experts (Garlappi et al., 2007; Huang et al., 2010; 

Lutgens & Schotman, 2010), this research studies the characteristics of 

investment forecasts and utilises fuzzy set theory to interpret these ambiguous 

forecasts, so that the proposed multi-analyst approach can apply to investment 

management in the real world. 

 Following the inclusion of analysts’ recommendations in our portfolio selection 

model, we further develop a robust counterpart approach to the multi-analyst 

portfolio selection problem to handle the estimation errors and parameter 

uncertainties of the input parameters. As shown previously, professional analysts 

are unlikely to provide investment forecasts for every individual asset. Therefore, 

historical data is required to generate parameter estimates for the assets without 

the analysts’ recommendations. With the intention of considering the estimation 

errors and parameter uncertainties in different types of input data, i.e., 

investment forecasts of analysts and the historical data, separate uncertainty sets 
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are required in the portfolio selection process. Hence this robust multi-analyst 

framework combines the advantages of the model robust approach (Lutgens & 

Schotman, 2010) and the estimation robust approach (Ben-Tal & Nemirovski, 

1998). To the best of our knowledge, the robust multi-analyst portfolio selection 

approach with the separate uncertainty sets has not yet been investigated in the 

literature.  

 We undertake an empirical study to assess the performances of the proposed 

approaches. Instead of using simulated expert data, investment 

recommendations provided by professional analysts are adopted for examining 

the performances of the multi-analyst approaches. Our sample of the investment 

forecasts contains 2,133 investment newsletters, which are collected daily from 

four Taiwanese financial institutions over the period from April 2012 to April 

2014. The chosen financial institutions are the top ten most active securities 

brokerage firms in Taiwan. Although there has been a notable increase in the 

application of the robust portfolio optimisation models (Gabrel et al., 2014), this 

empirical study is the first investigation conducted with practical analysts’ 

investment forecasts. 

1.3 Thesis Organisation 

This thesis consists of seven chapters and the main body of the thesis is organised 

in two parts. The first part, which includes Chapters 2, 3 and 4, investigates the 

theoretical aspects of the portfolio optimisation problems with advice from multiple 

analysts and their associated robust counterpart approach. The second part, which 

consists of Chapters 5 and 6, illustrates the implementation of the multi-analyst 

approach and its robust counterpart approach, and the corresponding empirical studies. 
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Chapter 2 reviews the theories and research related to robust portfolio optimisation. 

It starts with the theoretical framework of the mean-variance portfolio selection 

approach of Harry Markowitz (1952) and addresses the weaknesses of this well-known 

portfolio selection model. Following this, a brief overview of possible solutions for 

improving on the mean-variance portfolio selection framework is given. Then the 

concept of the robust counterpart approach to the portfolio optimisation problem of Ben-

Tal and Nemirovski (1998) is discussed in detail. Finally, this chapter provides the 

literature relating to robust portfolio optimisation approach with multiple experts and 

highlights the rationale for improving the existing multi-expert approach. 

In Chapter 3 a new approach, the multi-analyst approach, is developed for asset 

allocation. This multi-analyst approach is built upon the multi-expert framework of 

Lutgens and Schotman (2010), where fuzzy set theory is incorporated into Lutgens and 

Schotman’s multi-expert approach, to take into account the ambiguous nature of the 

investment recommendations. This chapter starts with all the necessary literature of 

fuzzy set theory, followed by the possibilistic interpretation of fuzzy parameters. Then 

the framework of the proposed multi-analyst approach is presented, with examples to 

illustrate our multi-analyst approach for asset allocation. 

Chapter 4 presents the robust counterpart to the multi-analyst approach developed 

in Chapter 3. The robust multi-analyst approach is the second approach developed in 

this research for reducing the effect of estimation errors and parameter uncertainties. A 

standard framework of the robust counterpart to the multi-analyst approach with a joint 

uncertainty set is introduced first. This framework is then extended by adopting multiple 

uncertainty sets for handling different levels of parameter uncertainties of different 

datasets. Comparisons are given to illustrate the robust effect imposed on the robust 

multi-analyst approach at the end of Chapter 4. 
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Chapter 5 details the financial analysts’ investment recommendations collected for 

the empirical study. Apart from the historical asset performances, the proposed multi-

analyst approaches are designed to adopt investment forecasts provided by various 

professional analysts for generating potentially profitable asset allocations. This chapter 

discusses the process of data collection and the information of several Taiwanese 

financial institutions considered in this research. In addition, the procedure of converting 

the vague investment recommendations into ordinary numerical estimates will also be 

discussed in this chapter. 

Chapter 6 provides an empirical investigation to examine the proposed multi-

analyst approaches in the Taiwanese stock market. In order to present a comprehensive 

examination, the proposed multi-analyst approaches will be compared with other 

conventional investment strategies and examined under different scenarios. The analysis 

focuses on how the multi-analyst approaches have improved on portfolio performances 

and the effect of incorporating professional recommendations on asset allocation. In 

addition, this chapter investigates the impact of the risk preference, robustness 

preference, investor’s preference for analysts and the duration of investment of the 

multi-analyst approaches. 

Chapter 7 concludes the thesis. This final chapter begins with a summary of the 

main developments and findings to provide a full picture of this thesis, and then outlines 

the main contributions. Finally, limitations of this research and suggestions for future 

research are discussed at the end of this chapter. 
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Chapter 2 

The Classical Portfolio Selection Theory and 

Extensions 

Over the past few decades, the use of quantitative techniques in investment 

management has become more popular, especially after the major development that was 

the portfolio selection theory introduced by Harry Markowitz in the early 1950s. 

Markowitz suggests that investors should determine the allocation of funds based on a 

trade-off between the risks and the returns of assets. Compared to other sophisticated 

models, this risk-return theory is more widely used in practice today, mainly due to the 

simple and intuitive structure of the theory. However, this theory is also criticised by 

academic researchers and practitioners due to the possibility of unreliable solutions 

generated from incorrect input parameters. As a result, there is a substantial body of 

literature aiming to address these issues and expand the scope of the portfolio selection 

theory. 

This chapter reviews the relevant underpinning portfolio selection theories carried 

out for this research. First, a summary of the classical portfolio selection theory 

proposed by Markowitz is provided, followed by an overview of the parameter 

estimation and a discussion of optimisation problems with estimation errors and 

parameter uncertainties. Then the concept of the robust counterpart approach of the 

portfolio selection problem is given in section 2.2, together with some fundamental 
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features of the corresponding uncertainty set. Finally, the framework of robust portfolio 

optimisation with multiple experts is presented.  

Throughout the thesis, the following are the assumptions (unless stated otherwise) 

related to the investment and its environment. 

Assumptions 2.1 

 There is no transaction cost and the market has perfect liquidity. 

 The portfolio selection model only focuses on single-period problem. 

 The investor is assumed to be rational and risk averse. 

 The rate of expected returns and the corresponding risk measures are the only 

two types of input parameters required for making investment decisions.  

2.1 The Mean-Variance Portfolio Selection Approach 

Markowitz (1952) proposed the portfolio selection theory, which recommends to 

investors that a good portfolio is not just a collection of many good stocks and bonds, 

but it should also consider the risk and return of the investment according to the investors’ 

objective. Based on the idea of the portfolio selection theory, Markowitz further 

developed the mean-variance optimisation model that only requires the expected 

performances of assets and the assumed investors’ risk preference to determine the asset 

allocation. In addition, he suggested that the expected performance of the investment 

should be measured by the expected asset returns, and the risk be measured by the 

variances of the expected returns.  

There are a few alternative formulations of the mean-variance optimisation model, 

and the most commonly used substitutions are the risk minimisation formulation, the 

return maximisation formulation and the risk aversion formulation. The risk 

minimisation formulation is aimed at investment which requires a target rate of portfolio 
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return with the lowest risk. In contrast, the return maximisation formulation is adopted 

for investment which has to be kept under a prescribed level of risk with the highest 

portfolio return. The risk aversion formulation is based on the consideration of the trade-

off between maximising the expected portfolio return and minimising the portfolio risk 

by introducing the risk aversion coefficient1. Those formulations are different, as they 

have dissimilar investment targets, but on the other hand, they are equivalent to each 

other due to the same efficient frontier that can be created when using the same inputs: 

expected return and the risk measure of the portfolio. 

If not explicitly stated otherwise, the risk aversion formulation is adopted as the 

fundamental framework for the portfolio selection models throughout this research. The 

following literature about the mean-variance portfolio optimisation framework refers to 

the books of Cornuejols and Tütüncü (2007) and Capinski and Zastawniak (2003). 

Suppose there is an investor who plans to invest in a financial market of 𝑛 risky 

assets. The risk aversion formulation of the mean-variance portfolio optimisation model 

is defined as 

 (𝑷𝑴𝑽)                                          

                                  

max
𝑥∈ℝ𝑛

        𝜇𝑇𝑥 −
𝜆

2
𝑥𝑇𝛴𝑥             ,                                   (2.1) 

where𝜇 ∈ ℝ𝑛 is the vector denoting the expected returns,𝑥 ∈ ℝ𝑛 is the 𝑛-dimensional 

decision vector denoting the weights of the portfolio, 𝜆 is the risk aversion coefficient 

prescribed by the investor, 𝛴 = [𝜎𝑖𝑗] ∈ ℝ
𝑛 × ℝ𝑛 is the covariance matrix denoting the 

measure of risk with variance 𝜎𝑖𝑖 = 𝜎𝑖
2 for 𝑖 = 𝑗 and covariance 𝜎𝑖𝑗 for 𝑖 ≠ 𝑗. 

                                                 
1The risk aversion coefficient 𝜆 ∈ [0,∞) is also known as the Arrow-Pratt risk aversion index. If the 

aversion to risk is low, then the coefficient 𝜆 is small and which leads to a more risky portfolio with 

higher expected return. Likewise, if the aversion to risk is high, then the coefficient 𝜆 will be large and 

the optimisation problem will result in the portfolio with less risk and lower expected return. 
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As mentioned earlier, the risk measure and the expected returns play an important 

role in this portfolio optimisation method. Although it is impossible for anyone to know 

the true values of these parameters in advance, the investor would still prefer to use 

particular parameter estimators to forecast the future values of these input parameters, 

so that the resulting optimal asset allocation can be decided in an advantageous position 

and reduce the possibility of making losses in the investment. One of the most 

commonly used methods is to generate these input parameter estimates from the 

historical asset performances. The following diagram graphically illustrates the basic 

steps of the mean-variance portfolio selection approach. 

Figure 2.1  The Diagram of Solving the Mean-Variance Portfolio 

 

Although the theory of the mean-variance optimisation is very intuitive and the 

model itself can be applied easily in practice, it has been reported in academic research 

that the practitioners are still not confident enough to depend totally on the classical 

mean-variance portfolio selection model for achieving the optimal solution (Fabozzi et 

al., 2007). There are two main reasons for this. The first is the difficulty of having the 

correct and accurate values for the input parameters. The other reason is that the optimal 

Obtain the optimal solution 𝑥∗ 

Collect historical data 

Calculate the parameter estimates of the risk measures and the returns 

Construct the optimisation model (𝑃𝑀𝑉) 
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solution obtained by solving the mean-variance portfolio selection problem is very 

sensitive to small changes in the input parameters: the mean-variance portfolio selection 

model usually tends to generate the optimal solution with extremely high weighting for 

a particular asset. Hence a small change in one asset’s expected return may lead to a 

totally different asset allocation. See Best and Grauer (1991) and Britten-Jones (1999) 

for detailed discussion. 

In order to improve on the reliability of the optimal solution provided by the mean-

variance portfolio selection method, there are various suggestions based on different 

points of view. The type of suggested improvements can be divided into two possibilities, 

i.e., (a) how to improve on the accuracy of the input parameters; and (b) how to improve 

on the sensitive characteristic of the optimal solution. To enhance the reliability of the 

optimal solution, many researchers propose to use modified parameter estimators to 

reduce errors in input parameters. On the other hand, some scholars focus on improving 

the optimisation model by introducing new techniques. In the following sections, we 

first present some selected estimators of the input parameters for portfolio selection 

problems, and then briefly review various theoretical developments related to portfolio 

selection under uncertainty. 

2.1.1 Parameter Estimation 

The classical estimators for evaluating the values of the input parameters are the 

sample moment estimator and the maximum likelihood estimator. Other parameter 

estimators for the inputs of the portfolio selection problem, such as Bayesian estimators 

and shrinkage estimators are also suggested; see, e.g., Klein and Bawa (1976) and 

Jobson and Korkie (1981). Although both expected returns and risk measures are the 

fundamental parameters for the mean-variance portfolio selection model, the input 

parameter of the investment risk has less influence on the resulting optimal solution. 
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According to Chopra and Ziemba (1993) and Ziemba (2009), the errors in the expected 

returns are about ten times as important as errors in the risk measures, and consequently, 

the portfolio selection model suffers more from the problem of errors in the expected 

returns unless the optimisation model only focuses on minimising the portfolio risk. 

Therefore, we focus on the impact of the expected returns on the portfolio selection 

models in this thesis. 

2.1.1.1 The Sample Moment Estimator 

The most intuitive method for estimating the expected returns and the risk of an 

investment is to calculate the sample mean and the variance from the chosen historical 

data. However, if the historical data are adopted for the estimation purpose, there is 

always an assumption that the past records do provide a good estimate for the future. 

Let 𝑟𝑖,1, 𝑟𝑖,2, … , 𝑟𝑖,𝑇 denote the historical returns of asset 𝑖 with 𝑇 observations. 

The sample mean �̅�𝑖 and the sample variance 𝜎𝑖
2 for the 𝑖𝑡ℎ asset are defined to be  

                                 �̅�𝑖 =∑
𝑟𝑖,𝑡
𝑇

𝑇

𝑡=1

        ,       𝜎𝑖
2 =∑

(𝑟𝑖,𝑡 − �̅�𝑖)
2

𝑇 − 1

𝑇

𝑡=1

   .                          (2.2) 

The sample covariance between asset 𝑖 and asset 𝑗 is defined as 

                                          𝜎𝑖𝑗 =∑
(𝑟𝑖,𝑡 − �̅�𝑖)(𝑟𝑗,𝑡 − �̅�𝑗)

𝑇 − 1

𝑇

𝑡=1

   .                                              (2.3) 

By definition, the sample estimator of an asset’s expected return is simply the 

arithmetic average of the asset’s historical returns, hence the accuracy of this estimator 

is influenced by the size of the chosen sample. Some researchers suggest using more 

data from further back in time to generate more precise estimates rather than using 

higher frequency historical data, but practitioners usually believe that the best estimates 
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are generated by combining historical data and financial theories with their own 

judgement; see, e.g., Bain & Engelhardt (2000) and Fabozzi et al. (2007).  

2.1.1.2 The Maximum Likelihood Estimator 

The maximum likelihood estimator (MLE) is one of the statistical estimators which 

has been widely adopted in many practical applications. The fundamental idea behind 

the maximum likelihood estimator is to determine the parameter value that can best 

describe the sample for a given distribution. 

Specifically, let 𝑟𝑖  be a random variable with the probability density 

function

                                                         𝑓(𝑟𝑖;  휃1, 휃2, … , 휃𝑘),                                                       (2.4) 

where 휃1, 휃2, … , 휃𝑘  are the parameters that need to be estimated. The maximum 

likelihood estimates of 휃1, 휃2, … , 휃𝑘  are obtained by maximizing the likelihood 

function 

                                                    𝐿(휃) = 𝐿(휃1, 휃2, … , 휃𝑘| 𝑟𝑖)  .                                            (2.5) 

Furthermore, if the likelihood function is differentiable, then the maximum likelihood 

estimates can be obtained by solving the maximum likelihood equation 

                                                           
𝑑

𝑑휃
ln 𝐿(휃) = 0 .                                                           (2.6) 

Consider that the random variable 𝑟𝑖 is normally distributed, 𝑟𝑖~𝑁(𝜇𝑖, 𝜎𝑖
2), with 

probability density function 

                               𝑓(𝑟𝑖; 𝜇𝑖, 𝜎𝑖
2) =

1

𝜎𝑖√2𝜋
𝑒𝑥𝑝 (−

(𝑟𝑖 − 𝜇𝑖)
2

2𝜎𝑖
2 ),                                       (2.7) 

where 𝜇𝑖 and 𝜎𝑖
2 denote the mean and variance, respectively. For a random sample of 

size 𝑇  from the normal distribution, 𝑟𝑖~𝑁(𝜇𝑖, 𝜎𝑖
2) , the corresponding likelihood 

function is given by 
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𝐿(𝜇𝑖, 𝜎𝑖
2) =  𝑓(𝑟𝑖,1, 𝑟𝑖,2, … , 𝑟𝑖,𝑇; 𝜇𝑖, 𝜎𝑖

2)     

                                = (2𝜋𝜎𝑖
2)−

𝑇
2𝑒𝑥𝑝 (−

∑ (𝑟𝑖,𝑡 − 𝜇𝑖)
2𝑇

𝑡=1

2𝜎𝑖
2 ) .

                          (2.8) 

It is easy to verify that the maximum likelihood estimates for the expected return 𝜇𝑖 are 

                                                              �̂�𝑖 =∑
𝑟𝑖,𝑡
𝑇

𝑇

𝑡=1

                                                               (2.9) 

by solving  

       
𝑑

𝑑𝜇𝑖
ln 𝐿(𝜇𝑖, 𝜎𝑖

2) =
𝑑

𝑑𝜇𝑖
ln ((2𝜋𝜎𝑖

2)−
𝑇
2𝑒𝑥𝑝(−

∑ (𝑟𝑖,𝑡 − 𝜇𝑖)
2𝑇

𝑡=1

2𝜎𝑖
2 )) = 0.            (2.10) 

Similarly, let 𝜎𝑖
2 = 휃. By solving  

          
𝑑

𝑑휃
ln 𝐿(𝜇𝑖, 휃) =

𝑑

𝑑휃
ln ((2𝜋휃)−

𝑇
2𝑒𝑥𝑝 (−

∑ (𝑟𝑖,𝑡 − 𝜇𝑖)
2𝑇

𝑡=1

2휃
)) = 0,                 (2.11) 

the maximum likelihood estimate for the variance of asset 𝑖 is 

                                                  �̂�𝑖
2 =∑

(𝑟𝑖,𝑡 − �̂�𝑖)
2

𝑇

𝑇

𝑡=1

   .                                                (2.12) 

The formulations above are the maximum likelihood estimation of a single random 

variable 𝑟𝑖  which is univariate normal distributed. In an 𝑛 -dimensional setting, 

 𝑟1, … , 𝑟𝑛, the random variables are multivariate normal distributed,  𝑟1, … , 𝑟𝑛~𝑁(𝜇, Σ), 

with the joint probability density function given as 

                              𝑓(𝑟) =
1

√(2𝜋)𝑛|Σ|
𝑒𝑥𝑝 (−

1

2
(𝑟 − 𝜇)𝑇Σ−1(𝑟 − 𝜇))                      (2.13) 

where 𝑟 = ( 𝑟1, … , 𝑟𝑛)
𝑇 is the vector of the random variables, 𝜇 = ( 𝜇1, … , 𝜇𝑛)

𝑇 is the 

mean vector, and 𝛴 = [𝜎𝑖𝑗] ∈ ℝ
𝑛 × ℝ𝑛  is the covariance matrix. The maximum 

likelihood estimate for the expected return 𝜇 is 
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                                                               �̂� = ∑
𝑟𝑡
𝑇

𝑇

𝑡=1

                                                               (2.14) 

and the maximum likelihood estimate for the covariance matrix is given as 

                                                         Σ̂ = ∑
(𝑟𝑡 − �̂�)(𝑟𝑡 − �̂�)

𝑇

𝑇

𝑇

𝑡=1

  ,                                     (2.15) 

where �̂�𝑖𝑗 = ∑
(𝑟𝑖,𝑡−�̂�𝑖)(𝑟𝑗,𝑡−�̂�𝑗)

𝑇
𝑇
𝑡=1  between asset 𝑖  and asset 𝑗  for 𝑖 ≠ 𝑗  (Bain & 

Engelhardt, 2000; Rencher & Schaalje, 2008). 

It can be noticed that the maximum likelihood estimate of the expected return �̂�𝑖 

coincides with the sample mean estimator �̅�𝑖, and the maximum likelihood estimate of 

the covariance �̂�𝑖𝑗 is a constant multiple of the sample covariance estimator 𝜎𝑖𝑗, i.e., 

�̂�𝑖𝑗 =
𝑇−1

𝑇
𝜎𝑖𝑗. Although the maximum likelihood estimator is one of the commonly used 

statistical estimators in practice, it still has some drawbacks that concerned its user. For 

instance, the maximum likelihood estimator can be developed for a large variety of 

estimation situations, but it can also be heavily biased for small samples. Moreover, the 

maximum likelihood estimator for generating the parameter estimates is based on the 

assumption that the chosen sample follows a particular distribution, and this estimation 

approach becomes difficult to conduct if the sample follows non-normal distributions 

(Bain & Engelhardt, 2000). 

2.1.1.3 The Bayesian Estimator 

The Bayesian approach is considered to be a more rational method for estimating 

the input parameters. Unlike the classical estimators that are mainly based on the 

information from historical data, the Bayesian estimator is generated by taking both the 

historical observations and subjective views about the investment into account. 
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In the Bayesian approach, the prior probability distribution is formed before the 

sample data are actually observed. This prior probability distribution represents the 

investors’ knowledge about the parameters of interest. After receiving market 

information on the returns, the posterior probability distribution is then derived by 

considering both the prior probability distribution and the sample data. Finally, the 

Bayesian estimate of the input parameters for the portfolio selection problem can be 

evaluated from the posterior probability distribution (Satchell, 2007). 

The advantage of using the Bayesian approach as the parameter estimator for the 

portfolio selection problem is that the decision makers can incorporate their own opinion 

into the decision-making process. This is particularly desirable for investors who may 

have some pretty clear ideas about the performances of certain assets. The additional 

investment information is combined with the sample data via the laws of probability. 

A similar framework is proposed by Black and Litterman (1992), named the Black-

Litterman model. This approach is based on a concept of combining the investors’ views 

with the market equilibrium. The estimate of the expected return in the Black-Litterman 

approach is a weighted linear combination of the market equilibrium and the users’ 

opinions, and the corresponding weight allocation is determined on the degree of 

confidence in the market equilibrium and in the investors’ views. In other words, the 

users can adjust the confidence level to control the impact of the forecast on the optimal 

solution for the portfolio selection problem. 

2.1.1.4 The Shrinkage Estimator 

Jobson and Korkie (1981) proposed to use the shrinkage estimator to improve on 

the reliability of the optimal solution for the mean-variance portfolio selection approach. 

This estimator addresses the problem of the imprecise expected return by shrinking the 



20 

 

sample mean �̅� towards a targeted value. Hence the extreme observations from the 

sample data are less likely to affect the optimal solution. 

There are various shrinkage estimator formulae for estimating the expected return 

in the financial literature, and according to Jorion (1986), all of them are generated from 

following three essential elements: 

 A simple estimate of the expected return such as the sample mean �̅�. 

 A shrinkage target 𝜇𝑇𝑎𝑟𝑔𝑒𝑡, which is the targeted value for the expected return. 

 A shrinkage factor 𝛾, which is derived from chosen theoretical properties or 

numerical simulations. 

Basically, the shrinkage estimator is a weighted average of the simple estimate of 

the expected return and the shrinkage target 𝜇𝑇𝑎𝑟𝑔𝑒𝑡 , where the shrinkage target 

𝜇𝑇𝑎𝑟𝑔𝑒𝑡 is computed based on the requirements that the shrinkage target needs to be 

robust and have some basic properties in common with the expected return. Although 

the use of the shrinkage estimators in the mean-variance portfolio selection approach 

has been supported by studies (Jorion, 1985; Michaud, 1989), this estimation approach 

is not flawless in the sense that it may convert the raw estimate into an improved but 

biased estimator if the chosen shrinkage target contains too much unnecessary and 

nonsensical information.  

To conclude, using more robust statistical estimators for the input parameters is 

one possible way to improve the accuracy of the inputs, and hence provides a more 

reliable optimal solution for the portfolio selection problem. However, no matter how 

sophisticated these estimation approaches are, the estimation errors and parameter 

uncertainties can never be eliminated. Moreover, adding the new techniques and 

structures into the estimating approach for the input parameters may create other errors. 
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Furthermore, all those statistical estimators for the input parameter are point estimates2, 

hence, the optimal solution to the portfolio selection problem is still based on two 

parameters: the vector of expected returns and the covariance matrix. Therefore, the 

fundamental concern that the outcome of the mean-variance portfolio selection approach 

is affected by the estimation errors and parameter uncertainties remains unsolved. 

2.1.2 Portfolio Selection Under Uncertainty 

In the classical portfolio selection theory, the investors are assumed to have 

complete and accurate investment information, which is required for solving the 

portfolio selection problem, and the aim of solving the portfolio selection problem is to 

obtain an optimal and also satisfying portfolio according to the available information 

and the investors’ preferences. However, the procedure for deciding which assets should 

be included in the portfolio is always a tough task due to the difficulty of having full 

knowledge of the problem. In other words, investors face a situation in which they can 

only make their decisions based on limited investment information. Moreover, in 

addition to estimation errors and parameter uncertainties, the investment information 

also contains other non-probabilistic elements such as vagueness and ambiguities which 

influence the process of decision making and have great impact on the final result. 

Therefore, portfolio selection under uncertainty is an important topic in decision making 

and has attracted a lot of interest since Markowitz’s seminal work. Many methods have 

been suggested in the literature for solving the portfolio selection problem under 

uncertainty, and the most well-known approaches are fuzzy programming, stochastic 

programming, resampling approach, and robust counterpart approach. 

                                                 
2A point estimate is a single number which represents the most likely value of the chosen target. 
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2.1.2.1 Fuzzy Programming 

Zadeh (1965) introduced the notion of fuzzy sets as a solution to the problems of 

uncertainties, imprecision, and contradictions found in crisp sets, where the crisp sets 

theoretically have clear set boundaries and contain well-defined elements. Many 

researchers relate the concept of the fuzzy sets to probabilities and believe that fuzziness 

and probabilities can be treated similarly. However, the innate characters of fuzziness 

and probabilities are different. According to Espinosa et al. (2005), fuzziness describes 

the degree of belonging of the element to a specific set. On the other hand, probabilities 

describe the likelihood of certain elements being contained by the set. 

Fuzzy set theory is an important achievement in decision theory and has been 

extensively employed in decision analysis, mainly used for modelling imperfect 

knowledge of the problem and describing the inexplicit preference of decision makers. 

Compared to all other aforementioned approaches that deal with the issue caused by the 

vagueness of the portfolio selection problem, fuzzy programming is probably the more 

intuitive and appropriate method in terms of the description of ambiguous input 

parameters (Parra et al., 2001; Dempe & Ruziyeva, 2012).  

In optimising problems with fuzzy set theory, there are two main modelling 

approaches. The first approach is to adopt fuzzy set theory to integrate qualitative and 

quantitative investment information and model the uncertainty on returns. For example, 

Liu (2011) and Zhang et al. (2009) (2011) use interval fuzzy variables to express future 

return rates and risk for portfolio selection. Carlsson et al. (2002) suggest choosing 

portfolios with the highest utility score via a possibilistic approach under the assumption 

that asset returns are trapezoidal fuzzy variables. In addition, Tanaka and Guo (1999) 

propose a centrespread approach to handle portfolio selection problems, with asset 

returns described as exponential fuzzy variables. The second approach employs fuzzy 

set theory to formulate portfolio selection problems. To name a few: Watada (1997) 



23 

 

considers fuzzy portfolio selection problems with vague goals of expected return and 

risk; Liern et al. (2002) investigate how fuzzy set theory can be applied to describe soft 

constraints and repair unfeasibility in portfolio selection problems. Ammar (2008) 

formulates the portfolio selection problem as a multi-objective quadratic model with 

fuzzy objectives and constraints. Furthermore, another fuzzy approach for the multi-

objective portfolio selection problem with semi-absolute deviation is considered in 

Gupta et al. (2008).  

2.1.2.2 Stochastic Programming 

Similar to fuzzy programming, stochastic programming also addresses portfolio 

selection problems under uncertainty. The principal difference between fuzzy 

programming and stochastic programming is how the uncertain elements of the 

optimisation problem are modelled. In the fuzzy programming case, the random 

parameters are considered as fuzzy variables and the optimisation problem is formulated 

in terms of fuzzy sets. On the other hand, stochastic programming assigns discrete or 

continuous probability functions to the various unknown parameters, hence a particular 

uncertain parameter can be represented by a probabilistic estimation.  

A typical critique of stochastic programming is that the probability distributions 

are usually unknown and the optimal solution of stochastic programming may perform 

badly if the chosen distribution of uncertainties is in fact different from the actual 

distribution (Ben-Tal et al., 2010; Goh & Sim, 2010). Furthermore, the estimation for 

the uncertain parameter may not satisfy the original constraints in the model of 

stochastic programming, but only the relaxation of those constraints. This feature of 

stochastic programming is not suitable for the portfolio selection problem, because the 

constraints of the portfolio selection problem are usually the hard constraints that need 
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to be satisfied no matter what the realisation of the input data is. See Quaranta and 

Zaffaroni (2008) for further discussion.  

2.1.2.3 Resampling Approach 

In order to incorporate the estimation risk in the portfolio selection process, 

Michaud (1998) proposed another method based on the idea that the final solution 

should not contain much estimation risk if sufficient resampling procedures are 

conducted. 

In the resampling approach, random samples are drawn from a given distribution 

to obtain the new expected return and covariance matrix, and then the new pair of input 

parameters is used to solve the portfolio selection problem and provide the 

corresponding optimal solution. After the resampling process has been repeated many 

times, the final optimal solution is then obtained by averaging the respective optimal 

solutions.  

Although the resampling approach is a rather well known technique to reduce the 

estimation risk, this approach is not widely applied due to some limitations, such as the 

computational difficulty for larger portfolios and that the final optimal solution may not 

satisfy the imposed constraints of the portfolio selection problem (Fabozzi et al., 2007; 

Scherer, 2002). 

2.1.2.4 Robust Portfolio Selection 

Among all of the aforementioned techniques, robust portfolio selection uses a 

rather intuitive technique to incorporate uncertainties into the optimisation problems, 

and it is superior to other approaches in terms of both its simplicity and its efficiency of 

computation. The concept was introduced by Ben-Tal and Nemirovski (1998), and also 

independently by El-Ghaoui et al. (1998), based on the idea of providing the best 

outcome in the worst possible environment with uncertain input parameters lying in the 
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corresponding uncertainty set 𝑈 . To be more specific, the estimates of the input 

parameters in this approach are considered to be not totally reliable and to contain a 

certain level of ambiguity; hence a prescribed uncertainty set 𝑈 that contains many 

possible values of the parameters is used for the portfolio selection problem instead of 

the point estimates. The optimal solution is then obtained by optimising the problem 

with the worst possible scenario in the pre-specified uncertainty set 𝑈. 

Although the robust portfolio selection approach also has some undesirable 

features, such as the overly conservative optimal solution and the unclear definitions of 

the uncertainty set   𝑈 , there are several advantages that attract researchers and 

practitioners. For instance, the robust portfolio selection model is computationally 

tractable and also more flexible than other approaches; the robust portfolio selection 

problem can be solved in about the same time as is required for the corresponding 

original problem; and the optimal solution of the robust model is less sensitive to 

estimation errors (Fabozzi et al., (2007)). A more detailed literature review of the robust 

portfolio selection approach is given in section 2.2. 

2.2 The Robust Portfolio Selection Approach 

Ben-Tal and Nemirovski (1998) have derived the robust counterpart approach to 

optimisation problem with uncertain input parameters. This approach is, in fact, the 

worst-case approach that transfers the original optimisation problem into the robust 

optimisation problem, because the modified optimisation model does not just solve the 

problem for every point within the prescribed uncertainty set  𝑈, but also provides the 

outcome that optimises the objective function even if the “worst” case occurs. However, 

the process of the robustification changes the original optimisation problem into a more 

difficult version. For instance, a linear optimisation problem converts to a second-order 

cone optimisation problem and a second-order cone problem turns into a semi-definite 
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optimisation problem. Therefore, the robust optimisation problem can be unsolvable 

with standard techniques in some circumstances (see, e.g., Ben-Tal & Nemirovski, 

2002). 

In order to overcome this drawback of the robust counterpart approach, Ben-Tal 

and Nemirovski (2002) and Bertsimas and Sim (2006) suggest using tractable 

approximations for the robust formulation. A more comprehensive overview of the 

tractability and extensions for the robust optimisation model is provided by Ben-Tal and 

Nemirovski (2008). On the other hand, Fabozzi et al. (2010) summarised related 

research on robust portfolio selection strategies, especially the developments in solving 

the robust optimisation problem with down side risk measures. In addition, a more 

recent review of developments in robust optimisation is given by Gabrel et al. (2014), 

which focuses on both theoretical extensions of robust optimisation and real world 

applications. It also contains many references relating to the topic of robust optimisation. 

2.2.1 The Robust Counterpart Approach 

Let us consider a general optimisation problem (𝑷)  with the uncertain input 

parameter 𝑢 expressed in the form 

 (𝑷)                                                
𝑚𝑖𝑛
𝑥∈ℝ𝑛

        𝑓(𝑥, 𝑢)               

𝑠. 𝑡.         𝑔(𝑥, 𝑢) ∈ 𝐾     
    ,                                     (2.16) 

where 𝑥 denotes the decision variable, 𝑢 denotes the input parameter that contains a 

certain level of uncertainties, the function 𝑓 denotes the objective function, and the 

function 𝑔 denotes the constraint function with the structure element set 𝐾. 

If the uncertainty set 𝑈 is a finite set of “scenarios” that consists of all possible 

values of input parameters, i.e., 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚}, then the optimisation problem can 

be solved by transferring the function that contains the uncertain parameter 𝑢  into 

finitely many functions for every single 𝑢𝑖 ∈ 𝑈, and a similar process can be applied if 
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there are finitely many points belonging to the uncertainty set 𝑈. Since the transferring 

process only duplicates the particular function, therefore, the original optimisation 

problem is turned into a larger but not more difficult version, because the structural 

properties of the original optimisation problem are preserved. That is, the general 

optimisation problem (𝑷) with the uncertain parameter 𝑢 ∈ 𝑈 can be formulated as 

                           

      min
𝑥,𝜁
        휁                                                                   

𝑠. 𝑡.         휁 − 𝑓(𝑥, 𝑢𝑖) ≥ 0           𝑖 = 1,… ,𝑚

                𝑔(𝑥, 𝑢𝑖) ∈ 𝐾                  𝑖 = 1, … ,𝑚

    .                      (2.17) 

On the other hand, if the uncertainty set 𝑈 is not finite, e.g., continuous sets in the 

shape of boxes, ellipsoids or the intersections of ellipsoids, then the original optimisation 

problem will be modified into a more complicated framework such that the function that 

contains the uncertain parameter has to be satisfied for all possible values in the 

uncertainty set 𝑈. The solution can be difficult to obtain in this situation, since the 

corresponding uncertainty set 𝑈 can be quite large (Cornuejols & Tütüncü, 2007). 

Suppose the original optimisation problem is formulated as 

 (𝑷)                                             
min
𝑥∈ℝ𝑛

        𝑓(𝑥, 𝑢)               

𝑠. 𝑡.          𝑥 ∈ 𝐹                
,                                           (2.18) 

where 𝐹(𝑢) = {𝑥 | 𝑔(𝑥, 𝑢) ∈ 𝐾}  denotes the feasible set with 𝑢 ∈ 𝑈 . The robust 

counterpart of (2.18) is 

                                        min
𝑥∈𝐹

 max
𝑢∈𝑈

      𝑓(𝑥, 𝑢)   .                                                               (2.19) 

Note that the geometry of the uncertainty set 𝑈  is not the only factor that 

influences the accessibility of the robust counterpart approach. The analytical structure 

complexity of the original optimisation problem is another possibility for increasing the 

difficulty in solving the robust optimisation problem. Furthermore, there are only 

guidelines and no strict formulations for the uncertainty set 𝑈 of the robust counterpart 
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approach. Therefore, uncertainty set 𝑈 can be represented and formed according to 

different preferences and opinions on the future values of the input parameters. 

2.2.2 The Uncertainty Set 

The fundamental idea behind the uncertainty set 𝑈 is to incorporate estimation 

errors and parameter uncertainties into a set, so that the uncertainty set 𝑈 contains 

many possible values of the required input parameters.  

In general, the shape of the uncertainty set 𝑈  depends on the sources of 

uncertainties and also the sensitivity effect of the uncertainty. The most common shapes 

for the uncertainty set are box, ellipsoid and the intersections of the ellipsoids. There is 

no exact formulation for the uncertainty set, and every type of the uncertainty set is 

supported by various researchers. Cornuejols & Tütüncü (2007), El-Ghaoui et al. (2003) 

and Tütüncü and Koenig (2004), for example, adopt box uncertainty sets to define 

uncertain parameters. Ben-Tal and Nemirovski (1998) and El Ghaoui et al. (ElG981), 

on the other hand, describe uncertain parameters through ellipsoids or intersections of 

ellipsoids. However, Schöttle (2007) has shown that the ellipsoidal uncertainty set leads 

to a unique optimal solution that is continuous with respect to the uncertain parameter 

in most practical cases by investigating the impact of using uncertainty sets with 

different shapes on the continuity properties of the optimal solution set. 

On the other hand, the size 𝛿 of the uncertainty set 𝑈 depends on the desired 

robustness level for the parameter estimates. Different people may have different 

degrees of confidence in the parameter estimates. One may have 100% confidence in 

the estimated figures and decide to use point estimates with the size of the uncertainty 

set equal to zero, and others may feel unsure about the estimates and use some 

confidence intervals around the parameter estimates to handle estimation errors. As a 

general guideline, if the expected parameter values are assumed to belong to any 
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possible probability distribution, then the desired robustness level 𝛿 of an ellipsoid 

uncertainty set, the size of the uncertainty set, can be defined as 

                                                            𝛿 = √
1 − 𝜅

𝜅
   ,                                                          (2.20) 

with 𝜅 denoting the probability that the true values of the parameter will fall in the 

uncertainty set (El Ghaoui et al., 2003; Fabozzi et al., 2007). 

Despite the general descriptions of the size and the shape of the uncertainty set, the 

uncertainty set 𝑈  is usually considered to be centred at the expected value of the 

parameter and the preferred level of confidence is denoted by the variance. Nevertheless, 

the procedure of obtaining statistically meaningful and precise estimates from available 

historical data is never an easy task, and these possible estimation errors may lead to an 

unreliable uncertainty set 𝑈  that obtains an undesirable result for the robust 

optimisation problem. Many suggested improvements are focused on the substitution of 

the risk measures or the parameter estimators. Unlike others, Bertsimas and Brown 

(2009) proposed a prescriptive technique to build the uncertainty set 𝑈 for the robust 

optimisation problem. In their approach, the starting point of the construction of the 

uncertainty set 𝑈 is the framework of coherent risk measures. However, this approach 

is only applicable for the robust linear optimisation problem, but not viable for other 

more general robust optimisation problems such as convex optimisation problems. 

Let us consider an optimisation problem with an 𝑛-dimensional vector of uncertain 

coefficients 𝑢. The box uncertainty set 𝑈𝐵𝑜𝑥 for the uncertain coefficients 𝑢 is given 

by 

                      𝑈𝐵𝑜𝑥(�́�) = { 𝜇 ∈ ℝ𝑛 ||𝑢𝑖 − �́�𝑖| ≤ 𝛿, 𝑖 = 1,… , 𝑛}   ,                              (2.21) 

where �́� = (�́�1, �́�2, … , �́�𝑛)
𝑇 denotes the statistical parameter estimates of the uncertain 

coefficients 𝑢 and 𝛿 ≥ 0 denotes the desired robustness level for the uncertainty set 
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𝑈𝐵𝑜𝑥. The box uncertainty set 𝑈𝐵𝑜𝑥 is also known as the interval uncertainty set. On 

the other hand, the ellipsoid uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 for the uncertain coefficients 𝑢 

can be formulated in several ways, and the most common format is 

                      𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑(�́�) = {𝜇 ∈ ℝ𝑛|(𝜇 − �́�)𝑇𝑄−1(𝜇 − �́�) ≤ 𝛿2}  ,                       (2.22) 

where 𝑄 ∈ ℝ𝑛 ×ℝ𝑛 is a carefully chosen matrix (Fabozzi et al., 2007). 

2.2.3 The Robust Counterpart Approach of the Mean-Variance Portfolio Selection 

In the previous sections we have discussed the framework of the robust counterpart 

approach and also notations of the corresponding uncertainty set. In the following we 

explain the structure of the robust counterpart approach of the mean-variance portfolio 

selection problem. 

Generally speaking, the expected returns and the risk measures of the underlying 

assets are the only two possible uncertain input parameters for the portfolio selection 

problem. Therefore, these two uncertain parameters of the original portfolio selection 

problem are required to be described and expressed via the corresponding uncertainty 

set 𝑈. However, as mentioned in Section 2.1, the estimation errors of the risk measures 

have less impact on the portfolio selection. Hence, the uncertainty set 𝑈 usually is 

defined only for the expected returns in most practical cases. 

Note that the uncertainty set 𝑈 is supposed to be non-empty, convex, and compact. 

Without considering the finite uncertainty set 𝑈 , which is simply a collection of 

scenarios, the box uncertainty set 𝑈𝐵𝑜𝑥 and the ellipsoid uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 for 

the parameter of the asset returns 𝜇 ∈ ℝ𝑛 are defined as 

1) The box uncertainty set 𝑈𝐵𝑜𝑥 for the parameter 𝜇 

                     
𝑈𝐵𝑜𝑥(�́�) = {𝜇 ∈ ℝ𝑛| |𝜇𝑖 − �́�𝑖| ≤ 𝛿, 𝑖 = 1, … , 𝑛}  

                  = {𝜇 ∈ ℝ𝑛| 𝜇 = �́� + 𝛿𝜓 , 𝜓 ∈ [−1,1] 𝑛 }
          ,                   (2.23) 
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2) The ellipsoid uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 for the parameter 𝜇 

                     
𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑(�́�) = {𝜇 ∈ ℝ𝑛|(𝜇 − �́�)𝑇Σ́−1(𝜇 − �́�) ≤ 𝛿2}

                         = {𝜇 ∈ ℝ𝑛|𝜇 = �́� + 𝛿Σ́
1
2𝜓 , ‖𝜓‖ ≤ 1  }

         ,               (2.24) 

where �́� = (�́�1, �́�2, … , �́�𝑛)
𝑇 denotes the statistical parameter estimates of asset returns 

𝜇 and Σ́ ∈ ℝ𝑛 ×ℝ𝑛 denotes the covariance matrix of the asset returns. 

Recall the risk aversion formulation of the mean-variance portfolio selection 

problem (2.1) 

(𝑷𝑴𝑽)                                        

                                  

max
𝑥∈ℝ𝑛

        𝜇𝑇𝑥 −
𝜆

2
𝑥𝑇𝛴𝑥   .                                                          

Then the robust counterpart approach of the mean-variance portfolio selection problem 

can be formulated as 

(𝑹𝑴𝑽)                                 

                                  

max
𝑥∈ℝ𝑛

 min
𝜇∈𝑈(�́�)

       𝜇𝑇𝑥 −
𝜆

2
𝑥𝑇𝛴𝑥            ,                               (2.25) 

with 𝑈(�́�) denoting the prescribed uncertainty set for the parameter of asset returns 𝜇. 

In addition to the already mentioned advantageous feature of the ellipsoid uncertainty 

set, i.e., the continuity of the optimal solution, the ellipsoid uncertainty set is generally 

a more suitable choice to describe the uncertain parameter, because the ellipsoid 

uncertainty set allows users to include second moment information about the 

distribution of the uncertain parameters. Therefore, we will adopt the ellipsoid 

uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 for modelling the uncertain parameter of asset returns. 

By using the formulation (2.24) of the ellipsoid uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 , the 

robust portfolio selection approach (𝑅𝑀𝑉) can be reformulated as follows 
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max
𝑥∈ℝ𝑛

min
𝜇∈𝑈(�́�)

          𝜇𝑇𝑥 −
𝜆

2
𝑥𝑇𝛴𝑥                     

= max
𝑥∈ℝ𝑛

  min
‖𝜓‖≤1

            (�́� + 𝛿Σ́
1

2𝜓)𝑇𝑥 −
𝜆

2
𝑥𝑇Σ𝑥       

 = max
𝑥∈ℝ𝑛

  min
‖𝜓‖≤1

             �́�𝑇𝑥 + 𝛿𝜓𝑇Σ́
1

2

𝑇

𝑥 −
𝜆

2
𝑥𝑇Σ𝑥

                 = max  
𝑥∈ℝ𝑛

                      ( �́�𝑇𝑥 −
𝜆

2
𝑥𝑇Σ𝑥 + 𝛿 min

‖𝜓‖≤1
 𝜓𝑇Σ́

1

2𝑥)  
    

. 

As the product of 𝜓𝑇Σ́
1

2𝑥  is minimised at 𝜓𝑇 = −
Σ́1 2⁄ 𝑥

‖Σ́1 2⁄ 𝑥‖
, the robust portfolio 

selection problem becomes  

                             
= max

𝑥∈ℝ𝑛
     �́�𝑇𝑥 −

𝜆

2
𝑥𝑇Σ𝑥 − 𝛿 

Σ́1 2⁄ 𝑥

‖Σ̂1 2⁄ 𝑥‖
Σ́
1
2𝑥                           

= max
𝑥∈ℝ𝑛

     �́�𝑇𝑥 −
𝜆

2
𝑥𝑇Σ𝑥 − 𝛿 ‖Σ́1 2⁄ 𝑥‖ .                                  

            (2.26) 

The above formulation is in fact a standard illustration of the robust counterpart 

approach derived from the framework of the classical mean-variance portfolio selection 

problem; see, e.g., Schöttle (2007). Based on this robust framework, there are many 

studies that focus on the possible extensions of the robust portfolio optimisation model. 

The following diagram graphically illustrates the basic steps of the robust counterpart 

approach. 

Figure 2.2  The Diagram of Solving the Robust Counterpart Approach 

Obtain the optimal solution 𝑥∗ 

Collect historical data 

Calculate the parameter estimates of the risk measures and the returns  

 

Construct the robust uncertainty set 𝑈 

Construct the robust portfolio optimisation model 
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Overall, the main research directions of the robust portfolio optimisation model can 

be divided into three research lines: robust optimisation model with different risk 

measures, investigation and construction of the uncertainty set for the robust 

optimisation problem, and the robust portfolio optimisation model with advice from 

multiple experts.  

On the basis of robust mean-variance objective formulation, some researchers 

consider using risk measures other than variance, such as VaR (value-at-risk) and CVaR 

(conditional value-at-risk), since these risk measures seem to be more suitable for 

modelling the risk of an event, unlike variance, which is in fact a measure used to 

describe the dispersion of a random variable and which considers overperformance and 

underperformance to be equally important. El Ghaoui et al. (2003) and Natarajan et al. 

(2008) use VaR, and others like Huang et al. (2010), Quaranta and Zaffaroni (2008), and 

Zhu and Fukushima (2009) investigate the robust optimisation problem with CVaR.  

A different approach for improving the robust optimisation model is to construct 

appropriate uncertainty sets for the input parameters. Various studies and investigations 

have been carried out in this specific field. In addition to the development mentioned 

previously, there are various studies, such as Natarajan et al. (2009) and Bertsimas and 

Sim (2004). Chen et al. (2007) introduced a new formulation of the uncertainty set that 

incorporates the asymmetric distributional behaviour of the uncertain parameter. In 

addition, Bertsimas et al. (2011) focused on the structure of the ellipsoid uncertainty set 

and proposed a method that controls the size of the ellipsoidal uncertainty set. It has the 

interpretation as the trade-off between the desired robustness and the performance of the 

robust optimisation model. 

Another approach to improving robust portfolio selection is to incorporate different 

information sources about the uncertain parameters into the robust optimisation model. 
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Detailed descriptions and discussions of the robust optimisation model with multiple 

priors are given in the following section.  

2.3 The Robust Portfolio Optimisation Model with Multiple Experts 

There is no unique asset returns model that can satisfy every investor, and the 

specification of the returns model for the portfolio selection problem usually depends 

on the opinions of each individual investor. Garlappi et al. (2007) and Lutgens and 

Schotman (2010) proposed to incorporate additional information about the underlying 

assets directly into the framework of portfolio selection models rather than using 

existing techniques, such as the Bayesian approach. 

2.3.1 The “Non-overlapping” Method for Robust Portfolio Selection with Multi-

Prior 

Garlappi et al. (2007) introduced a robust portfolio selection model that allows an 

investor to include multiple priors’ knowledge into the portfolio selection process with 

ambiguity aversion. The multiple priors are characterised via a confidence interval 

around the estimate of expected returns and the ambiguity aversion is modelled by 

minimising over the priors. There are several interesting features of this approach that 

attract attention from both researchers and practitioners. Apart from the useful 

simplification to the mean-variance portfolio selection model with the adjusted estimate 

of expected returns, which reflects the investor’s ambiguity about the chosen estimate, 

their approach captures more attention in the process for estimating the uncertain 

expected returns. In their approach, the expected returns can be estimated either jointly 

or via different non-overlapping subsets.  

Garlappi et al. (2007) start by imposing an additional constraint on the standard 

mean-variance portfolio selection problem, to restrict possible parameter realisation so 

that it lies within a given confidence interval. Then they introduce an additional 
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optimisation framework to minimise over different estimation choices of expected 

returns, subject to the additional constraint. This additional constraint represents the 

ambiguity aversion of the investor. By adding the two changes to the risk aversion 

formulation of the mean-variance portfolio selection problem with 𝑛 assets, the model 

proposed by Garlappi et al. (2007) is expressed as follows 

(𝑴𝑴𝑽)                                      
max
𝑥∈ℝ𝑛

 min
𝜇
         𝜇𝑇𝑥 −

𝜆

2
𝑥𝑇Σ𝑥 

       𝑠. 𝑡.              𝑔(𝜇, �́�, Σ) ≤ 휀   
            ,                         (2.27) 

where 𝑔(. ) is a vector valued function with the vector 휀  reflecting the investor’s 

aversion to the uncertain parameter. Note that Garlappi et al. (2007) are concerned more 

about the estimation errors in the expected returns, hence the value of the covariance 

matrix is assumed to be known and the uncertainty in the covariance matrix is ignored. 

There are three possible formulations to define the constraint 𝑔(. ) , and they are 

distinguished from each other according to how the uncertainty about the expected 

returns is described. 

1) The first possible formulation for the constraint 𝑔(. ) estimates the uncertainty 

of the expected returns individually, i.e., asset by asset 

                                    𝑔𝑖(𝜇, �́�, Σ) =
(𝜇𝑖 − �́�𝑖)

2

𝜎𝑖
2 𝑇𝑖⁄

     ,                                             (2.28) 

where 𝑖 = 1,2, … , 𝑛 and 𝑇𝑖 denotes the number of observations in the sample 

for the 𝑖𝑡ℎ asset. By using formulation (2.28) for the constraint 𝑔(. ), the mean-

variance portfolio selection (𝑀𝑀𝑉) becomes 

                                    

max
𝑥∈ℝ𝑛

 min
𝜇
         𝜇𝑇𝑥 −

𝜆

2
𝑥𝑇Σ𝑥  

       𝑠. 𝑡.              
(𝜇𝑖 − �́�𝑖)

2

𝜎𝑖
2 𝑇𝑖⁄

≤ 휀𝑖   

            ,                       (2.29) 

where the constraint function 𝑔(. )  is actually the confidence intervals of 

parameter estimates. 
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2) The second possible formulation for the constraint 𝑔(. )  estimates the 

uncertainty of the expected returns jointly 

                         𝑔(𝜇, �́�, Σ) =
𝑇(𝑇 − 𝑛)

(𝑇 − 1)𝑛
 (�́� − 𝜇)𝑇 Σ−1 (�́� − 𝜇)  .                     (2.30) 

In this case, the mean-variance portfolio selection approach (𝑀𝑀𝑉)  with 

respect to 𝜇 is formulated as 

         
max
𝑥∈ℝ𝑛

 min
𝜇
         𝜇𝑇𝑥 −

𝜆

2
𝑥𝑇Σ𝑥 

                              𝑠. 𝑡.             (�́� − 𝜇)𝑇 Σ−1 (�́� − 𝜇) ≤ 휀   

 ,                    (2.31) 

where 휀 is a non-negative number that describes the desired robustness level of 

the parameter estimate �́�. This formulation of the portfolio selection approach 

(𝑀𝑀𝑉)  is actually the robust counterpart approach of the mean-variance 

portfolio selection problem (𝑅𝑀𝑉) with the ellipsoid uncertainty set, which has 

been presented earlier in section 2.2.  

3) The third possible formulation for the constraint 𝑔(. ) estimates the uncertainty 

of the expected returns separately via different subclasses of assets. Suppose 

there are 𝑌 non-overlapping subsets of 𝑛 assets with 𝑦 = (1,… , 𝑌), and let 

𝑆𝑦 = (𝑠1𝑦 , … , 𝑠𝑛𝑦) with each element of 𝑆𝑦 denoting a subset of assets, then 

the 𝑌-valued constraint function 𝑔(. ) is 

              𝑔𝑦(𝜇, �́�, Σ) =
𝑇𝑦(𝑇𝑦 − 𝑛𝑦)

(𝑇𝑦 − 1)𝑛𝑦
 (�́�𝑆𝑦 − 𝜇𝑆𝑦)

𝑇Σ𝑆𝑦
−1 (�́�𝑆𝑦 − 𝜇𝑆𝑦)  .           (2.32) 

Without loss of generality, a case of two non-overlapping subsets is considered 

for the purpose of illustrating the structure of the portfolio selection problem 

(𝑀𝑀𝑉) with the 𝑌-valued constraint function 𝑔(. ). Let subset 𝑎 and subset 𝑏 

represent the non-overlapping subsets, with set 𝑎 consisting of 𝑌𝑎 assets and 

set 𝑏 consisting of 𝑌𝑏 assets, and 𝑌𝑎 + 𝑌𝑏 = 𝑛. Thus, the portfolio selection 

problem (𝑀𝑀𝑉) is rearranged in the following form 
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max
𝑥∈ℝ𝑛

 min
𝜇𝑎,𝜇𝑏

         𝜇𝑇𝑥 −
𝜆

2
𝑥𝑇Σ𝑥 

                                    𝑠. 𝑡.              (�́�𝑎 − 𝜇𝑎)
𝑇Σ𝑎𝑎

−1 (�́�𝑎 − 𝜇𝑎) ≤ 휀𝑎
                                                        (�́�𝑏 − 𝜇𝑏)

𝑇Σ𝑏𝑏
−1 (�́�𝑏 − 𝜇𝑏) ≤ 휀𝑏

                  (2.33) 

where 𝑥 = (𝑥𝑎
𝑇 , 𝑥𝑏

𝑇)𝑇 is an 𝑛-dimensional decision vector with 𝑥𝑎 denoting 

a 𝑌𝑎-dimensional vector and 𝑥𝑏 denoting a 𝑌𝑏-dimensional vector. The factors 

of the expected returns 𝜇 and covariance matrix Σ are defined as 

                                   𝜇 = (
𝜇𝑎
𝜇𝑏
) , Σ = (

Σ𝑎𝑎 Σ𝑎𝑏
Σ𝑏𝑎 Σ𝑏𝑏

).                                  (2.34) 

The parameters �́�𝑎  and �́�𝑏  denote a choice of statistical estimates of the 

expected returns obtained from subsets 𝑎  and 𝑏 , respectively. 휀𝑎  and 휀𝑏 

represent the investor’s ambiguity aversion for the subsets 𝑎 and 𝑏. 

2.3.2 The “Endogenous” Method for Robust Portfolio Selection with Multi-

Expert 

In the multiple experts approach proposed by Lutgens and Schotman (2010), an 

investor is assumed to be rational and does not depend on any particular investment 

information. This assumption is based on the hypothesis that “Although the investor has 

no knowledge about the credibility of each individual expert, the investor prefers to 

consider all recommendations provided by experts and treat all experts as equally 

important. Thus, the investor would have no regrets regarding the resulting portfolio, 

even if a particular expert turns out to be wrong”. The investor first collects different 

return estimates suggested by experts, and then combines the distinct views together. 

Although this idea is similar to the Bayesian approach, there is a fundamental difference 

between these two approaches. 

 Compared to the Bayesian approach which assumed that the investor has a neutral 

attitude toward ambiguity, the investor is assumed to dislike the uncertainty generated 

from different opinions in Lutgens and Schotman’s framework. Furthermore, these two 
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approaches differ theoretically. The investor who adopts the Bayesian approach needs 

to assign prior probabilities to each expert. On the other hand, the investor who follows 

Lutgens and Schotman’s approach doesn’t need to assign a weighting to the various 

experts. Their approach simultaneously generates the optimal and robust portfolio in the 

worst case scenario, and the weights that are allocated to the parameter estimates 

provided by the experts are endogenously determined according to the objective 

function given by the investor. Hence, the asset allocation is considered to be robust in 

respect of differing advice. That is, the outcome is the best performance of the least 

favourable return model.  

Unlike the robust counterpart approach proposed by Ben-Tal and Nemirovski 

(1998), the robust portfolio selection model derived by Lutgens and Schotman (2010) 

does not employ the framework of the uncertainty set for dealing the uncertainties within 

the optimisation problem. By considering the same risk aversion formulation as defined 

in section 2.2, the robust portfolio selection approach with 𝑍 experts is formulated as 

(𝑬𝑴𝑽)                            max
𝑥∈ℝ𝑛

 min
𝑧∈𝑍

         𝜇𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ𝑧𝑥            ,                                   (2.35) 

where 𝜇𝑧  and Σ𝑧  denote the professional forecasts of the expected returns and the 

variability of the expected returns given by the 𝑧th expert with z = 1,2, … , 𝑍. The 

optimal asset allocation is given by 

                                                           𝑥𝐸𝑀𝑉
∗ =

1

𝜆
Σ̿−1�̿�                                                           (2.36) 

with 

                                                          

�̿� =∑𝑤𝑧𝜇𝑧

𝑍

𝑧=1

Σ̿ =∑𝑤𝑧Σ𝑧

𝑍

𝑧=1

                                                               (2.37) 

where w𝑧 denotes the weights assigned to expert z with w𝑧 ≥ 0 and ∑ w𝑧
𝑍
𝑧=1 = 1. 
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Note that although Lutgens and Schotman (2010) provide an alternative framework 

to the Bayesian approach for allocating investment with suggestions from multiple 

experts, they do not pay attention to the fundamental issue of how to interpret these 

recommendations from experts. The experts in the multi-expert approach of Lutgens 

and Schotman (2010) are return models, such as the capital asset pricing model (CAPM) 

and the Fama & French factor model, which is substantially different from the experts’ 

recommendations in reality. Despite the ambiguous and imprecise features of the 

investment recommendations, these real-life recommendations from stock market 

analysts are mostly expressed in words rather than numbers. Therefore, it is important 

to figure out how to convert the unclear and vague advice from experts into numbers, 

so that the additional investment information can be meaningful and incorporated into 

the portfolio selection model properly.  

Finally, Figure 2.3 graphically illustrates the procedure of the multiple experts 

approach proposed by Lutgens and Schotman (2010). 

Figure 2.3  The Diagram of Solving the Multiple Experts Approach 

 

Collect historical data 

 

Obtain the optimal solution 𝑥∗ 

Construct the multiple experts portfolio optimisation model 

Obtain the return models  
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Although both “non-overlapping” and “endogenous” methods deal with estimation 

errors and parameter uncertainties by including additional information about the asset 

returns, they apply the multi-prior differently. The multiple priors in the former method 

are characterised via the confidence intervals around the estimate of the expected returns, 

and the degrees of confidence are adjusted for different subsets of assets to reflect the 

ambiguity about the estimated values. For instance, if the investor receives investment 

forecasts from two experts, then the estimate of the expected returns is calculated using 

classical methods such as the Bayesian approach and corresponding confidence intervals 

are specified as constraints on the expected returns. On the other hand, in the 

“endogenous” method, the multiple priors are expressed directly via the objective 

functions without stating the confidence intervals for the estimates. That is, when the 

investor has investment forecasts from two experts, two objective functions are 

formulated according to the forecasts of each individual expert. 

The “endogenous” method is considered to possess a comparative advantage over 

the “non-overlapping” methods, as the investor is not required to assign prior 

probabilities to each expert or adjust the confidence intervals to reflect the uncertainty 

about the parameter estimates. Hence, the “endogenous” method proposed by Lutgens 

and Schotman (2010) may have a lower possibility of distorting the results. Nevertheless, 

the investor cannot apply the “endogenous” method directly, as the framework of the 

“endogenous” method is designed for utilising multiple return-generating models rather 

than investment forecasts provided by experts. 

First, the investment forecasts provided by professional analysts, either published 

in print or online media, normally do not have a standard format, and are very likely to 

be expressed in words rather than numbers. Even if the analysts might be able to provide 

the estimated price of certain assets numerically, the statements are always vaguely 

expressed. In contrast, the return models provide parameter estimates in terms of 
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numbers. Second, return models generate estimates of expected return for every asset, 

but the professional analysts only comment on a few assets, as shown in Chapter 1.   

One may ask why we can’t just use the return models and forget about the 

investment forecasts, so that the multi-expert approach can be applied directly without 

dealing with the issues addressed above. The main reason is that the investor does not 

have enough resources to collect and analyse all the investment information about the 

stock market. On the other hand, the analysts are trained to process investment 

information collected from a broad array of different sources, such as companies’ annual 

reports, government announcements and major global events. Therefore, adopting 

professional investment recommendations can be beneficial for obtaining better asset 

allocation. 

2.4 Summary 

Optimising a portfolio selection problem is never an easy task to conduct, 

especially when the decision makers only have limited knowledge or uncertain 

information about the portfolio selection problem. Based on Markowitz’s seminal work 

of portfolio selection theory, many improvements on either modelling frameworks or 

parameter estimations were developed in order to account for the uncertainty features 

and provide portfolios that perform better. In this chapter we have reviewed and 

discussed several approaches that deal with portfolio selection problems under 

uncertainty, and these approaches basically can be divided into two categories, namely 

the robust estimation approach and the robust modelling approach. 

The robust estimators are widely adopted in portfolio selection problems since 

these parameter estimators are compatible with the formulation of the portfolio selection 

problem. The crux of the robust estimation approach is to obtain a meaningful parameter 

estimate that accounts for data uncertainties. In Section 2.1.1 we have discussed four of 
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the most popular parameter estimators used in financial practice, followed by discussion 

of the potential weaknesses of employing robust estimators in the portfolio selection 

problem. 

On the other hand, the robust modelling approach enhances portfolio selections by 

involving robust formulations in the optimisation framework. Instead of adopting a 

specific parameter estimator to deal with the uncertainties of the portfolio selection 

problem, the robust modelling approach tries to model or reduce uncertainties by 

utilising new techniques, such as ambiguity aversion formulation and extra constraints 

on input parameters. In Section 2.1.2 we have provided descriptions of four commonly 

used robust modelling approaches for the portfolio selection problem. 

In the existing literature, all of the proposed approaches for improving the 

performance of the portfolio selection problem have their drawbacks. Among the 

various approaches, the robust counterpart approach performs better in terms of 

simplicity and efficiency of computation. Nevertheless, it is argued by many researchers 

that the robust portfolio allocation is too pessimistic in the way that it always assumes 

that the uncertainties of the portfolio selection problem will appear to be against the 

investor’s benefits. Moreover, the robust portfolio allocation can be too conservative if 

the uncertainty set is too large. Furthermore, the advantages of applying the robust 

counterpart approach in the portfolio selection problem can only be realised if an 

appropriate uncertainty set is defined with careful planning for the underlying 

investment strategies. 

In order to overcome the drawback of the existing robust portfolio selection model 

by providing a potentially profitable robust optimal asset allocation, we propose to 

incorporate additional investment information sources into the portfolio selection 

problem, so that the investor has opportunities to take on better quality investments and 

reduce the underlying uncertainty of the input parameters. Although theoretically the 
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extra investment information would help to improve the reliability of the input 

parameters by providing further knowledge of the market environment, it is rare that the 

investment information provided by financial specialists is clear and definite. Usually 

these investment forecasts or market views are expressed linguistically. Therefore, it is 

difficult for the investor to make decisions based on this professional investment 

information. In the next chapter we will use fuzzy set theory and the multi-expert 

approach proposed by Lutgens and Schotman (2010) to develop a framework for solving 

portfolio selection problem with multiple investment information sources. 
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Chapter 3 

Portfolio Selection with Fuzzy Advice from 

Multiple Analysts 

There is no doubt that the mean-variance portfolio selection model is a remarkable 

approach which has made a great impact on the development of modern finance theory 

and also on practical financial decision making. However, unreliable portfolio allocation 

has lowered confidence in applying this theory practically. In addition, it is well known 

that even equally weighted portfolios can outperform Markowitz’s mean-variance 

portfolios in many cases (DeMiguel et al., 2009). The major reason behind this is that 

the portfolio optimisation problem depends heavily on the input parameters, especially 

the parameters of the expected returns; those input parameters cannot be known a priori 

and are usually estimated with error. In other words, inaccurate or incorrect input 

parameters are one of the main problems that lead to undesirable outcomes. However, 

parameter uncertainty is not the only concern in the portfolio optimisation problem: the 

sensitivity feature of the return-risk portfolio model is another concern that influences 

the performance of the optimisation model, because the sensitivity feature will actually 

aggravate the effect caused by estimation errors. 

On the other hand, it seems unrealistic that historical asset performances are the 

only type of the investment information source adopted in the portfolio selection 

problem for computing the input parameter estimates. From the investor’s point of view, 

it will always be welcome to have as much stock market information as possible before 
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making investment decisions. But there is a problem of how to decide which sources of 

information are more reliable. Lutgens and Schotman (2010) have proposed a robust 

portfolio optimisation framework that incorporates advice from multiple experts. In 

their model, the investor is supposed to be rational, and doesn’t know the true value of 

the expected returns and the variances. The investment decision of the investor will be 

totally based on the recommendations offered by different experts without knowing how 

the experts arrived at their own estimates. Although the experts have different prior 

views on the parameters of the portfolio selection problem, they share and use the same 

sample data. The experts observe a sample with almost the same number of observations 

and then combine the results of the observations with their individual prior views to 

provide the posterior forecasts for the investor. Nevertheless, Lutgens and Schotman 

(2010) focus on the model structure of the multiple experts approach to the portfolio 

optimisation problem without considering the fundamental nature of the experts’ 

suggestions. 

As mentioned in the previous chapter, the investment recommendations provided 

by professional analysts are mostly expressed vaguely in words rather than in precise 

numerical formats. Therefore, we will modify the existing multiple experts framework 

of Lutgens and Schotman (2010) by adopting fuzzy set theory for the linguistic and 

imprecise experts’ forecasts in this chapter. We will first provide all necessary 

definitions and notations of fuzzy set theory, followed by the possibilistic interpretation 

of fuzzy parameters. Then we will formulate the proposed portfolio selection approach 

with fuzzy advice from multiple analysts. Finally, we will present examples to illustrate 

our multiple analysts approach to the portfolio selection problem.  

 



46 

 

3.1 Fuzzy Set Theory 

Generally speaking, it is common in real world applications that only a small 

portion of the knowledge about the problem under investigation can be considered as 

certain and useful information. The more uncertain the problem is, the less precise we 

can be with respect to understanding and solving the problem. Although making a good 

decision for solving the portfolio selection problem doesn’t guarantee a good outcome, 

without a good decision based on a reasonable analysis for the problem, it is unlikely 

that the decision maker will have a satisfactory result. 

There are many imprecise and ambiguous features which do not constitute classes 

or sets in the usual mathematical term, such as “the set of all real numbers which are 

much greater than 1” or “strong performance for Apple-related stocks”. In order to deal 

with these uncertain and vague types of information, Zadeh (1965) developed a new 

mathematical tool named the fuzzy set theory. Instead of following the definition of an 

ordinary set with exact boundaries, Zadeh uses membership functions to describe 

mathematically the “grade of membership” of an element in a fuzzy set, so that there are 

no exact boundaries for a fuzzy set. The following definitions and statements mostly 

refer to Espinosa et al. (2005) and Ross (2004). 

3.1.1 Fuzzy Sets 

Let 𝑋 be a universal set. If a subset 𝐴 ∈ 𝑋 is an ordinary set, then an element 

𝑥 ∈ 𝑋 is either a member of the subset 𝐴 or not. The subset 𝐴 can be expressed as 

𝐴 = {𝑥 ∈ 𝑋 | 𝐶𝐴(𝑥) = 1} 

with characteristic function  

𝐶𝐴(𝑥) = { 
1        𝑥 ∈ 𝐴
0        𝑥 ∉ 𝐴

 . 
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Alternatively, if the subset �̃� ∈ 𝑋 is a fuzzy set, then the subset �̃� is defined by a 

membership function 

𝑀�̃� ∶ 𝑋 → [0,1] . 

This membership function 𝑀�̃� describes the membership degree of an element 

𝑥 ∈ 𝑋, and the value of 𝑀�̃� (𝑥) closer to 1 indicates that the element 𝑥 has a higher 

grade of membership towards the fuzzy subset �̃�. More specifically, instead of deciding 

that an element 𝑥 ∈ 𝑋 is either feasible or unfeasible in the subset 𝐴, fuzzy set theory 

describes the degree of belonging of this element 𝑥  to the fuzzy subset �̃� by the 

membership function. The advantage of fuzzy set theory is the allowance for the 

intermediate membership degree 0 < 𝑀�̃�(𝑥) < 1 , which provides the opportunity to 

deal with the problems of uncertainties, imprecision, and contradictions in crisp sets. A 

fuzzy set �̃�  becomes an ordinary crisp set 𝐴  when the membership function 𝑀�̃� 

contains only two points, 0 and 1 . In other words, an ordinary crisp set is a special form 

of fuzzy set with sharp boundaries. The following figure graphically illustrates the 

difference between an ordinary set 𝐴 and a fuzzy set �̃�. 

Figure 3.1  Illustration of the Characteristic Function and the Membership 

Function 
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(a) The characteristic function 𝐶𝐴(𝑥) 

 

(b) The membership function 𝑀�̃�(𝑥) 
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  For notational convenience in some of the subsequent formulations and discussions, 

we define the following basic features of fuzzy sets as stated in Ross (1995). 

1) The support of a fuzzy set �̃�, 𝑆𝑢𝑝𝑝(�̃�) ∈ �̃�, is a crisp subset that comprises 

elements having nonzero membership in the set �̃� ∈ 𝑋: 

𝑆𝑢𝑝𝑝(�̃�) = {𝑥 ∈ 𝐴 ̃| 𝑀�̃�(𝑥) > 0} . 

In addition, a fuzzy set �̃� is said to be an empty set, �̃� = ∅, if and only if the 

support of a fuzzy set �̃� does not exist for all 𝑥 ∈ 𝑋: 

𝑀�̃�(𝑥) = 0    ∀ 𝑥 ∈ 𝑋 .  

2) The core of a fuzzy set �̃� , 𝐶𝑜𝑟𝑒(�̃�) ∈ �̃� , is a crisp subset that comprises 

elements having full and complete membership in the set �̃� ∈ 𝑋: 

𝐶𝑜𝑟𝑒(�̃�) = {𝑥 ∈ 𝐴 ̃| 𝑀�̃�(𝑥) = 1} . 

3) The 𝛼 − 𝑐𝑢𝑡  of a fuzzy set �̃� , �̃�𝛼 ∈ �̃� , is a crisp subset that comprises 

elements having at least 𝛼 degree of membership in the set �̃� ∈ 𝑋: 

�̃�𝛼 = {𝑥 ∈ 𝐴 ̃| 𝑀�̃�(𝑥) ≥ 𝛼}  

with 𝛼 ≥ 0. The 𝛼 − 𝑐𝑢𝑡 set �̃�𝛼 is a compact subset of 𝑋 for all 𝛼 ∈ [0,1]. 

4) The height of a fuzzy set �̃�, ℎ𝑔𝑡(�̃�), is the maximum value of the membership 

function: 

ℎ𝑔𝑡(�̃�) =  sup
𝑥∈�̃�

𝑀�̃�(𝑥). 

The ℎ𝑔𝑡(�̃�)  can be used to measure the level of validity or credibility of 

information expressed by the fuzzy set �̃�, and a fuzzy set is “subnormal” if 

ℎ𝑔𝑡(�̃�) < 1 for all 𝑥 ∈ 𝑋. 

5) A fuzzy set �̃� ∈ 𝑋 is said to be a convex fuzzy set if and only if the values of 

the corresponding membership function 𝑀�̃� are monotonically increasing, or 
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monotonically decreasing, or monotonically increasing then monotonically 

decreasing as the values of the elements increased: 

𝑀�̃�(𝑥𝑏) =  min [ 𝑀�̃�(𝑥𝑎) , 𝑀�̃�(𝑥𝑐)] 

with (𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) ∈ 𝑋 and 𝑥𝑎 < 𝑥𝑏 < 𝑥𝑐. 

3.1.2 Features of the Membership Function 

In fuzzy set theory, the membership function is employed as a measure to describe 

the relationship of an element from the universe to a particular set. The ambiguity, 

imprecision and paradox of the element can be represented by the values of the 

membership function. Although there is no unique formulation for the membership 

function, and different approaches to the membership function are constructed to serve 

different purposes, the most common structure of the membership functions adopted in 

practice is the one that preserves the desired properties: normality and convexity (see, 

e.g., Dombi, 1990).  

Medaglia et al. (2002) further suggested that an efficient membership function 

should be able to reflect accurately our knowledge about the chosen data, easily 

calculate the corresponding membership value for a given element 𝑥 ∈ 𝑋 , and be 

computationally tractable with flexibility to adjust and tune the formulation of the 

membership function. Indeed, many meaningful and also useful parameterised 

membership functions have been proposed in the past, as nicely summarised by Dombi 

(1990). For instance, the membership functions based on probability density functions 

(Civanlar and Trussell, 1986) and the membership functions designed as the distance 

between an observation and the given benchmark (Zimmermann and Zysno, 1985). The 

trapezoidal and bell-shaped membership functions are the most commonly used 

formulations for expressing fuzzy sets in the literature. This is because the trapezoidal 
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and bell-shaped membership functions not only fulfilled the desired features as above 

stated, but also are compatible with both symmetrical and asymmetrical fuzzy situations. 

3.1.2.1 Trapezoidal Fuzzy Variable 

A trapezoidal fuzzy variable �̃�𝑇𝑟𝑎 = (𝑚−,𝑚+, 𝜎−, 𝜎+)  is a fuzzy set with 

tolerance interval [𝑚−, 𝑚+], left width 𝜎−, and right width 𝜎+, where the tolerance 

interval is also called the peak of the fuzzy variable, as the element 𝑥 ∈ [𝑚−,𝑚+] has 

full membership. The membership function of a trapezoidal fuzzy variable �̃�𝑇𝑟𝑎  is 

formulated as 

   𝑀�̃�𝑇𝑟𝑎(𝑥) =

{
 
 

 
 

       1                                         𝑥 ∈ [𝑚−, 𝑚+]   

𝐿 (
𝑚− − 𝑥

𝜎−
) = 1 −

𝑚− − 𝑥

𝜎−
       𝑥 ∈ [𝑚− − 𝜎−, 𝑚−]

 𝑅 (
𝑥 − 𝑚+ 

𝜎+
) = 1 −

𝑥 −𝑚+ 

𝜎+
     𝑥 ∈ [𝑚+ , 𝑚+ + 𝜎+]

 0                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  .               (3.1) 

The trapezoidal fuzzy variable �̃�𝑇𝑟𝑎 = (𝑚−, 𝑚+, 𝜎−, 𝜎+)  is one of the most 

generic classes of fuzzy variables with linear membership functions, which is superior 

to other linear and nonlinear membership functions in terms of conceptual and 

operational simplicity. For this reason, many researchers and practitioners have adopted 

trapezoidal formulations for modelling linear uncertain situations (see, e.g., Bansal, 

2011). Moreover, the triangular fuzzy variable �̃�𝑇𝑟𝑖 = (𝑚, 𝜎−, 𝜎+) is a subclass of a 

trapezoidal fuzzy variable �̃�𝑇𝑟𝑎 = (𝑚−,𝑚+, 𝜎−, 𝜎+)  with 𝑚− = 𝑚+ = 𝑚 . On the 

other hand, an ordinary crisp interval 𝐴 = [𝑚−, 𝑚+] is a special case of a trapezoidal 

fuzzy variable �̃�𝑇𝑟𝑎 = (𝑚−,𝑚+, 𝜎−, 𝜎+) with 𝜎− = 𝜎+ = 0. 

3.1.2.2 Bell-shaped Fuzzy Variable 

A standard bell-shaped fuzzy variable �̃�𝐵𝑒𝑙𝑙 = (𝑚−,𝑚+, 𝜎−, 𝜎+) is constructed by 

parts of two Gaussian functions with a peak tolerance interval [𝑚−, 𝑚+] in the middle, 
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and 𝜎− and 𝜎+ are the negative and positive deviation, respectively. The membership 

function of the bell-shaped fuzzy variable �̃�𝐵𝑒𝑙𝑙 is given by 

𝑀�̃�𝐵𝑒𝑙𝑙(𝑥) =

{
 
 

 
 𝐿 (

𝑚− − 𝑥

𝜎−
) = 𝑒𝑥𝑝 (−

1

2
(
𝑚− − 𝑥

𝜎−
)
2

) 𝑥 ≤ 𝑚−      

1             𝑥 ∈ [𝑚−,𝑚+ ]

𝑅 (
𝑥 − 𝑚+ 

𝜎+
) = 𝑒𝑥𝑝 (−

1

2
(
𝑥 −𝑚+ 

𝜎+
)
2

) 𝑚+ ≤ 𝑥      

 .            (3.2) 

The bell-shaped fuzzy variable �̃�𝐵𝑒𝑙𝑙 also has few subclasses. For instance, a bell-

shaped fuzzy variable �̃�𝐵𝑒𝑙𝑙 = (𝑚−, 𝑚+, 𝜎−, 𝜎+) becomes a Pseudo-Gaussian fuzzy 

variable �̃�𝑃𝐺 = (𝑚, 𝜎−, 𝜎+) if 𝑚− = 𝑚+ = 𝑚, and on the other hand, the bell-shaped 

fuzzy variable �̃�𝐵𝑒𝑙𝑙  turns into a Gaussian fuzzy variable �̃�𝐺 = (𝑚, 𝜎)  if 𝑚− =

𝑚+ = 𝑚  and 𝜎− = 𝜎+ = 𝜎 . In addition to the desired properties of normality and 

convexity, the class of bell-shaped fuzzy variables has another advantage of being 

smooth and nonzero for all 𝑥 ∈ 𝑋. Figure 3.2 shows the membership functions of the 

bell-shaped fuzzy variable �̃�𝐵𝑒𝑙𝑙 and the Pseudo-Gaussian fuzzy variable �̃�𝑃𝐺 . 

Figure 3.2  Illustration of the Membership Functions for the Bell-Shaped Fuzzy 
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(b) The Pseudo-Gaussian fuzzy variable �̃�𝑃𝐺  (a) The bell-shaped fuzzy variable �̃�𝐵𝑒𝑙𝑙 
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3.1.3 The Defuzzification Process 

Constructing an appropriate membership function for describing the underlying 

uncertain concept is the first step of the fuzzy set application. Converting a fuzzy 

quantity to a representative precise quantity by a suitable approach is the second step of 

the application and this procedure is often referred as defuzzification. Many different 

approaches for defuzzifying fuzzy outcomes have been proposed in the literature of 

fuzzy set theory and the most common defuzzification methods are the max membership 

method and the centroid method (Dubois, 2006; Ross, 1995), which are summarised as 

follows:  

1) The max membership method uses the element with the highest membership 

degree to represent the fuzzy variable �̃�: 

𝑀�̃�(𝑥
∗) ≥ 𝑀�̃�(𝑥)           ∀𝑥 ∈ 𝑋 , 

with 𝑥∗ ∈ 𝑋 denoting the defuzzified value of fuzzy variable �̃�. However, this 

method is limited to peak-shaped membership functions and doesn’t consider 

other possible elements, except the element with the greatest degree of 

membership. The mean of maxima method extends the concept of the max 

membership method by using the middle point in the core interval of the fuzzy 

variable �̃�. The defuzzified value of fuzzy variable �̃� is defined as 

𝑥∗ =   
𝑥𝑎 + 𝑥𝑏
2

        

with (𝑥𝑎, 𝑥𝑏 , 𝑥
∗) ∈ 𝑋 and elements 𝑥𝑎 and 𝑥𝑏 are the boundaries of the core 

of fuzzy variable 𝐶𝑜𝑟𝑒(�̃�). Similar to the max membership method, the mean 

of maxima method focuses on the core of the fuzzy variable 𝐶𝑜𝑟𝑒(�̃�) and 

ignores information about the rest of the fuzzy variable  �̃�. 
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2) The centroid method is also known as the centre of gravity method, which 

defines the defuzzified value 𝑥∗ ∈ 𝑋 as the centre of mass in the support of the 

fuzzy variable 𝑆𝑢𝑝𝑝(�̃�). In other words, the defuzzified value 𝑥∗ obtained by 

the centroid method equally divides the area under the membership function 𝑀�̃� 

into two parts. The centroid method equation for the defuzzified value 𝑥∗ is 

based on algebraic integrations, and formulated as 

𝑥∗ =
∫𝑀�̃�(𝑥) ∙ 𝑥 𝑑𝑥

∫𝑀�̃�(𝑥) 𝑑𝑥
       ∀ 𝑥 ∈ 𝑆𝑢𝑝𝑝(�̃�) . 

A similar but more advanced defuzzification method has been given by Carlsson 

and Fuller (2001), which will be discussed in detail below. 

3.1.4 The Crisp Possibilistic Interpretation of Fuzzy Variables 

In order to account for the possibilistic nature of fuzzy intervals, Carlsson and 

Fuller (2001) proposed the crisp possibilistic interpretation of fuzzy variables based on 

the 𝛼 − 𝑐𝑢𝑡  set for the fuzzy variable �̃�. Their defuzzification method is a level-

weighted function on [0,1] that calculates the arithmetic mean of the lower and upper 

possibilistic mean values of the fuzzy variable �̃�. The crisp possibilistic interpretation 

method can be applied to discrete or continuous and also symmetric or asymmetric 

membership functions. Moreover, this defuzzification approach is consistent with the 

fuzzy extension principle proposed by Zadeh (1978), as well as the definitions of the 

expected mean value and variance in probability theory. 

Consider a normal and convex fuzzy variable �̃� with the corresponding 𝛼 − 𝑐𝑢𝑡 

set of �̃� denoted as �̃�𝛼 = [�̃�𝐿(𝛼), �̃�𝑅(𝛼)] for 𝛼 ∈ [0,1]. By using the 𝛼 − 𝑐𝑢𝑡 set 

of fuzzy variable �̃�, Carlsson and Fuller (2001) defined the possibilistic mean value 

𝐸(�̃�) of the fuzzy variable �̃� as the arithmetic mean of its lower possibilistic and 

upper possibilistic mean values; that is, 
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𝐸(�̃�) =
𝐸∗(�̃�) + 𝐸

∗(�̃�)

2
 

where 𝐸∗(�̃�) denotes the lower possibilistic mean value with 

𝐸∗(�̃�) = 2∫ 𝛼�̃�𝐿(𝛼) 
1

0
𝑑𝛼, 

and 𝐸∗(�̃�) denotes the upper possibilistic mean value with 

𝐸∗(�̃�) = 2∫ 𝛼�̃�𝑅(𝛼) 
1

0
𝑑𝛼. 

Equivalently, the crisp possibilistic mean value of the fuzzy variable �̃�  given by 

Carlsson and Fuller (2001) is expressed as 

                          𝐸(�̃�) = ∫ 𝛼(
1

0

�̃�𝐿(𝛼) + �̃�𝑅(𝛼)) 𝑑𝛼  .                                                     (3.3) 

On the other hand, the notion of the crisp possibilistic variance of the fuzzy variable �̃� 

is based on the squared deviation between the arithmetic mean and the endpoints of the 

corresponding  𝛼 − 𝑐𝑢𝑡 set �̃�𝛼, that is,  

 

𝑉𝑎𝑟(�̃�) = ∫ 𝛼 ([
�̃�𝐿(𝛼) + �̃�𝑅(𝛼)

2
− �̃�𝐿(𝛼)]

2

+ [
�̃�𝐿(𝛼) + �̃�𝑅(𝛼)

2
− �̃�𝑅(𝛼)]

2

)
1

0

𝑑𝛼    

              =
1

2
∫ 𝛼(
1

0

�̃�𝑅(𝛼) − �̃�𝐿(𝛼))2 𝑑𝛼    .                                                                (3.4)

 

Further descriptions for the crisp possibilistic interpretations of trapezoidal fuzzy 

variables �̃�𝑇𝑟𝑎  and bell-shaped fuzzy variables �̃�𝐵𝑒𝑙𝑙  are given in the following 

section (Carlsson & Fuller, 2001; Carlsson et al., 2002). 

3.1.4.1. The Crisp Possibilistic Interpretation of Trapezoidal Fuzzy Variables 

Suppose �̃� is a trapezoidal fuzzy variable �̃�𝑇𝑟𝑎 = (𝑚−, 𝑚+, 𝜎−, 𝜎+), and the 𝛼 −

𝑐𝑢𝑡  set of �̃�𝑇𝑟𝑎  is �̃�𝛼
𝑇𝑟𝑎 = [�̃�𝐿(𝛼), �̃�𝑅(𝛼)]  with 𝛼 ∈ [0,1] . By following the 
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membership function (3.1) of the trapezoidal fuzzy variable �̃�𝑇𝑟𝑎, the 𝛼 − 𝑐𝑢𝑡 set of 

�̃�𝑇𝑟𝑎 can be expressed as 

                              

�̃�𝛼
𝑇𝑟𝑎 = [�̃�𝐿(𝛼), �̃�𝑅(𝛼)]                                                 

= [𝑚− − 𝜎− 𝐿
−1(𝛼),𝑚+ + 𝜎+ 𝑅

−1(𝛼)]

= [𝑚− − 𝜎−(1 − 𝛼),𝑚+ + 𝜎+(1 − 𝛼)]

                         (3.5) 

for all 𝛼 ∈ [0,1]. Therefore, by the definition of the crisp possibilistic mean value of 

fuzzy variables (3.3) and equation (3.5), we have  

         

𝐸(�̃�𝑇𝑟𝑎) = ∫ 𝛼(
1

0

�̃�𝐿(𝛼) + �̃�𝑅(𝛼)) 𝑑𝛼                                                         

= ∫ 𝛼(
1

0

𝑚− − 𝜎−(1 − 𝛼) + 𝑚+ + 𝜎+(1 − 𝛼)) 𝑑𝛼

=
𝑚− +𝑚+

2
+
𝜎+ − 𝜎−

6
  .                                             

            (3.6) 

Similarly, the crisp possibilistic variance of the trapezoidal fuzzy variable �̃�𝑇𝑟𝑎 is 

given by (3.4) as 

      

𝑉𝑎𝑟(�̃�𝑇𝑟𝑎) =
1

2
∫ 𝛼(
1

0

�̃�𝑅(𝛼) − �̃�𝐿(𝛼))2 𝑑𝛼                                                

                 =
1

2
∫ 𝛼(
1

0

𝑚+ + 𝜎+(1 − 𝛼) − (𝑚− − 𝜎−(1 − 𝛼)))
2 𝑑𝛼 

 = [
𝑚+ −𝑚−

2
+
𝜎− + 𝜎+

6
]
2

+ 
(𝜎− + 𝜎+)

2

72
  .       

             (3.7) 

3.1.4.2. The Crisp Possibilistic Interpretation of Bell-shaped Fuzzy Variables 

Let �̃� be a bell-shaped fuzzy variable �̃�𝐵𝑒𝑙𝑙 = (𝑚−,𝑚+, 𝜎−, 𝜎+) with the 𝛼 −

𝑐𝑢𝑡 set of �̃�𝐵𝑒𝑙𝑙 denoted as �̃�𝛼
𝐵𝑒𝑙𝑙 = [�̃�𝐿(𝛼), �̃�𝑅(𝛼)] for all 𝛼 ∈ [0,1]. Then, the 𝛼 −

𝑐𝑢𝑡 set �̃�𝛼
𝐵𝑒𝑙𝑙 can be rearranged by following the membership function (3.2)  

                         

�̃�𝛼
𝐵𝑒𝑙𝑙 = [�̃�𝐿(𝛼), �̃�𝑅(𝛼)]                                                       

= [𝑚− − 𝜎− 𝐿
−1(𝛼),𝑚+ + 𝜎+ 𝑅

−1(𝛼)]      

= [𝑚− − 𝜎−√−2 ln 𝛼 ,𝑚+ + 𝜎+√−2 ln𝛼]

                        (3.8) 

with 𝛼 ∈ [0,1]. The crisp possibilistic mean value of the bell-shaped fuzzy variable 

�̃�𝐵𝑒𝑙𝑙 can be expressed by using equations (3.3) and (3.8), i.e., 
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𝐸(�̃�𝐵𝑒𝑙𝑙) = ∫ 𝛼(
1

0

�̃�𝐿(𝛼) + �̃�𝑅(𝛼)) 𝑑𝛼                                                               

        = ∫ 𝛼(
1

0

𝑚− − 𝜎−√−2 ln 𝛼 +𝑚+ + 𝜎+√−2 ln 𝛼) 𝑑𝛼         

                 =
𝑚− +𝑚+

2
− 𝜎−∫ 𝛼 √−2 ln𝛼  𝑑𝛼

1

0

+ 𝜎+∫ 𝛼√−2 ln 𝛼  𝑑𝛼
1

0

 .

            (3.9) 

In addition, by following equations (3.4) and (3.8), the crisp possibilistic variance of 

the bell-shaped fuzzy variable �̃�𝐵𝑒𝑙𝑙 is given by 

  
𝑉𝑎𝑟(�̃�𝐵𝑒𝑙𝑙) =

1

2
∫ 𝛼(
1

0
�̃�𝑅(𝛼) − �̃�𝐿(𝛼))2 𝑑𝛼                                                

                         =
1

2
∫ 𝛼(
1

0
𝑚+ + 𝜎+√−2 ln𝛼 − (𝑚− − 𝜎−√−2 ln 𝛼))

2 𝑑𝛼 .
           (3.10)  

3.2 Multi-Analyst Portfolio Selection with Fuzzy Aspiration  

In this section we will develop a new approach to portfolio selection that takes into 

account analysts’ forecasts expressed in vague linguistic statements. 

To choose an appropriate model for optimising the portfolio selection problem with 

multiple analysts’ recommendations, one must ensure that the professional advice is 

expressed and employed in a reasonable and also applicable manner. As already 

mentioned, the multiple experts approach proposed by Lutgens and Schotman (2010) 

outperforms other multi-prior approaches by providing an optimal portfolio selection 

which is robust to different advice without artificially assigning prior probabilities to the 

forecasts. Hence, we start with the multi-expert portfolio selection approach (𝑬𝑴𝑽) as 

                      max
𝑥∈ℝ𝑛

 min
𝑧∈Ζ

         𝜇𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇�̃�𝑧𝑥            ,                                                     (3.11) 

where 𝑥 is the decision vector, 𝜇𝑧 ∈ ℝ
𝑛 is the fuzzy forecasts of the expected returns 

provided by the financial analyst 𝑧 ∈ 𝑍 with 𝑧 ∈ {1,… , 𝑍}, and �̃�𝑧 ∈ ℝ
𝑛 ×ℝ𝑛 is the 

positive semi-definite matrix that denotes the fuzzy variability of the expected returns 

addressed by the analyst 𝑧. Note that, instead of assuming that the portfolio optimisation 
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model only considers buy side analysis, and that short selling is restricted, a more 

general investment environment is considered without restrictions on the decision vector 

𝑥 ∈ ℝ𝑛.  

The estimate of returns 𝜇𝑧 = (�̃�𝑧1 , 𝜇𝑧2 , … , 𝜇𝑧𝑛) suggested by the analyst 𝑧 are 

fuzzy variables, and every fuzzy variable 𝜇𝑧𝑖 , for 𝑖 = 1,… , 𝑛, is characterised by a 

membership function 𝑀�̃�𝑧𝑖
. Assume that the fuzzy variable 𝜇𝑧𝑖 is a trapezoidal fuzzy 

variable and denoted as 𝜇𝑧𝑖
𝑇𝑟𝑎 = (𝜇𝑧𝑖

𝑚− , 𝜇𝑧𝑖
𝑚+ , 𝜎𝑧𝑖

−, 𝜎𝑧𝑖
+)  with tolerance interval 

[𝜇𝑧𝑖
𝑚− , 𝜇𝑧𝑖

𝑚+], left width 𝜎𝑧𝑖
−, and right width 𝜎𝑧𝑖

+. Then the crisp possibilistic mean value 

and the variance of asset 𝑖 according to the analyst 𝑧’s forecasts can be obtained via 

equations (3.6) and (3.7) as 

                           𝐸( 𝜇𝑧𝑖
𝑇𝑟𝑎) = �̌�𝑧𝑖 =

𝜇𝑧𝑖
𝑚− + 𝜇𝑧𝑖

𝑚+

2
+
𝜎𝑧𝑖
+ − 𝜎𝑧𝑖

−

6
                                         (3.12) 

and 

            𝑉𝑎𝑟( 𝜇𝑧𝑖
𝑇𝑟𝑎) = �̌�𝑧𝑖

2 = [
𝜇𝑧𝑖
𝑚+ − 𝜇𝑧𝑖

𝑚−

2
+
𝜎𝑧𝑖
− + 𝜎𝑧𝑖

+

6
]

2

+ 
(𝜎𝑧𝑖

− + 𝜎𝑧𝑖
+)

2

72
 .               (3.13) 

In Lutgens and Schotman (2010), it is assumed that each of the experts provides 

his/her forecasts for all individual assets in the entire market. In reality, this is obviously 

unrealistic. As will be seen later in Chapter 5, usually financial analysts select only a 

few assets and comment on their future performances. This means that (3.12) and (3.13) 

can only be obtained for those assets which the analysts comment on. In addition, the 

financial analysts usually comment on individual assets but not on their relationships. 

Hence it is not possible to elicit the covariance structure of the asset returns using the 

financial analysts’ forecasts.  

We assume that when no forecasts are available from a financial analyst on one 

asset, the investor will use the historical data to work out the expected returns, variances, 
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and underlying correlation structure. Consequently, instead of defuzzifying the fuzzy 

covariance matrix �̃�𝑧 via the formulation proposed by Carlsson and Fuller (2001), we 

obtain the crisp possibilistic covariance matrix 𝐶𝑜𝑣(�̃�𝑧
𝑇𝑟𝑎)  regarding to the 𝑧𝑡ℎ 

analyst’s forecasts by combining the crisp possibilistic variance 𝑉𝑎𝑟(𝜇𝑧
𝑇𝑟𝑎)  with 

historical correlation coefficient matrix 𝐶𝑜𝑟𝑟(𝜇). In other words, the crisp possibilistic 

covariance matrices of all analysts are formulated with an identical correlation matrix 

𝐶𝑜𝑟𝑟(𝜇), which is obtained from the historical data. That is,  

𝐶𝑜𝑣( �̃�𝑧
𝑇𝑟𝑎) = Σ̌𝑧 = (�̌�𝑧𝑖𝑗) =

(

 
 
 
 

       �̌�𝑧1     
2                                                          

𝜌12�̌�𝑧1�̌�𝑧2                 �̌�𝑧2
2                               

𝜌13�̌�𝑧1�̌�𝑧3           𝜌23�̌�𝑧2�̌�𝑧3          �̌�𝑧3
2          

  

 
         ⋮                           ⋮                     ⋮     ⋱         
𝜌1𝑛�̌�𝑧1�̌�𝑧𝑛           𝜌2𝑛�̌�𝑧2�̌�𝑧𝑛          ⋯       �̌�𝑧𝑛

2
)

 
 
 
    (3.14) 

with �̌�𝑧𝑖𝑗 = �̌�𝑧𝑗𝑖 denoting the crisp possibilistic covariance of asset 𝑖 and asset 𝑗 for 

𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗. �̌�𝑧𝑖
2 = �̌�𝑧𝑖𝑖  and �̌�𝑧𝑖  are the crisp possibilistic variance and 

standard deviation of asset 𝑖, respectively. 𝜌𝑖𝑗 is the correlation coefficient between 

asset 𝑖 and asset 𝑗 for 𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗. Therefore, the multi-analyst portfolio 

selection problem with fuzzy parameters (3.11) can be transformed into a quadratic 

optimisation problem by substituting the fuzzy parameters 𝜇𝑧 and �̃�𝑧 with the crisp 

possibilistic interpretation of fuzzy expected returns �̌�𝑧 and covariance matrix Σ̌𝑧, 

                                 max
𝑥∈ℝ𝑛

 min
𝑧∈Ζ

         �̌�𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑧𝑥            .                                          (3.15) 

However, the investor does not know precisely how reliable the financial analysts 

are and hence the investor has rather uncertain confidence in each individual analyst. In 

order to take this vague credibility factor of analysts into account, a nonlinear logistic 

membership function, as described in Watada (1997) and Gupta et al. (2008), is 

introduced to express the ambiguous aspiration level of the investment �̃�𝑧  for the 

investor with �̃�𝑧 = �̌�𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑧𝑥, i.e., 
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                            𝑀�̃�𝑧
(𝑥) =

1

1 + exp(−휃𝑧(�̃�𝑧 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))
  ,                                       (3.16) 

where 0 < 휃𝑧 < ∞ denotes the credibility level of the analyst 𝑧 prescribed by the 

investor and determines the shape of the membership function 𝑀�̃�𝑧 . The higher the 

value of 휃𝑧 , the more confidence the investor has in the analyst   𝑧 . Although the 

aspiration level of an investor can be described more accurately by assigning appropriate 

values for the credibility level 휃𝑧, there are no explicit guidelines for approaching these 

values (see Gupta et al., 2008). The value of credibility 휃𝑧 can only be given by the 

investor heuristically and experientially. Figure 3.3 graphically illustrates the effects on 

the shape of the membership function as the value of the parameter 휃𝑧 increased. 

Figure 3.3  The Membership Function for Different Levels of Credibility 

 

On the other hand, 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 is the benchmark given by the investor to define the 

middle aspiration level for the portfolio performance of the investment. More 

specifically, 𝑅𝑇𝑎𝑟𝑔𝑒𝑡  is a fixed value located at the point that has 0.5 degree of 

membership, i.e., 𝑀�̃�𝑧
(𝑅𝑇𝑎𝑟𝑔𝑒𝑡) = 0.5. 
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Figure 3.4  The Membership Function of the Ambiguous Investment Goal 

 

Thus, instead of solving the portfolio optimisation problem (3.15), we formulate 

the portfolio selection as 

(𝑭𝑴𝑽)          max 
𝑥∈ℝ𝑛

min
𝑧∈Ζ

      
1

1 + exp(−휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆
2 𝑥

𝑇Σ̌𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

               (3.17) 

where 𝑥 ∈ ℝ𝑛 is the decision vector. �̌�𝑧 and Σ̌𝑧 are the crisp possibilistic expected 

return and covariance matrix according to recommendations provided by analyst 𝑧 ∈ 𝑍 

with 𝑧 ∈ {1,… , 𝑍}, respectively.  

The portfolio allocation problem (𝑭𝑴𝑽) is in fact equivalent to 

       

max 
𝑥∈ℝ𝑛,   𝜁∈ℝ

             휁                                                                                           

𝑠. 𝑡.                휁 ≤
1

1 + exp(−휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆
2
𝑥𝑇Σ̌𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡))

 

            

                       (3.18) 

for 𝑧 ∈ 𝑍  with 𝑧 ∈ {1,… , 𝑍} . In order to transform the non-linear optimisation 

problem (3.18) into a simpler optimisation problem, we rewrite the constraints of (3.18) 

as 

0
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                  휁 ≤
1

1 + exp(−휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆
2 𝑥

𝑇Σ̌𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

               

⇒             exp (−휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡)) ≤
1

휁
− 1             

⇒            −휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡) ≤ log (
1

휁
− 1)                

⇒             휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡) ≥ − log ((
1

휁
−
휁

휁
))         

⇒             휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡) ≥ log ((
1 − 휁

휁
)
−1

)

⇒            휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡) ≥ 휂                            

         

            (3.19) 

with 휂 = log (
𝜁

1−𝜁
) . Since the value of the logistic function log (

𝜁

1−𝜁
)  increases 

monotonically as the value of 휁 increases, it follows immediately that maximising 휁 

is also maximising 휂. In this case, we have  

(𝑭𝑴𝑽
∗ )                          

max 
𝑥∈ℝ𝑛,   𝜁∈ℝ

     휂                                                                   

𝑠. 𝑡.       휂 ≤ 휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡)  
                        (3.20) 

for 𝑧 ∈ 𝑍  with 𝑧 ∈ {1,… , 𝑍}  as an equivalent formulation of the multi-analyst 

portfolio selection problem with fuzzy aspiration (𝑭𝑴𝑽) . By denoting 𝑔𝑧(𝑥) =

휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡)  as the ambiguous aspiration of the investment 

according to the forecasts provided by the 𝑧𝑡ℎ  analyst, the Lagrangian function to 

portfolio selection problem (𝑭𝑴𝑽
∗ ) is given for 𝜙 ∈ ℝ𝑍 by  

                                      ℒ( 휂, 𝑥, 𝜙 ) = 휂 −∑𝜙𝑧(휂 − 𝑔𝑧(𝑥)) ,                

𝑍

𝑧=1

                    (3.21) 

where 𝜙 ∈ ℝ𝑍 is the vector of the Lagrange multipliers. We can easily verify that the 

partial derivatives of the Lagrangian function with respect to variables 휂 and 𝑥 are 
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𝜕ℒ 

𝜕휂
= 1 −∑𝜙𝑧 

𝑍

𝑧=1

     

𝜕ℒ 

𝜕𝑥
=∑𝜙𝑧𝑔𝑧

′(𝑥) 

𝑍

𝑧=1

      ,                                                (3.22) 

where 

                                             𝑔𝑧
′(𝑥) = 휃𝑧�̌�𝑧 − 𝜆휃𝑧Σ̌𝑧𝑥 .                                                  (3.23) 

Thus, according to the Karush–Kuhn–Tucker conditions3, the corresponding conditions 

for the optimal portfolio 𝑥∗ of the portfolio selection problem (𝑭𝑴𝑽
∗ ) are 

        

                             1 −∑𝜙𝑧 

𝑍

𝑧=1

= 0   ,                                                                            (3.24)

                             ∑𝜙𝑧𝑔𝑧
′(𝑥∗) 

𝑍

𝑧=1

= 0   ,                                                                      (3.25)

                            𝜙𝑧(휂 − 𝑔𝑧(𝑥
∗)) = 0    ,             𝑧 = 1,… , 𝑍        ,                        (3.26)

                            𝜙𝑧 ≥ 0    ,                                      𝑧 = 1,… , 𝑍       .                         (3.27)

 

By using conditions (3.24) and (3.27), it can be easily seen that the Lagrange multipliers 

𝜙 ∈ ℝ𝑍 must satisfy 0 ≤ 𝜙𝑧 ≤ 1 for every 𝑧 ∈ 𝑍 with 𝑧 ∈ {1, … , 𝑍}. On the other 

hand, condition (3.25) can be rearranged by substituting 𝑔𝑧
′(𝑥∗) with (3.23), that is, 

                                     

                 ∑𝜙𝑧𝑔𝑧
′(𝑥∗) 

𝑍

𝑧=1

= 0                                  

⇒           ∑𝜙𝑧(휃𝑧�̌�𝑧 − 𝜆휃𝑧Σ̌𝑧𝑥
∗) 

𝑍

𝑧=1

= 0             

⇒           ∑𝜙𝑧휃𝑧�̌�𝑧 

𝑍

𝑧=1

= 𝜆∑𝜙𝑧휃𝑧Σ̌𝑧𝑥
∗

𝑍

𝑧=1

    .        

                   (3.28) 

Consequently, the optimal portfolio 𝑥∗ of the portfolio selection problem (𝑭𝑴𝑽
∗ ) can 

be obtained and formulated as 

                                                 
3 As in reference Bonnans et al. (2006). 
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                                                    𝑥∗ =
1

𝜆
  Σ∗−1𝜇∗   ,                                                             (3.29) 

with 

                                                  Σ∗ =∑𝜛𝑧Σ̌𝑧

𝑍

𝑧=1

   ,                                                           (3.30) 

and 

                                                𝜇∗ =∑𝜛𝑧�̌�𝑧 

𝑍

𝑧=1

    ,                                                           (3.31) 

where 𝜛𝑧 = 휃𝑧𝜙𝑧. 

This result corresponds to the multi-expert approach for the robust portfolio 

optimisation model proposed by Lutgens and Schotman (2010). The structure of the 

optimal portfolio 𝑥∗ (3.29) is similar to (2.36), in the way that both are based on the 

weighted average of forecasts given by different experts. On the other hand, the optimal 

portfolio 𝑥∗ (3.29) is different to (2.36): the weighted average of the mean parameter 

(3.31) and the covariance parameter (3.30) are derived from the fuzzy membership 

functions elicited from the financial analysts’ forecasts, and are influenced by the 

coefficient 휃𝑧 , the credibility level of the 𝑧𝑡ℎ  analyst prescribed by the investor. 

Equation (2.37) in Lutgens and Schotman (2010), on the other hand, does not involve 

fuzzy set theory; rather, the experts’ advice is assumed to be clear, without any 

vagueness or ambiguity.  

We also note that although the above results are useful in analysing theoretical 

properties of the solution, they are not a complete solution for the optimisation problem 

(𝑭𝑴𝑽
∗ ) , because the Lagrange multipliers 𝜙 ∈ ℝ𝑍  cannot be formulated explicitly. 

Nevertheless, one can always use standard computer software, such as MATLAB, to 

solve the problem and obtain efficient numerical solutions. 



64 

 

The following example illustrates the impact on employing the coefficient 휃𝑧 for 

describing the confidence of the investor in different analysts by investigating a simple 

portfolio selection problem with investment recommendations provided by two analysts. 

3.2.1 Illustrative Example 

Consider a situation in which the investor only needs to distribute funds between 

two assets, one risky asset and one risk free asset, and the investor has no knowledge 

about the true value of the assets and would be satisfied as long as the investment doesn’t 

make any loss, i.e., 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 = 0 . The investor takes professional advice from two 

analysts, analyst 𝑎 and analyst 𝑏, for some investment information about the expected 

return and variance of the risky asset and sets the investment benchmark as 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 =

0 in terms of expected portfolio return. 

Let �̌�𝑧  and Σ̌𝑧  denote the crisp possibilistic asset return and the covariance 

matrix obtained according to analyst 𝑧’s recommendations for 𝑧 = (𝑎, 𝑏). Recalling 

the multi-analyst portfolio selection problem (𝑭𝑴𝑽
∗ ), we have 

                               

max 
𝑥∈ℝ𝑛

     휂                                                 

𝑠. 𝑡.        휂 ≤ 휃𝑎 (�̌�𝑎
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑎𝑥)

               휂 ≤ 휃𝑏 (�̌�𝑏
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̌𝑏𝑥)

    .                                           (3.32) 

There are few different outcomes that could happen for this situation. Without loss of 

generality, we consider two cases, 휃𝑎 = 휃𝑏 or 휃𝑎 > 휃𝑏.  

3.2.1.1 Case I: Equal Preference for the Analysts 𝜽𝒂 = 𝜽𝒃 

The first case is under the circumstance that the investor doesn’t know which 

analyst is more reliable and decides to treat analysts’ predictions as equally important, 

and hence the coefficients of the credibility level 휃𝑧 are assumed to be identical to each 

other, i.e.,  휃𝑎 = 휃𝑏 . In this case, the multi-analyst approach with fuzzy aspiration 
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(𝑭𝑴𝑽
∗ )  becomes the multi-expert approach, as proposed by Lutgens and Schotman 

(2010). According to Lutgens and Schotman (2010), there are only two possible 

scenarios:  

1) Assume one of the analysts provides more optimistic predictions, for instance, 

the higher expected return with lower variance, 0 < �̌�𝑏 < �̌�𝑎 and �̌�𝑎
2 < �̌�𝑏

2. As 

a result, the forecast provided by this optimistic analyst doesn’t influence the 

portfolio selection process and the structure of the corresponding optimal 

portfolio 𝑥∗ depends only on the pessimistic analyst. That is, 

                                               𝑥∗ = 𝑥𝑏 =
�̌�𝑏

𝜆�̌�𝑏
2    .                                                   (3.33) 

where �̌�𝑏  and �̌�𝑏
2  denote the more pessimistic estimates according to 

recommendations provided by analyst 𝑏 with �̌�𝑏 < �̌�𝑎 and �̌�𝑎
2 < �̌�𝑏

2. 

2) Assume neither analyst provides more optimistic predictions, for instance, the 

higher expected return with higher variance, 0 < �̌�𝑏 < �̌�𝑎 and �̌�𝑏
2 < �̌�𝑎

2. The 

optimal portfolio 𝑥∗ is formulated as 

       𝑥∗ =

{
  
 

  
 

     

�̌�𝑏

𝜆�̌�𝑏
2                          �̌�𝑏 ≤

2�̌�𝑎�̌�𝑏
2

�̌�𝑎2 + �̌�𝑏
2                     

2(�̌�𝑎 − �̌�𝑏)

𝜆(�̌�𝑎2 − �̌�𝑏
2)
                  

2�̌�𝑎�̌�𝑏
2

�̌�𝑎2 + �̌�𝑏
2 < �̌�𝑏 <

�̌�𝑎(�̌�𝑎
2 + �̌�𝑏

2)

2�̌�𝑎2

�̌�𝑎
𝜆�̌�𝑎2

                          
�̌�𝑎(�̌�𝑎

2 + �̌�𝑏
2)

2�̌�𝑎2
≤ �̌�𝑏              

   .      (3.34) 

where (�̌�𝑎, �̌�𝑎
2)  and (�̌�𝑏 , �̌�𝑏

2)  denote the estimates according to the 

recommendations given by analyst 𝑎 and analyst 𝑏, respectively4. The three 

possible outcomes of the optimal portfolio 𝑥∗  stated in equation (3.34) are 

graphically illustrated in Figure 3.5. 

                                                 
4 For the proof, see Lutgens and Schotman (2010), Section 3.3. 
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Figure 3.5  The Portfolio Selection with Two Analysts 

 

Note: This figure displays the possible outcomes of the multi-expert approach for a simple case 

with two analysts (Lutgens & Schotman, 2010). The dotted lines and the dashed lines indicate 

the objective functions according to analyst 𝑎 and analyst 𝑏, respectively. The blue solid line 

is the minimum of the objective functions, which indicates the robust objective function.  
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3.2.1.2 Case II: Unqual Preference for the Analysts 𝜽𝒂 > 𝜽𝒃 

The second case is under the circumstance that the investor does have a general 

view of which analyst is more reliable and decides to treat analysts’ predictions 

differently. Therefore, the credibility level for the more reliable analyst (say analyst a) 

is greater than the other analyst, 휃𝑎 > 휃𝑏. In this case, there are three possible scenarios. 

Before any further discussion, we define 

                                        
𝑔𝑎(𝑥) = 휃𝑎 (�̌�𝑎𝑥 −

𝜆

2
�̌�𝑎
2𝑥2) 

  𝑔𝑏(𝑥) = 휃𝑏 (�̌�𝑏𝑥 −
𝜆

2
�̌�𝑏
2𝑥2) .

                                                (3.35) 

1) Assume that the analyst 𝑎 is considered to be more reliable by the investor and 

provides relatively more optimistic recommendations than the other, for instance, 

higher expected return with lower variance. That is, �̌�𝑎 > �̌�𝑏 and �̌�𝑏
2 > �̌�𝑎

2. By 

following the assumptions 휃𝑎 > 휃𝑏 together with �̌�𝑎 > �̌�𝑏 and �̌�𝑏
2 > �̌�𝑎

2, one 

can easily notice that  

                                     min(𝑔𝑎(𝑥), 𝑔𝑏(𝑥)) = 𝑔𝑏(𝑥) ,                                        (3.36) 

since  

         𝑔𝑎(𝑥) > 휃𝑏 (�̌�𝑎𝑥 −
𝜆

2
�̌�𝑎
2𝑥2) > 휃𝑏 (�̌�𝑏𝑥 −

𝜆

2
�̌�𝑏
2𝑥2) =  𝑔𝑏(𝑥) .         (3.37) 

In other words, the recommendations given by the more optimistic analyst 𝑎 

doesn’t affect the decision making of the portfolio selection. Therefore, the 

optimal portfolio 𝑥∗ depends only on the pessimistic analyst 𝑏 and expresses 

as  

                                             𝑥∗ = 𝑥𝑏 =
�̌�𝑏

𝜆�̌�𝑏
2    .                                                   (3.38) 

2) Assume that the analyst 𝑎 is considered to be more reliable by the investor, i.e., 

휃𝑎 > 휃𝑏 , and provides relatively prudent recommendations that are more 
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pessimistic than the other, for instance, �̌�𝑎 < �̌�𝑏 and �̌�𝑏
2 < �̌�𝑎

2. Therefore the 

optimal portfolio 𝑥∗ = 𝑥𝑎 =
�̌�𝑎

𝜆�̌�𝑎
2 if the ratio of the credibility levels is 

𝜃𝑎

𝜃𝑏
≤

�̌�𝑏

�̌�𝑎
, 

otherwise, the optimal portfolio 𝑥∗ is formulated as  

   𝑥∗ =

{
  
 

  
 

     

 𝑥𝑏                  �̌�𝑏 ≤
2휃𝑎�̌�𝑎�̌�𝑏

2

휃𝑎�̌�𝑎2 + 휃𝑏�̌�𝑏
2                                        

𝑥𝑎𝑏                  
2휃𝑎�̌�𝑎�̌�𝑏

2

휃𝑎�̌�𝑎2 + 휃𝑏�̌�𝑏
2 < �̌�𝑏 <

�̌�𝑎(휃𝑎�̌�𝑎
2 + 휃𝑏�̌�𝑏

2)

2휃𝑏�̌�𝑎2

 𝑥𝑎                   
�̌�𝑎(휃𝑎�̌�𝑎

2 + 휃𝑏�̌�𝑏
2)

2휃𝑏�̌�𝑎
2

≤ �̌�𝑏                               

          (3.39) 

 

Proof 

First, assume that the ratio of credibility levels satisfies 
𝜃𝑎

𝜃𝑏
≤

�̌�𝑏

�̌�𝑎
. Then by 

following assumptions �̌�𝑎 < �̌�𝑏 and �̌�𝑏
2 < �̌�𝑎

2, we have 

                                    
𝑔𝑏(𝑥) = 휃𝑏 (�̌�𝑏𝑥 −

𝜆

2
�̌�𝑏
2𝑥2)

               > 휃𝑏�̌�𝑏𝑥 −
𝜆

2
휃𝑏�̌�𝑎

2𝑥2  .

                                       (3.40) 

Since 
𝜃𝑎

𝜃𝑏
≤

�̌�𝑏

�̌�𝑎
, we have 휃𝑏 ≥

𝜃𝑎�̌�𝑎

�̌�𝑏
. Then, 

                     
휃𝑏�̌�𝑏𝑥 −

𝜆

2
휃𝑏�̌�𝑎

2𝑥2 ≥ 휃𝑎�̌�𝑎𝑥 −
𝜆휃𝑎�̌�𝑎
2�̌�𝑏

�̌�𝑎
2𝑥2

                                  > 휃𝑎�̌�𝑎𝑥 −
𝜆

2
휃𝑎�̌�𝑎

2𝑥2  ,

                               (3.41) 

because 
�̌�𝑎

�̌�𝑏
< 1 . Therefore, we have min(𝑔𝑎(𝑥), 𝑔𝑏(𝑥)) = 𝑔𝑎(𝑥) . In other 

words, the more optimistic recommendations given by the analyst 𝑏 have no 

impact on the decision making of the portfolio selection if the ratio of the 

credibility levels is 
𝜃𝑎

𝜃𝑏
≤

�̌�𝑏

�̌�𝑎
 , and the optimal portfolio 𝑥∗ depends only on the 

more reliable but pessimistic analyst 𝑎 and expresses as 
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𝑥∗ = 𝑥𝑎 =
�̌�𝑎
𝜆�̌�𝑎2

  . 

Unlike the result obtained above that the optimal portfolio 𝑥∗ relies entirely on 

one specific prediction, there are three possible outcomes if the ratio of the 

credibility levels is 
𝜃𝑎

𝜃𝑏
>

�̌�𝑏

�̌�𝑎
. Since the optimal portfolio 𝑥∗ is the maximum of 

the robust objective function min(𝑔𝑎(𝑥), 𝑔𝑏(𝑥)), the optimal portfolio 𝑥∗ is 

either the maximum of function 𝑔𝑎(𝑥) or function 𝑔𝑏(𝑥), or the intersection 

point of the functions 𝑔𝑎(𝑥) and 𝑔𝑏(𝑥).  

By expanding formulation (3.35), we have 

                                     
𝑔𝑎(𝑥) = 휃𝑎�̌�𝑎𝑥 −

𝜆

2
휃𝑎�̌�𝑎

2𝑥2  

  𝑔𝑏(𝑥) = 휃𝑏�̌�𝑏𝑥 −
𝜆

2
휃𝑏�̌�𝑏

2𝑥2 .

                                       (3.42) 

Let 휃𝑧�̌�𝑧 = 𝜈𝑧 and 휃𝑧�̌�𝑧
2 = 𝜏𝑧 for 𝑧 = 𝑎, 𝑏, then (3.42) becomes 

                                        
𝑔𝑎(𝑥) = 𝜈𝑎𝑥 −

𝜆

2
𝜏𝑎𝑥

2  

𝑔𝑏(𝑥) = 𝜈𝑏𝑥 −
𝜆

2
𝜏𝑏𝑥

2 .

                                                (3.43) 

Under assumptions �̌�𝑎 < �̌�𝑏  and �̌�𝑏
2 < �̌�𝑎

2  with 휃𝑎 > 휃𝑏  and 
𝜃𝑎

𝜃𝑏
>

�̌�𝑏

�̌�𝑎
, we 

have 휃𝑎�̌�𝑎 > 휃𝑏�̌�𝑏  and 휃𝑎�̌�𝑎
2 > 휃𝑏�̌�𝑏

2 . That is, 𝜈𝑎 > 𝜈𝑏  and 𝜏𝑎 > 𝜏𝑏 . 

Following directly from statement (3.34), the proposition 1 in Lutgens and 

Schotman (2010), the optimal portfolio 𝑥∗ can be immediately formulated as 

       𝑥∗ =

{
  
 

  
 

     

𝜈𝑏
𝜆𝜏𝑏

                          𝜈𝑏 ≤
2𝜈𝑎𝜏𝑏
𝜏𝑎 + 𝜏𝑏

                     

2(𝜈𝑎 − 𝜈𝑏)

𝜆(𝜏𝑎 − 𝜏𝑏)
                  

2𝜈𝑎𝜏𝑏
𝜏𝑎 + 𝜏𝑏

< 𝜈𝑏 <
𝜈𝑎(𝜏𝑎 + 𝜏𝑏)

2𝜏𝑎
𝜈𝑎
𝜆𝜏𝑎

                          
𝜈𝑎(𝜏𝑎 + 𝜏𝑏)

2𝜏𝑎
≤ 𝜈𝑏            

   .          (3.44) 
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By substituting 𝜈𝑧 = 휃𝑧�̌�𝑧 and 𝜏𝑧 = 휃𝑧�̌�𝑧
2 for 𝑧 = 𝑎, 𝑏, we have  

𝑥∗ =

{
  
 

  
 

 

휃𝑏�̌�𝑏

𝜆휃𝑏�̌�𝑏
2                          휃𝑏�̌�𝑏 ≤

2휃𝑎�̌�𝑎휃𝑏�̌�𝑏
2

휃𝑎�̌�𝑎2 + 휃𝑏�̌�𝑏
2                                

2(휃𝑎�̌�𝑎 − 휃𝑏�̌�𝑏)

𝜆(휃𝑎�̌�𝑎2 − 휃𝑏�̌�𝑏
2)
               

2휃𝑎�̌�𝑎휃𝑏�̌�𝑏
2

휃𝑎�̌�𝑎2 + 휃𝑏�̌�𝑏
2 < 휃𝑏�̌�𝑏 <

휃𝑎�̌�𝑎(휃𝑎�̌�𝑎
2 + 휃𝑏�̌�𝑏

2)

2휃𝑎�̌�𝑎2

휃𝑎�̌�𝑎
𝜆휃𝑎�̌�𝑎2

                         
휃𝑎�̌�𝑎(휃𝑎�̌�𝑎

2 + 휃𝑏�̌�𝑏
2)

2휃𝑎�̌�𝑎2
≤ 휃𝑏�̌�𝑏            ,        

                                                                                                                                    (3.45)
                        

 

which is equivalent to  

   𝑥∗ =

{
  
 

  
 

     

  𝑥𝑏                  �̌�𝑏 ≤
2휃𝑎�̌�𝑎�̌�𝑏

2

휃𝑎�̌�𝑎2 + 휃𝑏�̌�𝑏
2                                        

𝑥𝑎𝑏                  
2휃𝑎�̌�𝑎�̌�𝑏

2

휃𝑎�̌�𝑎2 + 휃𝑏�̌�𝑏
2 < �̌�𝑏 <

�̌�𝑎(휃𝑎�̌�𝑎
2 + 휃𝑏�̌�𝑏

2)

2휃𝑏�̌�𝑎2

 𝑥𝑎                   
�̌�𝑎(휃𝑎�̌�𝑎

2 + 휃𝑏�̌�𝑏
2)

2휃𝑏�̌�𝑎2
≤ �̌�𝑏                               

          (3.46) 

with 𝑥𝑎 =
�̌�𝑎

𝜆�̌�𝑎
2, 𝑥𝑏 =

�̌�𝑏

𝜆�̌�𝑏
2, and 𝑥𝑎𝑏 =

2(𝜃𝑎�̌�𝑎−𝜃𝑏�̌�𝑏)

𝜆(𝜃𝑎�̌�𝑎
2−𝜃𝑏�̌�𝑏

2)
.  

3) Neither analyst provides more optimistic predictions. For instance, the lower 

expected return with lower variance or the higher expected return with higher 

variance. Assume that the more reliable analyst 𝑎  provides the less 

conservative recommendations, �̌�𝑎 > �̌�𝑏  and �̌�𝑎
2 > �̌�𝑏

2 . Then the correlation 

between the ratio of the credibility levels and the parameters ratio are  

휃𝑎
휃𝑏
>
�̌�𝑏
�̌�𝑎
      and      

휃𝑎
휃𝑏
>
�̌�𝑏
2

�̌�𝑎2
   , 

which is equivalent to 휃𝑎�̌�𝑎 > 휃𝑏�̌�𝑏  and 휃𝑎�̌�𝑎
2 > 휃𝑏�̌�𝑏

2 , i.e., 𝜈𝑎 > 𝜈𝑏  and 

𝜏𝑎 > 𝜏𝑏 as shown previously. Hence, the optimal portfolio 𝑥∗ is formulated as 

statement (3.46)5. 

                                                 
5 The proof of this case is exactly the same as the previous proof for the case that the more reliable analyst 

provides relatively prudent advice with 
𝜃𝑎

𝜃𝑏
>

�̌�𝑏

�̌�𝑎
. 
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3.3 Summary 

Incorporating professional investment recommendations into the decision making 

process for portfolio selection can be beneficial in enabling investors to make better 

choices. However, the forecasts provided by the analysts are not written in clear 

numerical formats, and are usually expressed in vague linguistic statements. So far, there 

is no explicit or straightforward approach for constructing a portfolio with qualitative 

inputs. Therefore, adopting basic historical performance of assets together with 

additional investment information provided by professionals for constructing a portfolio 

without further implementations can be challenging.  

In this chapter, a detailed literature review about the fuzzy set theory for 

interpreting imprecise and ambiguous situations is first provided. By following the idea 

of fuzzy logic, we have developed the multi-analyst portfolio selection approach with 

fuzzy aspiration (𝑭𝑴𝑽) based on the portfolio optimisation frameworks proposed by 

Lutgens and Schotman (2010) and Gupta et al. (2008). The multi-analyst approach with 

fuzzy aspiration (𝑭𝑴𝑽) possesses some good properties that allows more flexibility for 

its user, such as the choice of whether to use fuzzy variables or ordinary crisp variables 

and also the choice of whether to assign vague credibility levels 휃  to analysts’ 

recommendations.  

Compared to the multi-expert approach of Lutgens and Schotman (2010), where 

the expert input data are obtained from various return models, the multi-analyst 

approach (𝑭𝑴𝑽)  proposed in this chapter has been developed for adopting real 

investment forecasts from different financial analysts as input data. There is an obvious 

difference between the return models and the investment recommendations. In reality, 

the investment recommendations are vaguely expressed opinions or commentaries about 

future performance forecasts of assets, and on the other hand, the return models generate 
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numerical estimates. Unlike Lutgens and Schotman (2010), we take the characteristics 

of investment forecasts into account and employ fuzzy set theory to deal with the 

analysts’ vague recommendations. Gupta et al. (2008) proposed the multiple criteria 

approach via fuzzy programming. The portfolio selection problem is formulated as a 

multiple criteria optimisation problem and different vague investment goals are 

considered for each individual criterion. Although the portfolio selection framework of 

Gupta et al. (2008) has inspired the development of the multi-analyst approach (𝑭𝑴𝑽) 

in this chapter, these two approaches differ substantially in terms of the information 

source. More specifically, Gupta et al. (2008) use historical asset performances as the 

only resource to generate estimates for input parameters. By contrast, we adopt 

investment recommendations from multiple professional analysts. That is, for every 

asset, their model only considers one estimate for each type of parameter. On the other 

hand, the multi-analyst approach (𝑭𝑴𝑽) takes into account multiple estimates provided 

by different financial analysts for each type of parameter. 

Finally, in order to illustrate the impact on employing the credibility coefficient 휃 

for describing the confidence of the investor in different analysts, we have investigated 

the proposed approach (𝑭𝑴𝑽)  using an example where the investor receives 

suggestions from two analysts and only needs to allocate funds between a risky asset 

and a risk free asset. 

Although the multi-analyst fuzzy approach (𝑭𝑴𝑽) is able to incorporate multiple 

information sources into the optimisation model, it does not take into account estimation 

errors and parameter uncertainties when historical data are used. In the following chapter, 

we will extend the multi-analyst approach with fuzzy aspiration (𝑭𝑴𝑽) by adopting the 

concept of the robust counterpart approach of Ben-Tal and Nemirovski (1998). 

 At the end of this chapter we summarise, in Figure 3.6, the basic steps for solving 

the multi-analyst portfolio selection problem with fuzzy aspiration (𝑭𝑴𝑽). 
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Figure 3.6  The Diagram of Solving the Multiple Analysts Approach with Fuzzy 

Aspiration  

 

 

Interpret analysts’ data with 

fuzzy variables 
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Chapter 4 

Robust Counterpart to Multi-Analyst Portfolio 

Selection Approach 

The phrase “robust optimisation of portfolio selection problems” has been 

mentioned frequently in the literature over the last few decades. Broadly speaking, the 

idea is to provide an optimal asset allocation that performs well even if the worst 

possible scenario turns out to be true. This can be achieved via several different 

approaches, for instance, the model robust approach or the estimation robust approach. 

The former refers to the technique that incorporates multiple structured return models 

into the optimisation framework and selects portfolios with the most conservative 

perception, such as the multi-analyst approach (𝑭𝑴𝑽) proposed in Chapter 3 and the 

multi-expert approach of Lutgens and Schotman (2010). The latter refers to an area of 

optimisation that explicitly takes estimation errors and parameter uncertainties into 

consideration and the most commonly used method is the robust counterpart approach 

of Ben-Tal and Nemirovski (1998), which has been mentioned earlier, in Section 2.2. 

In this chapter we will extend the multi-analyst approach with fuzzy aspiration 

(𝑭𝑴𝑽) by introducing the robust counterpart approach to deal with the uncertainties of 

the input parameters. Lutgens and Schotman (2006) proposed the model and estimation 

robust approach based on a joint uncertainty set for describing the parameter 

uncertainties, i.e., the uncertainties of parameter estimation for different assets are 

assumed to be identical to each other and estimated jointly for all assets. However, in 
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reality, it is very unlikely that the estimation uncertainties of different assets will be the 

same across different assets. More importantly, in Lutgens and Schotman (2006), it is 

implicitly assumed that experts will provide forecasts for every individual asset. This is 

clearly not realistic; instead of providing forecasts for every single asset, the 

professional analysts or financial experts usually only make recommendations on a few 

assets (see Figure 1.1 for further details). Consequently, for those assets without any 

forecasts by the financial analysts, the investor has to rely on the historical data for 

portfolio selection and, in this case, sampling errors have to be taken into consideration. 

In order to deal with this issue, we propose to pool the robust counterpart approach with 

the multi-analyst approach (𝑭𝑴𝑽)  proposed in Chapter 3, where the assets are 

categorised into different subsets so that the estimation uncertainties of different 

subclasses of assets are characterised separately during portfolio selection. The 

proposed robust multi-analyst approach with separate uncertainty sets is the first 

portfolio selection approach that combines the advantages of the model robust approach 

(Lutgens & Schotman, 2010) and the estimation robust approach (Ben-Tal & 

Nemirovski, 1998) and that at the same time allows the user to consider parameter 

uncertainties of various datasets differently. 

To start with, the robust multi-analyst approach under joint uncertainty set will be 

presented as an initial framework. Then we will develop the robust multi-analyst 

approach with multiple uncertainty sets. Finally, we will compare the multi-analyst 

approach with the robust multi-analyst approach to illustrate the impact of 

robustification. 

4.1 Extension of the Multiple Analysts Approach 

In Chapter 3, we developed the multi-analyst approach for portfolio selection 

problem with fuzzy aspiration (𝑭𝑴𝑽) by extending the existing multi-expert approach 
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in Lutgens and Schotman (2010). We have also illustrated that there is a strong 

dependence of the optimal solution 𝑥∗ on the ratio of the respective credibility levels 

of analysts prescribed by the investor. However, it can be problematic to use analysts’ 

recommendations directly without considering the uncertainties of the estimations, 

especially given that the financial analysts only make suggestions on a few assets. In 

this case, the investor has to use historical asset performances for those without further 

information provided by the analysts. Therefore, modification of the multi-analyst 

portfolio selection approach (𝑭𝑴𝑽) for taking estimation uncertainties into account is 

indeed necessary for further improvements in constructing robust optimal portfolios.   

Lutgens and Schotman (2006) proposed the model and estimation robust approach, 

which combines the multi-expert approach with the robust counterpart approach, based 

on a joint uncertainty set. In their framework, the professional forecasts provided by 

each expert are described through an uncertainty set, and each uncertainty set 𝑈𝑧 

represents the possible values of the asset returns according to the expert 𝑧’s belief. 

Thus the model and estimation robust approach of the portfolio selection problem is 

formulated as 

                                           
                                  
𝑚𝑎𝑥
𝑥∈ℝ𝑛

  𝑚𝑖𝑛
𝑧∈𝑍

  𝑚𝑖𝑛
𝜇∈𝑈𝑧

        𝑓𝑧(𝜇𝑧, 𝑥)       ,                                            (4.1) 

where 𝑓𝑧(𝜇𝑧, 𝑥) = 𝜇𝑧
𝑇𝑥 −

𝜆

2
𝑥𝑇Σ𝑧𝑥  for 𝑧 ∈ 𝑍  with 𝜇𝑧 ∈ 𝑈𝑧  and Σ𝑧  denoting the 

estimates of the expected returns and covariance matrix provided by expert 𝑧 . 

Following the optimisation framework (4.1), we will propose the robust counterpart 

formulation of the multi-analyst approach (𝑭𝑴𝑽) in the subsequent section. 

4.2 The Robust Counterpart to Multi-Analyst Approach 

Before going into more details of the development of the robust multi-analyst 

approach with fuzzy aspiration, we note that, from (4.1), the associated robust 
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counterpart formulation of the multi-analyst portfolio selection problem (𝑭𝑴𝑽)  is 

given by 

(𝑹𝑬𝑴𝑽)      
                                  
𝑚𝑎𝑥
𝑥∈ℝ𝑛

  𝑚𝑖𝑛
𝑧∈𝑍

𝑚𝑖𝑛
𝜇𝑧∈𝑈𝑧

   
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇�̌�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

  ,    (4.2) 

where 𝑥 ∈ ℝ𝑛 is the decision vector, 𝜇𝑧 ∈ 𝑈𝑧 is the parameter of the expected returns 

expressed via an uncertainty set 𝑈𝑧 which is constructed according to the analyst 𝑧, 

Σ̌𝑧 is the crisp possibilistic covariance matrix according to recommendations provided 

by analyst 𝑧, and 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 is the benchmark of the investment required by the investor. 

As mentioned in the previous chapters, there is no universal format for the 

uncertainty set 𝑈𝑧  and the uncertainty set 𝑈𝑧  is formulated according to the 

requirements of the user. A general guideline for constructing the uncertainty set 𝑈𝑧 is 

to set up the uncertainty set 𝑈𝑧 to be centred at the estimate of the expected input value 

and then use the desired robustness of the optimisation problem to define the size of the 

uncertainty set 𝑈𝑧. Although the fluctuations in the input parameter, i.e., the vector of 

expected returns or the covariance matrix, are considered to be one of the reasons why 

the optimal portfolio performed disappointingly, the practitioners and researchers pay 

more attention to the uncertainties in the expected returns, because the covariance matrix 

is not as unstable as the expected returns and, in addition, the fluctuations in the 

covariance matrix do not influence the optimal solution crucially (Best & Grauer, 1991; 

Chopra & Ziemba, 1993; Michaud, 1998; Schöttle & Werner, 2009; Ziemba; 2009). 

Therefore it is common to define an uncertainty set only for the vector of the expected 

returns.  

In the rest of this section, we will present two methods for describing estimation 

uncertainties in the expected returns and investigate their implications for the robust 

multi-analyst approach. 
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4.2.1 Uncertainty Set for All Assets 

To define explicitly the estimation uncertainties of the expected returns for the 

portfolio selection problem, the conventional method is to estimate the uncertainties of 

the expected returns either individually for each asset or jointly for all assets. The former 

uses a confidence interval as the uncertainty set for each asset to describe the estimation 

uncertainty of the expected return and the latter uses a confidence ellipsoid or box 

around the vector of the expected returns as the uncertainty set to describe the estimation 

uncertainties of all assets6. It is more likely and also more realistic that the investor has 

a general confidence in the estimate of the expected returns for a certain group of assets 

or for the entire set of assets. Therefore we do not pursue the research line where the 

uncertainties of the expected returns are estimated individually.  

4.2.1.1 Optimising the Portfolio Selection Problem (𝑹𝑬𝑴𝑽) via a Box Uncertainty 

Set 

Consider the portfolio selection problem (𝑹𝑬𝑴𝑽)  and assume the estimated 

uncertainties of the expected returns are expressed via a box uncertainty set 𝑈𝑧
𝐵𝑜𝑥, i.e., 

                                𝑈𝑧
𝐵𝑜𝑥(�̌�𝑧) = { 𝜇 ∈ ℝ𝑛  ||𝜇𝑖 − �̌�𝑧𝑖| ≤ 𝛿𝑧}   ,                                      (4.3) 

where 𝑈𝑧
𝐵𝑜𝑥 ⊂ ℝ𝑛 is an non-empty, convex and compact uncertainty set formulated 

according to analyst 𝑧’s forecasts, �̌�𝑧 is the crisp possibilistic interpretation of fuzzy 

expected return, and 𝛿𝑧 ≥ 0 is the desired robustness level for the uncertainty set 𝑈𝑧
𝐵𝑜𝑥 

given by the investor. Following equation (2.22), the robust counterpart approach of the 

multi-analyst portfolio selection problem with box uncertainty set 𝑈𝑧
𝐵𝑜𝑥  is then 

formulated as 

                                                 

6 For further details of uncertainty set, readers should refer to Sections 2.2.2 and 2.2.3. 
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  max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝑧∈𝑈𝑧

   
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇�̌�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

             

=            max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

  
1

1 + 𝑒𝑥𝑝 (−휃𝑧 ((�̌�𝑧 − 𝛿𝑧𝟏)𝑇𝑥 −
𝜆
2 𝑥

𝑇�̌�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

  ,       (4.4) 

where �̌�𝑧 − 𝛿𝑧𝟏 explicitly denotes the worst case scenario of the asset returns, with 𝟏 

denoting the vector of ones. Note that formulation (4.4) of the portfolio selection 

problem (𝑹𝑬𝑴𝑽) can be transformed easily for the investor who wishes to specify the 

uncertainty about each expected return individually. Instead of prescribing a constant 

𝛿𝑧 ≥ 0  as the desired level of robustness, the investor can use a vector 𝒅𝑧 =

(𝒅𝑧1, … , 𝒅𝑧𝑛)
𝑇
 to describe the robustness for the uncertainty set 𝑈𝑧

𝐵𝑜𝑥, i.e., 

              𝑈𝑧
𝐵𝑜𝑥(�̌�𝑧) = { 𝜇 ∈ ℝ

𝑛 ||𝜇 − �̌�𝑧| ≤ 𝒅𝑧 , 𝒅𝑧 = (𝒅𝑧1, … , 𝒅𝑧𝑛) 
𝑇}   ,                  (4.5) 

with 𝒅𝑧𝑖 ≥ 0 denoting the individual robustness level for the 𝑖𝑡ℎ asset where 

�̌�𝑧𝑖 − 𝒅𝑧𝑖 < 𝜇𝑖 < �̌�𝑧𝑖 + 𝒅𝑧𝑖 

representing the interval description of the expected return of asset 𝑖, 𝑖 = 1,2, … , 𝑛. 

4.2.1.2 Optimising the Portfolio Selection Problem (𝑹𝑬𝑴𝑽) via an Ellipsoid 

Uncertainty Set 

Consider the portfolio selection problem (𝑹𝑬𝑴𝑽) and let the uncertainty set 𝑈𝑧 

for the parameter 𝜇 be given by a confidence ellipsoid, which is constructed according 

to the recommendations provided by the analyst 𝑧, i.e., 

                

𝑈𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑(�̌�𝑧) = { 𝜇 ∈ ℝ𝑛  |(𝜇 − �̌�𝑧)

𝑇�̌�𝑧
−1
(𝜇 − �̌�𝑧) ≤ 𝛿𝑧

2}

                         = {𝜇 ∈ ℝ𝑛|𝜇 = �̌�𝑧 + 𝛿𝑧�̌�𝑧

1
2𝜓 , ‖𝜓‖ ≤ 1  }  ,

                        (4.6) 

where 𝑈𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 ⊂ ℝ𝑛 is non-empty, convex and compact. �̌�𝑧 and �̌�𝑧 are the crisp 

possibilistic interpretations of the expected returns and covariance matrix, respectively. 
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𝛿𝑧 ≥ 0 is the desired robustness level for the uncertainty set 𝑈𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑

 given by the 

investor. By following (4.6), the robust counterpart approach of the multi-analyst 

portfolio selection problem with ellipsoid uncertainty set 𝑈𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑

 can be formulated 

as 

 

  max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝑧∈𝑈𝑧

  
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇�̌�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

                                

 

= max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
‖𝜓‖≤1

 
1

1 + 𝑒𝑥𝑝(−휃𝑧 ((�̌�𝑧 + 𝛿𝑧�̌�𝑧

1
2𝜓)

𝑇

𝑥 −
𝜆
2 𝑥

𝑇�̌�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

           

 

 

=    max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

        
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆
2 𝑥

𝑇�̌�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 + 𝛿𝑧 min
‖𝜓‖≤1  

𝜓𝑇Σ̂
1
2𝑥))

  .

  
                                                                                                                                                     (4.7)

 

Since the product 𝜓𝑇Σ̂
1

2𝑥 is minimised at 𝜓∗ = −
�̌�𝑧
1 2⁄

𝑥

‖�̌�𝑧
1 2⁄

𝑥‖
, it follows immediately that 

the portfolio optimisation problem (𝑹𝑬𝑴𝑽) with the ellipsoid uncertainty set becomes 

(𝑹𝑬𝑴𝑽
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅

)   max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

 
1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌�𝑧
𝑇𝑥 −

𝜆
2 𝑥

𝑇�̌�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝛿𝑧 ‖�̌�𝑧

1
2𝑥‖))

 

 ,

                                                                                                                                                     (4.8)

   

with �̌�𝑧 − 𝛿𝑧
�̌�𝑧𝑥

‖�̌�𝑧
1 2⁄

𝑥‖
 explicitly denoting the worst case scenario of the expected returns. 

4.2.2 Uncertainty Set for Subsets of Assets 

In the setting of the robust multi-analyst approach (𝑹𝑬𝑴𝑽), it is assumed that the 

investor receives investment information from different professionals and decides the 

portfolio selection based on the collected information. In practice, however, financial 

analysts do not make suggestions on every asset. Instead, they provide forecasts on a 

few assets, usually less than 4% of the entire market (see Figure 1.1 for further details). 

In view of that, we assume that the analysts only make recommendations for the assets 
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if they disagree with the historical performance of the assets. Moreover, for the assets 

without further information provided by the analysts, the historical asset performances 

are adopted to obtain parameter estimates for the modelling. Hence we have two types 

of input data, the historical data and the analysts’ data, for every uncertainty set 𝑈𝑧, 

which should not be considered equally, nor applied with the same desired level of 

robustness. Therefore instead of stating one uncertainty set 𝑈𝑧 for all assets, two non-

overlapping subsets of assets are considered in order to distinguish the difference 

between the historical dataset and the analysts’ dataset. 

Specifically, suppose the analyst 𝑧 only recommends on 𝑚 assets, 0 ≤ 𝑚 ≤ 𝑛. 

Let the decision vector 𝑥 ∈ ℝ𝑛  be partitioned into 𝑥 = (𝑥𝐻
𝑇 , 𝑥𝑃

𝑇)𝑇  with 𝑥𝐻 ∈

ℝ𝑛−𝑚 denoting the column vector of weights in the assets of the historical dataset and 

𝑥𝑃 ∈ ℝ
𝑚 denoting the column vector of weights in the assets of the analysts’ dataset. 

Let us denote the expected returns 𝜇𝑧 and the covariance matrix Σ𝑧 by 

                           𝜇𝑧 = (
𝜇𝐻𝑧
𝜇𝑃𝑧

)             and            Σ𝑧 = (
Σ𝐻𝐻𝑧 Σ𝐻𝑃𝑧
Σ𝑃𝐻𝑧 Σ𝑃𝑃𝑧

)   ,                        (4.9) 

where 𝜇𝐻𝑧 and 𝜇𝑃𝑧 represent the expected returns according to the historical asset 

performances and the analyst 𝑧’s suggestions, respectively. Similarly, Σ𝐻𝐻𝑧 and Σ𝑃𝑃𝑧 

are the covariance matrix obtained from the historical data and the analyst 𝑧’s data. 

Therefore, instead of solving the portfolio selection problem (𝑹𝑬𝑴𝑽), we formulate the 

portfolio selection problem based on the non-overlapping method proposed by Garlappi 

et al. (2007). That is, 

 (𝑹𝑬𝑯𝑷) 

   

                                  
max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝐻𝑧,𝜇𝑃𝑧

  
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

𝑠. 𝑡.                  𝜇𝐻𝑧 ∈ 𝑈𝐻𝑧                                               

                    𝜇𝑃𝑧 ∈ 𝑈𝑃𝑧                                           

  ,    (4.10) 
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with 𝑈𝐻𝑧  and 𝑈𝑃𝑧  denoting the uncertainty sets for the historical dataset and the 

analyst’s dataset, respectively. �̌́�𝑧  is the covariance matrix obtained from a chosen 

statistical estimate of variance �́�𝑖
2 of the historical dataset and the crisp possibilistic 

variance �̌�𝑧𝑖
2  of the analyst’s dataset based on the historical correlation coefficient 

matrix 𝐶𝑜𝑟𝑟(𝜇), i.e., 

                                                �̌́�𝑧 = (
�́�𝐻𝐻𝑧 �̌́�𝐻𝑃𝑧

�̌́�𝑃𝐻𝑧 Σ̌𝑃𝑃𝑧

)         ,                                              (4.11) 

where �́�𝐻𝐻𝑧  is the covariance matrix for the historical dataset, Σ̌𝑃𝑃𝑧  is the crisp 

possibilistic covariance matrix for the analysts’ dataset according to equation (3.14), and 

the matrix �̌́�𝑃𝐻𝑧 = �̌́�𝐻𝑃𝑧 is the combination of the historical data and the analysts’ data, 

i.e., 

�̌́�𝑃𝐻𝑧 = (

𝜌1(𝑛−𝑚+1)�́�𝑧1�̌�𝑧(𝑛−𝑚+1) … 𝜌(𝑛−𝑚)(𝑛−𝑚+1)�́�𝑧(𝑛−𝑚)�̌�𝑧(𝑛−𝑚+1)
⋮ ⋱ ⋮

𝜌1𝑛�́�𝑧1�̌�𝑧𝑛 ⋯  𝜌(𝑛−𝑚)𝑛�́�𝑧(𝑛−𝑚)�̌�𝑧𝑛

) = �̌́�𝐻𝑃𝑧
𝑇

 

,

                                                                                                                                                  (4.12)

 

where 𝜌𝑖𝑗  denotes the historical correlation coefficient between asset 𝑖 and asset 𝑗 

for 𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗. After setting up the robust counterpart to multi-analyst 

portfolio selection approach, the assets are divided into two separate subsets and the 

parameter estimates of assets are generated differently for each subset. We now consider 

the implementation of the multi-analyst portfolio selection approach (𝑹𝑬𝑯𝑷) with 

different uncertainty sets, i.e., the box uncertainty set and the ellipsoid uncertainty set. 

4.2.2.1 Optimising the Portfolio Selection Problem (𝑹𝑬𝑯𝑷) via Box Uncertainty 

Sets 

Suppose that the investor chooses the box uncertainty set for defining the estimated 

uncertainties for the portfolio selection problem (𝑹𝑬𝑯𝑷) 
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          𝑈𝐻𝑧
𝐵𝑜𝑥(�́�𝐻𝑧) = { 𝜇 ∈ ℝ

𝑛−𝑚  ||𝜇𝑖 − �́�𝐻𝑧 𝑖| ≤ 𝛿𝐻𝑧  , 𝑖 = 1,… , 𝑛 − 𝑚}   ,             (4.13) 

and 

              𝑈𝑃𝑧
𝐵𝑜𝑥(�̌�𝑃𝑧) = { 𝜇 ∈ ℝ𝑚  ||𝜇𝑖 − �̌�𝑃𝑧𝑖| ≤ 𝛿𝑃𝑧  , 𝑖 = 𝑛 − 𝑚 + 1,… , 𝑛}   ,       (4.14) 

where 𝑈𝐻𝑧
𝐵𝑜𝑥  is the box historical uncertainty set with �́�𝐻𝑧𝑖  denoting a statistical 

estimate of the expected return for asset 𝑖 and 𝛿𝐻𝑧 denotes the desired robustness level 

for the historical dataset. 𝑈𝑃𝑧
𝐵𝑜𝑥 is referred to as the box uncertainty set for the expected 

returns of the analysts’ dataset with �̌�𝑃𝑧𝑖 denoting the crisp possibilistic return of the 

𝑖𝑡ℎ asset and 𝛿𝑃𝑧  denoting the desired robustness level. Thus the robust multi-analyst 

portfolio selection approach with the box uncertainty sets (𝑹𝑬𝑯𝑷
𝑩𝒐𝒙) is formulated as 

(𝑹𝑬𝑯𝑷
𝑩𝒐𝒙) 

   

                                  
max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝐻𝑧,𝜇𝑃𝑧

  
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

               𝑠. 𝑡.                  |𝜇𝐻𝑧 − �́�𝐻𝑧| ≤ 𝛿𝐻𝑧𝟏                                               

                                 | 𝜇𝑃𝑧 − �̌�𝑃𝑧| ≤ 𝛿𝑃𝑧𝟏                                         

      (4.15) 

with 𝜇𝑧 = (
𝜇𝐻𝑧
𝜇𝑃𝑧

). 

Note that the desired robustness level 𝛿 of an uncertainty set is adopted to reflect 

the investor’s aversion to estimation risk. As mentioned earlier, the return estimates 

generated from the analysts’ forecasts are the crisp possibilistic interpretation of the 

fuzzy recommendations, which accounts for the uncertain and imprecise characteristics 

of the parameters. On the other hand, although the investor does not have support 

regarding the reliability of recommendations, it is assumed that the investor takes all 

advice given by the financial analysts into consideration in order to avoid 

disappointment that a particular recommendation is actually true; therefore, we assume 

the investor sets the desired robustness level for the uncertainty set of the analysts’ 
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dataset equal to zero, i.e., 𝛿𝑃𝑧 = 0. Under this assumption, the robust multi-analyst 

portfolio selection approach with the box uncertainty sets (𝑹𝑬𝑯𝑷
𝑩𝒐𝒙) becomes 

(𝑹𝑬𝑯𝑷
𝑩𝒐𝒙)

   
                                  

max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

  
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

𝑠. 𝑡.                  𝜇𝑧 = (
�́�𝐻𝑧−𝛿𝐻𝑧𝟏

�̌�𝑃𝑧
)                                  

                          �̌́�𝑧 = (
�́�𝐻𝐻𝑧 �̌́�𝐻𝑃𝑧

�̌́�𝑃𝐻𝑧 Σ̌𝑃𝑃𝑧

)                               

  ,   (4.16) 

where �́�𝐻𝑧−𝛿𝐻𝑧𝟏 ∈ ℝ
𝑛−𝑚  is the worst case scenario of the asset returns for the 

historical dataset, �̌�𝑃𝑧 ∈ ℝ
𝑚 is the crisp possibilistic returns for the analysts’ dataset 

according to analyst 𝑧’s forecasts and �̌́�𝑧 is the covariance matrix obtained from both 

historical and the analyst 𝑧’s data. By denoting �̌́�𝑧 = (
�́�𝐻𝑧
�̌�𝑃𝑧

), the robust multi-analyst 

approach with the box uncertainty set (𝑹𝑬𝑯𝑷
𝑩𝒐𝒙) can be rearranged as  

(𝑹𝑬𝑯𝑷
𝑩𝒐𝒙)  

                           
max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

1

1 + 𝑒𝑥𝑝 (−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜆
2 𝑥

𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡−𝛿𝐻𝑧𝟏
𝑇𝑥𝐻))

 

                                 

  

                                                                                                                                                 (4.17)

 

with 𝑥𝐻 ∈ ℝ
𝑛−𝑚 denoting the weighting of the assets of the historical dataset. 

Note that compared to the multi-analyst approach of the portfolio selection problem 

(𝑭𝑴𝑽) , the term 𝛿𝐻𝑧𝟏
𝑇𝑥𝐻  of the robust multi-analyst approach (𝑹𝑬𝑯𝑷

𝑩𝒐𝒙)  is an 

additional term which can be interpreted as the penalty for investing in assets of the 

historical dataset. More explicitly, this penalty term of the robust multi-analyst approach 

(𝑹𝑬𝑯𝑷
𝑩𝒐𝒙) is a scalar product of the desired robustness of estimation and the weighting 

of assets for the historical dataset, therefore, it only penalised the investment in assets 

from the historical dataset. However, the penalty term here in the robust multi-analyst 

approach with the box uncertainty set (𝑹𝑬𝑯𝑷
𝑩𝒐𝒙)  penalises every asset from the 
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historical dataset equally, without considering the historical performance or behaviour 

of the assets.  

4.2.2.2 Optimising the Portfolio Selection Problem (𝑹𝑬𝑯𝑷) via Ellipsoid 

Uncertainty Sets 

Suppose now that the investor uses the ellipsoid uncertainty sets for describing the 

estimated uncertainties for the robust multi-analyst approach (𝑹𝑬𝑯𝑷) as follows  

   

𝑈𝐻𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑(�́�𝐻𝑧) = { 𝜇 ∈ ℝ

𝑛−𝑚  |(𝜇 − �́�𝐻𝑧)
𝑇
�́�𝐻𝐻𝑧

−1
(𝜇 − �́�𝐻𝑧) ≤ 𝛿𝐻𝑧

2 }

                                 = {𝜇 ∈ ℝ𝑛−𝑚|𝜇 = �́�𝐻𝑧 + 𝛿𝐻𝑧�́�𝐻𝐻𝑧

1
2 𝜓𝐻𝑧  , ‖𝜓𝐻𝑧‖ ≤ 1  }  ,

       (4.18) 

and 

  

𝑈𝑃𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑(�̌�𝑃𝑧) = { 𝜇 ∈ ℝ

𝑚  |(𝜇 − �̌�𝑃𝑧)
𝑇
Σ̌𝑃𝑃𝑧

−1
(𝜇 − �̌�𝑃𝑧) ≤ 𝛿𝑃𝑧

2 }

                                = {𝜇 ∈ ℝ𝑚|𝜇 = �̌�𝑃𝑧 + 𝛿𝑃𝑧Σ̌𝑃𝑃𝑧

1
2 𝜓𝑃𝑧  , ‖𝜓𝑃𝑧‖ ≤ 1  }  ,

             (4.19) 

where 𝑈𝐻𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑

 is the confidence ellipsoid of the historical dataset centred on a 

statistical estimate of the expected returns �́�𝐻𝑧 , and 𝑈𝑃𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑

 is referred to as the 

confidence ellipsoid for the analysts’ dataset centred on the crisp possibilistic asset 

returns �̌�𝑃𝑧 . Consequently, the robust multi-analyst approach with the ellipsoid 

uncertainty sets (𝑹𝑬𝑯𝑷) is given as 

(𝑹𝑬𝑯𝑷
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅

) 

   

                                  
max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝐻𝑧,𝜇𝑃𝑧

   
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

      𝑠. 𝑡.                   (𝜇𝐻𝑧 − �́�𝐻𝑧)
𝑇
�́�𝐻𝐻𝑧

−1
(𝜇𝐻𝑧 − �́�𝐻𝑧) ≤ 𝛿𝐻𝑧

2  

                                         ( 𝜇𝑃𝑧 − �̌�𝑃𝑧)
𝑇
Σ̌𝑃𝑃𝑧

−1
( 𝜇𝑃𝑧 − �̌�𝑃𝑧) ≤ 𝛿𝑃𝑧

2            

       .

                                                                                                                                                  (4.20)

 

By following the assumption that the desired robustness level for the analysts’ dataset 

equals zero, i.e., 𝛿𝑃𝑧 = 0, the robust multi-analyst approach (𝑹𝑬𝑯𝑷
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅

) reduces to  
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(𝑹𝑬𝑯𝑷
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅

)  

   

                                  
max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝐻𝑧,𝜇𝑃𝑧

     
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

      𝑠. 𝑡.                 (𝜇𝐻𝑧 − �́�𝐻𝑧)
𝑇
�́�𝐻𝐻𝑧

−1
(𝜇𝐻𝑧 − �́�𝐻𝑧) ≤ 𝛿𝐻𝑧

2

                   𝜇𝑃𝑧 = �̌�𝑃𝑧                                           

  ,

                                                                                                                                                  (4.21)

  

where the mean 𝜇𝑧 can be expressed as  

                                 𝜇𝑧 = (
𝜇𝐻𝑧
𝜇𝑃𝑧

) = (�́�𝐻𝑧 + 𝛿𝐻𝑧�́�𝐻𝐻𝑧

1
2 𝜓𝐻𝑧

�̌�𝑃𝑧

)     ,                                     (4.22) 

with ‖𝜓𝐻𝑧‖ ≤ 1 . Substituting equation (4.22) into (4.21), the formulation (4.21) of the 

framework can be transformed to 

 

                                  
max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝐻𝑧,𝜇𝑃𝑧

   
1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

 

                                    

 

 

= max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
‖𝜓𝐻𝑧‖≤1

  
1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 + (𝛿𝐻𝑧�́�𝐻𝐻𝑧

1
2 𝜓𝐻𝑧)

𝑇𝑥𝐻 −
𝜆
2
𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

  

= max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

  
1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜆
2 𝑥

𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 + 𝛿𝐻𝑧 min
‖𝜓𝐻𝑧‖≤1

(�́�𝐻𝐻𝑧

1
2 𝜓𝐻𝑧)

𝑇𝑥𝐻))

                                                                                                                                                  
                                                                                                                                                 (4.23)

 

where �̌́�𝑧 = (
�́�𝐻𝑧
�̌�𝑃𝑧

) . Note that, the value of the scalar product (�́�𝐻𝐻𝑧

1

2 𝜓𝐻𝑧)
𝑇𝑥𝐻  is 

minimised when 𝜓𝐻𝑗
∗ = −

�́�𝐻𝐻𝑧
1 2⁄

𝑥𝐻

‖�́�𝐻𝐻𝑧
1 2⁄

𝑥𝐻‖
. Consequently, we have 

  

(𝑹𝑬𝑯𝑷
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅

)   max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜆
2 𝑥

𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝛿𝐻𝑧 ‖�́�𝐻𝐻𝑧

1
2 𝑥𝐻‖))

 

 

 

 

,

                                                                                                                                             (4.24)
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with 𝛿𝐻𝑧 (�́�𝐻𝐻𝑧

1

2 �́�𝐻𝐻𝑧
1 2⁄

𝑥𝐻

‖�́�𝐻𝐻𝑧
1 2⁄

𝑥𝐻‖
)

𝑇

𝑥𝐻 = 𝛿𝐻𝑧
(�́�𝐻𝐻𝑧

1 2⁄
𝑥𝐻)

2

‖�́�𝐻𝐻𝑧
1 2⁄

𝑥𝐻‖
= 𝛿𝐻𝑧 ‖�́�𝐻𝐻𝑧

1

2 𝑥𝐻‖.  

Similar to the robust multi-analyst approach with the box uncertainty set (𝑹𝑬𝑯𝑷
𝑩𝒐𝒙), 

the robust multi-analyst approach with the ellipsoid uncertainty set (𝑹𝑬𝑯𝑷
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅

) also 

has a penalty term, the scalar product 𝛿𝐻𝑧 ‖�́�𝐻𝐻𝑧

1

2 𝑥𝐻‖, compared with the multi-analyst 

approach (𝑭𝑴𝑽). Unlike the robust multi-analyst approach (𝑹𝑬𝑯𝑷
𝑩𝒐𝒙), however, this 

penalty term of the robust multi-analyst approach (𝑹𝑬𝑯𝑷
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅

) contains the weighting 

and also the variance of assets which belongs to the historical dataset. In other words, 

the robust multi-analyst approach with the ellipsoid uncertainty set (𝑹𝑬𝑯𝑷
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅

) 

imposes higher penalties on the historical dataset, especially on those assets with large 

fluctuations in returns. This effect of the proposed robust multi-analyst approach with 

the ellipsoid uncertainty set (𝑹𝑬𝑯𝑷
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅

) increases the impact of the risk from the 

historical dataset on portfolio selection, which leads to a less risky portfolio selection 

for its user. 

In the following, we first illustrate the effect of applying the uncertainty set for 

handling estimation uncertainties by comparing the portfolio selection frameworks of 

the multi-analyst approach and the robust multi-analyst approach with the joint 

uncertainty set. Then we show the impact of employing separate uncertainty sets for the 

robust multi-analyst portfolio selection problem by comparing the resulting robust 

portfolios obtained from the joint uncertainty set or the separate uncertainty sets. 

4.3 Comparison of Multi-Analyst Approaches 

Two examples are given in this subsection to help understand the robust effect of 

the proposed robust counterparts to the multi-analyst approach. Instead of considering 

the mean-variance portfolio selection framework as given in equation (2.1), we use the 
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mean-standard deviation framework as Schöttle and Werner (2009) did to simplify the 

example: 

 (𝑷𝑴𝑺)                             

                                  

max
𝑥∈ℝ𝑛

        𝜇𝑇𝑥 −
𝜆

2
√𝑥𝑇𝛴𝑥      .                                                 (4.25) 

The robust multi-analyst approach with the joint uncertainty set (𝑹𝑬𝑴𝑺) will be 

investigated first, followed by an examination of the robust multi-analyst approach with 

the uncertainty set based only on the historical dataset (𝑹𝑬𝑯𝑷). As already mentioned, 

the financial analysts usually only select a small proportion of assets and comment on 

their future performances. Hence, it is assumed that the historical data is adopted to work 

out the expected returns and variances for the assets which have no recommendations 

from the analysts. For notational ease in the subsequent results or explanations, we use 

�̌́�𝑧 = (
�́�𝐻𝑧
�̌�𝑃𝑧

)  and �̌́�𝑧 = (
�́�𝐻𝐻𝑧 �̌́�𝐻𝑃𝑧

�̌́�𝑃𝐻𝑧 Σ̌𝑃𝑃𝑧

)  to denote the parameter estimates of the 

expected returns and covariance matrix provided by the 𝑧𝑡ℎ  analyst. The ellipsoid 

uncertainty set has nicer properties in terms of continuity and contains more asset 

information than the box uncertainty set. Therefore we will describe the uncertainty set 

𝑼 of the robust counterpart to the multi-analyst approach in the shape of the ellipsoid, 

unless explicitly stated otherwise.  

4.3.1 Comparison between the Multi-Analyst and the Robust Multi-Analyst 

Approaches 

Consider the multi-analyst approach (𝑭𝑴𝑺) and the robust multi-analyst approach 

with the joint uncertainty set (𝑹𝑬𝑴𝑺) for solving the mean-standard deviation portfolio 

selection problem: 

(𝑭𝑴𝑺)          max 
𝑥∈ℝ𝑛

min
𝑧∈Ζ

      
1

1 + exp(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜆
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

   ,       
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and 

(𝑹𝑬𝑴𝑺)     max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝑧∈𝑈𝑧

   
1

1 + 𝑒𝑥𝑝(−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜅
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

   . 

Let the uncertainty set for the return vector 𝜇𝑧 be given by a confidence ellipsoid 

as defined in equation (4.6), and denote 𝜆 ∈ [0,∞)  and 𝜅 ∈ [0,∞)  as the risk 

aversion coefficients for the portfolio selection problem (𝑭𝑴𝑺)  and (𝑹𝑬𝑴𝑺) , 

respectively. As shown earlier, by using the formulation (4.6) for the ellipsoid 

uncertainty set, the worst case scenario of the asset returns can be obtained and 

expressed as �̌́�𝑧 − 𝛿𝑧
�̌́�𝑧𝑥

‖�̌́�𝑧
1 2⁄

𝑥‖
. By substituting the parameter 𝜇𝑧 = �̌́�𝑧 − 𝛿𝑧

�̌́�𝑧𝑥

‖�̌́�𝑧
1 2⁄

𝑥‖
 into 

(𝑹𝑬𝑴𝑺), we have 

    

max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

  
1

1 + 𝑒𝑥𝑝

(

 
 
−휃𝑧 (�̌́�𝑧

𝑇
𝑥 −

𝜅
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝛿𝑧 (

�̌́�𝑧𝑥

‖�̌́�𝑧
1 2⁄ 𝑥‖

)

𝑇

𝑥)

)

 
 

  

=  max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

  
1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜅
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝛿𝑧

(�̌́�𝑧
1 2⁄ �̌́�𝑧

1 2⁄ 𝑥)
𝑇

𝑥

‖�̌́�𝑧
1 2⁄ 𝑥‖

))

  

=  max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

  
1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜅
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝛿𝑧√𝑥𝑇 �̌́�𝑧𝑥))

           

 

   

 

  

= max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

  
1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 − (

𝜅 + 2𝛿𝑧
2 )√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

  .                       

                                                                                                                                                  (4.26)

 

It can be noticed easily that the reformulation (4.26) of the robust multi-analyst 

approach (𝑹𝑬𝑴𝑺) is equivalent to the multi-analyst approach (𝑭𝑴𝑺) by defining the 
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risk aversion coefficient of (𝑭𝑴𝑺) as  𝜆 = 𝜅 + 2𝛿𝑧. Furthermore, since 𝜆 ≥ 𝜅 as both 

risk aversion coefficients are positive and 𝛿𝑧 ≥ 0, the efficient frontier of the robust 

multi-analyst approach (𝑹𝑬𝑴𝑺) is a shortened version of the efficient frontier of the 

multi-analyst approach (𝑭𝑴𝑺). This result corresponds to what Schöttle (2007) has 

found as the efficient frontier of the robust counterpart approach coincides with the 

efficient frontier of the original optimisation problem up to a particular point. This is 

illustrated in Figure 4.1.   

Figure 4.1  The Effect of Robustification in the Efficient Frontier of the Multi-

Analyst Approach 

Note: This figure shows the efficient frontiers of the multi-analyst approach (the solid line) and the 

robust multi-analyst approach (the dashed line). Under the assumption that the estimation errors and 

parameter uncertainties of expected returns, for both historical and analysts’ dataset, are prescribed 

via a joint uncertainty set for the robust multi-analyst approach, the efficient frontier of the robust 

multi-analyst approach has the same curve as the efficient frontier of the multi-analyst approach, 

only shorter. This figure is for illustrative purpose only; the actual efficient frontiers depend on the 

input data. 
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4.3.2 Comparison between the Joint Uncertainty Set and the Separate Uncertainty 

Sets 

Consider the robust multi-analyst mean-standard deviation portfolio selection 

approach with the separate ellipsoid uncertainty sets, and let the ellipsoid uncertainty 

sets for the parameter 𝜇𝑧 be given as formulae (4.18) and (4.19). Thus the robust multi-

analyst approach (𝑹𝑬𝑯𝑷) for the mean-standard deviation portfolio selection problem 

can be formulated as 

(𝑹𝑬𝑯𝑷)   max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝑧∈𝑈𝑧

  
1

1 + 𝑒𝑥𝑝(−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜅
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

    (4.27) 

with 𝜇𝑧 = (
𝜇𝐻𝑧
𝜇𝑃𝑧

) and 𝜅 ∈ [0,∞) denoting the risk aversion coefficient. By assuming 

the desired robustness level for the analysts’ dataset 𝛿𝑃𝑧 = 0, the worst case scenarios 

for returns can be given as a vector (
�́�𝐻𝑧 − 𝛿𝐻𝑧

�́�𝐻𝐻𝑧𝑥𝐻

‖�́�𝐻𝐻𝑧
1 2⁄

𝑥𝐻‖

�̌�𝑃𝑧

).  

Following the procedure of simplifying the robust counterpart (4.21)-(4.24), we 

replace the parameter 𝜇𝑧  with the vector of the worst case scenario 

(
�́�𝐻𝑧 − 𝛿𝐻𝑧

�́�𝐻𝐻𝑧𝑥𝐻

‖�́�𝐻𝐻𝑧
1 2⁄

𝑥𝐻‖

�̌�𝑃𝑧

) and obtain 

max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝐻𝑧,𝜇𝐸𝑧

    
1

1 + 𝑒𝑥𝑝(−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜅
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

                                         

=    max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

 
1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜅
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝛿𝐻𝑧

(�́�𝐻𝐻𝑧
1 2⁄ �́�𝐻𝐻𝑧

1 2⁄ 𝑥𝐻)
𝑇

𝑥𝐻

‖�́�𝐻𝐻𝑧
1 2⁄ 𝑥𝐻‖

))

=   max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

  
1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜅
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝛿𝐻𝑧√𝑥𝐻

𝑇�́�𝐻𝐻𝑧𝑥𝐻))

             

                                                                                                                                                          (4.28)
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where �̌́�𝑧 = (
�́�𝐻𝑧
�̌�𝑃𝑧

)  and �̌́�𝑧 = (
�́�𝐻𝐻𝑧 �̌́�𝐻𝑃𝑧

�̌́�𝑃𝐻𝑧 Σ̌𝑃𝑃𝑧

) . In order to illustrate the impact of 

adopting separated uncertainty sets in the robust multi-analyst approach, we compare 

formulations (4.26) and (4.28) and notice that the denominator of the last equation of 

(4.26) is larger than the denominator of the last equation from (4.28). That is,  

𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 − (

𝜅 + 2𝛿𝑧
2

)√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅
𝑇𝑎𝑟𝑔𝑒𝑡))                                                            

= 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜅

2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡 − 𝛿𝑧√𝑥𝑇 �̌́�𝑧𝑥))                                                

> 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜅

2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡 − 𝛿𝐻𝑧√𝑥𝐻
𝑇�́�𝐻𝐻𝑧𝑥𝐻))                       (4.29)

 

 

where 𝛿𝑧 = 𝛿𝐻𝑧  and 𝑥 = (𝑥𝐻
𝑇 , 𝑥𝑃

𝑇)𝑇  with 𝑥𝐻 ∈ ℝ
𝑛−𝑚  and 𝑥𝑃 ∈ ℝ

𝑚 . 

Consequently, we have 

         

1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 − (

𝜅 + 2𝛿𝑧
2 )√𝑥𝑇 �̌́�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

                

<
1

1 + 𝑒𝑥𝑝(−휃𝑧 (�̌́�𝑧
𝑇
𝑥 −

𝜅
2
√𝑥𝑇 �̌́�𝑧𝑥 − 𝛿𝐻𝑧√𝑥𝐻

𝑇�́�𝐻𝐻𝑧𝑥𝐻 − 𝑅
𝑇𝑎𝑟𝑔𝑒𝑡))

        (4.30) 

In other words, the robust multi-analyst approach with the separate uncertainty sets 

(𝑹𝑬𝑯𝑷) obtains greater optimal values than the robust multi-analyst approach with the 

joint uncertainty set (𝑹𝑬𝑴𝑺), which indicates that the efficient frontier of the robust 

multi-analyst approach with the separate uncertainty sets (𝑹𝑬𝑯𝑷) is located above the 

efficient frontier of the robust multi-analyst approach (𝑹𝑬𝑴𝑺). More specifically, for 

the same expected level of risk, the expected return is higher for the portfolio obtained 
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via the robust-multi-analyst approach with the separate uncertainty sets (𝑹𝑬𝑯𝑷). The 

following figure graphically illustrates this result. 

Figure 4.2  Efficient Frontiers Constructed from Different Robust Multi-Analyst 

Approach 

Note: This figure shows the efficient frontiers of the robust multi-analyst approach with the joint 

uncertainty set (the dashed line) and the robust multi-analyst approach with the separate uncertainty sets 

(the solid line). By adopting the separate uncertainty sets for the robust multi-analyst approach, the 

efficient frontier would have a higher level of return at every level of risk. This figure is for illustrative 

purpose only; the actual efficient frontiers depend on the input data. 

4.4 Summary 

In the previous chapter, we proposed the multi-analyst approach with fuzzy 

aspiration (𝑭𝑴𝑽) by employing fuzzy set theory to handle the vague linguistic asset 

recommendations of various financial analysts. Although this model is more appropriate 

than other existing multi-prior models for solving portfolio selection problems with 

additional investment information, this model does not account for estimation errors and 

uncertainties, especially in the case that the historical data is adopted to generate 

parameter estimates for the assets which are not commented on by any analysts. 

Therefore, in this chapter, we presented the robust multi-analyst approaches, (𝑹𝑬𝑴𝑽) 
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and (𝑹𝑬𝑯𝑷) , to deal with estimation errors and uncertainties by using the robust 

counterpart approach in Ben-Tal and Nemirovski (1998). We further illustrated the 

impact of robustification on portfolio selection process by comparing the robust multi-

analyst approaches with the multi-analyst approach (𝑭𝑴𝑽). 

On the base of the multi-analyst approach (𝑭𝑴𝑽), we first constructed the standard 

robust counterpart of the multi-analyst approach by modifying the parameter of the 

expected returns to account for the estimation error and uncertainties. To do this, we 

followed the robust counterpart approach (Ben-Tal & Nemirovski, 1998) and defined an 

uncertainty set which contains most of the possible parameter values for every asset. 

This robust multi-analyst approach with the joint uncertainty set (𝑹𝑬𝑴𝑽) is a worst-

case approach that generates the optimal portfolio based on the worst possible scenarios. 

A similar robust approach has been proposed by Lutgens and Schotman (2006) based 

on their multi-expert approach. However, in this thesis, as the multi-analyst approach 

(𝑭𝑴𝑽) adopts two types of input data, the historical data and the analysts’ data, to obtain 

parameter estimates, it is therefore unreasonable to define one uncertainty set for all 

assets with the same desired level of robustness. In view of this, we developed the robust 

multi-analyst approach with the separate uncertainty sets (𝑹𝑬𝑯𝑷) based on the work 

of Garlappi et al. (2007) to distinguish the desired robustification for different types of 

input data. 

In comparison to the robust counterpart approach in Lutgens and Schotman (2006), 

the proposed robust multi-analyst approach with the separate uncertainty sets (𝑹𝑬𝑯𝑷) 

is more advanced in terms of: (a) providing a robust optimal portfolio which is 

theoretically less pessimistic; and (b) adopting non-overlapping uncertainty sets to 

specify the desired robustification for different types of input data. On the other hand, 

the robust multi-analyst approach (𝑹𝑬𝑯𝑷) is superior compared to the multi-prior 

approach suggested by Garlappi et al. (2007). First, Garlappi et al. (2007) uses a return-
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generating model as the expert’s recommendations and doesn’t consider the nature of 

recommendations; the method adopted for incorporating multiple investment sources is 

not clearly specified and the parameter estimates are obtained using classical methods 

such as the maximum likelihood estimator or Bayesian approach. Secondly, according 

to Garlappi et al. (2007), their framework can incorporate both parameter and model 

uncertainties by estimating expected returns with both sample returns and one particular 

return-generating model; nevertheless, the proposed robust multi-analyst approach 

(𝑹𝑬𝑯𝑷)  also possesses this advantage feature and, in addition, allows its user to 

incorporate multiple information sources. 

Before proceeding to the implementation and examination of the multi-analyst 

approaches developed in Chapter 3 and Chapter 4, the practical analysts’ data considered 

in this research is now detailed in the following chapter. At the end of this section, we 

summarise in Figure 4.3 the basic steps for the robust multi-analyst approach with the 

separate uncertainty sets (𝑹𝑬𝑯𝑷), which will later be applied for solving portfolio 

selection problems in real world applications.  
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Figure 4.3  The Diagram of Solving the Robust Multi-Analyst Approach with the 

Separate Uncertainty Set 

 

Interpret the analysts’ data with 

fuzzy variables 

Obtain the optimal solution 𝑥∗ 

Collect historical data 

Calculate the parameter estimates for the risk and the return  

 

Apply crisp possibilistic 

approach 

Construct the robust uncertainty set for each dataset 

 

Construct the robust multi-analyst approach of the portfolio selection 

problem  

 

Collect professional investment 

recommendations 

 



97 

 

 

 

Chapter 5 

Analysts’ Data and Fuzzification 

The aim of this research is to develop a potentially profitable approach to robust 

optimal asset allocation by incorporating additional investment information from 

multiple stock market analysts into a robust portfolio selection problem. After 

developing portfolio selection frameworks in the previous chapters, the research effort 

now turns to the collection of data and the implementation of the proposed portfolio 

selection models.  

So far, the existing research on the robust portfolio selection with multiple experts’ 

recommendations has focused only on the construction of the optimisation framework. 

To the best of our knowledge, previous studies regarding the multi-expert approach of 

the robust portfolio selection problem have adopted either simulated expert data (Huang 

et al., 2010) or simply some particular return models (Garlappi et al., 2007; Lutgens and 

Schotman, 2010), such as the capital asset pricing model (CAPM) and the Fama & 

French factor model, instead of employing data from practical stock market analysts 

employed by financial institutions for investigating the performance of the models. As 

the main interest of this research is to develop the multi-analyst approach in financial 

practice, data obtained from financial analyst forecasts of the Taiwanese stock market 

will be used to investigate the performance of the proposed multi-analyst portfolio 

selection approaches, and to compare with the portfolio performances of some existing 

portfolio selection models in the literature. 
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This chapter will focus on discussing the data used in this thesis, and is organised 

as follows. First, an overview of the practical analysts’ dataset together with information 

of the financial institution considered for this research will be provided in the data 

collection section, followed by Section 5.2 about data description. Then, in Section 5.3, 

the procedure for converting the fuzzy analysts’ forecasts into clear numerical 

estimations will be presented. Finally, a brief summary will be given to conclude this 

chapter. 

5.1 Data Collection 

The practical analysts’ data considered in this research are from the collection of 

daily investment advisory newsletters provided by Taiwanese financial institutions. A 

total of 2,133 newsletters, published from 1st February 2012 to 28th March 2014, were 

collected. These newsletters are only accessible by registered online traders who hold 

accounts with the financial institutions. Once the investors become registered customers, 

they can read the investment advisory newsletters from either their personal e-mail 

account or from the web page of the financial institution. As the newsletters are updated 

every trading day and the previous newsletters are usually automatically removed, 

therefore the newsletters need to be collected from each institutional investment firm 

before the website maintenance every trading day. 

The practical analysts’ dataset was obtained from the investment newsletters 

collected from Taiwanese securities brokerage firms. Due to time and resource 

limitations for completing this study, four out of the 87 securities brokerage firms were 

chosen for this study. All of the chosen securities brokerage firms have at least 25 years 

of experience in Taiwan’s competitive securities industry. Furthermore, they all have 

overseas representative offices and subsidiaries in Asia. In addition, all of the chosen 

brokerage firms are members of the top ten most active securities firms in Taiwan, with 
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at least 3% market share in brokerage since the year 20057. See Appendix A for further 

details. 

5.2 Data Description 

The reporting formats of the newsletters are not consistent across all securities 

brokerage firms considered in this study. Normally, a newsletter starts with an overview 

of the Taiwanese stock market that summaries the recent market information such as the 

statistical figures of daily/weekly trading and highlights the news about different 

industries. Then a qualitative analysis of current market conditions is provided together 

with future prospects of the market movement, which is always expressed linguistically 

in statements like “Bull market in technology sector, especially the smartphone related 

industry” or “The result of the election could potentially lift both the market and 

economy, therefore, we do expect a bull market”. Finally, detailed recommendations for 

some specific stocks are given with information such as the name and the stock identity 

number of the recommended stock and the reason for suggesting this particular stock in 

the newsletter. For a more comprehensive newsletter, further information on the 

recommended stock is included; for instance, the current and predicted price and the 

suggested action (i.e., buy, sell or neutral) for the recommended stock.  

Although the newsletters may provide relatively useful information for allocating 

investment in the stock market, there are two potential disadvantages of the collected 

investment forecasts in addition to the fundamental ambiguity characteristics of the 

stock recommendations. First, the number of the recommended stocks varies between 

the securities brokerage firms, and it is very unlikely that different securities brokerage 

firms make detailed recommendations on the same stock. Second, none of these 

                                                 
7The information of the securities firm is available on the web page of TWSE (2005).  
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recommendations contains clear information about the predicted time frame for the 

targeted price movement. 

We consider these practical analysts’ data for stock recommendation as qualitative 

data (see Table 5.1 as an illustration). According to Herold (2003), there is only a limited 

amount of research regarding the constructions of asset allocation based on the market 

forecasts provided by analysts. In addition, the approaches adopted for optimising 

portfolios with experts’ forecasts are mostly ad hoc or heuristic. To address the issue, 

Herold has proposed a portfolio selection approach for implementing qualitative market 

forecasts. In his framework, the Bayesian model is adopted for refining the expectations 

of future returns and additional diagnostic tools are implied for processing the 

recommendations and the resulting portfolio. Although Herold has made it possible for 

practitioners to use qualitative forecasts in asset allocation, there is one restriction on 

the format of the forecasts, i.e., the recommendations are always about pairs of assets 

but not one specific asset or asset class. 

Only a few studies have been done on extending the literature of portfolio selection 

models with professional investment forecasts during the last ten years. To name a few, 

Fabozzi et al. (2006) adopted the Black-Litterman approach to combine cross-sectional 

momentum strategies with market equilibrium returns in the mean-variance framework. 

Chiarawongse et al. (2012) proposed a mean-variance portfolio optimisation model with 

qualitative ranking information of assets, where the qualitative forecasts are represented 

by linear inequalities. On the other hand, instead of following the conventional 

approaches, which quantify the uncertain experts’ estimations via either the Bayesian 

approach or the concept of the fuzzy set, Huang (2012) incorporated the experts’ 

forecasts into the mean-variance portfolio selection models with the experts’ estimation 

of 𝑖𝑡ℎ asset return formulated as �̂�𝑖 =
(𝑝𝑖
′+𝑑𝑖−𝑝𝑖)

𝑝𝑖
, where 𝑝𝑖

′ is the expected price of the 
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𝑖𝑡ℎ  asset in the future, 𝑝𝑖  is the current price of the asset and 𝑑𝑖  is the estimated 

dividend of the 𝑖𝑡ℎ asset during the period. 

Note that all the existing approaches for interpreting investment recommendations 

have their own advantages and disadvantages and there is no agreement in the literature 

regarding which particular approach provides better numerical expressions of these 

uncertain forecasts. Moreover, as previously noted, the formats of the newsletters are 

inconsistent across the different securities brokerage firms and every newsletter consists 

of many recommendations, which are usually expressed differently. Fuzzy set theory, 

the more generalised and intuitive method that has been supported by many authors for 

defining uncertain parameters (Ammar and Khalifa, 2003; Chen and Huang, 2009; 

Gupta et al., 2008; Liu, 2011; Zhang et al., 2009 & 2011), is considered an appropriate 

approach in this research for interpreting the analysts’ forecasts. In addition to the 

favourable simplicity feature of fuzzy set theory mentioned earlier, it is also helpful in 

standardising the computation of the vague investment forecasts, rather than applying 

various specific approaches to deal with stock forecasts in different formats. In this 

regard, the procedure for generating estimates of input parameters can be more efficient 

and at the same time reduce the risk of misinterpreting analysts’ suggestions caused by 

employing different data interpreting approaches. In the rest of this chapter, we discuss 

the forecast of the stock returns and deviations in terms of fuzzy variables. 

5.3 Fuzzification 

5.3.1 Trapezoidal Fuzzy Variables 

In order to remain conceptually and operationally efficient with less demanding 

computation, the class of the trapezoidal fuzzy variables, whose membership function 

is normal and convex, is adopted for interpreting stock recommendations in this study. 

Recall from Section 3.1 that a typical trapezoidal fuzzy variable �̃�𝑇𝑟𝑎 =
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(𝑚−,𝑚+, 𝜎−, 𝜎+) with tolerance interval [𝑚−, 𝑚+], left width 𝜎− and right width 𝜎+ 

is defined via a corresponding membership function 𝑀�̃�𝑇𝑟𝑎(𝑥) 

             𝑀�̃�𝑇𝑟𝑎(𝑥) =

{
 
 

 
 
        1                                  𝑥 ∈ [𝑚−, 𝑚+]   

1 −
𝑚− − 𝑥

𝜎−
                  𝑥 ∈ [𝑚− − 𝜎−,𝑚−]

 1 −
𝑥 −𝑚+ 

𝜎+
                 𝑥 ∈ [𝑚+ ,𝑚+ + 𝜎+]

   0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

  .                      (5.1)  

Note that the triangular fuzzy variable �̃�𝑇𝑟𝑖 = (𝑚, 𝜎−, 𝜎+)  and the ordinary crisp 

interval 𝐴 = [𝑚−, 𝑚+] also belong to the class of the trapezoidal fuzzy variables, and 

the corresponding membership function 𝑀�̃�𝑇𝑟𝑖(𝑥) of the triangular fuzzy variable �̃�𝑇𝑟𝑖 

is formulated as 

            𝑀�̃�𝑇𝑟𝑖(𝑥) =

{
 
 

 
 

  

  1                              𝑥 = 𝑚   

1 −
𝑚 − 𝑥

𝜎−
                  𝑥 ∈ [𝑚 − 𝜎−,𝑚]

1 −
𝑥 −𝑚

𝜎+
                  𝑥 ∈ [𝑚,𝑚 + 𝜎+]

           0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

   .                               (5.2) 

Although the ordinary crisp interval 𝐴 is a special case of the trapezoidal fuzzy 

variable, it is expressed via a characteristic function 𝐶𝐴(𝑥) rather than a membership 

function, i.e., 

                        𝐶𝐴(𝑥) = {
        1                  𝑥 ∈ [𝑚−,𝑚+]
   0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  .                                          (5.3)  

The following figure graphically illustrates these trapezoidal fuzzy variables. The 

differences between these three fuzzy notations can be observed explicitly. For instance, 

the ordinary crisp interval 𝐴 represents a full and equal belief in a range of estimations, 

i.e., [𝑚−, 𝑚+], with 𝐶𝑜𝑟𝑒(𝐴) = 𝑆𝑢𝑝𝑝(𝐴). On the other hand, the triangular fuzzy 

variable �̃�𝑇𝑟𝑖 indicates that the future value is most likely to be at 𝑥 = 𝑚 with the left 

spread 𝜎− and right spread 𝜎+ denoting the possible deviations from the prediction 

𝑥 = 𝑚. Finally, the trapezoidal fuzzy variable �̃�𝑇𝑟𝑎 is the combination of the ordinary 
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crisp interval 𝐴 and the triangular fuzzy variable �̃�𝑇𝑟𝑖 with full membership degree 

for every element in the interval [𝑚−,𝑚+]. 

Figure 5.1  Illustration of Various Types of Trapezoidal Fuzzy Variable 
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5.3.2 Specific Formats of Stock Recommendation 

In this subsection we discuss analysts’ investment forecasts and the interpretation 

regarding the recommendations of the future stock prices. As previously noted, the 

investment newsletters collected for this study consist of various types of 

recommendations. Some of the recommendations are very unclear and do not provide 

sufficient information for making investment decisions. Instead of manipulating the 

forecasts from these unclear recommendations for creating estimates of stock returns 

and variances, we only accept stock recommendations which provide relatively clear 

investment information, such as the name of the recommended stocks, suggested 

investment actions, and the recommended price or the price range of the stock. 

Furthermore, there is a fundamental requirement on the vertices of the fuzzy variables. 

For instance, the triangular fuzzy variable �̃�𝑇𝑟𝑖  requires at least two points and the 

trapezoidal fuzzy variable �̃�𝑇𝑟𝑎 requires at least three points. Therefore, the mid-point 

of the predicted price range and the interpreted investment actions are adopted as the 

vertices in some occasions for constructing the fuzzy variables. 

Now we focus on the following three format samples as found in the newsletters 

surveyed for the research, which give clearer information on stock recommendations 

considered in this study. As all the newsletters provided by the securities brokerage firms 

are written in Chinese, the samples presented below are the translated versions in 

English. 

 The first typical format of the stock forecasts is the detailed recommendation for 

a specific stock, which clearly states the support and the resistance of the stock 

price with explanations. However, this particular format doesn’t explicitly 

indicate the suggested investment action, hence the investor can only make 

investment decisions according to his/her own understanding of the 
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recommendation. To convert this type of stock forecast into fuzzy variables, the 

first step is to compute the estimates of support and resistance in terms of stock 

return based on the predicted price support and resistance provided by the analyst. 

Although the analyst never clearly stated investment strategies for this particular 

format of recommendation, investment actions for the recommended stocks can 

be made according to the qualitative analysis. The following table shows a 

sample of the first typical format of stock forecasts. 

     Table 5.1  Sample of the First Basic Format for Stock Recommendations 

ILI TECHNOLOGY  

<3598> 

1. In December last year, the company reported a 

48.46% year-over-year increase in monthly revenue 

to NT$ 94.1 million. 

Closing Price: 93.3 
2. The company is now reaping the harvest of the 

touch panel IC products in the mainland China 

market, and the market share has been gradually 

increased. Therefore, the annual revenue is expected 

to reach another new high this year. 

Resistance: 100 

Support: 89 

Source: Based on the newsletter provided by the analyst 2 considered for the empirical 

investigation in Chapter 6, Jan 2013. NT$ is the common abbreviation of the official currency 

of Taiwan, which is also indicated by the currency code TWD. 

 

The stock recommendation displayed in Table 5.1 suggests a buying action on 

ILI Technology with the support and resistance of the stock return at -4.61% and 

7.18%, respectively, i.e., 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =
89 − 93.3

93.3
= −4.61%     ,     𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

100 − 93.3

93.3
= 7.18% 
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By adding the average of the support and resistance as one of the vertices, 

−4.61%+7.18%

2
= 1.285% , the fuzzy variable representing the forecast of ILI 

Technology is denoted as a trapezoidal fuzzy variable, i.e., 

𝜇𝐼𝐿𝐼
𝑇𝑟𝑎 = (1.285%, 7.18%, 5.895%, 0%), 

with tolerance interval [1.285%, 7.18% ] , left deviation 5.895%  and right 

deviation 0%  from the tolerance interval. Figure 5.2 shows the fuzzy 

expression for the stock recommendations of ILI Technology. 

Figure 5.2  The Membership Function of �̃�𝑰𝑳𝑰
𝑻𝒓𝒂 

 

By following the defuzzification method of Carlsson and Fuller (2001) (see 

Section 3.1.4 for further information), the crisp possibilistic mean value and 

variance of the trapezoidal fuzzy variable 𝜇𝐼𝐿𝐼
𝑇𝑟𝑎 are 

                        

𝐸(�̃�𝐼𝐿𝐼
𝑇𝑟𝑎) =

𝑚− +𝑚+

2
+
𝜎+ − 𝜎−

6

                           =
1.285 + 7.18

2
+
0 − 5.895

6
= 3.25              

                                    

and 

𝑉𝑎𝑟(�̃�𝑇𝑟𝑎) = [
𝑚+ −𝑚−

2
+
𝜎− + 𝜎+

6
]
2

+ 
(𝜎− + 𝜎+)

2

72

                                    = [
7.18 − 1.285

2
+
5.895 + 0

6
]
2

+ 
(5.895 + 0)2

72
= 15.93                                       

                  

-4.61 7.18
µ

1.285

Mũ
Tra(µ)

1
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2) The second typical expression of the stock forecasts is the detailed analysis for 

a particular stock with clear investment action provided and, in most cases, this 

particular form of recommendation comes with a target of the share price and a 

potential rate 𝑃𝑅 . Similarly, the matching target return 𝑇𝑅  of the stock is 

obtained from the suggested target of the stock price. Then, by utilising the 

suggested investment action as one of the vertices for the corresponding 

trapezoidal fuzzy variable 𝜇𝑇𝑟𝑎 = (𝑚−,𝑚+, 𝜎−, 𝜎+) , the stock 

recommendations can be expressed as 

                             

𝜇𝐵𝑢𝑦
𝑇𝑟𝑎 = (𝑚−,𝑚+, 𝜎−, 𝜎+) = (TR, PR, TR, 0),        

 
    

𝜇Neutral
𝑇𝑟𝑖 = (𝑚, 𝜎−, 𝜎+) = (TR, TR, PR − TR),

 
           

𝜇𝑆𝑒𝑙𝑙
𝑇𝑟𝑎 = (𝑚−,𝑚+, 𝜎−, 𝜎+) = (PR, TR, 0,0 − TR).      

                    

Figure 5.3  Fuzzy Expressions of the Second Type Forecast 
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A sample of a stock recommendation with “neutral” rating issued by an analyst 

is presented in the following table. 

     Table 5.2  Sample of the Second Basic Format for Stock Recommendations 

HUA NAN FINANCIAL HOLDINGS <2880> Neutral Analyst A 

Closing 

Price 
17.5 

Remain “Neutral” rating for Hua Nan Financial Holdings 

with a NT$ 17.8 price target.  

We keep the same recommended investment strategy for 

the stock as “Neutral” based on the following 

considerations: 1) Hua Nan Bank is the third largest 

domestic bank in Taiwan in terms of enterprise size, and 

it has a relatively decent market share in the Taiwanese 

financial service sector. Although…” 

Targeted 

Price 
17.8 

Potential 

% 
2% 

Source: Based on the newsletter provided by the analyst 1 considered for the empirical 

investigation in Chapter 6, Feb 2013.  

 

The fuzzy interpretation is 𝜇HuaNan
𝑇𝑟𝑖 = (1.71%, 1.71%, 0.29%). According to 

Carlsson and Fuller (2001), the crisp possibilistic mean value and variance of 

the triangular fuzzy variable 𝜇HuaNan
𝑇𝑟𝑖  are:  

𝐸(𝜇HuaNan
𝑇𝑟𝑖 ) = 𝑚 +

𝜎+ − 𝜎−
6

                                   = 1.71 +
0.29 − 1.71

6
                     = 1.47              

   

and 

𝑉𝑎𝑟(𝜇HuaNan
𝑇𝑟𝑖 ) =

(𝜎− + 𝜎+)
2

24

                                    =  
(1.71 + 0.29)2

24
                    = 0.17     
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3) The third typical expression of the stock forecasts is a collection of stocks which 

are advised as having a poorer performance as compared with other stocks in the 

short term. In addition to the basic information and the explanation of why the 

chosen stock is likely to perform poorly, a sequence of four price boundaries 𝑃𝐵 

is given by the analyst for every advised stock, i.e., 

𝑃𝐵1 < 𝑃𝐵2 < 𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 < 𝑃𝐵3 < 𝑃𝐵4. 

By using the similar setting, those price boundaries are converted into return 

boundaries  𝑅𝐵, i.e., 𝑅𝐵𝑛 =
𝑃𝐵𝑛−𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒

𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒
 with 𝑛 = 1,2,3,4 and  

𝑅𝐵1 < 𝑅𝐵2 < 𝑅𝐵3 < 𝑅𝐵4. 

As the trapezoidal fuzzy variable can only take up to four vertices, the fuzzy 

variable for representing the third type of stock recommendation is based only 

on the return boundaries, i.e.,  

𝜇𝑇𝑟𝑎 = (𝑅𝐵2, 𝑅𝐵3, 𝑅𝐵2 − 𝑅𝐵1, 𝑅𝐵4 − 𝑅𝐵3). 

A sample of the third typical expression of stock forecasts is displayed in Table 

5.3, and the corresponding trapezoidal fuzzy expressions are given as 

𝜇𝑅𝑢𝑛𝐿𝑜𝑛𝑔
𝑇𝑟𝑎 = (−2.04%, 3.50%, 4.08%, 2.48%),   

𝜇𝑀𝑎𝑐𝑟𝑜𝑛𝑖𝑥
𝑇𝑟𝑎 = (−1.92%, 1.28%, 8.33%, 2.31%). 

The crisp possibilistic interpretations for the trapezoidal fuzzy variables, 

𝜇𝑅𝑢𝑛𝐿𝑜𝑛𝑔
𝑇𝑟𝑎  and 𝜇𝑀𝑎𝑐𝑟𝑜𝑛𝑖𝑥

𝑇𝑟𝑎 , can be obtained by following the same equations in 

the first sample, where the crisp possibilistic mean values of 𝜇𝑅𝑢𝑛𝐿𝑜𝑛𝑔
𝑇𝑟𝑎  and 

𝜇𝑀𝑎𝑐𝑟𝑜𝑛𝑖𝑥
𝑇𝑟𝑎  are 0.46 and −1.32, respectively. The crisp possibilistic variances 

are 15.52 and 12.95 for 𝜇𝑅𝑢𝑛𝐿𝑜𝑛𝑔
𝑇𝑟𝑎  and 𝜇𝑀𝑎𝑐𝑟𝑜𝑛𝑖𝑥

𝑇𝑟𝑎 . 
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     Table 5.3  Sample of the Third Basic Format for Stock Recommendations 

Company 
1st Price 

Boundary 

2nd Price 

Boundary 

Closing 

Price 

3rd Price 

Boundary 

4th Price 

Boundary 

RUN LONG 

CONSTRUCTION 

<1808> 

32.2 33.6 34.3 35.5 36.35 

The share price is falling due to the disappointing quarter revenue and the lag 

effect after the ex-dividend date. 

MACRONIX 

INTERNATIONAL 

<2337> 

7.0 7.65 7.8 7.9 8.08 

Constantly reports quarterly net losses, thus, it is possible that the share price 

may break under the last trend line bottom. 

Source: Based on the newsletter provided by the analyst 1 considered for the empirical 

investigation in Chapter 6, July 2012. 

Figure 5.4  The Membership Functions of �̃�𝑹𝒖𝒏𝑳𝒐𝒏𝒈
𝑻𝒓𝒂  and �̃�𝑴𝒂𝒄𝒓𝒐𝒏𝒊𝒙

𝑻𝒓𝒂   
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5.4 Summary  

Following the developments of the multi-analyst approaches for the portfolio 

selection problem in the previous chapters, we have looked into the practical analysts’ 

data which is considered as the important component of the models proposed in this 

research. 

In Section 5.1, we have detailed the actual data collection with information about 

the background and the source of the investment forecasts. In Sections 5.2 and 5.3 we 

have described and discussed the formats of the newsletters collected from the securities 

brokerage firms, and then reviewed and discussed several alternatives that have been 

proposed for interpreting market forecasts in the existing literature. With regard to the 

limitations of the practical analysts’ data collected for this research, we have used fuzzy 

set theory to deal with market forecasts and to express stock recommendations in terms 

of either triangular or trapezoidal fuzzy variables. A couple of samples of the common 

stock recommendation formats are provided to illustrate the interpretation of the data. 

In the next chapter we will present practical implementations of the multi-analyst 

portfolio selection approaches in the Taiwanese stock market and report the empirical 

results obtained from employing the practical analysts’ data discussed in this chapter. 
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Chapter 6 

Empirical Application to Portfolio Management 

with Multiple Analysts 

The stock market is one of the most active and important markets in finance. Many 

financial decision making methods for selecting appropriate asset allocations have been 

developed based on the return-risk portfolio selection theory proposed by Markowitz in 

1952 to fulfil different investment requirements of the user. The framework of asset 

allocation models mostly depends on the expected returns and the standard deviations 

of the assets, and the correlations between assets are used to quantify the relationships 

between assets. Essentially, only two types of input parameter are required for most of 

the portfolio selection problems, i.e., a vector of expected returns 𝜇 and covariance 

matrix of the returns, 𝛴 , which contains the information on the volatilities of the 

individual assets and the correlations of assets. The values of these input parameters are 

usually estimated via a chosen sample of asset performances from the past.  

As discussed previously, obtaining an optimal portfolio based on point estimates 

of input parameters could be unreliable, because small fluctuations in the estimation 

values of the input parameters may lead to a quite different asset allocation. Hence, in 

order to overcome the undesirable sensitivity feature of the classical return-risk portfolio 

model, in Chapters 3 and 4 we proposed to incorporate additional investment 

information for obtaining more reliable asset allocation. More specifically, we have 

developed the multi-analyst portfolio selection approach (𝑭𝑴𝑽) and the corresponding 
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robust counterpart approach (𝑹𝑬𝑯𝑷). In order to provide a better understanding and to 

evaluate the portfolio performances of the two multi-analyst approaches, this chapter 

focuses on practical application of the proposed portfolio allocation models, using data 

from the Taiwanese stock market.  

Section 6.1 outlines the necessary background for understanding the Taiwanese 

stock market. Section 6.2 explains the input data selected for the empirical investigation. 

Section 6.3 specifies the portfolio selection models considered in this chapter and 

defines the measures of portfolio performance for evaluating resulting portfolios. 

Sections 6.4 and 6.5 report and discuss the main findings. Finally, Section 6.6 concludes 

this chapter. 

6.1 Introduction of the Taiwan Stock Market 

The Taiwan Stock Exchange (TWSE) was founded in 1961 and operated as a stock 

exchange from 1962. The most widely quoted index for representing the market 

movement and the economy of Taiwan is the Taiwan Capitalisation Weighted Stock 

Index (TAIEX) which was created in 1966 by TWSE. All of the listed common stocks 

traded on TWSE are included in TAIEX, except for the preferred stocks, full delivery 

stocks and newly listed stocks, which are listed within the most recent calendar month. 

At the end of 2013, there were 809 stocks listed on the Taiwan Stock Exchange, with a 

total market capitalisation of NT$ 24519.6 billion 8 . The TWSE categorises the 

companies into 28 industrial sectors. The semiconductor sector, finance and insurance 

sector, and communications and internet sector are the major industries in Taiwan, and 

their total market share by market values captured is approximately 40% of the entire 

Taiwanese stock market. 

                                                 
8 NT$ is the common abbreviation of the official currency of Taiwan, which is also indicated by the 

currency code TWD. 
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The daily trading session of the TWSE begins at 9:00 a.m. and finishes at 13:30 

p.m., Monday to Friday. During the trading session the stock price movements are 

restricted by the price limit system, which has been imposed by TWSE in order to avoid 

irrational and dramatic market fluctuations and to enhance stock market stability. The 

price limit system has been implemented since TWSE was established. In response to 

various issues, such as major domestic and international political events, the price limit 

system has been adjusted a few times over the last three decades. Nowadays, TWSE sets 

the limit of the daily price movement at 7% for all listed stocks. In other words, the 

maximum and minimum daily returns of any stock in Taiwan’s stock market are +7% 

and −7%, respectively. 

6.2 The Historical Data and the Practical Analysts’ Data 

In order to evaluate the performances of the multi-analyst approach and the 

corresponding robust counterpart approach, we use historical as well as practical 

analysts’ data in the modelling, for obtaining optimal portfolio outcomes. The historical 

data is the Taiwanese stock market data quoted from DataStream for the period from 

April 2010 to April 2014 (the observed sample period is based on 492 trading days that 

spans from April 2012 to April 2014) and the basis of the practical analysts’ data is a 

collection of 2,133 newsletters obtained from four securities brokerage firms, as 

described previously in Chapter 5. The daily analysts’ predictions of the stock returns 

are usually much higher than 7%, the legal daily return limits for any stock in Taiwan, 

and it is very unlikely that the performance of any stock can achieve the maximum return 

limit for a few days in a row. Therefore, the recommendations provided by analysts are 

assumed to have a time window before the predicted price is reached. However, as 

mentioned in Chapter 5, there is no clear information for determining the time frame 
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needed before the predicted price is reached. Hence, the investor has to make a rational 

and reasonable prior guess regarding the time frame of the analysts’ recommendations.  

According to the newsletters collected for this research, the return prediction of 

stocks provided by the analysts varies substantially, i.e., ranging from −36% to 61%. 

It is difficult to decide on an appropriate time frame for analysts’ recommendations, as 

no such indications are available in the newsletters. Therefore, we consider four 

different time frames, 𝐷 days for 𝐷 = 5,10,15,20, to assess the effectiveness of the 

multi-analyst approaches. The optimal portfolios are constructed based on different 

investment strategies for every trading day, with a holding period of 𝐷 days . The 

estimates of the input parameters for the historical dataset are obtained from a rolling-

horizon procedure, with the underlying historical market data assumed to be normally 

distributed, and the estimation time horizon considered for this study is 520 days. The 

following figure provides a schematic view of the portfolio selection process considered 

for this empirical application.  

Figure 6.1  The Time Schedule for the Portfolio Selection Process 

estimation time horizon / 520 days

investment at time t

T-week 

holding period

investment at time  t+1

t t+D

investment at time  t+2
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During the selection of the optimal portfolio at time t, an investor uses the historical 

data from a rolling-window of 520 days, i.e., 520 days is the estimation period beginning 

from t − 520  to t − 1  for the investment at time t , and the analysts’ 

recommendations published at time  t  to generate parameter estimates for solving 

portfolio selection problems. The historical data can be used directly for generating 

parameter estimates via a choice of statistical estimation, and on the other hand, the 

analysts’ data need to be first converted into trapezoidal fuzzy variables and then 

transformed into crisp possibilistic parameter estimates (see Section 5.3 for further 

information). Afterwards, the optimal asset allocation is obtained and used for 

calculating the corresponding in-sample portfolio performances and portfolio 

behaviours at time t. Then the investor holds the investment for 𝐷 days. At time 𝑡 +

𝐷, the investor sells all stocks which were bought at time t and calculates the out-of-

sample portfolio performances. 

The market sample considered in this study is given by the stocks listed in the FTSE 

TWSE Taiwan 50 Index (TAISE50) and FTSE TWSE Taiwan Mid-Cap 100 Index 

(TAIM100), rather than the entire Taiwanese stock market, which consists of 809 listed 

stocks. The TAISE50 Index is comprised of the top 50 capitalised blue chip stocks, 

which represent nearly 70% of the Taiwanese stock market and the TAIM100 Index is 

composed of the next 100 eligible Taiwanese stocks after the TAISE50 Index, which 

represent nearly 20% of the market. There are two stocks from the TAIM100 Index, 

TW:CSL and TW:GSE, that are removed from the market sample, as they are newly 

listed on TWSE, with insufficient historical data for obtaining parameter estimates. 

Therefore, the final sample considered for this research consists of 148 stocks and 

represents an investment universe that captures almost 90% of the Taiwanese stock 

market.  
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To get a clearer idea of the chosen sample, Figure 6.2 illustrates the index 

performance of the selected indices and the TAIEX Index over the time period from 

April 2009 to April 2014. 

Figure 6.2  Historical Performances of the Selected Indices of Taiwanese Markets 

Source : TWSE Website (2005); DataStream. 

 

As noted in Chapter 5, the qualities and the contents of the newsletters vary across 

the four securities brokerage firms. Therefore, the newsletters with incomplete or 

imprecise recommendations during the observation period are excluded. In addition, 

recommendations for stocks which are newly listed in the indices or de-listed from the 

indices over the sample period are omitted from the practical analysts’ sample. 

Considering that the detailed recommendations provide more sufficient information for 

estimating parameter values, the securities brokerage firms which don’t provide 

sufficient details are therefore ignored. After eliminating newsletters and 

recommendations that are not suitable for this study, the remaining sample for the 
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April 2012 to April 2014. To be exact, Analyst 1 and Analyst 2 have made 1,585 and 

308 stock recommendations during the sample period, respectively. In other words, 3.22 

forecasts are provided by analyst 1 and 0.63 forecasts are given by analyst 2 for every 

trading day. In addition to the fact that one of the analysts, who has a greater trading 

volume as a security brokerage firm, always provides more detailed stock 

recommendations than the others, the amount of daily available stock recommendations 

varies from time to time and, on some occasions, both analysts have provided forecasts 

for the same stock simultaneously. Overall, approximately 3.82 stocks are recommended 

and 3.85 forecasts are provided for every trading day. The monthly volume of stock 

recommendations is presented in Figure 6.3 for explicitly comparing the differences in 

the volume of the recommendations between the analysts considered for the empirical 

investigation. 

Figure 6.3  Monthly Volume of Stock Recommendations 

Source: Based on the newsletters provided by the securities brokerage firms from April 2012 to April 

2014. 
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6.3 Specification for Portfolio Models and Performance Measures 

In the previous sections, we provided a general picture of the investment 

environment in the Taiwanese stock market and explained the data used in the empirical 

investigation. In the following part we specify the investment strategy models employed 

in the investigation and state the measures for evaluating performance of resulting 

portfolios. 

Recall from Chapter 3 that the multi-analyst approach (𝑭𝑴𝑽)  developed for 

solving portfolio selection problems of 𝑛 stocks with recommendations of 𝛧 analysts 

is given by  

(𝑭𝑴𝑽)              

max 
𝑥∈ℝ𝑛

min
𝑧∈Ζ

      
1

1 + exp(−휃𝑧 (�̌̂�𝑧
𝑇
𝑥 −

𝜆
2 𝑥

𝑇 Σ̌̂𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

    
   𝑠. 𝑡.           𝑥𝑇  𝟏 = 1                                                                  

   𝑥𝑖 ≥ 0     𝑖 = 1,2, … 𝑛                          
 

              (6.1) 

where 휃𝑧 is the credibility level of the analyst 𝑧 given by the investor, �̌̂�𝑧 = (
�̂�𝐻𝑧
�̌�𝑃𝑧

) 

is the vector denoting the expected returns with �̂�𝐻𝑧  representing the maximum 

likelihood estimate of the expected return vector and �̌�𝑃𝑧  representing the crisp 

possibilistic expected returns according to analyst 𝑧. 𝑥 ∈ ℝ𝑛  is the decision vector 

denoting the weightings of the portfolio with 𝑥𝑖 representing the proportion of capital 

invested in the 𝑖𝑡ℎ stock, 𝜆 is the risk aversion coefficient prescribed by the investor. 

Σ̌̂𝑧 = (
Σ̂𝐻𝐻𝑧 Σ̌̂𝐻𝑃𝑧

Σ̌̂𝑃𝐻𝑧 Σ̌𝑃𝑃𝑧

) is the covariance matrix obtained from the maximum likelihood 

estimate of the variance �̂�𝑖
2
 of the historical dataset and the crisp possibilistic variance 

�̌�𝑧𝑖
2  of the practical analysts’ dataset, based on the historical correlation coefficient 

matrix 𝐶𝑜𝑟𝑟(𝜇). 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 is the middle aspiration level of the investment performance 
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prescribed by the investor. See Section 3.2 for the details of the multi-analyst portfolio 

selection approach (𝑭𝑴𝑽). 

The corresponding robust multi-analyst approach (𝑹𝑬𝑯𝑷) , with the ellipsoid 

uncertainty set describing estimation errors and uncertainties in the expected return 

estimates, is formulated as 

(𝑹𝑬𝑯𝑷)         

max
𝑥∈ℝ𝑛

  min
𝑧∈𝑍

min
𝜇𝑧
    

1

1 + 𝑒𝑥𝑝 (−휃𝑧 (𝜇𝑧𝑇𝑥 −
𝜆
2 𝑥

𝑇 Σ̌̂𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

    

 𝑠. 𝑡.                𝑥𝑇  𝟏 = 1                                                          
              𝑥𝑖 ≥ 0     𝑖 = 1,2, … 𝑛                          

                     ( 𝜇𝐻𝑧 − �̂�𝐻𝑧)
𝑇
Σ̂𝐻𝐻𝑧

−1
( 𝜇𝐻𝑧 − �̂�𝐻𝑧) ≤ 𝛿𝐻𝑧

2

 𝜇𝑃𝑧 = �̌�𝑃𝑧                                 

 

     (6.2) 

where 𝜇𝑧 = (
𝜇𝐻𝑧
𝜇𝑃𝑧

) denotes the vector of returns with 𝜇𝐻𝑧 and 𝜇𝑃𝑧 representing the 

returns of the historical dataset and the professional dataset, respectively. �̂�𝐻𝑧 is the 

maximum likelihood estimate of the return vector 𝜇𝐻𝑧  and �̌�𝑃𝑧  is the crisp 

possibilistic expected returns according to analyst 𝑧 ’s suggestions. Σ̌̂𝑧 =

(
Σ̂𝐻𝐻𝑧 Σ̌̂𝐻𝑃𝑧

Σ̌̂𝑃𝐻𝑧 Σ̌𝑃𝑃𝑧

)  is the covariance matrix. �̂�𝐻𝑧  and Σ̂𝐻𝐻𝑧  denote the maximum 

likelihood estimate of the expected return vector and covariance matrix based on the 

historical performance. 𝛿𝐻𝑧  describes the desired robustness level for the return 

estimate �̂�𝐻𝑧. �̌�𝑃𝑧  denotes the crisp possibilistic expected returns according to analyst 

𝑧. See Section 4.2.2 for details of the robust multi-analyst portfolio selection approach 

(𝑹𝑬𝑯𝑷). 

As the focus of the empirical study is to investigate whether the proposed multi-

analyst approaches, (𝑭𝑴𝑽) and (𝑹𝑬𝑯𝑷), overcome the drawback of the conventional 

robust portfolio optimisation model (Ben-Tal & Nemirovski, 1998) and to evaluate the 

advantages and disadvantages of adopting analysts’ suggestions as one of the inputs for 
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investment decision making, we consider the classical mean-variance portfolio selection 

model, the robust counterpart approach, and the equally-weighted (𝟏/𝑵)  asset 

allocation as the benchmarks for comparison purposes. Note that the parameter 

estimates of the following standard investment strategies are obtained from the historical 

stock performances.  

The first benchmark is the risk aversion formulation of the mean-variance portfolio 

optimisation problem (Markowitz, 1952), which is also considered as the fundamental 

framework for determining optimal portfolios 

(𝑷𝑴𝑽)                 
max
𝑥∈ℝ𝑛

          �̂�𝑇𝑥 −
𝜆

2
𝑥𝑇Σ̂𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 

    
   𝑠. 𝑡.           𝑥𝑇  𝟏 = 1                                  

                             𝑥𝑖 ≥ 0     𝑖 = 1,2, …𝑛                    
 
                         (6.3) 

where �̂� ∈ ℝ𝑛 is the vector denoting the maximum likelihood estimate of the expected 

returns, �̂� = [�̂�𝑖𝑗] ∈ ℝ
𝑛 × ℝ𝑛 is the maximum likelihood estimate of the covariance 

matrix with variance �̂�𝑖𝑖 = �̂�𝑖
2 for 𝑖 = 𝑗 and covariance �̂�𝑖𝑗 for 𝑖 ≠ 𝑗. 

The second benchmark is the robust counterpart approach (Ben-Tal & Nemirovski, 

1998) to the mean-variance portfolio optimisation problem, with ellipsoid uncertainty 

set describing the uncertainties in the expected return estimates as follows 

(𝑹𝑴𝑽)           

max
𝑥∈ℝ𝑛

 min
𝜇
          𝜇𝑇𝑥 −

𝜆

2
𝑥𝑇Σ̂𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 

    

  𝑠. 𝑡.              𝑥𝑇 𝟏 = 1                            
                                    𝑥𝑖 ≥ 0     𝑖 = 1,2, … 𝑛                   

                         (𝜇 − �̂�)𝑇Σ̂−1(𝜇 − �̂�) ≤ 𝛿2
 

                       (6.4) 

where �̂� and Σ̂  represent the maximum likelihood estimates of the expected returns 

and the covariance matrix, respectively. 𝛿 denotes the desired robustness level for the 

ellipsoid uncertainty set. 

The third benchmark is the equally-weighted (𝟏/𝑵) asset allocation (DeMiguel 

et al., 2009). The reason for including the equally-weighted (𝟏/𝑵) asset allocation as 
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one of the benchmarks for the investigation is that the equally-weighted (𝟏/𝑵) 

approach does not require any input parameter estimates or optimisation models for 

asset allocation. Hence the investor can arrange the investment without expending any 

additional efforts or costs. Table 6.1 summaries the asset allocation models considered 

for the empirical study. 

Table 6.1  List of Asset Allocation Models Considered in the Empirical Study 

No. Abbreviation Model 

Asset allocation models developed in this research 

1 𝑭𝑴𝑽 Multi-analyst portfolio selection with fuzzy aspiration  

2 𝑹𝑬𝑯𝑷 Robust multi-analyst portfolio selection with fuzzy aspiration  

Asset allocation models from existing literature 

3 𝑷𝑴𝑽 Classical mean-variance portfolio selection (Markowitz, 1952) 

4 𝑹𝑴𝑽 Robust portfolio selection (Ben-Tal & Nemirovski, 1998) 

5 𝟏/𝑵 Equally-weighted asset allocation (DeMiguel et al., 2009) 

 

Analysing the performance of the optimal portfolio is the essential step after 

constructing the portfolio selection model. Generally speaking, the primary criteria for 

justifying whether a portfolio outperforms another are the return, volatility, Sharpe ratio, 

utility value, and efficient frontier (e.g. Carlsson et al., 2002; Delage and Ye, 2010; 

Garlappi et al., 2007; Schöttle, 2007). On top of these basic measures for portfolio 

performance, Lutgens and Schotman (2010) utilise “investor’s loss” and “investor’s 

disappointment” in further evaluating ex-post realised portfolio performance. The loss 

function calculates the loss obtained from selecting one resulting portfolio 𝑥∗  of a 

specific portfolio selection model, which is different with the true portfolio 𝑥0 that is 
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generated from the realised parameter values, 𝜇0 and 𝛴0. In other words, the value of 

the loss function increases as the resulting portfolio 𝑥∗ moves further from the true 

portfolio 𝑥0. That is, 

                                        𝐿𝑜𝑠𝑠(𝜇0, Σ0|𝑥∗) =  𝜇0
𝑇
𝑥0 − �́�𝑇𝑥∗                                             (6.5) 

with �́� = (�́�1, �́�2, … , �́�𝑛)  denoting a choice of parameter estimator of returns 𝜇 

adopted for a specific portfolio selection model. The realised parameter values, 𝜇0 and 

Σ0, are also referred to as the true parameter values. The disappointment function is the 

difference between the expected and the realised profit by choosing the portfolio 𝑥∗ of 

a specific portfolio selection model. 

                               
𝐷𝑖𝑠𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡(𝑥∗) =  �́�𝑇𝑥∗ − 𝜇0

𝑇
 𝑥∗

                                          = (�́� − 𝜇0)𝑇 𝑥∗  .
                                          (6.6) 

This disappointment indicator characterises the predictive power of the chosen 

parameter estimate and the value of the disappointment can be either positive or negative. 

The higher the value of the disappointment, the more inferior the quality of a particular 

choice of parameter estimates.  

On the other hand, Gregory et al. (2011) examined the portfolio optimisation 

models from a different perspective. In their study, they have investigated the robust 

effects on the performance of the robust portfolio optimisation model by adopting 

different levels of robustification and comparing the portfolio performance using the 

portfolio behaviour, portfolio robustness and the cost of the application. 

In this study the portfolio performances are evaluated in terms of: (i) the ex-ante 

expected performance, (ii) the ex-post realised performance, and (iii) the portfolio 

behaviours. To be more specific in respect of the criteria of the portfolio performance 

for the investigation, the ex-ante expected performance includes only the expected 

portfolio return, expected standard deviation and the expected risk adjusted return. On 
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the other hand, the ex-post realised performance includes three measures, i.e., the 

realised portfolio return, the loss, and the disappointment. The last investigation focuses 

on the characteristics of the portfolio, such as the number of stocks in the portfolio and 

the percentage of investment in the recommended stocks. 

Furthermore, in a similar spirit to Gregory et al. (2011), four hypothetical situations 

are considered in this empirical investigation to represent different behaviours of the 

investor. More specifically, instead of examining the multi-analyst portfolio selection 

approach (𝑭𝑴𝑽)  and the related robust counterpart approach (𝑹𝑬𝑯𝑷) under each 

particular condition, different types and levels of confidence are considered. From a 

broad perspective, the behaviours of an investor are categorised according to the 

investor’s belief in the parameter estimates of different datasets.  

By adopting the level of credibility 휃 to express the confidence in the analysts’ 

recommendations and the desired robustness level 𝛿  for describing the investor’s 

aversion to estimation errors and uncertainties in the historical dataset, four types of 

investors are considered in this empirical study. Table 6.2 provides a summary of 

different types of investor. 

Table 6.2  Description of Investment Behaviours 

 
Stronger Belief 

in Historical Performance 

Less Belief 

in Historical Performance 

Equal 

Preference for 

the Analysts 

Type A 

Analyst Level 휃1 = 휃2 

Robust Level 𝛿 ≅ 0.23 

Type B 

Analyst Level 휃1 = 휃2 

Robust Level 𝛿 = 1 

Unequal 

Preference for 

the Analysts 

Type C 

Analyst Level 휃1 > 휃2  

Robust Level 𝛿 ≅ 0.23 

Type D 

Analyst Level 휃1 > 휃2  

Robust Level 𝛿 = 1 
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In the following sections we report the results of the empirical investigation for the 

multi-analyst approach (𝑭𝑴𝑽) and the related robust counterpart approach (𝑹𝑬𝑯𝑷)  

proposed in this study. The objective of this investigation is to compare the performance 

of the classical portfolio selection methods with that of the proposed investment 

methods on real market data. Two empirical cases are considered from different 

investment perspectives. 

The first empirical case examines the portfolio performances of the proposed 

portfolio selection methods under the assumption that the investor does not have 

sufficient knowledge regarding the credibility of the analysts and therefore has an equal 

preference for both analysts, i.e., 휃1 = 휃2 =
1

2
. The second empirical case examines the 

proposed models under the assumption that the investor has a stronger preference for 

one of the analysts. In the subsequent analysis, the level of credibility 휃𝑧  to each 

individual analyst 𝑧 is taken as the market share of the financial institution. That is, the 

greater the market share of the securities brokerage firm, the more confident the investor 

is with its investment forecasts. In the second empirical case, the levels of credibility of 

the analyst are 휃1 = 0.7635 and 휃2 = 0.2365. 

The software package MATLAB was used for solving the portfolio selection 

problems and generating the test results. 

6.4 Empirical Analysis: Portfolio Management with Equal Preference 

for the Analysts  

Of the four types of investors given in Table 6.2, the Type A and Type B investors 

are assumed to have no knowledge regarding the credibility of the analysts. Hence they 

treat the additional investment recommendations as equally important, i.e., both types 

of investor have the same value of 휃, as 휃1 = 휃2 =
1

2
. However, they have differing 
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opinions regarding the parameter estimates generated from the historical performances 

of stocks and therefore have differing desired robustness levels for the ellipsoidal 

uncertainty set. The Type A investor is assumed to have strong belief that historical stock 

performances are good reflections of their future performance and therefore assigns a 

tighter uncertainty set for the return estimates with 𝛿 ≅ 0.23  for the confidence 

ellipsoid, where the true values of the stock returns are expected to fall in the ellipsoidal 

uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑  with probability at least 95% . By contrast, the Type B 

investor is more hesitant about employing historical performances to estimate future 

stock performances. Hence, the Type B investor assigns 𝛿 = 1 for the loose ellipsoidal 

uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑, where the true values of the stock returns are expected to be 

in the ellipsoidal uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑  at a 50%  confidence level 9 . In the 

following analysis (𝑭𝑴𝑽) , (𝑹𝑬𝑯𝑷− 𝑨)  and (𝑹𝑬𝑯𝑷− 𝑩)  denote the multi-analyst 

approach, the robust multi-analyst approach of the Type A investor and the Type B 

investor, respectively.  

6.4.1 The Ex-Ante Expected Performances of Various Investment Strategies 

As discussed earlier in Chapter 2, the robust counterpart approach of the portfolio 

selection model is the worst-case scenario approach, which always considers the most 

pessimistic outcome and assumes that the parameter uncertainty will have a negative 

impact on stock returns; therefore, the resulting robust portfolio is expected to be more 

conservative, especially in terms of expected return, compared to the asset allocation of 

the original portfolio selection model without robustification.  

Table 6.3 reports the average expected portfolio returns and the standard deviations 

of the investment strategies at different risk aversion levels with 𝐷 days investment 

holding period and Table 6.4 reports the average expected risk adjusted returns of the 

                                                 
9 See Section 2.2.2 for further information about the size of the uncertainty set. 
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Table 6.3  Expected Returns and Standard Deviations of the Optimal Portfolios 

Holding 

Period 

Risk 

Aversion 

Mean (%) Standard Deviation (%) 

𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝑃𝑀𝑉 𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝑃𝑀𝑉 𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 

5 Days 

𝜆 = 0  2.2011 1.9270 1.0454 2.0888 1.7145 0.4443 5.6543 4.0691 1.5842 5.8578 4.0317 1.0768 

𝜆 = 0.5  0.9148 0.7981 0.5836 0.7736 0.6177 0.3163 1.4335 1.2914 1.0868 1.3821 1.2031 0.9577 

𝜆 = 5  0.2895 0.2732 0.2194 0.2299 0.2131 0.1566 0.8879 0.8872 0.8860 0.8857 0.8848 0.8828 

𝜆 → ∞  0.1958 0.1539 0.0053 0.1743 0.1610 0.1138 2.2208 2.2208 2.2208 0.8785 0.8785 0.8785 

10 Days 

𝜆 = 0  4.2470 3.8198 1.8993 4.2119 3.7592 1.5164 8.1407 6.3396 2.1428 8.1934 6.3965 1.8221 

𝜆 = 0.5  1.8308 1.6297 1.1564 1.7264 1.5112 0.9734 1.9034 1.7325 1.4070 2.7226 2.2888 1.3389 

𝜆 = 5  0.6428 0.6329 0.5373 0.5909 0.5668 0.4850 1.1456 1.1629 1.1864 1.1475 1.1456 1.1404 

𝜆 → ∞  0.3285 0.2654 0.0417 0.4326 0.4162 0.3588 3.3021 3.3021 3.3021 1.1282 1.1282 1.1281 

15 Days 

𝜆 = 0  6.1615 5.6654 2.9494 6.1341 5.6509 2.7193 9.7356 7.7637 2.6263 9.7851 7.8181 2.4533 

𝜆 = 0.5  2.7236 2.4692 1.8285 2.6333 2.3758 1.7049 2.1777 1.9863 1.6025 2.1797 1.9828 1.5687 

𝜆 = 5  0.9510 0.8924 0.7336 0.9893 0.9597 0.8603 1.5945 1.6923 1.8768 1.2667 1.2638 1.2555 

𝜆 → ∞  0.4636 0.3824 0.0945 0.7068 0.6895 0.6307 4.2190 4.2190 4.2190 1.2340 1.2339 1.2338 

20 Days 

𝜆 = 0  8.0995 7.5797 4.1391 8.1109 7.5741 3.9998 11.8086 9.2197 3.0965 11.8270 9.2343 3.0143 

𝜆 = 0.5  3.6472 3.3501 2.5926 3.5757 3.2820 2.5337 2.3969 2.1925 1.7726 2.4050 2.1984 1.7679 

𝜆 = 5  0.8891 0.7965 0.3662 1.4168 1.3814 1.2622 3.2437 3.3475 4.0370 1.3541 1.3504 1.3391 

𝜆 → ∞  0.6072 0.5077 0.1551 0.9580 0.9411 0.8814 5.1524 5.1524 5.1524 1.3024 1.3023 1.3024 

Notes: This table displays the average expected portfolio returns and the standard deviations of 492 observations for the multi-analyst portfolios, i.e., the multi-analyst 

approach (𝐹𝑀𝑉), the robust multi-analyst approach of the Type A investor (𝑅𝐸𝐻𝑃− 𝐴) and the Type B investor (𝑅𝐸𝐻𝑃− 𝐵). The alternative approaches are the mean-variance 

approach (𝑃𝑀𝑉), and the conventional robust approach of the Type A investor (𝑅𝑀𝑉− 𝐴) and the Type B investor (𝑅𝑀𝑉− 𝐵).  
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Table 6.4  Expected Risk Adjusted Returns of the Optimal Portfolios 

Holding 

Period 

Risk 

Aversion 

Expected Risk Adjusted Return (%) 

𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝑃𝑀𝑉 𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 1/𝑁 

5 Days 

𝜆 = 0  0.3893 0.4736 0.6599 0.3566 0.4253 0.4126 

0.0631 
𝜆 = 0.5  0.6382 0.6180 0.5370 0.5597 0.5134 0.3303 

𝜆 = 5  0.3261 0.3079 0.2476 0.2595 0.2408 0.1773 

𝜆 → ∞  0.0882 0.0693 0.0024 0.1985 0.1833 0.1295 

10 Days 

𝜆 = 0  0.5217 0.6025 0.8864 0.5141 0.5877 0.8322 

0.0828 
𝜆 = 0.5  0.9619 0.9407 0.8219 0.9140 0.8870 0.7271 

𝜆 = 5  0.5611 0.5442 0.4529 0.5150 0.4947 0.4253 

𝜆 → ∞  0.0995 0.0804 0.0126 0.3835 0.3689 0.3180 

15 Days 

𝜆 = 0  0.6329 0.7297 1.1230 0.6269 0.7228 1.1084 

0.0969 
𝜆 = 0.5  1.2507 1.2431 1.1410 1.2081 1.1982 1.0868 

𝜆 = 5  0.5964 0.5273 0.3909 0.7810 0.7593 0.6852 

𝜆 → ∞  0.1099 0.0906 0.0224 0.5728 0.5588 0.5112 

20 Days 

𝜆 = 0  0.6859 0.8221 1.3367 0.6858 0.8202 1.3269 

0.1072 
𝜆 = 0.5  1.5216 1.5280 1.4626 1.4868 1.4929 1.4332 

𝜆 = 5  0.2741 0.2379 0.0907 1.0463 1.0229 0.9425 

𝜆 → ∞  0.1178 0.0985 0.0301 0.7356 0.7226 0.6768 

Note: This table displays the expected risk adjusted returns (Mean/SD) of portfolio for various 

investment strategies. The equally weighted portfolio is denoted by (1/𝑁). All the figures in this table 

are the average performances of 492 observations in percentage. 

 

investment strategies considered in this study. Note that the results of 𝜆 = 0 

correspond to the performances of the maximum return portfolios, whereas the results 

of 𝜆 → ∞ correspond to the performances of the minimum variance portfolio. 

From Table 6.3, the classical mean-variance portfolio allocation (𝑷𝑴𝑽) based on 

the point estimates of the historical data has a higher expected return and higher variance 

than the conventional robust portfolio allocation (𝑹𝑴𝑽) under different risk aversion 

levels. The difference between the mean-variance portfolio and the robust portfolio 

widens as the desired robustness level of the uncertainty set increases. In other words, 
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the mean-variance and the robust portfolios have similar performance if the desired 

robustness level 𝛿 of the uncertainty set is low. A similar finding has also been reported 

by Goldfarb and Iyengar (2003). Furthermore, it is noted that the difference between the 

mean-variance and the robust portfolios decreases as the risk aversion increases. This is 

because we only consider estimation errors and parameter uncertainties in the expected 

returns for the robust portfolio selection problems, so that the robustification has 

stronger effect as risk aversion decreases (i.e., towards the maximum return allocation) 

and has less impact on the portfolio performance as risk aversion increases. 

The same patterns of expected portfolio returns can be found between the multi-

analyst portfolios (𝑭𝑴𝑽)  and the robust multi-analyst portfolios (𝑹𝑬𝑯𝑷) , i.e., the 

expected portfolio return decreases as the risk aversion increases and the difference in 

the expected returns between investment strategies widens as the desired robustness 

level 𝛿  of the uncertainty set increases. The potential benefits from incorporating 

additional professional investment information are indicated in Table 6.3 and Table 6.4.  

It is not surprising that the multi-analyst portfolios, (𝑭𝑴𝑽) and (𝑷𝑴𝑽), achieve 

greater expected returns and expected risk adjusted returns than the conventional 

investment strategies, (𝑷𝑴𝑽) and (𝑹𝑴𝑽), under a more risk-loving setting because the 

stock recommendations provided by the analysts are usually buy-side suggestions with 

relatively higher return estimates than the past stock performances. Furthermore, as in 

Figure 6.4 below, the advantage of employing robustification can be observed clearly 

under the case of 𝜆 = 0. Unlike the mean-variance portfolio (𝑷𝑴𝑽) and the multi-

analyst portfolio (𝑭𝑴𝑽) that have very extreme weightings when the risk aversion 

coefficient is 𝜆 = 0, the robust counterparts to these two models, (𝑹𝑴𝑽) and (𝑹𝑬𝑯𝑷), 

generated more diversified portfolios and therefore achieved greater expected risk 

adjusted returns (see Table 6.7 for further information regarding the portfolio 

weightings).  
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Figure 6.4  Expected Risk Adjusted Returns under Different Risk Aversion Levels 

Note: This figure reports the expected risk adjusted returns under different risk aversion levels. Panel A 

and B show the results of various investment strategies with holding time frame of 5 days and 15 days, 

respectively. The figures for 10 days and 20 days investment holding time frame can be found in Appendix 

B.1. 

 

One may notice that as the investment holding time frame increases, the multi-

analyst portfolios and the corresponding conventional investment strategies tend to have 

similar expected performance in portfolio returns. This can be explained by the fact that 
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the return estimates generated from the analysts’ data don’t have any information 

regarding that particular time frame and, therefore, examining investment strategies with 

a longer investment time frame, i.e., 20 days, may lead to the situation that the analysts’ 

return estimates become more pessimistic, i.e., anticipating lower expected returns, than 

the historical return estimates and they are therefore unlikely to be chosen by the optimal 

portfolio. More specifically, the benefit of adopting professional investment 

recommendations is more significant for short-term investment. The following figure 

graphically compares the expected portfolio returns between various investment 

strategies over two different holding time frames.  

Figure 6.5  Expected Portfolio Returns over Sample Period  

Note: The figures for 10 days and 20 days investment holding time frame can be found in Appendix B.1. 
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From the above results, it can be seen that the advantages of the multi-analyst 

approaches (𝑭𝑴𝑽) and (𝑹𝑬𝑯𝑷) diminish as the risk aversion parameter increases. To 

explain this, we recall equation (6.1) of the multi-analyst approach with fuzzy aspiration 

level (𝑭𝑴𝑽):  

(𝑭𝑴𝑽)         max 
𝑥∈ℝ𝑛

min
𝑧∈Ζ

      
1

1 + exp (−휃𝑧 (�̌̂�𝑧
𝑇
𝑥 −

𝜆
2 𝑥

𝑇 �̌̂�𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

                     

In the above equation, the parameter 휃𝑧 denotes the credibility level for each individual 

analyst 𝑧 and determines the curve of the membership function for the investment 

goal10. As the risk aversion coefficient 𝜆 increases, the resulting asset allocation is 

more heavily penalised by the expected risk measures. That is, as 𝜆 increases, the 

portfolio selection model varies from a trade-off between the return and risk to the 

scenario that focuses only on the risk. Since the stock recommendations of the analysts 

are usually predicted with greater returns but higher variations, therefore, the analysts’ 

recommendations that aim to enhance the portfolio return do not affect much of the asset 

allocation when 𝜆 increases. 

6.4.2 The Ex-Post Realised Performances of Various Investment Strategies 

Next, we turn to consider the realised portfolio performances of various investment 

strategies based on the simple average of 492 observations. Table 6.5 reports the realised 

portfolio returns and Table 6.6 provides values of the portfolio loss and disappointment. 

By definition of the loss function (6.5) and the disappointment function (6.6), the values 

of the functions are correlated with the accuracy of the parameter estimates of the 

expected returns and the covariance matrix. Both loss and disappointment values can be 

positive and negative and the smaller the values are, the better the portfolio has 

performed. 

                                                 
10 Reader should refer to Section 3.2 for more details. 
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Table 6.5  Realised Returns of the Optimal Portfolios 

Holding 

Period 

Risk 

Aversion 

Realised Return (%) 

𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝑃𝑀𝑉 𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 1/𝑁 

5 Days 

𝜆 = 0  1.2719 1.2753 0.5556 1.1770 1.2394 0.4825 

0.2382 
𝜆 = 0.5  0.7022 0.6034 0.4384 0.6535 0.5590 0.3893 

𝜆 = 5  0.3074 0.3053 0.3005 0.2957 0.2940 0.2891 

𝜆 → ∞  0.2382 0.2382 0.2382 0.2613 0.2610 0.2616 

10 Days 

𝜆 = 0  2.2190 2.3045 1.4857 2.2526 2.2895 1.3742 

0.4851 
𝜆 = 0.5  1.4044 1.2969 1.0443 1.3810 1.2703 0.9739 

𝜆 = 5  0.7078 0.6938 0.6804 0.6749 0.6692 0.6535 

𝜆 → ∞  0.4851 0.4851 0.4851 0.5856 0.5851 0.5846 

15 Days 

𝜆 = 0  3.8485 3.4289 2.3381 3.9046 3.4262 2.2184 

0.7456 
𝜆 = 0.5  2.0217 1.9033 1.5770 1.9952 1.8731 1.5000 

𝜆 = 5  0.9504 0.9009 0.8850 1.0183 1.0122 0.9960 

𝜆 → ∞  0.7456 0.7456 0.7456 0.9185 0.9195 0.9180 

20 Days 

𝜆 = 0  4.9979 4.3966 3.3945 5.1346 4.4680 3.3458 

1.0252 
𝜆 = 0.5  2.6823 2.5023 2.1584 2.6661 2.4758 2.1003 

𝜆 = 5  1.2532 1.1966 1.0675 1.5138 1.5053 1.4791 

𝜆 → ∞  1.0252 1.0252 1.0252 1.2691 1.2689 1.2699 

Notes: This table displays the realised portfolio returns for various investment strategies. All the figures 

in this table are the average performances of 492 observations, expressed as percentages. 
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Table 6.6  Loss and Disappointment Rates of the Optimal Portfolios 

Holding 

Period 

Risk 

Aversion 

Loss (%) Disappointment (%) 

𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝑃𝑀𝑉 𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝑃𝑀𝑉 𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 

5 Days 

𝜆 = 0  12.5417 12.5383 13.2580 12.6366 12.5742 13.3311 0.9292 0.6517 0.4898 0.9117 0.4751 -0.0382 

𝜆 = 0.5  13.1114 13.2102 13.3752 13.1601 13.2546 13.4243 0.2011 0.1510 0.0140 0.1201 0.0586 -0.0730 

𝜆 = 5  13.5062 13.5083 13.5131 13.5179 13.5196 13.5245 -0.0179 -0.0321 -0.0811 -0.0658 -0.0809 -0.1325 

𝜆 → ∞  13.5754 13.5754 13.5754 13.5523 13.5526 13.5520 -0.0424 -0.0843 -0.2329 -0.0869 -0.1000 -0.1478 

10 Days 

𝜆 = 0  18.0110 17.9255 18.7443 17.9774 17.9405 18.8558 2.0280 1.5153 0.4136 1.9593 1.4697 0.1422 

𝜆 = 0.5  18.8256 18.9331 19.1857 18.8490 18.9597 19.2561 0.4264 0.3328 0.1121 0.3454 0.2409 -0.0005 

𝜆 = 5  19.5222 19.5362 19.5496 19.5551 19.5608 19.5765 -0.0650 -0.0609 -0.1431 -0.0840 -0.1024 -0.1685 

𝜆 → ∞  19.7449 19.7449 19.7449 19.6444 19.6449 19.6454 -0.1566 -0.2197 -0.4434 -0.1530 -0.1689 -0.2258 

15 Days 

𝜆 = 0  22.1830 22.6026 23.6934 22.1269 22.6053 23.8131 2.3130 2.2365 0.6113 2.2294 2.2246 0.5009 

𝜆 = 0.5  24.0098 24.1282 24.4545 24.0363 24.1584 24.5315 0.7019 0.5659 0.2515 0.6381 0.5027 0.2049 

𝜆 = 5  25.0811 25.1306 25.1465 25.0132 25.0193 25.0355 0.0006 -0.0085 -0.1514 -0.0289 -0.0525 -0.1357 

𝜆 → ∞  25.2859 25.2859 25.2859 25.1130 25.1120 25.1135 -0.2820 -0.3632 -0.6511 -0.2118 -0.2301 -0.2873 

20 Days 

𝜆 = 0  26.0393 26.6406 27.6427 25.9026 26.5692 27.6914 3.0991 3.1831 0.7446 2.9763 3.1061 0.6540 

𝜆 = 0.5  28.3549 28.5349 28.8788 28.3711 28.5614 28.9369 0.9649 0.8478 0.4342 0.9096 0.8062 0.4334 

𝜆 = 5  29.7840 29.8406 29.9697 29.5234 29.5319 29.5581 -0.3641 -0.4001 -0.7013 -0.0970 -0.1240 -0.2169 

𝜆 → ∞  30.0120 30.0120 30.0120 29.7681 29.7683 29.7673 -0.4180 -0.5175 -0.8701 -0.3111 -0.3278 -0.3885 

Note: This table displays the average investor’s losses and investor’s disappointments of 492 observations for various investment strategies. See Section 6.3 for further 

details of the loss and the disappointment functions. 
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First, we note that the realised returns and the losses of the multi-analyst portfolios, 

(𝑭𝑴𝑽)  and (𝑹𝑬𝑯𝑷) , are consistent with the realised performance of the equally 

weighted portfolio (𝟏/𝑵)  when risk aversion level 𝜆 → ∞ . This is because the 

required investment benchmark 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 is fixed at the expected return of the equally 

weighted portfolio (𝟏/𝑵), and therefore, the resulting asset allocations of the multi-

analyst approaches become equally weighted as 𝜆 → ∞ . On the other hand, the 

respective portfolio disappointments of the multi-analyst approaches, (𝑭𝑴𝑽)  and 

(𝑹𝑬𝑯𝑷), differ under 𝜆 → ∞, which is caused by the expected return estimates of the 

practical analysts’ data and the robustification of the uncertainty sets. 

Next, we consider the cases where 𝜆 < +∞. It can be seen from Table 6.5 that the 

multi-analyst portfolios, (𝑭𝑴𝑽) and (𝑹𝑬𝑯𝑷), usually have superior realised returns to 

the corresponding conventional asset allocations when holding the investment for 5 days 

and 10 days. As the investment holding period increases, the benefit of applying multi-

analyst approaches gradually disappears. However, the multi-analyst approaches 

generally achieve greater realised portfolio returns for all chosen holding time frames 

under a more risk-loving setting, i.e., 𝜆 = 0 and 𝜆 = 0.5. It is very interesting to 

observe that the multi-analyst approach (𝑭𝑴𝑽) obtained lower portfolio returns than 

the classical mean-variance portfolio selection at  𝜆 = 0  for 𝐷 = 10,15,20 . In 

addition to the fact that the stock recommendations have less impact on the multi-analyst 

portfolio selection process as the investment holding time frame 𝐷 increases, i.e., the 

portion of wealth invested in the recommended stocks is very low for the multi-analyst 

portfolio (𝑭𝑴𝑽)  at 𝐷 = 10,15,20  (see Table 6.7), this also indicates the need of 

employing robustification for dealing with the estimation errors and parameter 

uncertainties of the historical dataset in the multi-analyst portfolio selection framework.  

The results of portfolio loss have similar patterns to the realised portfolio returns 

between various investment strategies. That is, the multi-analyst approaches outperform 
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the corresponding conventional investment strategies in either a short-term investment 

or a more risk-loving investment. This is because the loss function calculates the 

difference of the realised return between the true portfolio and the optimal portfolio. 

Therefore the higher the realised return of the chosen portfolio, the lower the portfolio 

loss derived from this particular choice.  

Although the multi-analyst approaches have some exciting performances under 

certain circumstances, they mostly have poorer performances in terms of portfolio 

disappointment compared with conventional investment strategies. This is not entirely 

surprising: the analysts’ recommendations are usually more optimistic with higher 

expected returns than the historical data, leading to a higher hope and hence potentially 

greater disappointment. Therefore, the poorer ‘disappointment’ performance is mainly 

due to the predictive power of the analysts.  

This also applies to the performances of the robust methods. Because of the impact 

of the uncertainty set, the robust multi-analyst approach (𝑹𝑬𝑯𝑷)  generates more 

conservative asset allocations compared to the multi-analyst approach (𝑭𝑴𝑽). As a 

result, the difference between the predicted and realised portfolio returns is reduced, 

which then leads to lower portfolio disappointments for the robust multi-analyst 

approach (𝑹𝑬𝑯𝑷). The same effect can be found between the mean-variance portfolios 

(𝑷𝑴𝑽) and the robust portfolios (𝑹𝑴𝑽), where the mean-variance portfolios (𝑷𝑴𝑽) 

generally have higher expected returns, higher expected risk levels, and higher 

disappointments than the related robust portfolios (𝑹𝑴𝑽).  

Overall, the conventional and the proposed robust counterpart approaches, (𝑹𝑴𝑽) 

and (𝑹𝑬𝑯𝑷), are more conservative than their original frameworks. This feature of the 

robust models brings less profitable investment and can be understood as the cost of 

accounting for estimation errors and uncertainties in the portfolio allocation problems. 

Nevertheless, having incorporated the professional investment recommendations for 
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asset allocation, the robust multi-analyst approach (𝑹𝑬𝑯𝑷)  has improved the 

conventional robust counterpart approach (𝑹𝑴𝑽) in terms of returns.  

The following figure illustrates the realised cumulative returns of the robust 

portfolios, (𝑹𝑬𝑯𝑷)  and (𝑹𝑴𝑽), at 𝜆 = 0.5  over the sample period. As shown in 

Figure 6.6 (a), for both types of investor, the robust multi-analyst approaches (𝑹𝑬𝑯𝑷) 

exceed the equally weighted allocation and the conventional robust approach (𝑹𝑴𝑽) 

for 𝐷 = 5 days. In addition, with the more conservative robust multi-analyst approach, 

the type B investor (𝑹𝑬𝑯𝑷−𝑩), has an outstanding performance during the period from 

September 2012 to May 2013. This result can be explained by the fact that the robust 

multi-analyst portfolios 𝑹𝑬𝑯𝑷−𝑩 have allocated more wealth in the advised stocks (see 

Figure 6.7) during this period and this therefore indicates the contribution of the 

professional investment recommendations. It is expected that imposing an uncertainty 

set on the multi-analyst approach for accounting for estimation errors and uncertainties 

of the historical dataset increases the portion of wealth allocated to the recommended 

stocks. This is because the stocks whose expected return estimates are based on 

historical data are penalised by robustification, hence, will have less weightings in the 

optimal portfolio11. In contrast, the recommended stocks are not penalised in the robust 

multi-analyst model, and furthermore, the more robust the model, the greater the 

weighting assigned to the recommended stocks. Figure 6.6 (b) shows the observation 

that the conservative robust multi-analyst approach (𝑹𝑬𝑯𝑷−𝑩) also has an outstanding 

performance during the period from September 2012 to May 2013 and explicitly 

illustrates the impact of different robustness levels on portfolio performance. 

                                                 
11 The purpose of applying robustification, i.e., adopting an uncertainty set for the expected returns, is to 

account for the estimation errors and uncertainties. By incorporating an uncertainty set into the portfolio 

selection framework, the optimal portfolio is based on the worst case scenario of the expected returns. In 

the proposed robust multi-analyst approach, the uncertainty set is only applied for the historical dataset. 

Hence the effect of robustification will only penalise stocks from the historical dataset. 
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Figure 6.6  Realised Cumulative Returns of Robust Portfolios 

Note: This figure compares the realised returns of robust portfolios, (𝑅𝐸𝐻𝑃) and (𝑅𝑀𝑉), with different 

robustness levels over the sample period. Panels (a) and (b) show the results with investment holding 

period of 5 days and 15 days, respectively. In Panel (a) the differences in total return between the robust 

and the robust multi-analyst portfolio are 16.88% for the Type A investor and 24.13% for the Type B 

investor. In Panel (b) the differences in total return between the robust and the robust multi-analyst 

portfolio are 14.87% for the Type A investor and 37.84% for the Type B investor. The figures for 10 days 

and 20 days investment holding period can be found in Appendix B.2. 
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As discussed earlier, the longer the investment holding period, the less effective the 

professional investment recommendations in the multi-analyst approaches. This is 

confirmed by the trend movements of the robust portfolios in Figure 6.6 (b), where the 

conventional robust and the robust multi-analyst portfolios of the Type A investor have 

similar patterns during the sample period. On the other hand, for the more conservative 

Type B investor, there is a larger gap between the trend movements of the robust and 

the robust multi-analyst portfolios, which indicates the connection between the size of 

the prescribed robustness level and the resulting portfolio weightings of the robust multi-

analyst approach. 

6.4.3 The Characteristics of the Portfolios  

The following table provides an insight into the portfolio characteristics, where the 

number of selected stocks in the portfolio and the ratio of wealth invested in the 

recommended stocks help to understand the impact of the robustification and the risk 

aversion level on the multi-analyst approaches. 

In general, we expect the mean-variance portfolios (𝑷𝑴𝑽) and the conventional 

robust portfolios (𝑹𝑴𝑽) to be more diversified than their counterparts of the multi-

analyst portfolios, (𝑭𝑴𝑽)  and (𝑹𝑬𝑯𝑬) . This is because the analysts’ investment 

recommendations are usually more optimistic, with higher expected returns than the 

historical performances. Hence the portfolios obtained via the multi-analyst approaches 

are more likely to focus on the recommended stocks with relatively higher weighting. 

Furthermore, as the size of the uncertainty set for the robust multi-analyst approach 

increases, a larger portion of wealth will be invested according to the analysts’ 

recommendations. The reason for this is that the framework of the robust multi-analyst 

approach (𝑹𝑬𝑯𝑷)  has distinguished the stocks into two sets, those with 

recommendations and those without them, and handles the estimation errors and   



140 
 

Table 6.7  The Characteristics of Optimal Portfolios 

Holding 

Period 

Risk 

Aversion 

No. of Stocks Investment via Analysts (%) 

𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝑃𝑀𝑉 𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝑃𝑀𝑉 𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 

5 Days 

𝜆 = 0  1.10 3.75 16.65 1.00 3.90 19.15 9.55 15.99 22.40 2.24 2.00 1.19 

𝜆 = 0.5  15.98 17.71 20.24 16.36 18.19 20.93 6.84 7.58 9.88 1.36 1.24 1.17 

𝜆 = 5  20.58 20.63 20.83 20.17 20.22 20.27 3.47 3.52 3.57 1.21 1.21 1.22 

𝜆 → ∞  148.00 148.00 148.00 19.80 19.78 19.79 2.58 2.58 2.58 1.23 1.23 1.23 

10 Days 

𝜆 = 0  1.02 2.53 13.31 1.00 2.47 13.99 2.44 5.53 14.69 2.24 1.84 1.71 

𝜆 = 0.5  13.56 14.45 16.38 13.49 14.40 16.28 4.41 4.93 6.84 1.75 1.64 1.53 

𝜆 = 5  22.81 22.90 24.17 18.67 18.70 18.83 2.66 2.76 3.02 1.55 1.55 1.56 

𝜆 → ∞  148.00 148.00 148.00 18.48 18.49 18.46 2.58 2.58 2.58 1.56 1.56 1.56 

15 Days 

𝜆 = 0  1.03 2.07 11.68 1.00 2.03 11.88 1.76 2.60 9.29 2.44 2.03 2.45 

𝜆 = 0.5  12.55 13.03 14.91 12.43 12.94 14.69 3.61 3.82 4.97 2.24 2.05 1.17 

𝜆 = 5  29.49 32.48 38.65 16.91 16.96 17.09 2.53 2.59 2.84 1.67 1.68 1.69 

𝜆 → ∞  148.00 148.00 148.00 17.16 17.20 17.15 2.58 2.58 2.58 1.72 1.72 1.72 

20 Days 

𝜆 = 0  1.03 1.90 9.94 1.00 1.89 9.96 0.81 1.72 6.22 2.44 2.08 2.73 

𝜆 = 0.5  11.87 12.39 13.72 11.83 12.29 13.50 2.83 2.97 3.63 2.36 2.17 1.76 

𝜆 = 5  79.00 81.76 115.06 16.65 16.65 16.69 2.07 2.13 2.40 1.70 1.71 1.72 

𝜆 → ∞  148.00 148.00 148.00 16.01 16.00 16.00 2.58 2.58 2.58 1.76 1.76 1.76 

Notes: This table displays the portfolio characteristics including the number of stocks in the resulting portfolio (No. of Stocks) and the proportion of investment via analysts’ 

recommendations (Investment via Analysts). The number of stocks is the sum of the stocks in the resulting portfolio and the investment via analysts represents the total 

fraction of wealth invested in the recommended stocks. The results presented in this table are the average of 492 observations.   
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uncertainties of these two sets differently. In the proposed robust multi-analyst approach 

(𝑹𝑬𝑯𝑷), the protection against the possible inaccurate parameter estimates is given by 

the uncertainty set. This uncertainty set only handles the estimation errors and 

uncertainties for the stocks without recommendations from the analysts, and, as the size 

of the uncertainty set increases, the worse the scenario is considered for these stocks. 

Consequently, this exaggerates the already optimistic prediction of the recommended 

stocks and leads to higher weightings for the recommended stocks. 

Before further discussion, it is important to note that the analysts have made 

suggestions on approximately 3.82 stocks for every trading day. Therefore, on average, 

the equally weighted portfolio (𝟏 𝑵⁄ ) based on our sample of 148 stocks allocates a 

total of 
3.82

148
= 2.58% capital to the recommended stocks. As shown in Table 6.7, the 

multi-analyst portfolios, (𝑭𝑴𝑽) and (𝑹𝑬𝑯𝑷), have the same ratio of wealth invested 

in the recommended stocks as the equally weighted portfolio (𝟏 𝑵⁄ ) at 𝜆 → ∞; this is 

because the multi-analyst approaches, (𝑭𝑴𝑽)  and (𝑹𝑬𝑯𝑷) , turn into the equally 

weighted framework as 𝜆 → ∞ . Furthermore, the rate at which the multi-analyst 

approaches transform into the equally weighted framework as 𝜆 increases is positively 

correlated with the duration of the investment holding period. Apart from these factors, 

Table 6.7 confirms that the total ratio of wealth invested in the recommended stocks 

increases as the level of robustification increases for the multi-analyst approaches and, 

also, the potential advantage of adopting professional investment recommendations is 

less significant for long-term investment because the total ratio of wealth invested in the 

recommended stocks drops as the investment holding period increases. Figure 6.7 

graphically illustrates the impact of the robustness level and the duration of the 

investment holding period on portfolio weightings for the multi-analyst approaches. 
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Figure 6.7  The Ratio of Wealth Invested in the Recommended Stocks 

Note: This figure displays the total investment in the recommended stocks of the multi-analyst portfolios, 

(𝐹𝑀𝑉) and (𝑅𝐸𝐻𝑃−𝐵), at risk aversion coefficient 𝜆 = 0.5. The figures for 𝐷 = 10,20 can be found in 

Appendix B.3. 

 

In summary, we have investigated the changes in the portfolio performances along 

with different risk aversion coefficients 𝜆 and investment holding periods 𝐷. Based on 

the analysts’ investment recommendations considered for this study, the proposed multi-

analyst approaches, (𝑭𝑴𝑽) and (𝑹𝑬𝑯𝑷), are more suitable for short-term investment 

and normally outperform the corresponding conventional investment strategies in the 

more risk-loving setting. Although the multi-analyst approaches have inferior outcomes 

as 𝜆 → ∞  and generate greater portfolio disappointments than other investment 

strategies, the more optimistic expected returns and also the more profitable ex-post 
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outcomes, with relatively less regrets in terms of losses, may compensate for accepting 

these disadvantages of the multi-analyst approaches and, thus, encourage its user.  

In the results reported above, the multi-analyst approaches, (𝑭𝑴𝑽) and (𝑹𝑬𝑯𝑷), 

are examined under the circumstances that the investor has no knowledge regarding the 

credibility of the analysts and hence treats the investment recommendations provided 

by different analysts as equally important. Therefore, it is of interest to investigate the 

performances of the multi-analyst portfolios under the condition that the investor is more 

dependent on a particular analyst. 

6.5 Empirical Analysis: Portfolio Management with Unequal 

Preference for the Analysts 

On the basis of the previous empirical study, the following empirical investigation 

extends the earlier setting by assigning different levels of credibility to the analysts. As 

reported in Section 6.4, the analysts’ recommendations have stronger effects on the 

multi-analyst approaches, (𝑭𝑴𝑽) and (𝑹𝑬𝑯𝑷), for short-term investments. Therefore 

the second empirical investigation focuses on the results and findings of the weekly 

portfolio performances of the multi-analyst approaches, i.e., 𝐷 = 5 days. 

The portfolio selection framework of the multi-analyst approaches, (𝑭𝑴𝑽) and 

(𝑹𝑬𝑯𝑷), considered in this section are the same as those in the first case but with an 

additional assumption that the investor has a stronger preference for one of the analysts. 

Furthermore, analogous to the previous empirical investigation, the robust multi-analyst 

approach (𝑹𝑬𝑯𝑷) will be examined with two levels of robustification. Recalling the 

types of investors stated in Table 6.2, we thus pay attention to the comparison between 

portfolios, which is generated according to different investors’ requirements. In contrast 

to the Type A and Type B investors, suppose the Type C and Type D investors agree that 

analyst 1, who has produced more investment recommendations and comes from the 
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securities brokerage firm with the greater market share, is more reliable than the other, 

and assign the respective levels of credibility of the analysts as 휃1 = 0.7635 and 휃2 =

0.2365. According to the investment newsletters collected for this study, analyst 2 is 

more conservative than analyst 1 in the sense that the stock recommendations are usually 

given with smaller price ranges. In other words, the stock forecasts provided by analyst 

1 have greater predicted returns but come with higher variations. Although the Type C 

and Type D investors agree about the levels of credibility of the analysts, they have 

different opinions regarding the desired robustness level of the parameter estimates for 

the historical dataset, and adopt the confidence ellipsoids as 𝛿 ≅ 0.23 and 𝛿 = 1, 

respectively. In the following analysis, (𝑭𝑴𝑽 ∗), (𝑹𝑬𝑯𝑷−𝑪), and (𝑹𝑬𝑯𝑷−𝑫) represent 

the multi-analyst approach, and the robust multi-analyst approach of the Type C investor 

and the Type D investor respectively, with unequal credibility of analysts, i.e., 휃1 > 휃2. 

6.5.1 The Ex-Ante Expected Performances of the Multi-Analyst Portfolios 

Table 6.8 summarises the expected returns and the standard deviations of the multi-

analyst portfolios for all types of investors. The first thing to note is that the expected 

performances of the portfolios with equal preference, 휃1 = 휃2, and the portfolios with 

unequal preference, 휃1 > 휃2 , react in a similar way to changes in the desired 

robustification of the uncertainty set. More specifically, the expected portfolio 

performance decreases as the desired robustness of the uncertainty set increases for both 

situations, 휃1 = 휃2  and 휃1 > 휃2 , and also, the difference in the expected returns 

between multi-analyst portfolios widens as the level of robustification increases12. On 

the other hand, the expected performances react differently to changes in the risk 

aversion coefficient 𝜆 among portfolios with different settings for the credibility level, 

                                                 
12 The multi-analyst portfolios (𝑭𝑴𝑽) and (𝑭𝑴𝑽

∗), are equivalent to their robust counterparts with the 

desired robustness level for the uncertainty sets equals to zero, i.e., 𝛿 = 0.  
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i.e., 휃1 = 휃2 or 휃1 > 휃2. Unlike the expected performances of the portfolio with 휃1 =

휃2  that mostly decrease as the risk aversion coefficient 𝜆  increases, the expected 

performances of the portfolio with 휃1 > 휃2  do not necessarily decrease as the risk 

aversion coefficient 𝜆  increases; only the expected standard deviations behave 

similarly as the risk aversion coefficient 𝜆 changes. The expected returns of the multi-

analyst portfolios with unequal credibility 휃1 > 휃2  have wavy patterns as the risk 

aversion coefficient 𝜆 increases. Figure 6.8 graphically illustrates the expected returns 

of the multi-analyst portfolios. 

Table 6.8  Expected Returns and Standard Deviations of the Optimal Portfolios 

 
Risk 

Aversion 
𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝐹𝑀𝑉 ∗  𝑅𝐸𝐻𝑃− 𝐶 𝑅𝐸𝐻𝑃−𝐷 

Mean 

(%) 

𝜆 = 0  2.2011 1.9270 1.0454 2.2683 1.9925 0.8215 

𝜆 = 0.5  0.9148 0.7981 0.5836 0.9108 0.7774 0.5314 

𝜆 = 1  0.6078 0.5502 0.4296 0.6044 0.5402 0.4182 

𝜆 = 3  0.3484 0.3271 0.2613 0.9424 0.8755 0.5198 

𝜆 = 5  0.2895 0.2732 0.2194 0.8463 0.8043 0.4948 

𝜆 → ∞  0.1958 0.1539 0.0053 0.1989 0.1620 0.0473 

Standard 

Deviation 

(%) 

𝜆 = 0  5.6543 4.0691 1.5842 5.6231 4.0465 1.4501 

𝜆 = 0.5  1.4335 1.2914 1.0868 1.4188 1.2332 0.9705 

𝜆 = 1  1.0878 1.0430 0.9804 1.0798 0.9715 0.9367 

𝜆 = 3  0.9073 0.9039 0.8977 0.9815 0.9288 0.8996 

𝜆 = 5  0.8879 0.8872 0.8860 0.8956 0.8896 0.8890 

𝜆 → ∞  2.2208 2.2208 2.2208 2.2260 2.2260 2.2260 

Notes: This table displays the average expected returns and the standard deviations of 492 observations 

for multi-analyst portfolios. (𝐹𝑀𝑉), (𝑅𝐸𝐻𝑃− 𝐴), and (𝑅𝐸𝐻𝑃−𝐵) represent the portfolios with equal 

credibility of analysts, i.e., 휃1 = 휃2. (𝐹𝑀𝑉 ∗), (𝑅𝐸𝐻𝑃− 𝐶), and (𝑅𝐸𝐻𝑃− 𝐷) represent portfolios with 

unequal credibility of analysts, i.e., 휃1 > 휃2. See Table 6.2 for further descriptions of different robust 

multi-analyst portfolios (𝑅𝐸𝐻𝑃).  
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Figure 6.8  Expected Weekly Returns of Multi-Analyst Portfolios 

Notes: This figure shows the expected returns of the multi-analyst portfolios. The dashed lines represent 

the portfolios with equal credibility of analysts, i.e., 휃1 = 휃2, and the solid lines represent portfolios with 

unequal credibility of analysts, i.e., 휃1 > 휃2. Details of the results are contained in Table 6.8. 

 

From Table 6.8 and Figure 6.8, we observe that the expected return of portfolio 

with either 휃1 = 휃2 or 휃1 > 휃2 drops as the risk aversion coefficient changes from 

𝜆 = 0  to 𝜆 = 1 . Beyond 𝜆 = 1 , the expected returns of the portfolios with equal 

credibility level continue with the downward trend, whereas the expected returns of the 

portfolios with unequal credibility level increase and, after a turning point, decrease as 

the risk aversion coefficient 𝜆 increases. This is because the multi-analyst portfolio 

selection problems, (𝑭𝑴𝑽)  and (𝑹𝑬𝑯𝑬) , are no longer handling the analysts’ 
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To explain this outcome in detail, recall equation (6.1) of the multi-analyst 

approach for solving portfolio selection problems. 

(𝑭𝑴𝑽)               max 
𝑥∈ℝ𝑛

min
𝑧∈Ζ

      
1

1 + exp(−휃𝑧 (�̌̂�𝑧
𝑇
𝑥 −

𝜆
2 𝑥

𝑇 Σ̌̂𝑧𝑥 − 𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

   .                    

Under a risk-loving setting with 𝜆 → 0, the inner optimisation will assign a greater ratio 

to the analyst who provides relatively prudent recommendations that are more 

pessimistic than the other analyst; on the other hand, the outer optimisation will solve 

the portfolio selection problem by maximising the portfolio return based on the forecasts 

provided by the chosen analyst. In contrast, under a risk-averse setting with 𝜆 → ∞, the 

inner optimisation will assign a greater ratio to the analyst who provides more risky 

recommendations that come with higher stock return variations, because the inner 

optimisation becomes to minimise −
𝜆

2
𝑥𝑇 Σ̌̂𝑧𝑥 − 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡  as 𝜆  increases; then the 

outer optimisation will solve the portfolio selection problem by minimising the portfolio 

risk based on the forecasts provided by the chosen analysts. In other words, the multi-

analyst approaches convert into the risk minimum portfolio selection framework based 

on the more risky forecasts as 𝜆 increases. 

By choosing 휃1 = 0.7635 and 휃2 = 0.2365, the substantial difference between 

the credibility level of analyst 1 and that of analyst 2 has influenced the portfolio 

allocations significantly. The optimal portfolio weightings and the related expected 

portfolio performances are obtained mostly based on the relatively more careful analyst 

2’s predictions under a risk-loving setting; as a result, the portfolios with 휃1 > 휃2 have 

relatively conservative expected performances compared to the portfolios with 휃1 = 휃2 

for 𝜆 → 0. Conversely, the optimal portfolio weightings and the expected portfolio 

performances are obtained mostly based on the more optimistic analyst 1’s predictions 

under a risk-averse setting. As a result, the portfolios with 휃1 > 휃2  have relatively 
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higher expected returns but greater standard deviations compared to the portfolios with 

휃1 = 휃2 for 𝜆 → ∞. Figure 6.9 graphically illustrates the impact of defining different 

values of credibility levels for the multi-analyst approaches on the asset allocation. 

Figure 6.9  The Effect of Credibility Level on Multi-Analyst Asset Allocation  

Notes: The figure shows the membership functions (vertical axis) of the expected utility of the portfolio 

(horizontal axis). The dotted and the dashed lines represent the membership functions according to the 

advice of analysts 1 and 2, respectively. The solid line is the minimum of the two membership functions 

that represents the robust objective function. 

Table 6.9  Expected Risk Adjusted Returns of the Optimal Portfolios 

Expected Risk Adjusted Return (%) 

Risk Aversion 𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝐹𝑀𝑉 ∗  𝑅𝐸𝐻𝑃− 𝐶 𝑅𝐸𝐻𝑃−𝐷 

𝜆 = 0  0.3893 0.4736 0.6599 0.4034 0.4924 0.5665 

𝜆 = 0.5  0.6382 0.6180 0.5370 0.6420 0.6304 0.5476 

𝜆 = 1  0.5588 0.5275 0.4382 0.5597 0.5560 0.4465 

𝜆 = 3  0.3841 0.3619 0.2910 0.9602 0.9426 0.5778 

𝜆 = 5  0.3261 0.3079 0.2476 0.9450 0.9041 0.5566 

𝜆 → ∞  0.0882 0.0693 0.0024 0.0894 0.0728 0.0212 

Notes: This table displays the average expected risk adjusted returns (Mean/SD) of 492 observations 

for multi-analyst portfolios. (𝐹𝑀𝑉), (𝑅𝐸𝐻𝑃− 𝐴), and (𝑅𝐸𝐻𝑃−𝐵) represent the portfolios 휃1 = 휃2 . 

(𝐹𝑀𝑉 ∗), (𝑅𝐸𝐻𝑃− 𝐶), and (𝑅𝐸𝐻𝑃− 𝐷) represent portfolios with 휃1 > 휃2. 
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Similar wavy patterns occurred in the expected risk adjusted returns for the multi-

analyst portfolios with unequal credibility levels. In Table 6.9 the multi-analyst 

portfolios with 휃1 > 휃2 have only slightly better expected risk adjusted returns up to 

𝜆 = 1 ; after that, the portfolios with unequal credibility levels have much higher 

expected risk adjusted returns than the portfolios with 휃1 = 휃2. 

6.5.2 The Ex-Post Realised Performances of the Multi-Analyst Portfolios 

Next we consider the ex-post realised performances of the multi-analyst portfolios 

for all types of investors. Table 6.10 reports the realised portfolio returns and Table 6.11 

reports the investor’s loss and disappointment.   

Table 6.10  Realised Returns of the Optimal Portfolios 

Realised Return (%) 

Risk Aversion 𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝐹𝑀𝑉 ∗  𝑅𝐸𝐻𝑃− 𝐶 𝑅𝐸𝐻𝑃−𝐷 

𝜆 = 0  1.2687 1.2753 0.5556 1.2803 1.2845 0.5742 

𝜆 = 0.5  0.7022 0.6034 0.4384 0.7089 0.6104 0.4520 

𝜆 = 1  0.4932 0.4580 0.3883 0.4961 0.4648 0.3994 

𝜆 = 3  0.3379 0.3330 0.3210 0.3508 0.3506 0.3488 

𝜆 = 5  0.3074 0.3053 0.3005 0.3412 0.3440 0.3419 

𝜆 → ∞  0.2382 0.2382 0.2382 0.2382 0.2382 0.2382 

Notes: This table displays the average realised returns of 492 observations for multi-analyst portfolios. 

(𝐹𝑀𝑉) , (𝑅𝐸𝐻𝑃− 𝐴) , and (𝑅𝐸𝐻𝑃−𝐵)  represent the portfolios 휃1 = 휃2 . (𝐹𝑀𝑉 ∗) , (𝑅𝐸𝐻𝑃− 𝐶) , and 

(𝑅𝐸𝐻𝑃− 𝐷) represent portfolios with 휃1 > 휃2. 

 

First of all, the portfolios with unequal credibility levels 휃1 > 휃2  have 

outperformed the portfolios with equal credibility levels in most circumstances. The 

only exception is the outcome under the minimum variance setting, where the multi-

analyst portfolios for every type of investor have the same realised returns. This is 

simply because the multi-analyst approaches transfer into the equally weighted approach 

(𝟏 𝑵⁄ ) as the risk aversion coefficient 𝜆 increases. 



150 

 

By comparing the outcomes under different conditions, we have noticed that the 

effects of the robustification and the changes in the risk aversion coefficient 𝜆 have led 

to similar movements in the realised returns for portfolios of all types of investor. To be 

exact, the realised return decreases as the multi-analyst portfolio selection framework 

becomes more robust or risk averse, no matter whether the credibility levels of analysts 

are equal or unequal. Moreover, the same effect of robustification on asset allocation as 

in Section 6.4 can be found in Table 6.10, where the changes in the desired robustness 

levels 𝛿  have less influence on the realised returns as the risk aversion coefficient 

increases. Note that there are significant increases in the realised returns for the 

portfolios with 휃1 > 휃2  after 𝜆 = 1 . This may be due to the impact of higher 

weightings being allocated to the recommended stocks (see Table 6.12), as the multi-

analyst approaches with unequal credibility levels follow mostly the recommendations 

of analyst 1, who usually provides predictions with higher returns, in a risk averse 

scenario.  

Table 6.11 compares the investor’s losses and disappointments of the multi-analyst 

portfolios under various conditions. As explained earlier, the investor’s loss is calculated 

based on the realised portfolio return. Therefore the pattern of the loss measured also 

corresponds to the changes in the desired robustness level 𝛿  and the risk aversion 

coefficient 𝜆. That is, the more conservative the portfolio allocation, the greater the 

investor’s loss. Furthermore, the investor who determines the credibility levels as 휃1 >

휃2  has lower portfolio loss than the investor who considers the analysts as equally 

reliable; this is simply because the portfolios with 휃1 > 휃2  have superior realised 

returns than the portfolios with 휃1 = 휃2. 

On the other hand, the investor’s disappointment is the difference between the 

expected and the realised returns of a specific investment strategy. Normally, the pattern 

of the disappointment measure is a downwards trend as the portfolio selection 
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framework becomes more conservative. Nevertheless, the investor’s disappointments 

for the portfolios with unequal credibility levels form a wavy pattern as the risk aversion 

coefficient 𝜆 increases. This is not surprising because the investor’s disappointment is 

related to the expected portfolio return, so that the expected return and the investor’s 

disappointment are supposed to have similar patterns as the portfolio selection 

framework becomes more conservative. In addition, the investor is more disappointed 

in the portfolios with 휃1 > 휃2, especially for the risk averse portfolios.  

Table 6.11  Loss and Disappointment Rates of the Optimal Portfolios 

 
Risk 

Aversion 
𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝐹𝑀𝑉 ∗  𝑅𝐸𝐻𝑃− 𝐶 𝑅𝐸𝐻𝑃−𝐷 

Loss 

(%) 

𝜆 = 0  12.5449 12.5383 13.2580 12.5333 12.5291 13.2394 

𝜆 = 0.5  13.1114 13.2102 13.3752 13.1047 13.2032 13.3619 

𝜆 = 1  13.3203 13.3555 13.4252 13.3175 13.3488 13.4142 

𝜆 = 3  13.4756 13.4805 13.4926 13.4628 13.4630 13.4648 

𝜆 = 5  13.5062 13.5083 13.5131 13.4724 13.4696 13.4717 

𝜆 → ∞  13.5754 13.5754 13.5754 13.5754 13.5754 13.5754 

Disappoint

ment 

(%) 

𝜆 = 0  0.9324 0.6517 0.4898 0.9880 0.7080 0.2473 

𝜆 = 0.5  0.2011 0.1510 0.0140 0.2019 0.1670 0.0797 

𝜆 = 1  0.1146 0.0922 0.0412 0.1083 0.0754 0.0188 

𝜆 = 3  0.0105 -0.0059 -0.0597 0.5916 0.5249 0.1710 

𝜆 = 5  -0.0179 -0.0321 -0.0811 0.5051 0.4603 0.1529 

𝜆 → ∞  -0.0424 -0.0843 -0.2329 -0.0393 -0.0762 -0.1909 

Notes: This table displays the average investor’s losses and investor’s disappointments of 492 

observations for multi-analyst portfolios. (𝐹𝑀𝑉), (𝑅𝐸𝐻𝑃− 𝐴), and (𝑅𝐸𝐻𝑃−𝐵) represent the portfolios 

휃1 = 휃2. (𝐹𝑀𝑉 ∗), (𝑅𝐸𝐻𝑃− 𝐶), and (𝑅𝐸𝐻𝑃− 𝐷) represent portfolios with 휃1 > 휃2. See Section 6.3 for 

further details of the loss and the disappointment functions. 

 

At the end of this section, a figure is provided to illustrate the impact of assigning 

unequal credibility levels on multi-analyst approaches by comparing the realised 

cumulative returns. 
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Figure 6.10  Realised Cumulative Returns of Multi-Analyst Portfolios 

Note: This figure shows the total realised returns of multi-analyst portfolios, (𝑭𝑴𝑽) and (𝑯𝑬𝑯𝑷), from 

April 2012 to April 2014 at different risk aversion levels. The upper and lower panels show the results for 

𝜆 = 0.5 and 𝜆 = 5, respectively. From the upper panel, there is not much difference in the returns 

between portfolios with 휃1 = 휃2 and 휃1 > 휃2. This is because the asset allocation of portfolios with 

휃1 > 휃2 mainly follow the relatively more conservative recommendations of analyst 2, and therefore, the 

portfolios with 휃1 > 휃2 have very similar performance to the portfolios with 휃1 = 휃2. In contrast, for 

the lower panel where 𝜆 = 5, the asset allocation for the portfolios with 휃1 > 휃2 are based on the more 

optimistic recommendations of analyst 1 and obtained higher realised returns than the portfolios with 

휃1 = 휃2.  
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6.5.3 The Characteristics of the Portfolios  

Table 6.12 shows some key information in addition to the portfolio performances 

of the multi-analyst portfolios, where the number of selected stocks in the portfolio and 

the ratio of wealth invested in the recommended stocks provide further understanding 

about the impact of assigning unequal credibility levels of analysts on portfolio 

allocations.  

Table 6.12  The Characteristics of Optimal Portfolios 

 
Risk 

Aversion 
𝐹𝑀𝑉 𝑅𝐸𝐻𝑃− 𝐴 𝑅𝐸𝐻𝑃−𝐵 𝐹𝑀𝑉 ∗  𝑅𝐸𝐻𝑃− 𝐶 𝑅𝐸𝐻𝑃−𝐷 

No. of 

Stocks 

𝜆 = 0  1.10 3.75 16.65 1.14 3.78 16.70 

𝜆 = 0.5  15.98 17.71 20.24 15.98 17.95 19.81 

𝜆 = 1  19.29 20.10 20.26 19.50 19.83 20.07 

𝜆 = 3  20.26 20.29 20.36 18.78 19.09 19.30 

𝜆 = 5  20.58 20.63 20.83 18.64 18.80 18.85 

𝜆 → ∞  148.00 148.00 148.00 148.00 148.00 148.00 

Investment  

via  

Analysts 

(%) 

𝜆 = 0  9.55 15.99 22.40 12.51 18.03 25.62 

𝜆 = 0.5  6.85 7.58 9.88 6.96 8.36 14.72 

𝜆 = 1  4.61 5.03 6.51 5.91 7.77 12.97 

𝜆 = 3  3.93 4.17 4.89 11.36 12.69 16.69 

𝜆 = 5  3.47 3.52 3.57 16.30 17.15 20.04 

𝜆 → ∞  2.58 2.58 2.58 2.58 2.58 2.58 

Notes: This table displays the portfolio characteristics of multi-analyst approaches, including the 

number of stocks in the resulting portfolio (No. of Stocks) and the proportion of investment via 

analysts’ recommendations (Investment via Analysts). The results presented in this table are the 

average of 492 observations. 
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As explained in Section 6.4.3, the number of stocks in the portfolio and the ratio of 

capital invested in the recommended stocks are positively correlated with the desired 

robustness level of the multi-analyst approaches13 if the credibility levels are equal, i.e., 

휃1 = 휃2. That is, the number of stocks and the proportion of capital invested in the 

recommended stocks increase as the uncertainty set becomes more robust for the multi-

analyst portfolio selections. By assigning unequal credibility levels 휃1 > 휃2  in the 

multi-analyst frameworks, the same relationship between the desired robustness level 

𝛿 and the characteristics of the portfolio can be found. Nevertheless, the changes in the 

desired robustness level have slightly stronger effects on the asset allocation for the 

portfolios with unequal credibility levels (see Figure 6.11 for graphical comparison).  

Unlike the correlation between the portfolio characteristics and the desired 

robustness level 𝛿, which has a pattern similar to the case of equal credibility levels, 

the characteristics of the portfolios with unequal credibility levels have wavy patterns 

as the risk aversion level 𝜆 increases. As shown in Table 6.12, for every type of investor, 

the characteristics of the portfolios behave similarly for 𝜆 ≤ 1. Beyond 𝜆 = 1, the 

portfolio with equal credibility levels 휃1 = 휃2 has gradually changed into the equally 

weighted portfolio as the risk aversion level increases. On the other hand, the portfolios 

with unequal credibility levels 휃1 > 휃2  have performed rather differently before 

eventually turning into the equally weighted portfolio. That is, for the cases where 1 ≤

𝜆 < +∞, the number of stocks has initially decreased and the ratio of capital invested 

in the recommended stocks has increased for the portfolio with unequal credibility levels, 

which is in fact the opposite movement to converging towards to the equally weighted 

portfolio. 

                                                 
13 The multi-analyst approach (𝑭𝑴𝑽) is equivalent to the robust multi-analyst approach (𝑹𝑬𝑯𝑷) with 

the desired robustness level 𝛿 = 0. 
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The reason for this is that the multi-analyst approaches with unequal credibility 

levels have changed from the framework of solving portfolio problems according to the 

forecasts from both analysts to the framework that focuses on one particular analyst (see 

Figure 6.9). Hence, by assigning unequal credibility levels to analysts, the portfolio 

allocation and the corresponding ex-ante expected portfolio performances will mostly 

coincide with the forecasts of one specific analyst and the ex-post realised portfolio 

performances will more or less reflect the quality of the forecasts. According to our data, 

analyst 1 gives much more stock recommendations than analyst 2 (see Figure 6.3). In 

addition, the stock recommendations of analyst 1 are usually more optimistic and have 

greater predicted returns but higher variations and the stock recommendations of analyst 

2 are usually more conservative. The multi-analyst portfolio with equal credibility levels 

is the robust portfolio that considers the worst possible investment scenarios provided 

by the two analysts. Therefore for 𝜆 ≤ 1, the portfolio with unequal credibility levels 

mostly follows analyst 2’s recommendations and, thus, is expected to have very similar 

performance to the portfolio with equal credibility levels for 𝜆 ≤ 1, because analyst 2 

is more prudent and only provides recommendations occasionally. On the other hand, 

for 1 ≤ 𝜆 < +∞, the portfolio with unequal credibility levels mostly follows analyst 

1’s recommendations and, therefore, it is supposed to allocate relatively higher 

weightings to the recommended stocks and obtain portfolios with greater expected 

returns and standard deviations, because analyst 1 is more optimistic and provides many 

recommendations for every trading day. The following figure graphically illustrates the 

impact of assigning unequal credibility levels on portfolio weightings for the multi-

analyst portfolio. 
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Figure 6.11  The Ratio of Wealth Invested in the Recommended Stocks 

Note: This figure shows the ratio of capital invested in the recommended stocks over the sample period. The upper panels display results at λ=0.5 and the lower panels 

display results at λ=5. 𝐹𝑀𝑉 and 𝑅𝐸𝐻𝑃−𝐵 represent portfolios with 휃1 = 휃2, and 𝐹𝑀𝑉 ∗ and 𝑅𝐸𝐻𝑃−𝐷 represent portfolios with 휃1 > 휃2. 
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Overall, the investor allocates more wealth to the recommended stocks after 

assigning unequal credibility levels to analysts. Unlike the multi-analyst approaches 

with equal credibility levels that consider recommendations equally and obtain 

portfolios based on the combinations of both analysts’ recommendations, the multi-

analyst approaches with unequal credibility levels mostly allocate investment according 

to one particular analyst. 

For this particular sample, our results illustrate that the portfolios with 휃1 > 휃2 

generally have superior expected performances than the portfolios with 휃1 = 휃2. By 

assigning unequal credibility levels to analysts in the multi-analyst approaches, a higher 

ratio of wealth is invested in the recommended stocks. In addition, the portfolios with 

unequal credibility levels obtained higher realised returns than the portfolios with equal 

credibility levels under most scenarios. Nevertheless, the realised portfolio returns for 

the case in which 휃1 > 휃2 are more dependent on the predictive power, the accuracy 

of the forecasts, of analysts than is the case when 휃1 = 휃2. In other words, the multi-

analyst portfolios with 휃1 > 휃2 may have lower realised returns than the others when 

different data is applied with the higher credibility level is assigned to an analyst whose 

forecasts are poorer. 

This empirical study reveals the important role played by the multi-analyst 

approaches, (𝑭𝑴𝑽) and (𝑹𝑬𝑯𝑷), among other conventional portfolio selection models, 

as the aim of the multi-analyst approaches is to account for additional investment 

information so that the resulting portfolio can be robust but also profitable. Nevertheless, 

by assigning unequal credibility levels to analysts, the focus of the multi-analyst 

approaches has shifted away from considering all the investment possibilities equally to 

emphasising an individual analyst. In this regards, the investment turns out to be less 

robust with more exposure to risk. 
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6.6 Summary 

This chapter investigates the portfolio performances of the proposed multi-analyst 

approaches by implementing and solving the portfolio selection problems in the 

Taiwanese stock market over the period from April 2012 to April 2014. To provide a 

comprehensive empirical investigation, the proposed multi-analyst approaches are 

compared with other conventional investment strategies and examined under different 

scenarios, such as the duration of investment, robustness preference and risk preference. 

In addition, the empirical investigation is divided into two cases in order to explore the 

impact of the investor’s preference for analysts on the multi-analyst approaches.  

Based on the sample of 148 stocks with 492 observations, our results show that 

when the investor has an equal preference for analysts, i.e., 휃1 = 휃2 , the proposed 

multi-analyst approaches, (𝑭𝑴𝑽)  and (𝑹𝑬𝑯𝑷) , generally outperform the 

corresponding conventional investment strategies and the equally weighted allocation 

method in terms of both expected and realised returns for shorter investment holding 

periods of 5 days and 10 days. In contrast, the benefit of incorporating additional 

investment information on the portfolio selection process disappears as the investment 

holding period 𝐷 increases. This indicates that the duration of the investment holding 

period 𝐷  has a substantial impact on the effectiveness of employing stock 

recommendations provided by the analysts. More specifically, as the investment holding 

period increases, the stock recommendations become less notable compared to the 

historical stock performances and therefore have less impact on asset allocation.  

Apart from the already known effect of robustification on portfolio selections, that 

the difference between the portfolio performances of the ‘original’ approach and the 

corresponding robust counterpart approach widens as the robustness of the uncertainty 

set increases (Goldfarb and Iyengar, 2003), our result further shows that the impact of 
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robustification on portfolio performance is weaker as the risk aversion level increases 

and the ratio of wealth invested in the recommended stocks is positively correlated with 

the desired robustness level of the multi-analyst approach. On the other hand, the 

changes in the risk aversion coefficients have influenced the multi-analyst approaches 

differently when the investor has assigned different credibility levels to the analysts.  

Generally speaking, as the risk aversion coefficient increases, the expected 

portfolio performances become more conservative and, consequently, the realised 

portfolio return is lower. The same effect of the changes in the risk aversion coefficients 

has been found on the multi-analyst portfolios with equal credibility levels of analysts 

and, furthermore, less capital is invested according to the analysts’ recommendations, as 

the analysts’ recommendations considered for the empirical investigation are mostly 

more optimistic than the historical stock performances. In short, for the multi-analyst 

approaches with equal credibility levels, the advantage of incorporating additional 

investment information is more significant for the risk-loving investor. 

Finally, this chapter has investigated the impact of the investor’s preference for 

analysts on the multi-analyst approaches. By assigning unequal credibility levels to 

analysts in the multi-analyst approaches, a higher ratio of capital is invested according 

to the recommendations provided by the analysts. Unlike the multi-analyst approaches 

with equal credibility levels that allocate portfolios according to the combination of both 

analysts’ recommendations, the multi-analyst approaches with unequal credibility levels 

allocate investment according to one particular analyst. Although the multi-analyst 

portfolios with unequal credibility levels have more profitable realised returns, the 

superior performances are highly dependent on the predictive power of the analyst. In 

other words, the multi-analyst approaches with equal credibility levels generate a more 

pessimistic portfolio allocation as the worst case scenarios are considered for asset 
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allocation, but at the same time, the portfolio allocation is more robust against estimation 

errors and parameter uncertainties. 

To conclude, the multi-analyst approaches, (𝑭𝑴𝑽) and (𝑹𝑬𝑯𝑷), are more robust 

when equal credibility levels are adopted for the framework, and are more beneficial to 

risk loving investors for short-term investment.  
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Chapter 7 

Conclusions and Discussion 

 The more information we obtain, the better decisions we can make. This also 

applies to investors when they are making decisions to allocate financial assets in their 

portfolios. However, in reality, information collection comes at a cost. Apart from the 

difficulty of obtaining useful and efficient information from the massive amount of 

investment newsletters, it is also hard to verify the reliability of the professional analysts’ 

forecasts. In order to incorporate multiple analysts’ opinions, which are made available 

from the investment newsletters, into the decision making process of asset allocation, 

we have developed a multi-analyst approach and the corresponding robust counterpart 

approach for portfolio selection problems, and empirically implemented both portfolio 

selection approaches to analyse the Taiwanese stock market.  

In this final chapter, we summarise this thesis and discuss future research. It is 

organised as follows. Section 7.1 reviews the developments and results of the research. 

Section 7.2 outlines the key contributions of this research study. Finally, Section 7.3 

draws attention to the limitations of the research and suggests potential directions for 

future research.   

7.1 Summary 

This thesis is organised in two parts. The first part of the thesis, which consists of 

Chapters 2, 3 and 4, reviews the literature relevant to this research and develops two 

new approaches to portfolio selection when market analysts’ recommendations are 
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available. The second part of the thesis comprises Chapters 5 and 6, which detail the 

analysts’ recommendations collected for this research and illustrate the application and 

benefits of the proposed multi-analyst approaches, (𝑭𝑴𝑽) and  (𝑹𝑬𝑯𝑷). 

In Chapter 2, we first introduced the well-known portfolio selection theory of Harry 

Markowitz (1952) and drew attention to the weaknesses of the mean-variance portfolio 

optimisation model. Among various suggestions for improving on the performance of 

Markowitz’s classical portfolio selection model, the robust counterpart approach of Ben-

Tal and Nemirovski (1998) is one of the most highly regarded methods for addressing 

the issues caused by estimation errors and parameter uncertainties. The popularity of the 

robust counterpart approach comes from its intuitive conceptual character and 

computational efficiency. However, as stated in Chapter 2 and observed in Chapter 6, 

the robust counterpart approach has its own weakness, as the robust portfolio is 

generally less profitable than the others. This undesirable outcome is caused by the 

excessively pessimistic character of the robust asset allocation, which always assumes 

the uncertainties of the portfolio selection problem will appear to be against the investors’ 

benefits. In order to overcome the drawback of the existing robust portfolio optimisation 

model by providing a potentially profitable robust asset allocation, we proposed 

including additional investment information sources into the process of asset allocation, 

as they provide an opportunity to obtain better quality investments and, at the same time, 

help with better decision making when facing the underlying parameter uncertainty. 

In the literature, not much has been done to adopt multiple information sources and 

pool those sources together to generate a final portfolio selection. The Bayesian 

approach is one of the most widely recognised methods in such cases, which can deal 

with uncertainties in decision making very well. However, it is difficult, if not 

impossible, for the Bayesian approach to address the issue of ambiguities associated 

with analysts’ verbal recommendations. In addition, it requires an investor to assign 
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prior probabilities to each individual expert. On the other hand, the multiple experts 

approach of Lutgens and Schotman (2010) doesn’t require the user to have any 

knowledge regarding the reliability of the experts. In this regard, Lutgens and 

Schotman’s multiple experts approach has fewer restrictions. In this thesis, we followed 

Lutgens and Schotman’s approach when dealing with the additional investment 

information. 

In Chapter 3, we improved the existing multi-expert approach of Lutgens and 

Schotman by using the concept of fuzzy set theory to deal with the verbal and imprecise 

investment recommendations provided by analysts. However, solving portfolio 

optimisation problems with fuzzy variables is a challenging task, as the original 

objective functions are turned into fuzzy functions with varying degrees of membership. 

To address this issue, the crisp possibilistic interpretation method of Carlsson and Fuller 

(2001) is incorporated for defuzzifying purposes, so that the fuzzy variables of the 

analysts’ recommendations can be transformed into ordinary numbers. In addition, we 

adopted the work of Gupta et al. (2008) to define the investor’s ambiguous aspiration 

level toward the investment. The developed multi-analyst approach (𝑭𝑴𝑽)  allows 

more flexibility than the original approach. Apart from the choice of using either the 

fuzzy set theory or probability theory for expressing analysts’ recommendations, the 

user can also apply the developed multi-analyst approach (𝑭𝑴𝑽)  with or without 

assigning vague credibility level 휃 to each individual analyst.  

The multi-analyst approach (𝑭𝑴𝑽) developed in Chapter 3 focuses on how to 

incorporate the various investment information sources into the portfolio selection 

model without paying attention to parameter uncertainties. In Chapter 4, to handle the 

issues arising from estimation errors and parameter uncertainties, we extended the multi-

analyst approach (𝑭𝑴𝑽)  by incorporating the concept of the robust counterpart 

approach. We first formulated the standard robust counterpart to the multi-analyst 
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approach (𝑭𝑴𝑽) by following the work of Ben-Tal and Nemirovski (1998). However, 

this standard robust counterpart of the multi-analyst approach is imperfect, as the 

parameter uncertainty levels of different assets are assumed to be identical and are 

treated equally via a joint uncertainty set. This is clearly not the case for the problem 

considered here because the levels of uncertainty differ for the assets with and without 

the analysts’ recommendations. To overcome this problem, we introduced the concept 

of non-overlapping uncertainty set of Garlappi et al. (2007) to provide robustification 

for different subclasses of assets. Therefore, compared with the existing robust 

counterpart approach of the famous mean-variance portfolio optimisation problem of 

Markowitz, the robust multi-analyst approach (𝑹𝑬𝑯𝑷)  is theoretically capable of 

generating a robust optimal portfolio with better portfolio return. 

In Chapter 5, to examine the performance of the multi-analyst approaches (𝑭𝑴𝑽) 

and (𝑹𝑬𝑯𝑷) developed in the first part of the thesis, we conducted a comprehensive 

investigation, using the developed portfolio selection methods. In order to present a 

more realistic picture of the model implementations and to have a better understanding 

of the impact of adopting analysts’ recommendations on portfolio performances, the 

multi-analyst approaches are tested with real world data instead of using simulated 

expert data or market return models, as most of the existing studies did. We used stock 

market forecasts from various institutional analysts. We discussed the investment 

newsletters collected from different Taiwanese securities brokerage institutions and 

explained the procedure for expressing stock forecasts in terms of either triangular or 

trapezoidal fuzzy variables.  

In Chapter 6, we applied the multi-analyst approaches to portfolio selection 

problems to analyse the Taiwanese stock market. Apart from the analysts’ 

recommendations mentioned previously, historical performances of stocks were also 

adopted for calculating estimates of input parameters. In order to evaluate the 
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performances of the proposed portfolio selection models, we conducted two tests with 

different descriptions of credibility levels 휃 . We first examined the multi-analyst 

approaches under the assumption that the investor has no preference of analyst. The 

resulting portfolio performances are compared to the results generated by the equally 

weighted method, mean-variance method of Markowitz, and the robust method of Ben-

Tal and Nemirovski. As shown in Section 6.4, due to the analysts’ recommendations, 

the multi-analyst approaches turned out to be less diversified, with greater expected 

volatilities, but the expected return and risk adjusted return of the proposed approaches 

mostly exceeded the corresponding investment strategies. Moreover, the multi-analyst 

approaches outperformed the corresponding conventional investment strategies in terms 

of realised returns for more risk-loving investment. The research has also shown that the 

benefit of employing multi-analyst approaches is more significant for shorter investment 

holding periods, of 5 days and 10 days. Therefore, the multi-analyst approaches with 

equal credibility levels seem promising for risk-loving investors to apply to short term 

investment. In contrast, the second empirical test assumed that the investor has unequal 

preference for the analysts. The multi-analyst approaches with unequal credibility levels 

allocated more wealth in the recommended stocks and generated relatively more 

optimistic portfolios. In view of obtaining a robust and also potentially profitable 

portfolio, it may not be a good idea to assign unequal credibility levels to the analysts, 

as the superior realised returns of the portfolios with unequal credibility levels are highly 

dependent on the predictive power of the particular analyst. Duration  

Generally speaking, employing the model robust approach and estimation robust 

approach together for solving portfolio selection problems is supposed to come up with 

a rather pessimistic asset allocation. Nevertheless, this undesirable outcome can be 

improved by incorporating additional investment information sources. The theoretical 
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developments and empirical studies of this thesis have introduced a different investment 

strategy for investors to optimise their investments. 

7.2 Contributions 

We summarise the main contributions of this thesis as follows: 

1) Market analysts’ recommendations in the real world are usually expressed 

verbally with a great deal of ambiguity. We have developed a new approach via 

fuzzy set theory and the multi-expert approach, termed the multi-analyst 

portfolio selection approach, to improve on the existing multi-prior approaches 

in the literature by taking into account the nature of the analysts’ suggestions 

and the preferences of the investor. 

2) In reality, market analysts usually only select a small proportion of assets and 

make a comment/recommendation on each asset. We have developed a robust 

counterpart approach of our multi-analyst approach to address the issue that the 

uncertainty levels differ for the assets with and without the analysts’ 

recommendations. In this regard, the proposed robust multi-analyst approach 

possesses the benefits of both model and estimation robust approaches. To the 

best of our knowledge, this robust counterpart to the multi-analyst approach has 

not been considered in the literature so far. 

3) We have also carried out an empirical study to investigate how the proposed 

investment strategies work with the real world application, as most of the 

existing studies in this field focus more on the theoretical aspects of the robust 

optimisation frameworks. Unlike the other portfolio optimisation studies, which 

use simulated expert data (Garlappi et al., 2007; Huang et al., 2010; Lutgens and 

Schotman, 2010), our empirical study is conducted with real analysts’ 
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recommendations that are unique and collected from various financial 

institutions. 

7.3 Limitations of the Study and Future Research 

Our research is confined by the scope of this thesis and, in common with all 

research, there are several limitations embedded in this thesis that provide potential 

directions for future research.  

In addition to the weakness, addressed in Section 6.4, that the multi-analyst 

approaches are only compatible with the return maximisation or the risk aversion 

portfolio selection models, it is worth noting that the risk measure adopted for portfolio 

selection problems in this research is the variance of the returns. Although variance is 

one of the more common and basic risk measurements, there are several voices that 

criticise the suitability of using variance as the measure of the investment risk. Variance 

is a measure used to describe the dispersion of a random variable or of a sample, and 

hence, by choosing variance as the measure for the investment risk, the overperformance 

and underperformance of the investment are treated as equally important. Nevertheless, 

investors never consider both situations in the same way. Therefore, the downside risk 

measures, such as semivariance, VaR, and CVaR, may be more appropriate for 

describing the investment risk as these measures only take the unfavourable outcomes 

into consideration.  

On the other hand, although there is no explicit formulation for constructing the 

uncertainty set of the robust portfolio optimisation problems, researchers and 

practitioners usually follow the basic guideline to define the uncertainty set as centered 

on a point estimate with the level of robust 𝛿 denoting the robustness imposed on the 

portfolio optimisation problem. A natural question is whether we have chosen the most 

suitable statistical estimate for this centre point of the uncertainty set. In our empirical 
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study, we have only considered the maximum likelihood estimator for approximating 

the true value of the input parameter. However, it is well known that the maximum 

likelihood estimator may perform poorly in some circumstances (for example with a 

substantial proportion of outliers). Therefore, it is of interest to consider an uncertainty 

set based on various other statistical estimators and examine the robustness imposed on 

the portfolio optimisation problem. 

A further aspect that could be worth investigating more closely is the membership 

functions for translating the analysts’ recommendations. It is known that there is no 

unique formulation or approach to express properly the vague recommendations and one 

could only convert the investment forecasts based on one’s own judgement and 

perception regarding the recommendations. The procedure and the outcome of the 

translation have a great impact on the resulting optimal portfolios of the multi-analyst 

approach. Hence it is worth exploring further to figure out better alternatives for 

interpreting the analysts’ recommendations.  

Finally, the empirical study presented in this thesis applies the proposed multi-

analyst approaches in the Taiwanese stock market. As mentioned in Chapter 6, the stock 

market in Taiwan is controlled by the price limits system for avoiding extreme price 

movements, hence, preventing dramatic losses for investors. The Taiwanese stock 

market is recognised as one of the most restricted stock markets, due to these 

comparatively tight boundaries on the daily price movements. Given that there is a lack 

of empirical studies focusing on the applications of robust portfolio selection problems 

with advice from multiple analysts, the existing studies on robust optimisation problem 

rarely discuss the impact of external market systems on the performance of the robust 

optimisation model. Hence, in further empirical research it is worth investigating the 

robust multi-analyst portfolio selection approach both with and without the price limits 

system.   
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Appendix A 

Details of the Securities Brokerage Firms 

In this Appendix we provide details of the financial institutions selected for this 

research. As we discussed in Chapter 5, the stock market newsletters are collected from 

domestic securities brokerage firms, with their market share by total trading volume 

captured approximately at 30% in 2013 (see Figure A.1 for further details). The 

information regarding the securities brokerage firms considered for this research is 

detailed below. 

Figure A.1  Market Share of Taiwanese Securities Brokerage Firms 

Source: The TWSE Website. 

Note: This figure graphically shows the market share by total trading volume of the securities brokerage 

firms considered for this research. According to the Taiwan Stock Exchange Corporation, at the end of 

2013, Taiwan’s financial sector consisted of 87 financial institutions which provide brokerage services. 

There are 68 domestic financial institutions and 19 foreign bank subsidiaries. 

Firm AFirm B
Firm C

Firm D

Foreign Financial Institutions

Domestic Financial Institutions
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1) The first securities brokerage firm, A, is the subsidiary of a financial institution 

that has held the dominant position in the Taiwanese investment and banking 

industry by providing a full range of financial services, such as asset 

management, banking, futures, insurance, investment advisory services, 

investment trust, securities brokerage, and venture capital management. The 

leadership of this financial institution has been recognised by both local and 

foreign investors for more than a decade. Furthermore, instead of focusing only 

on Taiwan’s market, this financial group also sets up overseas subsidiaries and 

representative offices for providing cross–border financial services.  

2) The second securities brokerage firm, B, is a member of the second largest listed 

financial holding company in Taiwan. The key subsidiaries of this financial 

institution include asset management, national and international banks, futures, 

insurance and life insurance, securities brokerage firms, and venture capital 

management. Although this financial institution has a lower market share in the 

finance sector compared to the previous financial institution, it has been 

recognised as a profitable financial institution in Taiwan for the last five 

consecutive years.  

3) The third securities brokerage firm, C, belongs to a financial institution that 

offers services in some major areas of the Taiwanese finance sector. For instance, 

corporate finance management, domestic and foreign stock markets listing 

services, futures and securities brokerage, insurance planning and consulting, 

mergers and acquisition, and investment advisory and wealth management 

services to institutions and individual investors. Unlike the other two securities 

brokerage firms mentioned earlier, which belong to a financial group with 

banking and insurance services, this financial institution focuses more on 

providing management and brokerage services. 
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4) The fourth securities brokerage firm, D, is a financial services firm. In addition 

to the securities brokerage and financing services, it also offers a wide range of 

additional complementary services through its various subsidiaries, such as 

futures brokerage and futures-related businesses, insurance brokerage and 

consulting services, investment advisory and wealth management services, and 

venture capital management. Similar to firm C, securities brokerage firm D 

focuses more on the management and brokerage services.  
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Appendix B 

Test Results of the Portfolio Management with 

Equal Preference for the Analysts  

This Appendix graphically illustrates full set of test results for the multi-analyst 

approaches with equal credibility levels to analysts. Table B.1 summaries the investment 

strategies considered for the empirical examination of the multi-analyst approaches with 

equal credibility levels to analysts. 

Table B.1  List of Investment Strategies  

No. Abbreviation Model 

Asset allocation models developed in this research 

1 𝑭𝑴𝑽 Multi-analyst portfolio selection 

2 𝑹𝑬𝑯𝑷−𝑨 Robust multi-analyst portfolio selection of Type A investor  

3 𝑹𝑬𝑯𝑷−𝑩 Robust multi-analyst portfolio selection of Type B investor  

Asset allocation models from existing literature 

4 𝑷𝑴𝑽 Mean-variance portfolio selection  

5 𝑹𝑴𝑽−𝑨 Robust portfolio selection of Type A investor 

6 𝑹𝑴𝑽−𝑩 Robust portfolio selection of Type B investor 

7 𝟏/𝑵 Equally-weighted asset allocation 

Note: See Section 6.3 for further details of the chosen investment strategies. 
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B.1 Ex-Ante Expected Portfolio Performances 

The following figures illustrate the ex-ante expected portfolio performances of 

various investment strategies. Figure B.1 graphically compares the expected portfolio 

returns between various investment strategies for investment holding time frame 𝐷 =

5,10,15,20. Figure B.2 displays the expected risk adjusted returns under different risk 

aversion coefficients over different investment holding time frames. 

Figure B.1  Expected Portfolio Returns over Sample Period 

Note: This figure shows the expected portfolio returns of various investment strategies. Details of the 

results are contained in Table 6.3. 
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Figure B.2  Expected Risk Adjusted Returns under Different Risk Aversion 

Levels 
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Note: This figure shows the expected risk adjusted returns of various investment strategies. Details of the 

results are contained in Table 6.4. 

 

B.2 Ex-Post Realised Portfolio Performances 

Figure B.3 illustrates the total realised returns of robust portfolios, (𝑅𝐸𝐻𝑃) 

and  (𝑅𝑀𝑉), at risk aversion level 𝜆 = 0.5 for different levels of robustness over the 

sample period.  

Figure B.3  Realised Cumulative Returns of Robust Portfolios 
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Note: Panel (a) shows the case when holding investment for 5 days, where the differences in cumulative 

returns between the robust and the robust multi-analyst portfolio are 16.88% for Type A investor and 

24.13% for Type B investor. Panel (b) shows the case when holding investment for 10 days, where the 

differences in cumulative returns between the robust and the robust multi-analyst portfolio are 13.10% 

for Type A investor and 34.68% for Type B investor. Details of the results are contained in Table 6.5. 
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Note: Panel (c) shows the case when holding investment for 15 days, where the differences in cumulative 

returns between the robust and the robust multi-analyst portfolio are 14.87% for Type A investor and 

37.85% for Type B investor. Panel (d) shows the case when holding investment for 10 days, where the 

differences in cumulative returns between the robust and the robust multi-analyst portfolio are 12.75% 

for Type A investor and 28.40% for Type B investor. Details of the results are contained in Table 6.5. 
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B.3 Characteristics of the Portfolios 

The following figure graphically illustrates the impact of the desired robustness 

level and the duration of the investment holding period on portfolio weights for the 

multi-analyst approaches at 𝜆 = 0.5, where the multi-analyst portfolio (𝐹𝑀𝑉) is the 

robust multi-analyst portfolio with the desired robustness level 𝛿 = 0 and (𝑅𝐸𝐻𝑃−𝐵) 

is the robust multi-analyst portfolio with the desired robustness level 𝛿 = 1. Details of 

the results are contained in Table 6.7. 
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Figure B.4  The Ratio of Wealth Invested in the Recommended Stocks 
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(e) REHP-B for D=5 days 
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(h) REHP-B for D=20 days 


