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ABSTRACT 
Minimising joint torque is often used as an optimisation criterion when investigating 
human movement.  Alternatively, an aspect of performance may be chosen to be 
maximised when investigating sporting movements.  The aim of the study was to optimise 
the technique in the backward giant circle prior to a double layout somersault dismount 
from the high bar using various criteria to determine which best characterised the 
technique adopted by a gymnast.  Ten recorded gymnast trials were used to determine 
bar release parameters and the level of noise in the gymnast’s movements.  A computer 
simulation model of a gymnast and bar was used to optimise giant circle technique under 
three criteria: minimising joint torques, maximising the release window and maximising 
success in the presence of motor system noise.  Local and global optimisations of 
technique were performed using the three criteria starting from the average technique of 
the 10 recorded trials.  All global optimum solutions diverged from the gymnast’s 
technique.  The local optimum for maximising success in the presence of noise had a 
success rate comparable with the global optimum (98% vs. 100%, respectively). It is 
concluded that the gymnast’s technique is characterised by maximising success despite 
operating with motor system noise. 
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INTRODUCTION 

Minimising effort (joint torques) or energy has been used to describe the 
underlying technique of everyday activities such as walking (Ren, Jones & Howard, 
2007; Anderson & Pandy, 2001).  When optimising sporting movements minimising 
joint torque has also been used with varying degrees of success (Hiley & Yeadon, 
2012; Koschorreck & Mombaur, 2012; Yamasaki, Gotoh & Xin, 2010).  Wolpert 
(2007), however, proposed that maximising the likelihood of success at a task, 
despite the presence of noise within the motor system, was a more plausible 
explanation of technique in human movement.  Therefore, does an optimisation 
criterion based on maximising the likelihood of success in the presence of noise 
provide a better characterisation of the technique adopted by athletes than criteria 
based on minimising joint torque or maximising some other biomechanical 
descriptor?  

In order to maximise success, an understanding of the movement and a clear 
definition of success are required.  It has been demonstrated that in addition to 
strength, one of the limiting factors to producing angular momentum in backward 
giant circles (Figure 1 a & b) prior to a dismount (Figure 1 c) is the gymnast’s ability 
to time the release from the bar (Hiley & Yeadon, 2005).  The greater the angular 
momentum produced by the gymnast the smaller the release window became, where 
the release window was defined as the time interval for which the gymnast had 
sufficient linear and angular momentum to complete the dismount.  A suitably large 
release window is required otherwise the gymnast will be unable to time the release 
with sufficient accuracy.   
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Figure 1.  Graphics sequence of (a & b) one and a half backward giant circles preceding (c) a double 
layout somersault dismount from high bar. 

 
In addition to producing a suitably large release window and remaining within 

realistic strength limits, the backward giant circle technique must also be robust to 
small errors in timing the joint actions.  Optimal technique is often sensitive to small 
errors; therefore introducing small timing errors into optimal giant circle technique can 
lead to simulations with unrealistically small release windows (Hiley & Yeadon, 
2008).   It has been shown that the variability observed in a pointing task (errors in 
end-point location) was largely due to noise in the execution stage of the movement 
rather than errors in the localisation (estimation of initial conditions) and planning 
stages (van Beers, Haggard & Wolpert, 2004).  Given that human movement will 
always contain some level of variability, since there will always be inherent noise 
from the motor system (Bartlett, Wheat & Robins, 2007; Cohen & Sternad, 2009; 
Newell & Corcos, 1993), it would make sense if gymnasts developed robust 
techniques that produce viable release windows on every attempt.  Success in giant 
circles prior to a dismount would therefore be defined as having a sufficiently large 
release window, operating within realistic strength limits and being robust in the 
presence of motor system noise. 

More recently it has been demonstrated that the underlying strategy for 
gymnasts performing the upstart on the uneven bars may be explained by attempting 
to maximise success at the task despite the presence of noise in the gymnast’s 
movements (Hiley & Yeadon, 2013).  However, it is unclear whether maximising 
success can explain the technique used in more complex skills such as the giant 
circles performed prior to a double layout somersault dismount.   

The aim of the present study is to determine what optimisation criterion best 
characterises the technique adopted by a gymnast in the backward giant circles prior 
to release for a double layout dismount.  It is hypothesised that a criterion based on 
maximising success at the task despite the presence of noise from the motor system 
will provide a better description of the underlying technique compared to criteria 
based on minimising joint torque or maximising the release window.   
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METHODS 

Data collection 

One male gymnast (age 24 years, mass 70 kg, height 1.73 m) who competed 
internationally gave informed consent to participate in the study which was approved 
by the University’s Ethical Advisory Committee.  The gymnast performed 10 
successful double layout somersault dismounts from the high bar on to landing mats 
from 10 attempts which were captured using 15 Vicon MX13 cameras operating at 
300 Hz.  All trials were observed and approved by an International Brevet judge. Ten 
trials were chosen to provide a representative spread of the gymnast’s performances 
(James, 2004; Hamill, van Emmerik, Heiderscheit & Li, 1999).  Spherical reflective 
markers, 25 mm in diameter, were attached to the lateral side of the wrist, elbow, 
shoulder, hip, knee and ankle joint centres and toes on the left side of the body.  
Lateral offset measurements from each marker to the adjacent joint centre were 
recorded for subsequent location of the joint centres.  Additional markers were 
attached to each side of the gymnast's head (above the ear) and to the centre of the 
high bar.  Prior to data collection a volume centred on the high bar spanning 2 m x 5 
m x 5 m was wand calibrated using the motion analysis system.  The root mean 
squared reconstruction error for each camera was less than 1 mm.  Three-
dimensional marker coordinates were reconstructed and joint centre locations were 
determined using the measured offsets.  The data in each trial for the last 1.5 giant 
circles and the aerial phase of the dismount were analysed (Figure 1).  

An estimate of the level of noise within the gymnast’s joint angle time histories 
was determined from the measures of kinematic variability during the 10 high bar 
circles (Hiley, Zuevsky & Yeadon, 2013).  The temporal and spatial noise was 
defined as the smallest standard deviation at the eight turning points between flexion 
and extension at the shoulder and hip (i.e. four turning points at the shoulder and four 
at the hip) during the 1.5 giant circles before release (Figure 2a and Table 1). The 
lowest measure of variability was chosen to represent execution noise (van Beers et 
al., 2004).  Although kinematic variability does not arise solely from motor system 
noise (e.g. may contain variation due to feedback control and covariation), in tasks 
that require precise timing it has been shown that kinematic variability is minimised in 
the important actions (Broderick & Newell, 1999; Hiley et al., 2013).  If the gymnast 
has attempted to minimise kinematic variability then the measured values at the 
extrema (Hiley et al., 2013) will therefore have a large component due to noise 
(Cohen & Sternad, 2009). 

 
Table 1.  Standard deviations in the temporal and spatial dimensions at the extrema of the shoulder 

and hip time histories for the 10 double layout trials from Hiley et al. (2013) 

Standard  

deviation 

Hip 

Max 

①* 

Hip 

Min 

② 

Hip 

Max 

③ 

Hip 

Min 

④ 

Shld 

Max 

① 

Shld 

Min 

② 

Shld 

Max 

③ 

Shld 

Inflex
+
 

④ 

Temporal [ms] 14 10 8 8 11 19 8 15 

Spatial [°] 1 3 1 2 2 3 2 2 

 
Notes:  * numbers ① to ④ correspond to the same points in Figure 2 
 +

 the last turning point for the shoulder was an inflexion 
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Figure 2.  The joint angle history at the hip during the giant circles together with (a) the four extrema 
identified and (b) the method of transforming the splined data between consecutive 
extrema (black circle with white centres).  The envelope generated from 20 perturbed 
joint angle histories is shown in grey in (a). 

 
Simulation model 

In order to determine release window for each trial and optimise the gymnast’s 
technique a planar four-segment angle-driven model of a gymnast (comprising arm, 
torso, thigh and lower leg segments) and bar was used (Hiley & Yeadon, 2003a).  
The bar and the gymnast's shoulder structure were modelled as damped linear 
springs (Figure 3).  The spring at the shoulder represented the increase in length of 
the gymnast between the wrist and the hip.  In addition to the shoulder spring, the 
torso segment was allowed to lengthen as the shoulder elevation angle increased 
(Begon, Wieber & Yeadon, 2008). 
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Figure 3.  The four-segment gymnast - bar simulation model with damped springs representing bar 
and shoulder elasticity.  Definitions of the (a) rotation, (b) shoulder, (c) hip and (d) knee 
angles. 

 
Model parameters comprised segmental inertia data calculated from 

anthropometric measurements and Yeadon’s (1990a) geometric inertia model (Table 
2), stiffness and damping coefficients of the bar and shoulder springs, and the torso 
lengthening parameter were calculated using matching simulations.  The initial 
conditions comprised the initial displacement and velocity of the bar, initial angular 
velocity of the arm, and initial orientation of the arm.  Input to the model comprised 
the joint angle time histories of the shoulder, hip and knee in the form of quintic 
splines (Wood & Jennings, 1979).  Output from the model included the time histories 
of the horizontal and vertical bar displacements, the rotation angle (the angle 
between the upward vertical and the line from the neutral bar position to the model 
mass centre), the linear and angular momenta of the model about its mass centre, 
and the joint torque time histories.  The equations of motion were derived using 
Newton's Second Law and by taking moments about the neutral (unloaded) bar 
position and the segment mass centres. 

 
Table 2.  Segmental inertia parameters and T0 values used in the simulation model 

Segment Mass 

[kg] 

Length 

[m] 

MCD 

[m] 

MOI 

 [kg.m
2
] 

Joint 

action 

T0 

[Nm] 

Arm
+
 8.42 0.57 0.32 0.28 Shoulder flexion

†
 280 

Torso 36.42 0.52 0.17 1.77 Shoulder extension
†
 430 

Thigh
+
 16.68 0.40 0.17 0.24 Hip flexion

†
 370 

Leg
+
* 8.38 0.40 0.23 0.21 Hip extension

†
 496 

     Knee extension
†
 602 

     Knee flexion
†
 210 

 

Notes:  MCD is the distance of the segment mass centre from the joint centre 
nearer the bar, MOI is the moment of inertia about the segment mass 
centre and T0 is the maximum isometric torque 

   
+
 data for both limbs           

       * Leg refers to the shank and foot 

       
†  

data for both joints 
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Matching Simulations and Release Window 

For each of the 10 dismounts the release window was determined from a 
matching simulation using a previously described method (Hiley & Yeadon, 2003b).  
The matching procedure was used to produce a common set of model parameters 
for each trial (i.e. bar and gymnast spring stiffness and damping coefficients, torso 
lengthening parameter and adjustments to the segmental inertia parameters).  All 
matching simulations used the same set of model parameter values determined from 
concurrent matching optimisations, but with the initial conditions and joint angle time 
histories from the individual recorded performances.  The start and end of the release 
window was defined such that the normalised angular momentum, horizontal velocity 
of the mass centre and the subsequent time of flight lay within three standard 
deviations of the mean values obtained from the 10 trials.  The method of Yeadon 

(1990b) was used to determine the normalised angular momentum (straight 
somersaults per flight time) at the instant of release for each trial.       

The matching simulations were on average able to match the rotation angle to 
2°, the bar displacements to 0.01 m (root mean squared differences) and the linear 
and angular momenta at release to within 1% of the recorded trials (Figure 4).  The 
stiffness and damping coefficients of the bar (horizontal and vertical) and shoulder 
springs were 18222, 25279, and 28347 N/m and 28, 27, and 5467 Ns/m, 
respectively.  The range of release windows obtained from the matching simulations 
was 35 – 71 ms and the average combined joint torque at shoulder, hip and knee 
using equation 3 was 240 Nm (Table 3).  The shoulder hip and knee contributions to 
the average joint torque values were 63%, 28% and 9% respectively.  

 
Table 3. The flight characteristics and release windows determined from the 10 double layout 

performances 

Trial 
Flight 

time 

[s] 

Angular 

momentum* 

[ss] 

Travel
+
 

 

[m] 

Release 

window 

[ms] 

Average 

torque
†
 

[Nm] 

1 1.24 1.67 2.82 64 243 

2 1.25 1.65 2.84 64 232 

3 1.24 1.61 2.56 65 243 

4 1.24 1.63 2.71 45 236 

5 1.24 1.61 2.66 71 238 

6 1.24 1.62 2.84 57 246 

7 1.24 1.67 2.69 69 258 

8 1.22 1.59 2.55 58 236 

9 1.25 1.61 2.48 42 242 

10 1.24 1.61 2.57 35 226 

Mean 1.24 1.63 2.67 57 240 

Stdev 0.01 0.03 0.13 12 9 

*  normalised to straight somersaults per flight time 

+ horizontal distance of the mass centre from the bar on landing  
†
   average total joint torque at the shoulder, hip and knee for 

matching simulations based using equation 3 
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Figure 4.  An example of a typical matching simulation (solid lines) compared with recorded 

performances (crosses) for: (a) rotation angle and (b) bar displacement. 

 
 Optimisation 

Six optimisations were performed (three local and three global) to determine 
which criterion best characterised the technique used in the giant circles prior to 
release (i.e. minimising joint torque, maximising release window or maximising 
success in the presence of motor system noise).  All simulations started from a 
rotation angle of 90º (body horizontal), with initial angular velocity from the average 
trial, and ended once the rotation angle passed 630°.  The procedure used a 
parallelised genetic algorithm that was run on a high performance computer with 60 
processors (Carroll, 2001; van Soest & Casius, 2003).  In all optimisations the 
recommended optimisation algorithm tuning was used except for the selection of 
single point crossovers (Carroll, 2001).  Single point crossovers were chosen as this 
was deemed appropriate for the application, since sections of joint angle time 
histories could then be passed on to the offspring rather than just single parameter 
values. The optimisation algorithm manipulated the parameters defining the joint 
angle time histories at the shoulder, hip and knee.  The extremum (maximum and 
minimum) points in the mean joint angle time histories from the 10 recorded 
performances were used in the manipulation of these joint angle time histories 
(Figure 2b).  The average data set of each time history was transformed between 
consecutive extrema in both the time and angle dimensions (Figure 2b).  Any point (t, 
f) in the new data set (Figure 2b) could be calculated using transformations 1 and 2. 
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  (1) 
 

  (2) 
 

where ti and si are time parameters and fi and gi are angle parameters.  In each joint 
angle time history (shoulder, hip and knee) parameters si and gi for four extrema 
were varied by the optimisation algorithm (i.e. a total of 24 parameters for the three 
joints).  An interpolating quintic spline was then fitted to the transformed data set to 
allow the calculation of the first and second derivative data required to drive the 
simulation model.  The described method was used since it allowed more rapid 
changes between flexion and extension at a joint compared to the piecewise quintic 
function method used previously by the authors (Hiley & Yeadon, 2003a).  All joint 
angle histories were constrained using joint torque limits determined from isovelocity 
dynamometer measurements on the gymnast (Table 2) by fitting a function which 
expressed maximum voluntary torque in terms of joint angle and angular velocity 
(Forrester, Yeadon, King & Pain, 2011; King, Kong & Yeadon, 2009). 

The optimisations were performed in two sets: one where the bounds placed on 
the joint angle time history parameters were set close to the mean values to 
determine whether the gymnast’s technique occupied a local optimum and one 
where the bounds were set wide in order to find a global optimum.  In the first set of 
optimisations the bounds on the mean joint angle time history parameters were set to 
± three standard deviations (SD) of the kinematic variability found at each turning 
point in the recorded trials (Table 1).  In the second set of optimisations the bounds 
were set to ± 30° or ± 0.10 s from the mean angle and time parameters respectively.  
If an optimal solution in the second set reached a bound, the optimisation was 
repeated using the current solution as a starting point and a new set of bounds set at 
± 30° or ± 0.10 s.   

Within each of the two sets of optimisations three optimisation criteria were 
used.  The first criterion was based on minimising the mean total joint torque F at the 
shoulder, hip and knee throughout the simulation (equation 3).    

 (3) 
 

where T1, T2 and T3 are the joint torques at the shoulder, hip and knee respectively 
and i is the simulation integration step counter.  The simulation was also required to 
produce a release window within the mean of the 10 trials ± 3 SD to ensure that a 
double layout somersault was possible (Table 3).  The second criterion was based on 
maximising the size of the release window.  Simulations exceeding the joint torque 
limits were given a large penalty.  The third criterion was based on maximising the 
proportion of successful simulations despite operating in the presence of motor 
system noise.  A successful simulation was one which produced a release window 
within the mean of the 10 trials ± 3 SD and did not exceed the joint torque limits.  
During the third optimisation, the parameters defining the joint angle time histories of 
the shoulder, hip and knee were randomly perturbed, in both the time and angle 
dimension, to the level of the lowest kinematic variability measured in the gymnast 
performances (i.e. standard deviations of 8 ms and 1º).    Perturbations were added 
to the joint angle time history parameters using a random number generator with a 
normal distribution (Figure 2a), since the recorded deviations were normally 
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distributed.  For each set of joint angle parameters produced by the optimisation 
algorithm, 500 randomly perturbed simulations were performed.  Simulations were 
given a score of 1 for a successful simulation and 0 for an unsuccessful simulation, 
with the percentage of successful simulations out of 500 returned as the score for 
that set of parameters.   

The root mean squared difference between the mean recorded and optimal joint 
angle time histories was calculated for the shoulder, hip and knee angles for each of 
the six solutions.  In addition percentage success was assessed for each of the six 
optimal solutions using 500 randomly perturbed simulations, where success was 
defined as in the third optimisation criterion. 

 
RESULTS       

In the first set of local optimisations used to determine which criterion best 
characterised the gymnast’s technique, the first optimisation (minimise joint torque 
criterion) was able to reduce the joint torques by 25% at the shoulder, hip and knee 
from a combined average of 240 Nm in the average recorded trial (Table 3) to 180 
Nm while still producing an adequate release window.  The major contribution to 
reducing the joint torque came from the shoulder, accounting for 82% of the 
reduction (14% hip and 4% knee).  The second optimisation was able to increase the 
size of the release window from a maximum of 71 ms in the gymnast trials (Table 3) 
to 129 ms, an increase of 82%.  Over the 500 simulations used in each step of the 
third optimisation the solution produced 98% success despite the presence of noise 
in the joint angle time histories.   

In the second set of optimisations used to find global solutions: the joint torque 
criterion was able to reduce the combined average torques at the shoulder, hip and 
knee to 134 Nm, again the major contribution to reducing the joint torque came from 
the shoulder, accounting for 92% of the reduction (7% hip and 1% knee).  The 
release window criterion increased the window to 148 ms and the success criterion 
produced 100% success.  Joint angle time histories for the global solutions deviated 
from the average recorded performance (Figure 5). 

 
Table 4. Root mean squared differences in the joint angle time histories, bar displacements and rotation 

angle between the optimal solutions and the histories from the average recorded trial 

Optimisation/ 

Criterion 

Shoulder 

[°] 

Hip 

[°] 

Knee 

[°] 

Bar 

[m] 

Rot angle 

[°] 

Success 

[%] 

Local       

Min torque 7 6 5 0.01 1 21 

Max window 4 6 4 0.02 2 74 

Max success 4 4 3 0.01 2 98 

Global       

Min torque 19 20 8 0.02 4 12 

Max window 8 21 7 0.04 12 56 

Max success 8 11 5 0.02 3 100 

 
 
The root mean squared (RMS) differences of the joint angle histories, bar 

displacements and rotation angle between the average recorded trial and the optimal 
solutions were all smaller for the local optimisations compared to the global 
optimisations (Table 4).  The success of the six solutions ranged from 12% to 100% 
(Table 4).     
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Figure 5.  Shoulder, hip and knee joint angle time histories from the three local (black lines) and three 

global (dashed lines) optimal solutions for: (a) minimising joint torque, (b) maximising 
release window, and (c) maximising success in the presence of noise along with the 
average histories from the recorded performances (dotted lines).   

 
DISCUSSION 

The aim of the present study was to determine which optimisation criterion best 
characterised the technique adopted by an elite gymnast during giant circles prior to 
a dismount.  The three optimisation criteria were allowed to find both local and global 
optima.  In the case of minimising joint torque, the local optimisation reduced the 
average total joint torque by 25% and the global optimisation by 45%.  Although 
remaining within joint torque limits is an important constraint, it appears that the 
gymnast’s technique cannot be characterised by this criterion, since both the local 
and global optimisations were able to reduce the joint torques substantially.  When 
maximising the release window, the local optimisation was able to increase the 
window by 82% and the global optimisation by nearly 108% compared to the 
gymnast trials.  Again it would appear that in the 10 recorded trials the gymnast was 
not attempting to maximise his release window, since both the local and global 
optimisations were able to increase the size of the release window substantially.  
However, when maximising success in the presence of noise the local optimisation 
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was able to produce a 98% success rate, whilst the global optimisation produced a 
100% success rate which was only a small improvement over the local optimum.  It 
can therefore be concluded that the gymnast’s technique has the characteristic of 
maximising success, since a local optimisation, close to the gymnast’s technique, 
performed almost as well as a global optimisation.  These success rates are 
consistent with the gymnast’s performance of 10 successful dismounts from 10 
attempts.   

In the local optimum for maximising success, 2% of the dismounts were 
classified as unsuccessful due to an insufficiently large release window.  Closer 
inspection of why these simulations failed showed that in half of them the normalised 
angular momentum fell just outside the bounds defining a successful window and in 
the other half the travel in flight dropped below the lower bound.  Neither of these 
would have prevented a gymnast from completing a safe and successful dismount 
although the required changes in body shape may be penalised by judges in a 
competition. 

In order to investigate the maximising success criterion it was necessary to 
determine the release window for the gymnast trials. The average release window 
(57 ± 12 ms) obtained from the repeated trials was smaller than the average from the 
2000 Olympics high bar final (117 ± 26 ms from Hiley & Yeadon, 2003b).  The reason 
for this is that the ranges of release parameters defining the start and end of the 
release window for the individual gymnast in the present study were smaller than the 
ranges of the Olympic performances since these were determined from a group of 
eight gymnasts.   

The aim of the study was not to find a composite criterion that accurately 
matched the joint angle time histories produced by the gymnast.  If this had been the 
case an inverse optimal control approach could have been used to find the 
appropriate parameters and weightings which would produce a close match to the 
recorded performances (Mombaur, Truong & Laumond, 2010).  When such an 
approach is applied to recreating human movement patterns, components of the 
criterion are often related to producing smooth movements, which are a feature of 
human movement (Mombaur et al., 2010).  Components within optimisation criteria 
which minimise joint torque, torque change, or jerk are often required to cope with 
inadequate or absent representations of human muscle and its innervation.  In the 
present study the joint angle time histories were generated from human trajectories 
which were constrained by torque-angle-angular velocity profiles derived from 
measurements taken from the gymnast.  In other words, by using the described 
methods, solutions will incorporate features associated with minimum torque change 
and jerk since they are the result of the mechanical constraints placed on the system 
by the properties of human muscle (Nakano, Imamizu, Osu, Uno, Gomi, Yoshioka & 
Kawato, 1999).  By modelling the structures responsible for the smooth nature of 
human movement the present study was able to investigate the overall, higher 
control strategy adopted by the gymnast.   

The origin of the noise component of the kinematic variability is likely to be a 
result of noise within the neural system (Harris & Wolpert, 1998), therefore it could be 
argued that a muscle-driven or torque-driven simulation model would have been 
more appropriate to address the current problem.  However, by using an angle-driven 
model the noise added to the simulation was able to be based on measured values, 
both in magnitude and type of distribution, whereas determining the noise level and 
type of noise distribution in the many components of the neural system would be 
more problematic.  Despite the model being termed “angle-driven”, specifying the 
joint angle time histories specifies the joint angular accelerations.  Since it is a 
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mechanical system this also specifies the joint torques used by the model.  Whatever 
the distribution of noise at the motor command level and within the motor system 
(which is unknown) the resulting noise at the kinematic level was found to be 
normally distributed (Hiley et al., 2013).  Therefore, adding the noise at the kinematic 
level results in the torques required to have produced the perturbed movements.   

The local optimisation performed in the presence of noise demonstrated that a 
solution space for maximising success lay close to the gymnast’s technique.  Nearly 
all of the 10 recorded trials fell within the envelope generated by adding three 
standard deviations of the kinematic variability determined from the recorded 
performances (Table 1) to each turning point of the local optimal solution (Figure 6).  
It may therefore be argued that the local optimal technique for maximising success 
and the gymnast’s technique have a common solution space and that maximising 
success characterises the gymnast’s technique. The fact that the gymnast’s 
performances lie within a solution space defined by maximising success is consistent 
with Wolpert’s (2007) hypothesis regarding the underlying strategy adopted for 
human movement.  

 

 
 
Figure 6.  The (a) shoulder and (b) hip joint angle time histories from the 10 recorded performances 

(grey lines) along with the envelope generated by adding noise equivalent to three 
standard deviations of that reported kinematic movement variability in the actual 
performances (Table 1) at each turning point to the local optimal solution for maximising 
success in the presence of noise. 

 

All six optimal solutions were tested to see how robust the techniques were (i.e. 
the success rate in 500 perturbed simulations was determined).  Minimising torque or 
maximising release window in the absence of noise gave optimum solutions with 
poor success rates whereas optimising for success gave optimum solutions with 
excellent success rates (Table 4).  Although it would be expected that the optimal 
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solutions for maximising success would perform better on this aspect than the other 
two, the results demonstrate that, unless coping with the noise resulting from the 
motor system is accounted for within the optimisation procedure, solutions are not 
automatically robust to such noise (Table 4).  Since human movement will always 
contain noise (Bartlett et al., 2007; Cohen & Sternad, 2009) it is likely that coping with 
its effects are incorporated in the movement strategies adopted by humans (Harris & 
Wolpert, 1998; Wolpert, 2007).  Therefore, coping with noise should be included in 
optimisations if human-like solutions are to be found. 

Ultimately, optimising for success determines the solution space defined by the 
constraints placed on the system.  If the task is simple, that is, if it only has weak 
constraints, the solution space may be large (i.e. repeated success can be achieved 
with a number of techniques) and so the preferred technique might well be to adopt a 
minimal effort or energy strategy (e.g. walking).  If the task is more complex, such as 
the double layout dismount (where the gymnast must remain within strength and 
anatomical limits, satisfy the release window requirements and have a technique that 
is insensitive to the noise resulting from the motor system) it might be that the 
solution space is so small that it effectively defines the gymnast’s technique.   
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