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Abstract 
Fracture on bimaterial interfaces is an important consideration in the design and application of 

composite materials and structures. It has, however, proved an extremely challenging problem 

for many decades to obtain an analytical solution for the complex stress intensity factors (SIFs) 

and the crack extension size-dependent energy release rates (ERRs), based on 2D elasticity. This 

work reports such an analytical solution for brittle interfacial cracking between two dissimilar 

elastic layers. The solution is achieved by developing two types of pure fracture modes and two 

powerful mathematical techniques. The two types of pure fracture modes are a SIF type and a 

load type. The two mathematical techniques are a shifting technique and an orthogonal pure 

mode technique. Overall, excellent agreement is observed between the analytical solutions and 

numerical simulations by using the finite element method (FEM). This paper reports the 

analytical development of the work. The numerical verification using the FEM is reported in Part 

2 by Harvey, Wood and Wang (2015). 
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Nomenclature 

a  crack length in a DCB 

b  width of a DCB 

nD , sD  relative interfacial opening displacement and shear displacement 

1E , 2E  Young’s modulus of upper and lower beams 

E  effective Young’s modulus 

G , IG , IIG  total, mode I and mode II ERRs 

1h , 2h , h  thicknesses of upper, lower and intact beams 

IK , IIK  real and imaginary parts of the complex stress intensity factor 

k  Kolosov constant 

1M , 2M  DCB tip bending moments on upper and lower beams 

BM1 , BM 2 , BM  crack tip bending moments on upper, lower and intact beams 

1N , 2N  DCB tip axial forces on upper and lower beams 

BN1 , BN2 , BN  crack tip axial forces on upper, lower and intact beams 

r  radius coordinate centered on crack tip 

 

iβ , iβ ′  load-type pure mode II modes (with 3,2,1=i ) 

Kβ , Kβ ′  SIF-type pure mode II modes 

Kβ
~ , Kθ

~  approximate SIF-type pure mode II and pure mode I modes 

γ  thickness ratio, 12 hh=γ  

aδ  crack extension size 

ε  bimaterial mismatch coefficient 

η  Young’s modulus ratio, 12 EE=η  

iθ , iθ ′  load-type pure mode I modes (with 3,2,1=i ) 

Kθ , Kθ ′  SIF-type pure mode I modes 

1µ , 2µ  shear modulus of upper and lower beams 

1ν , 2ν  Poisson’s ratio of upper and lower beams 

nσ , sτ  interfacial opening stress and shear stress 
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DCB double cantilever beam 

ERR energy release rate 

FEM finite element method 

SIF stress intensity factor 

VCCT virtual crack closure technique 

1. Introduction 

Bimaterials are commonly found in both natural and artificial products. Examples include skin 

and tissue in biological bodies, painted metal in vehicle bodies, and thermal barrier coatings in 

gas turbine engines, among many others. Fracture on bimaterial interfaces remains a very 

important and challenging mechanics problem today. 

Williams’ pioneering work [1] discovered the oscillatory singularities in the elastic field 

around the crack tip on a bimaterial interface. Williams’ work [1] is usually called the oscillatory 

model. Subsequently, work by Erdogan [2,3] and Rice and Sih [4] verified the presence of these 

oscillatory singularities; however, England’s work [5] showed that the oscillation is physically 

inadmissible since it causes the upper and lower surfaces of the crack to wrinkle and overlap near 

to the crack tip. Then, in a series of work by Comninou [6–8], the inadmissible oscillatory 

singularities and the ensuing material interpenetration were eliminated by assuming a small 

frictionless contact zone near the crack tip. Comninou’s work [6–8] is therefore usually called the 

contact model. Based on the contact model [6–8], Gautesen and Dundurs [9,10] and Gautesen 

[11] developed analytical theories for calculating physical quantities such as the contact zone size 

and the interface tractions. 

It is now still an open question as to which model more closely represents the reality. Ref. [12] 

gives some detailed comparisons of near crack tip stress, contact zone size and oscillation zone 

size between the two models. Sun and Qian [12] and Rice [13] argue that the oscillatory model [1] 

does capture the essential stress state near the crack tip when the contact zone size is much 

smaller than the crack length. This may partially explain why the oscillatory model [1] appears to 

be more commonly accepted among researchers. 

The oscillatory model, however, results in a complex stress intensity factor (SIF), various 

forms of which are given in Refs. [4,12,14]. This complex SIF gives rise to fundamental 

differences between cracks on bimaterial interfaces and interfacial cracks between similar 

materials (which possess a real SIF), and presents two major challenges that must be solved in 

order to obtain analytical solutions for IK  and IIK : (1) In the case of interfacial cracks between 
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similar materials, the energy release rates (ERRs), IG  and IIG , are each related to the 

corresponding SIF, IK  or IIK ; however, in the case of cracks on bimaterial interfaces, IG  and 

IIG  are each coupled with both IK  and IIK  together. The first challenge is to reveal the 

mechanical meaning of this coupling. (2) In the case of interfacial cracks between similar 

materials, both the total ERR G  and its partition into IG  and IIG  are independent of the crack 

extension size or the finite element method (FEM) mesh size; however, in the case of cracks on 

bimaterial interfaces, the individual ERRs, IG  and IIG , vary with crack extension size or FEM 

mesh size, although the total ERR G  remains constant. The second challenge is to accurately 

determine IG  and IIG  analytically for a certain crack extension size. 

These two challenges have been preventing researchers from obtaining analytical solutions for 

IG , IIG , IK  and IIK  for decades. Refs. [12,15–19] use numerical methods to find IG  and IIG . 

Ref. [20] relies on inconvenient discrete parameters to calculate IK  and IIK  that have been 

determined numerically. It is still widely used to study bimaterial interfacial fractures [21–23] 

because of the lack of better alternatives. Also, some studies simply ignore the material mismatch 

altogether in order to avoid using these inconvenient discrete parameters. An improvement over 

the discrete parameters in Ref. [20] has been made in Ref. [24] by using continuous parameter 

curves obtained by interpolating FEM results. The applicability of these curves is, however, 

limited by the range of thickness ratios and restricted loading conditions. 

This work aims to present a complete analytical solution to the problem. To address the first 

of the challenges mentioned above, the coupling between the ERRs, IG  and IIG , and the SIFs, 

IK  and IIK , is studied by using the authors’ orthogonal pure mode methodology [25–34] and 

the fundamental mechanical meaning of the coupling is revealed. The second challenge is then 

overcome by using two powerful mathematical techniques: The first technique is developed in 

this work and is called the shifting technique; the second technique again makes use of the 

authors’ orthogonal pure mode methodology [25–34]. Accurate analytical solutions are achieved 

for the crack extension size-independent SIFs, IK  and IIK , and the crack extension size-

dependent ERRs, IG  and IIG . The work is reported in two parts: first, the analytical 

development, and second, the numerical verification. This paper contains the Part 1. Part 2 is 

reported in Ref. [35]. 

Before presenting the work, it may be useful to give the following notes. Recently, Wang and 

Harvey and their colleagues [25–34] have developed analytical mixed-mode partition theories for 

one-dimensional delamination in laminated composite beams and plates by using a powerful 
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methodology, which is fundamentally different from the conventional ones. It has been shown 

that Wang and Harvey’s Euler beam mixed-mode partition theory gives excellent fracture 

toughness predictions for delamination in generally laminated composite beams [29,34] by using 

thorough and comprehensive experimental test data [36-43]. In contrast, the 2D elasticity-based 

mixed-mode partition theory [33,44] gives poor predictions. The very latest study [45] shows 

that for buckling driven delamination, the Euler beam mixed-mode partition theory also gives 

more accurate predictions of fracture toughness than the 2D elasticity-based partition theory 

does. This is because the brittle fracture propagation is governed by global ERR partitions. 

Readers are referred to Refs. [29,34] for detailed explanations. The finite fracture mechanics 

approach [46] is also helpful and complements the explanations. It is still unknown, however, 

whether the Euler beam mixed-mode partition theory governs brittle fracture in other loading 

conditions such as fatigue loading, thermal loading, etc. It is therefore still very necessary to 

develop mixed-mode partition theories based on 2D elasticity in order to provide a complete set 

of tools for the study of interfacial fractures between dissimilar materials and this is the 

motivation of the present work. 

2. Analytical development 

2.1. Interfacial stresses ahead of the crack tip 

Fig. 1a shows a bimaterial double cantilever beam (DCB) with its material properties, 

geometry and loading conditions. The Young’s modulus, shear modulus and Poisson’s ratio of 

beam i  are denoted by iE , iµ , and iν  respectively (with 2,1=i ). The interfacial opening stress 

and shear stress ahead of the crack tip, nσ  and sτ , can be expressed in a combined complex form 

as [20] 

 ( ) ε

π
τσ iIII

sn r
r

iKKi
2
+

=+  (1) 

or in individual real form as 

 ( )[ ] ( )[ ]{ }rKrK
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where r  is the radius coordinate centered on crack tip. The signs of nσ  and sτ  are positive in the 

directions shown in Fig. 1b. In Eqs. (1), (2) and (3), the bimaterial constant ε  is defined as 
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where the Kolosov constant ik  (with 2,1=i ) is defined as iik ν43−= for plane strain and 

( ) ( )iiik νν +−= 13  for plane stress. It is easy to verify that when 21 νν =  then ( ) ( )ηεηε −=−1  

where 12 EE=η  is the Young’s modulus ratio. 

2.2. Relative interfacial displacements behind the crack tip 

Based on Refs. [12,15], the relative interfacial opening displacement behind the crack tip nD  

and the relative interfacial shear displacement behind the crack tip sD , of the upper beam 1 with 

respect to the lower beam 2, can be expressed in individual real form as 
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where the signs of nD  and sD  are consistent with the signs of the interfacial stresses shown in 

Fig. 1b, and 
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Note that 1~~
−=KKβθ  due to pure mode orthogonality which is discussed later in Section 2.3. 

Also note that ( ) ( )εθεθ KK
~~

−=−  and ( ) ( )εβεβ KK
~~

−=−  due to physical symmetry, which 

become ( ) ( )ηθηθ KK
~~ 1 −=−  and ( ) ( )ηβηβ KK

~~ 1 −=−  when 21 νν = . It is seen from Eqs. (2), (3), (5) 

and (6) that the interfacial stresses and the relative interfacial displacements are out of phase by 

ξ  because of the bimaterial mismatch constant ε . The profound mechanical meaning of this 

phase difference will be shown in next section for ERR partitions. 

2.3. Partitioning the ERR G  using pure modes in terms of IK  and IIK  

The relationships between the ERRs, IG  and IIG , and the SIFs, IK  and IIK , are traditionally 

obtained by using the virtual crack closure technique (VCCT). The following relationships were 

originally derived in Refs. [12,15] using the VCCT, but they are written here in a different form 

and also use the SIFs in Eq. (1) [20] for more convenient calculations: 
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The individual ERRs, IG  and IIG , can then be written as 
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The notation B  represents the complex modulus of B . The gamma function is represented by 

Γ , and the crack extension size by aδ . Eq. (11) shows that the total ERR G  is independent of 

aδ , but Eqs. (12) to (14) show that the individual ERRs, IG  and IIG , are dependent on aδ . By 

solving Eqs. (11) and (12) together, 2
IK  can be expressed as 

 ( ) ( ) ( )( )[ ]2/12222 sincoscosh2
ddddI GCGGCG

D
K −±+= ρρ

π
πε  (18) 

where 

 ( ) ( ) ( )[ ]aaB
Cd 21coscosh4 2 δξπε

π
+

=  (19) 

Note that dC  is close to 1. Eq. (18) gives two values for 2
IK  if 0≠ε , denoted here by ( )12

IK  

and ( )22
IK . The corresponding two values of 2

IIK  are ( )12
IIK  and ( )22

IIK  respectively and they 

can be obtained by using Eq. (11). The four pairs of solutions for IK  and IIK , denoted by 1−IK  

to 4−IK  and 1−IIK  to 4−IIK  respectively, can be found by using Eq. (12). From Eq. (12), we have 
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which has two values, ( )1III KK  and ( )2III KK , based on the two pairs of 2
IK  and 2

IIK . If 

( ) 01 >III KK  then 

 ( )12
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Similarly, if ( ) 02 >III KK  then 
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Note that if 0=ε  then 0=ρ  and the four pairs of solutions for IK  and IIK  can be easily 

calculated using Eqs. (11) and (18). In all cases, however, there will only be one mechanically 

admissible pair for a given loading condition, from among the complete set of mathematical 

solutions for IK  and IIK . FEM simulations were used in Ref. [12] to determine this pair. In this 

work, a method is devised to guide the selection of the correct pair by purely analytical means. 

In the case of interfacial cracks between similar materials, that is, when the material mismatch 

coefficient 0=ε , the ERRs, IG  and IIG , are each related to the corresponding SIF, IK  or IIK ; 

however, in the case of cracks on bimaterial interfaces, that is, when 0≠ε , IG  and IIG  are each 

coupled with both IK  and IIK  together, as shown by Eqs. (13) and (14). What is the mechanical 

meaning of the coupling? In Wang and Harvey’s [25–34] previous work, a powerful orthogonal 

pure mode technique has been developed for partitioning mixed-mode fractures. Orthogonal pure 

modes are derived in terms of the applied crack tip forces and moments. Here, it is expected that 

pure modes also exist in terms of the SIFs, IK  and IIK , because SIFs can be considered as 

alternative form of load. Based on this mechanical understanding, and by writing the pure modes 

in terms of the SIFs, IK  and IIK , the total ERR G  in Eq. (11), is partitioned as 

 
( )( )( )( )IIKIIIKI

KK
I KKKKDG 11

111cosh4
−−

−−
′−−

′+
= ββ

ββπε
π  (25) 

 
( )( )( )( )IIKIIIKI

KK
II KKKKDG 11

111cosh4
−−

−−
′−−

′+
= θθ

θθπε
π  (26) 

From Eq. (26) it is seen that when IKII KK θ=  then 0=IIG . The relationship, IKII KK θ= , 

produces a pure mode I Kθ  fracture. Also, from Eq. (26), when IKII KK θ ′=  then 0=IIG . The 

relationship IKII KK θ ′=  produces a pure mode I Kθ ′  fracture. The physical meanings of these two 

pure mode I modes are zero effective relative crack tip shear displacement and zero effective 

crack tip shear force respectively. When the bimaterial mismatch constant 0≠ε , it is seen from 

Eqs. (2), (3), (5) and (6) that the variations of interfacial stresses and the relative interfacial 

displacements are out of phase by ξ . This causes KK θθ ′≠  and leads to two pure mode I modes. 

Similarly, from Eq. (25) it is seen that when IKII KK β=  then 0=IG . The relationship, 

IKII KK β= , produces a pure mode II Kβ  fracture. Also, from Eq. (25), when IKII KK β ′=  then 

0=IG . The relationship IKII KK β ′=  produces a pure mode II Kβ ′  fracture. The physical 

meanings of these two pure mode II modes are zero effective crack tip opening force and zero 
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effective crack tip relative opening displacement respectively. Generally, KK ββ ′≠ and there are 

two pure mode II modes. 

These four pure modes, Kθ , Kθ ′ , Kβ  and Kβ ′ , form two sets of orthogonal pure modes. The 

first orthogonal set is ( )KK βθ , , and the second orthogonal set is ( )KK βθ ′′ , . Taking the ( )KK βθ ,  set 

as an example, here, orthogonal means that 

 ( ) 0
1

10
01

1 =
















K
K β

θ  (27) 

where the square matrix is the coefficient matrix of the total ERR G , given in Eq. (11). 

Obviously, 1−=KKβθ . Similarly, 1−=′′ KKβθ . One important consequence of the existence of 

two sets of pure modes is that negative IG  or IIG  can occur (similarly, so can GGI >  or 

GGII > ) as seen from Eqs. (25) and (26). Note that the total ERR G  is still non-negative-

definite. The situation here is very similar to Wang and Harvey’s [25–34] Euler beam partition 

theory for mixed-mode fractures, in which there are also two sets of pure modes, but which are 

caused by the ‘global’ nature of the partition (i.e. the Euler beam partition is equivalent to the 

elasticity-based partition calculated over the entire region that is mechanically affected by the 

crack tip). Here, however, the two sets of pure modes are caused by the out-of-phase oscillation 

of the relative displacements and stresses near to crack tip, which are ‘local’ in nature. By letting 

0=IIG  and 0=IG  in Eqs. (14) and (13), respectively, the pure modes are found to be 

 
( ) ( )[ ]

( ) ( )[ ]







>+



 −−

<+



 −+

=
0 ifcos1sin

0 ifcos1sin

2

2

ερρ

ερρ
θ

dd

dd

K
CC

CC
 (28) 

 
( ) ( )[ ]

( ) ( )[ ]







>+



 −+

<+



 −−

=′
0 ifcos1sin

0 ifcos1sin

2

2

ερρ

ερρ
θ

dd

dd

K
CC

CC
 (29) 

 
( ) ( )[ ]

( ) ( )[ ]







>+



 −−−

<+



 −+−

=
0 ifcos1sin

0 ifcos1sin

2

2

ερρ

ερρ
β

dd

dd

K
CC

CC
 (30) 

 
( ) ( )[ ]

( ) ( )[ ]







>+



 −+−

<+



 −−−

=′
0 ifcos1sin

0 ifcos1sin

2

2

ερρ

ερρ
β

dd

dd

K
CC

CC
 (31) 



11 

Note that ( ) ( )εθεθ KK −=− , ( ) ( )εθεθ KK ′−=−′ , ( ) ( )εβεβ KK −=−  and ( ) ( )εβεβ KK ′−=−′  due 

to physical symmetry, which become ( ) ( )1−−= ηθηθ KK , ( ) ( )1−′−=′ ηθηθ KK , ( ) ( )ηβηβ KK −=−1  

and ( ) ( )ηβηβ KK ′−=′ −1  when 21 νν = . 

It is now clear that the mechanical meaning of the coupling between the ERRs, IG  and IIG , 

and the SIFs, IK  and IIK , is the existence of two sets of orthogonal pure modes, ( )KK βθ ,  and 

( )KK βθ ′′ , . Based on this understanding and the partition given by Eqs. (25) and (26), a method is 

now devised to guide the selection of the mechanically admissible SIF pair, IK  and IIK  by 

purely analytical means. The idea comes from the fact that when the bimaterial mismatch 

constant ε  is not large, the two pure mode I modes, Kθ  and Kθ ′ , are close to each other. This is 

also true for the two pure mode II modes, Kβ  and Kβ ′ . It is therefore reasonable to expect that 

middle values between these two pure modes are good approximations. Using Eq. (6) and the 

condition ( ) 0=aDs δ  gives the approximate pure mode I condition relationship, 

 IKII KK θ~=  (32) 

The variation of Kθ , Kθ ′  and Kθ
~  with respect to aδ  is shown in Fig. 2 for different values of the 

bimaterial mismatch constant ε . As expected, Kθ
~  is close to Kθ  for all values of aδ  and ε , and 

is between Kθ  and Kθ ′ , which demonstrates that Kθ
~  is a good approximation. 

Similarly, using Eq. (5) and the condition 0)( =aDn δ  gives the approximate pure mode II 

relationship, 

 IKII KK β~′=  (33) 

Note that in Eq. (33), Kβ
~′  is used in place of the Kβ

~  in Eq. (5) for consistency with the 

discussion above regarding Eqs. (25) and (26), where Kθ  and Kβ ′  give the values of III KK  

required for zero effective relative displacements. Here Kθ
~  and Kβ

~′  give the values of III KK  

required for zero relative displacements at ax δ= . It is easy to show that Kθ
~  and Kβ

~′  are 

orthogonal to each other, that is, 

 ( ) 0~
1

10
01~1 =








′









K
K β

θ  (34) 
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Physically though, Kθ
~  is orthogonal to Kβ

~ , as indicated by Eq. (27) and also as explained in 

Refs. [25–34]. Therefore Eq. (34) implies that KK ββ ~~
=′  and consequently that KK θθ ~~

=′ . It is 

easy to validate this from Eq. (1) by showing that ( ) 0
0

== ∫
a

nn draF
δ
σδ  when ( ) 0=aDn δ  and 

that ( ) 0
0

== ∫
a

ss draF
δ
τδ  when ( ) 0=aDs δ . Therefore, the approximate pure mode sets, ( )KK βθ ~,~  

and ( )KK βθ ′′ ~,~ , coincide with each other and 1~~
−=KKβθ  from Eq. (34). An approximate partition 

is then obtained as 

 
( )( )( )21

2

~
~1cosh4 IIKI

K
I KKDG −

− −
+

= β
βπε

π  (35) 

 
( )( )( )21

2

~
~1cosh4 IIKI

K
II KKDG −

− −
+

= θ
θπε

π  (36) 

From Eq. (35), 

 21 ~1~ −− +±=− KIIIKI GKK ββ  (37) 

where 

 ( )
π
πε

D
GG I

I
cosh4

=  (38) 

Eq. (5) shows that ( ) ( )( )[ ] nnIIKI SaDKK ≡−=− − ξδεβ lncossgn~sgn 1 . That is, 

 21 ~1~ −− +=− KInIIKI GSKK ββ  (39) 

It is seen that as long as the sign of nD  is known, then the sign of ( )IIKI KK 1~ −− β  in Eq. (37) is 

also known. Note that ( )nDsgn  will be determined in the next section. Similarly, from Eq. (36), 

 21 ~1~ −− +±=− KIIIIKI GKK θθ  (40) 

where 

 ( )
π
πε

D
GG II

II
cosh4

=  (41) 

Eq. (6) shows that ( ) ( )( )[ ] ssIIKI SaDKK ≡−=− − ξδεθ lnsinsgn~sgn 1 . That is, 

 21 ~1~ −− +=− KIIsIIKI GSKK θθ  (42) 
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It is seen that as long as the sign of sD  is known, then the sign of ( )IIKI KK 1~ −−θ  in Eq. (40) is 

known. Note that ( )sDsgn  will be determined in next section. Finally, when the ERRs, IG  and 

IIG , are known, a unique pair of approximate SIFs, IK  and IIK , can be determined from Eqs. 

(39) and (42), as follows: 
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This approximate pair of SIFs, IK  and IIK , from Eqs. (43) and (44), should be used to guide the 

choice of the one admissible pair of SIFs, IK  and IIK , from Eqs. (21) to (24). 

It can now be concluded that the first challenge, stated in the Introduction, has been overcome. 

Now, in the following development, the aim is to overcome the second challenge. 

2.4. Partitioning the ERR G  using pure modes in terms of the crack tip loads 

As seen earlier, the SIFs for rigid bimaterial interfaces being complex implies that the 

interfacial stresses ahead of the crack tip are out of phase with the relative interfacial 

displacements behind the crack tip. Therefore, two sets of orthogonal pure modes must exist. 

Based on the authors’ previous work [25–34], the ERR partitions must be in the form, 
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where Ic  and IIc  are given in Appendix A, and ( )ii βθ ,  and ( )ii βθ ′′,  (with 3,2,1=i ) represent 

the two sets of orthogonal pure modes. Note that both sets of modes depend on the crack 

extension size aδ . Fig. 3 shows the variation of 1θ  and 1θ ′ , as determined from 2D FEM 
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simulations using interfacial point springs [47,48,49], with respect to aδ  for different values of 

the bimaterial mismatch constant ε . Three stages are seen. In the first stage, aδ  is large and 1θ  

and 1θ ′  are separated from each other for all the values of ε . This is caused by the global nature 

of the partition when aδ  is large. This behavior is described by Wang and Harvey’s Euler beam 

partition theory for mixed-mode fractures [25–34]. In the second stage, aδ  is small and 1θ  and 

1θ ′  approach to each other for all the values of ε . This is due to the diminishing global nature of 

the partition as aδ  reduces in size. In all cases, 1θ  and 1θ ′  are coincident at approximately 

05.0=aδ . Note from Fig. 2 that the coincidence of 1θ  and 1θ ′  does not result in the coincidence 

of Kθ  and Kθ ′ . It is also worth noting that after the coincidence 1θ  and 1θ ′ , (1) for 0=ε they 

remain coincident and converged, and (2) for 0≠ε  they remain coincident for a certain range of 

aδ  but not converged. In the third stage, aδ  is extremely small and 1θ  and 1θ ′  remain converged 

for the case where 0=ε  but otherwise diverge away from each other. This is due to the 

oscillation of the interfacial stresses and relative interfacial displacements near to the crack tip. In 

the second stage, where the two sets of pure modes, ( )ii βθ ,  and ( )ii βθ ′′, , coincide with each 

other, the partitions become 
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from which the signs of the relative interfacial opening and shear displacements, nD  and sD , are 

then obtained as 
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Note that in most cases, 1θ  and 1β  are negative and positive respectively, in which the second 

solutions in Eqs. (49) and (50) are the correct choices. For some extreme cases however, namely 

where 1<<η  and 1>>γ , and where 1>>η  and 1<<γ , 1θ  and 1β  can become positive and 

negative respectively, and the first solutions in Eqs. (49) and (50) become the correct choices. A 

more detailed explanation will be given in Section 2.5.1. Also note the reversal of the sign in Eq. 

(50), which is due to the different directions of sD  in Fig. 1b and in Refs. [25–34]. Eqs. (49) and 

(50) now allow the evaluation of nS  and sS  in Eqs. (39) and (42). 

2.5. Determining the ERRs, IG  and IIG  

It is seen either from Eq. (18), or from Eqs. (43) and (44), that IK  and IIK  can be determined 

if IG  and IIG  are known first. A powerful methodology has been developed in the authors’ 

previous work [25–34] for mixed-mode partitions based on orthogonal pure modes. Once one 

pure mode has been found—by analytical, numerical or experimental means—the other pure 

modes can be determined analytically by using the orthogonality property between them. The 

ERRs, IG  and IIG , for a general loading condition can then be calculated by using these pure 

modes. Readers are referred to Refs. [25–34] for a detailed description of the methodology, 

which is also used here. 

The methodology starts by considering the bimaterial DCB shown in Fig. 1a but with only the 

two crack tip bending moments, BM 1  and BM 2 , and no other loads. The aim is to find the pure 

mode I relationship between these crack tip bending moments, that is, to find 1θ  in the 

relationship BB MM 112 θ= . Note that 1θ  must be a function of the thickness ratio γ , the modulus 

ratio η  and Poisson’s ratio ν . In many engineering contexts, the Poisson’s ratios of the top and 

bottom layers, 1ν  and 2ν , are close to each other [44], that is, 21 νν ≈ . Therefore in the 

following, ννν == 21  is assumed. Also it is worth nothing that in many of these cases 31≈ν  

[44] although the assumption is not required in this work. Furthermore, since 2D-elastic 

bimaterial problems depend only on the two Dundurs parameters [44], for a given modulus ratio 

η , a single equivalent Poisson’s ratio for both layers combined can be found that gives the same 

values of the Dundurs parameters. It is anticipated that this will allow cases where 21 νν ≠  to be 

considered using theory presented in this paper. More details on this will be reported in a future 

paper by the authors. 
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Because of the violent oscillation of interfacial stresses near to the crack tip in Eqs. (1) to (3), 

the value of 1θ  is crack extension size-dependent or FEM mesh size-dependent. In the following, 

an analytical 1θ  is found for a crack extension size of 05.0=aδ  at which it is seen from Fig. 3 

that 1θ  and 1θ′  approximately coincide. This is achieved by considering the ERR partition GGI  

based on the crack extension size 05.0=aδ  with the loading condition 012 =BB MM  versus the 

modulus ratio η  for different thickness ratios γ  and Poisson’s ratios ν . 2D FEM simulation 

results are presented for these loading conditions in Fig. 4 for 29.0=ν . Similar graphs can be 

obtained for different Poisson’s ratios. The results from the authors’ Timoshenko beam partition 

theory [25–34] are also presented for the 1=γ  case, denoted by the thick black line which is 

labelled ( ) ηγ ,1IG =GT . It is interesting to note that the 2D FEM simulation results for this 1=γ  

case approximately coincide with the results from the authors’ Timoshenko beam partition 

theory. Furthermore, Fig. 4 shows that when 012 =BB MM , the 2D FEM partition results 

correspond to a non-uniform vertical shift of the Timoshenko beam partition results with 1=γ . 

These observations lead to the determination of the pure mode I ( )νηγθ ,,1  mode by means of a 

shifting technique. From Fig. 4, it is seen that when 1<γ  each of the curves is easily 

distinguishable, whereas when 1>γ  the curves are closely grouped together. It is anticipated 

that this tight grouping would lead to inaccuracies and high sensitivity in the shifting technique. 

Therefore the shifting technique is developed for 1≤γ  only. Consideration of physical 

symmetry in Section 2.5.2 allows the method to be used for 1>γ . 

2.5.1. Pure mode I ( )νηγθ ,,1  when 1≤γ  

By considering Fig. 4, the partition ( ) ηγ .I GG  for the loading case 012 =BB MM , based on a 

non-uniform vertical shift ( )νηγ ,,S , can be written as 

 ( )νηγ
ηγνηγ

,,
G ,1,,

S
G

GG ITI +





=








=

 (51) 

where ( ) ηγ ,1=GGIT  is the partition of ERR from Timoshenko beam theory [25–34] with 1=γ  

and variable η , and is given by 

 ( )
( )( )ηη

η

ηγ ++
+

=







= 1314
7 2

,1G
GIT  (52) 
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Since ( ) νηγ ,,I GG  obtained from Eq. (51) in terms of the shift S  must be the same as 

( ) νηγ ,,I GG  given by Eq. (47) with 012 =BB MM , which is in terms of 1θ , then 

 
G
McS

G
G BIIT

2
1

,1

=+







= ηγ

 (53) 

where ( )2
1

2
111 2 bEMCG B= , as given by Eq. (A5) with 0212 === BBB NNM , and Ic  is given 

by Eq. (A1) with 11 ββ =′  (since 05.0=aδ ). Note that 1β  is orthogonal to 1θ  (see Section 2.5.3) 

and that therefore ( ) ( )12212112111 θθβ CCCC ++−=  with ijC  given in Appendix B. The resulting 

relationship between 1θ  and S  is then obtained as 
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= CCC
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bE
C IT
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 (54) 

where 
1θ

G  is given by Eq. (A3). Eq. (54) can now be solved for 1θ  in terms of the shift S , which 

gives two possible solutions. Using the orthogonality condition between 1θ  and 1β , there are also 

two corresponding solutions for 1β . The algebraic expression for each solution is too long to be 

presented here, however Eq. (54) is easy to solve for numerical values of γ , η  and S . To 

proceed, it is essential that the correct solutions for 1θ  and 1β  are determined. To do this, 

consider Fig. 4. It is seen that for some values of γ , there exists a value of η , denoted here by 

βη , at which the partition GGI  reaches 0, that is, when βηη =  then 01 =β . Therefore for 

βηη < , or ( ) ( )βηη 1log1log 1010 > , choose the positive solution for 1β  from Eq. (54). For 

βηη > , or ( ) ( )βηη 1log1log 1010 < , choose the negative solution. If βη  does not exist, then the 

positive solution must also be chosen. When the shift S  has been determined, as it will be 

shortly, then Eq. (51) can easily be solved with ( ) 0,,I =νηγGG  to determine the numerical value 

of βη .  

The above procedure for choosing the correct solution for 1β  works very well when the two 

solutions have opposite signs, which is usually the case. However, when γ  becomes close to 1, 

sometimes the two solutions for 1β  have the same sign. When this happens, it is still easy to 

determine the correct solution because when 1≈γ  then 2
1 ηγθ −≈  and 

( ) ( )14334 222
1 ++++≈ ηγηγγηγηγβ , which are the values based on Timoshenko beam 

theory. The pair of solutions which are closest to these values are the correct ones. 
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Now more detailed explanations for Eqs. (49) and (50) can be given. Consider Eq. (49) with 

01 >BM  and 0212 === BBB NNM . Since nD  is positive when βηη < , or 

( ) ( )βηη 1log1log 1010 > , and 0=nD  when βηη = , therefore when βηη > , or 

( ) ( )βηη 1log1log 1010 < , then nD  must be negative. A similar argument can be used for Eq. (50). 

It now remains to find the non-uniform vertical shift S  for 1≤γ . The shift S  is assumed to 

be in the following form: 

 ( ) ( ) ( ) ( )
2

1021010
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η
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The coefficients, 0S , 1S  and 2S , are determined empirically by considering 

100,10,1001,101,1=η  in Eqs. (51) and (55). Doing so gives 
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Ref. [33] provides an accurate expression for ( ) 1, =ηγGGI  in Eq. (56), which is not dependent on 

ν . It is summarized in Appendix C. 2D FEM simulations with the loading condition 

012 =BB MM  provide values for ( ) νηγ ,101, =GGI , ( ) νηγ ,1001, =GGI , ( ) νηγ ,10, =GGI  and 

( ) νηγ ,100, =GGI  for different values of γ  and ν . When used in conjunction with Eqs. (56) to (60), 

the following accurate empirical formulae are obtained for 1S  and 2S  with 1≤γ : 

 ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) 101011
2

1012
3

10131 1log1log1log SSSSS +++= γνγνγν  (61) 

 ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) 201021
2

1022
3

10232 1log1log1log SSSSS +++= γνγνγν  (62) 
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where ijS  in the plane strain condition are given by 
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and ijS  in the plane stress condition are given in Appendix D. 

When the crack extension size 05.0=aδ  then, as has been seen in Fig. 3, 11 θθ ≈′  and 11 ββ ≈′ . 

Therefore negative IG  or IIG  does not occur (similarly, neither does GGI >  or GGII > ). The 

shift S  given by Eq. (55) must therefore not result in 0<GGI  or 1>GGI . Due to small 

numerical inaccuracies, the shift must be capped in some cases to prevent this from happening. 

From Eq. (51), 
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2.5.2. Pure mode I ),,(1 νηγθ  when 1>γ  

Because of physical symmetry, it is a requirement that 

 ( ) ),,(,, 111
11 νηγθνηγθ −−−=  (72) 

Therefore, when 1>γ , ( )νηγθ ,,1  can be found by first finding ( )νηγθ ,, 11
1

−−  with the method in 

Section 2.5.1, and then using Eq. (72). 

2.5.3. The complete set of pure mode I iθ  modes and pure mode II iβ  modes 

The pure mode I iθ  modes and the pure mode II iβ  modes (with 3,2,1=i ), which are required in 

Eqs. (47) and (48), are determined using the orthogonal methodology [25-34]. The pure mode II 

1β  mode is orthogonal to the pure mode I 1θ  mode. This is written as 

 ( )11 orthogonal θβ =  (73) 

which is equivalent to 

 { }[ ]{ }TC 0010010 11 βθ=  (74) 

where [ ]C  is given by Eqs. (A5) to (A16). Therefore if 1θ  is known, then 1β  can easily be 

determined. Similarly, 

 ( )12 orthogonal βθ =     or    { }[ ]{ }TC 0010010 12 βθ=  (75) 

 ( )13 orthogonal βθ =     or    { }[ ]{ }TC 0010010 13 βθ=  (76) 

 ( )12 orthogonal θβ =     or    { }[ ]{ }TC 0010010 12 θβ=  (69) 

 ( )13 orthogonal θβ =     or    { }[ ]{ }TC 0010010 13 θβ=  (78) 

The ERRs, IG  and IIG , at a crack extension size of 05.0=aδ  can now be obtained from Eqs. 

(47) and (48). The various pairs of mathematically admissible SIFs, IK  and IIK  can be obtained 

from Eqs. (18) to (24). The only mechanically admissible pair is chosen by using Eqs. (43) and 

(44) as a guide. The ERR partitions, IG  and IIG , for all crack extension sizes, aδ , can then be 

calculated from Eqs. (13) and (14) or from Eqs. (25) and (26). 

3. Conclusions 

The discoveries and conclusions are now summarized below: 
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(1) Material mismatch causes the existence of two distinct sets of orthogonal pure modes, 

( )KK βθ ,  and ( )KK βθ ′′ , , and two sets of coincident orthogonal approximate pure modes, ( )KK βθ ~,~  

and ( )KK βθ ′′ ~,~ , which are in terms of the SIFs, IK  and IIK , and which are crack extension size-

dependent or FEM mesh size-dependent. The total ERR G  can be partitioned by using these 

pure modes. In general, for cracks on a bimaterial interface, there are four pairs of 

mathematically admissible SIFs, IK  and IIK , for a given loading condition. Only one pair, 

however, is mechanically admissible and it has been analytically determined. 

(2) A brittle interface causes the existence of two distinct sets of orthogonal pure modes, 

( )ii βθ ,  and ( )ii βθ ′′,  (with 3,2,1=i ), which are in terms of the crack tip loads. In the case of 

interfacial cracks between similar materials, these two sets of pure modes approach to each other 

and remain converged with the diminishing global effect as the crack extension size or FEM 

mesh size decreases. In the case of cracks on bimaterial interfaces, although these two sets of 

pure modes also approach to each other and become coincident as the crack extension size or 

FEM mesh size decreases, they do not converge and are crack extension size-dependent or FEM 

mesh size-dependent. Furthermore, they separate again for very small crack extension sizes or 

FEM mesh sizes. 

(3) At a crack extension size 05.0=aδ , a thickness ratio 1=γ and Poisson’s ratio 29.0=ν , 

the distinct two sets of orthogonal pure modes, ( )ii βθ ,  and ( )ii βθ ′′,  (with 3,2,1=i ), 

approximately coincide with each other and are also approximately equal to the pure modes 

based on Timoshenko beam theory for entire range of modulus ratio 1001001 ≤≤η . A shifting 

technique has been developed and used in conjunction with the authors’ orthogonal pure mode 

methodology to determine the pure modes for Poisson’s ratio in the range 5.00 ≤≤ν , Young’s 

modulus ratio in the range 1001001 ≤≤η , and thickness ratio in the range 10101 ≤≤ γ . 

Consequently, the SIFs, IK  and IIK , and the crack extension size-dependent ERRs, IG  and IIG , 

are analytically determined. 

The analytical theory will be verified in Part 2 [35] and further conclusions will be made 

there. 

Appendix A 

In Eqs. (45) and (46), 
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and 1E  is the effective Young’s modulus of the top beam. For plane stress then 11 EE =  and for 

plane strain then ( )2
111 1 ν−= EE . 

Appendix B 

With reference to Fig. 1a, the total ERR G  of a bimaterial DCB with two crack tip bending 

moments, BM 1  and BM 2 , and two crack tip axial forces, BN1  and BN 2 , is given by 
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where [ ]C  is the coefficient matrix, given by 
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Appendix C 

Ref. [33] provides an accurate method to calculate the 2D elasticity-based ERR partitions, IG  

and IIG , when 1=η . Ref. [33] gives 1θ  as 
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where 

 [ ]5.0ˆ2 β
θθ

ccc −=  (A18) 

and 56=θc  and ( ) ( )33 11ˆ γγβ ++=c . The pure mode I iθ  modes and the pure mode II iβ  

modes (with 2,1=i ) are determined by using the orthogonal methodology [25-34] (see Section 

2.5.3). Since 1=η , the coefficient matrix [ ]C  of the total ERR G , is now given by 
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The ERR partitions, IG  and IIG , are then obtained from 
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where γBBBe NNN 211 −= . 

Appendix D 

The empirical coefficients ijS  in the plane stress condition in Eqs. (61) and (62) are given by 
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Fig. 1: A bimaterial DCB. (a) General description. (b) Interfacial stresses and crack tip forces. 
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Fig. 2: Variation of Kθ , Kθ ′ , and Kθ
~  with respect to the crack extension size aδ  for different 

values of the bimaterial mismatch constant ε  with 29.021 ==νν . 
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Fig. 3: Variation of 1θ  and 1θ ′  with respect to the crack extension size aδ  for different values of 

the bimaterial mismatch constant ε  with 29.021 ==νν . 
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Fig. 4: FEM data for ERR partition GGI  based on the crack extension size 05.0=aδ  with 

012 =BB MM  and 29.021 ==νν . 
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