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Abstract

Completely analytical theories are presented for calculating the total energy release rate (ERR) in a
mixed-mode delamination in layered isotropic and laminated composite straight beam structures and
for partitioning it into opening mode | and shearing mode 11 components. The theories are developed
within the contexts of both the Euler and Timoshenko beam theories. The theories are extensively
verified against numerical simulations using the finite element method. The developed theories

provide a valuable means for the design of such beam structures against delamination.

1. Introduction

Layered isotropic and laminated composite straight beams are commonly used in many different
engineering structures, such as aircraft, buildings and bridges, etc. Delamination is a major concern in

these applications, for example, a commonly-used method to repair or strengthen a concrete beam in
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civil engineering is to bond either a metal plate or a carbon-fiber-reinforced laminate onto it. The
fracture toughness against debonding at the interface is a crucial design parameter. In general,
debonding is a mixed-mode fracture, that is, it consists of both mode | opening and mode 11 shearing.
The toughness depends on the proportions of these two individual fracture modes. Therefore, it is
imperative to partition the total energy release rate (ERR) of a mixed-mode fracture into its mode |

and Il components which govern the fracture toughness or the fracture propagation criterion.

Some of the earliest analytical work on the topic of one-dimensional fracture—that is, fracture which
propagates in one direction with mode | and mode Il components only—was reported by Williams
(1), who made some significant contributions to the understanding for isotropic double cantilever
beams (DCBs). A semi-analytical partition theory was given by Schapery and Davidson (2), which
was also for isotropic DCBs and based on Euler beam theory. They were not able to give Williams’s
(1) pair of pure modes and claimed that Euler beam theory doesn’t provide quite enough information
to obtain a decomposition of energy release rate into opening and shearing mode components. They
therefore used the finite element method (FEM) to solve the two-dimensional continuum problem
around the crack tip in order to partition the energy release rate. Suo and Hutchinson (3-5) used a
similar approach to Schapery and Davidson (2), but instead of using the FEM, they used integral
equation methods to obtain a two-dimensional linear elasticity solution for the crack tip region. The
resulting partition theory is analytical except for one parameter, which is determined numerically.
Schapery and Davidson’s (2) and Suo and Hutchinson’s (3-5) partition theories generally give
different partitions to William’s (1) partition theory. Zou et al. (6) derived a completely analytical
partition theory for isotropic DCBs based on Timoshenko beam theory. Bruno and Greco (7) obtained
the same partition but for Euler beams instead of Timoshenko beams. Luo and Tong (8) derived the
same partition theory as Bruno and Greco (7), also for Euler beams, but by a different method. None
of the work by Zou et al. (6), Bruno and Greco (7) and Luo and Tong (8) is in agreement with

Williams’s (1), Schapery and Davidson’s (2), or Suo and Hutchinson’s (3) partition theories.

Recently, based on a fundamental physical understanding and a complete mechanical representation
of the problem, a powerful mathematical methodology has been created by the authors to partition the
total ERR. Several challenging fracture problems have been solved analytically. The research results
have been reported in a series of publications (9-18). The authors’ mixed-mode partition theory based
on classical laminate theory has been shown (11,18) to agree very well with the test data obtained
from a series of experimental studies by different research groups (19-23). Also, the authors’ latest
work (26,27) shows that authors’ mixed-mode partition theory based on first-order shear-deformable
laminate theory plays a key role in the development of a local mixed-mode partition theory between

two dissimilar elastic materials.



The major aim of the present study is to extend the previous work (9-18) to develop analytical
theories to calculate the total ERR and its mode | and Il partitions for a mixed-mode delamination in
layered isotropic and laminated composite straight beams under various loading conditions and
boundary conditions. The work provides a valuable means for the design of such beam structures

against delamination.

The structure of this paper is as follows: Sections 2 and 3 develop analytical theories for layered
isotropic beams; Section 4 develops analytical theories for laminated composite beams; numerical

tests are presented in Section 5; and further discussions and conclusions are made in Section 6.

Nomenclature

a length of fracture

A A A extensional stiffness of upper, lower and intact beams

b beam width

B,B,, B coupling stiffness of upper, lower and intact beams
D,D,,D bending stiffness of upper, lower and intact beams

Dyp» Dy crack tip relative opening and shearing displacements

E Young’s modulus

Fe Fe crack tip normal and shear forces

FnBé,l crack tip opening force due to mode ¢,

Fep crack tip opening force due to shearing

G,G,,G, total, mode | and mode 1 energy release rates

G, mode | energy release rate due to shearing

G,, shear modulus

G,, G, energy release rates due to mode ¢, and mode ¢,
h,h,,h thicknesses of upper, lower and intact beams

H,H,,H out-of-plane shearing stiffness of upper, lower and intact beams
1,1 second moments of area of upper, lower and intact beams
L, L, length of left and right intact parts of beam

M, M, bending loads acting on upper and lower beams

Mg, M,g, Mg bending moments on upper, lower and intact beams at crack tip i



PlBi , sti , PBi

u;, u,,us, u,

W, Wy, Wy, W,

AG

P
6.6
0.6,
2

Po,» P,

VoW W ¥,

axial loads acting on upper and lower beams

axial forces on upper, lower and intact beams at crack tip i
point contact force

shear loads acting on upper and lower beams

crack tip shear forces on upper, lower and intact beams at crack tip i
axial displacements of the upper, lower, left and right beams

deflections of the upper, lower, left and right beams

distance from left crack tip to loading location on upper and lower beams
mixed mode partition coefficient for mode ¢

the two pure mode Il ‘crack tip modes’ from the ith set

the two pure mode Il ‘F modes’

thickness ratio h, /h,

energy release rate interaction between modes ¢, and ¢,

the two pure mode | “crack tip modes’ from the ith set

the two pure mode | ‘F modes’

shear correction factor

mode vectors for the ith mode | and the ith mode 11

rotations of normals to mid-surface of the upper, lower, left and right beams

2. Clamped-clamped isotropic beams

2.1. Governing equations

A general clamped-clamped beam with a fracture is shown in Figure 1.1. Contact between the upper

and lower beams is not treated initially. With reference to Figure 1.1b and using the constitutive

relation from Timoshenko beam theory for isotropic materials, the following are easily derived:

2
1 Pl,2 B, X
1,28,

_ Ml'2<x — X, > + %<x — X, >2 + W18, (1)
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Subscripts 1 and 2 refer to the upper and lower beams respectively. Subscripts 3 and 4 refer to the
left- and right-hand intact laminates. The left crack tip is at location B;. The right crack tip is at
location B,. In these equations, the origin of X is at B; and to the right for beams 1 and 2; for beams 3

and 4 it is at the respective left-hand sides and to the right (as shown in Figure 1.1a); w is the upward
deflection; the rotations, dW/ dx and y are anticlockwise. The angle brackets are Macaulay brackets,

denoting the ramp function. The axial displacements of the beams are

U, = (Nl,Zle - N1,2<X - XpL2 >)/(bEh1,2 )+ Uy 2, (6)
u; =Ng x/(bEh) , u,=(Ngx—Ng L,)/(bEh) @)

Equilibrium can be used to describe all the forces in Figure 1.1b in terms of the six left crack tip

forces M, 55, N;,5 and P ,5 , and the applied loads M, ,, N, and P, ,.

Ra=-P, . My=-Mz -RF L, , N,=Ng (8)
Re=P, + Mc=RL,-My , Nc=Ng 9)
Mg, =My + My +(N,, —h,Nyg /2 (10)
Ng, =Ny, +Np, . Py, =PRg +Pp, (11)
M, 5, =M, ,5 — My, —aR s +Pola-x, ) (12)
Niss, =Nisg =Ny, o Pog, =Pos — P (13)

Egs. (1) to (7) therefore contain 12 unknown quantities: the six left crack tip forces M1,231 , leZBl

and B ,5 , and the deflections, rotations and axial displacements at the left crack tip W, ,5 , ¥/, ,5 and



U, 5 - 12 boundary conditions are therefore required to enforce continuity at the crack tip. There is

continuity of deflection at the two crack tips.

Wig = Wyg = (Ws )x:l_1 ' (Wl )x:a = (Wz )x:a = (W4 )x=0 (14)
There is also continuity of rotation at the two crack tips but this boundary condition requires special
consideration. In cases where the shear modulus is finite, but the through-thickness shear effect is still

small relative to bending, it is sufficient to use the following approximation:

Vis, =V¥op = (‘//3 )x:L1 ' (Wl)x:a = (‘//2 )x:a = (‘//4 )X:O (15)
In this work, an improved boundary condition is derived and used instead of the approximate Eq. (15).
Using a single Timoshenko beam to model the intact region ahead of a crack tip, as in Egs. (3) to (5),
gives constant shear strain through the thickness. In reality, due to the normal and shear stress

distributions on the interface ahead of the crack tip, the shear strain is not generally constant through

the thickness. Note that the rotations y, and y, are continuous across the crack tips (although the

mid-surface rotations dw; /dx and dw, /dx are not) but they are not equal. One way to represent the

mechanics is to model the intact side of each crack tip using two Timoshenko beams with normal and
shear stress distributions on the interface and continuous rotations across the crack tip. This would be
both complex and incompatible with Egs. (3) to (5). Instead, the method used in this work, which
turns out to be very accurate, is to use a single Timoshenko beam to model the intact side of each

crack tip, and account for the presence of the normal and shear stress distributions on the interface

with discontinuous rotations v/, , across the crack tip. This is justified because the region affected by

the crack tip in linear elastic fracture mechanics is small.

Consider the region around a general crack tip, as shown in Figure 1.2. The origin of the & coordinate
is at the crack tip B and towards the left. The deflection w is upwards and the rotations dw/dx and
y are defined as positive in the anticlockwise direction. The interface stresses in the figure show only

the sign convention rather than any representative distribution. Within the region affected by the crack

tip, the through-thickness shearing equations from Timoshenko beam theory are

(¢
bhl,ZzeKz(dWI,Z/dX _l//1,2)= Pos ¥ b.[o c,d¢ (16)
The mid-surface rotations dw, /dx and dw, /dx are discontinuous at the crack tip but for a rigid

interface, (dWl/dx)g,:a‘a = (dw, /dx)._,. , which are the midplane rotations of beams 1 and 2 at a very

g=a’
small distance 6a ahead of the crack tip B. Since the rotations y; and y, are continuous and da is

very small, therefore (1,//1'2 )§=§a = W1, - Also, if the intact side of the crack tip is modeled with a



single Timoshenko beam across the thickness, then (dlez/dx)‘gzda = (dw/dx), . The rotation

boundary conditions are therefore

Wi2s, = (d\’ve)/dx)x:L1 - (F)l,zs1 +Fpg )/(bhl,ZzeKz) 17)
Vi2B, = (dW4/dX)x:o - (Pl,ZBz + FnBz )/(bhl,ZzeKZ) (18)
where F g = bjoﬁa o,d&, which is the crack tip opening force. Note that Egs. (17) and (18) reduce to

Eqg. (15) for Euler beams, for which thXZK2 — 0. The crack tip opening force F.; is known from

the previously established mode partition theory for fracture in isotropic DCBs (10,12). It is

dependent on the mode partition and is a function of the crack tip forces. An expression for F is

given in the following section.

There is also continuity of axial displacement at the two crack tips.

Upog = (us)x=L1 + hz,l(‘//s )x=|_1 /2 ' (Ul,z )X:a = (U4)x:o + h2,1(W4 )x:o /2 (19)
The system of 12 equations, given by Eqgs. (14) and (17) to (19), can now be solved to give all the

unknown quantities in terms of the six independent variables M, ,, N, and P, ,. The immediate

results are not presented here for reasons of conciseness.

2.2. Energy release rate partition

ERR can be determined by knowledge of the forces at the crack tip. If all these forces are known, then
the ERRs can be found in the same way as for isotropic DCBs (10,12). All of the crack tip forces are
known from the solution of the above equations. The mode partition theory for fracture in isotropic
DCBs is briefly summarized here. For full details, readers should refer to Refs. (10,12). All
expressions are for the left crack tip B;. The 1’ subscript is therefore dropped for convenience. It is
then simple to find the ERR for the right crack tip B..

Initially the effect of through-thickness shear is ignored, as in the case of Euler beam theory where

bhG,,x* — . It is accounted for later. The total ERR is

2 2 2 2
_ 1 Nig./ +MlB+MZB _E(M18+MZB_hZNlBej (20)
2bE|bh@+y) 1, 1, | 2

where N, g, is the effective axial force, defined as

Nyge =Ny — NZB/7 (21)



Since the ERR is a function of three crack tip forces, three pure-mode vectors are required to find the
partition. There are eight independent pure-mode vectors to choose from in the Euler case (two pure-

mode-I modes and two pure-mode-I1 modes from each of the two sets). The order of the variables in
the mode vectors is ¢ = {MlB M,z N }T . It is convenient to select the following three pure

modes to make the partition:

¢91:{1 0, O}T , (051:{1 b O}T , (/752={1 0 ﬂz}T (22)

where

0,=—y" . B=r@+y)W+3y) . B =2B+y)[n(y-1)] (23)

Mode ¢, is a pure mode | mode, which has zero relative shearing displacement just behind the crack
tip. Modes ¢, and ¢, are pure mode II modes, which have zero opening force ahead of the crack

tip. Using these modes, the mode partition coefficients are

1 -1

ay 1 1 0| (Mg, ay, 1 1 1 Mg
a, =0, B 0| Myt . Ja, =6 B 0| My (24)
aﬁz O O 1 NlBe aﬂz 0 O ﬂz NlBe

for y =1 and y #1 respectively.

Within the context of Euler beam theory, there is interaction between the ¢, mode and the ¢,

modes, denoted by AG% . The mode | ERR is

G, = alegl +a,0,AG, ; +a,0,AG,, (25)

where

Gel = 247/[Eb2h13(1+ 7)] ' AGelﬂl = 3(7 _1)691 /(1+ 37) ' AGelﬂz = 7’691 /(1+7) (26)
To find the ERR using Timoshenko beam theory, the through-thickness shear effect must be

considered. The interaction between the Py, mode and the Py modes disappears, that is,

AG = 0. There are nine independent pure modes within the context of Timoshenko beam theory

0.2
(there is an extra pure mode | mode due to through-thickness shearing), however the absence of
interaction means that four of them from the second set coincide with four of them from the first set,

giving five unique pure modes (three pure mode I and two pure mode II). There are also two

additional contributions to the mode | ERR G, : the ERR due to shearing, denoted by G, ; and the



ERR due to interaction between the ¢, mode crack tip opening force and the relative opening

displacement due to shearing, and vice versa, denoted by AGQlP . The ERRs are therefore

bh1(1+7) I, P I

G, =a;G, +Gp +,AG,, (28)

2 2 2 2
— Z;E{ Nigey + My + M —E(Mw + M, ——hznge) ]+GP +a,AG,,  (27)

where

2 2 _
GP — 1 - PlZB + P2B _ (PlB + PZB) , AG,glp — 4\/5(7PIB PZB) (29)
thlzeK 4 1+ 4 bzhl2 (l+ 7/)1/ EGXZK'2

The crack tip opening force F;, which is required to solve the governing equations from
Timoshenko beam theory in Section 2.1, can now be found. Since the ¢, and ¢, modes are

characterized by zero normal force ahead of the crack tip, only the ¢, mode and the opening force

due to shearing contribute to the crack tip opening force, giving

Fe = Qg FnBel +Fgp (30)
where &, is known in terms of the crack tip forces from Eq. (24) and Fntl is the crack tip opening

force in the Do, mode and F g, is the crack tip opening force due to shearing. From Timoshenko

beam theory, these quantities are

/2
FnBel = (486xz72K2/Eh12 (1+ 7/)2)l , Fep = (7’PlB — Py )/(1+ 7) (31)
The governing equations in Section 2.1 can now be solved to find the crack tip forces and to obtain
the ERR partition.

2.3. Two sets of orthogonal pure modes

Since the crack tip forces in Eq. (24) cannot be set independently of the loads applied at x, and X, ,

it is clearly not possible to obtain purely mode vectors ¢, , ¢, , or @, atagiven crack tip. In this

work these modes are referred to as ‘crack tip modes’ because they relate crack tip quantities only.

Some combinations of these modes however can give pure mode | or 11 fractures. These modes are

now derived for the left crack tip for the special case when thxzrc2 — oo (Euler beam theory) and

y#1; B and P, are applied at the same location, i.e. X, =x, =X, and M; =M, =N, =N, =0.



These fracture modes are now referred to as ‘F modes’ and denoted by a subscript ‘F’, because they

relate the forces P, and P,.

Because of Refs. (10,12), there are expected to be two sets of pure F modes, where the first set
corresponds to zero relative shearing displacement just behind the crack tip (pure mode 1) and zero
opening force ahead of the crack tip (pure mode I1); and where the second set corresponds to zero
relative opening displacement just behind the crack tip (pure mode I1) and zero crack tip shearing

force (pure mode 1).

Mathematically, the relative shearing displacement at an infinitely small distance da behind the crack

tip, (D, )X:& is expressed as

(Dsh )x:&a = (Ul)x:a‘a - (Uz )x:é‘a = (ul)x:a‘a +h (Wl)x:&a/z - (Uz )x:&a +h, (‘// 2 )x:a‘a /2 (32)
where U represents the axial displacement at the interface. For the pure-mode-I mode from the first

set, the relative shearing displacement at X = da is zero, that is (DSh )X:(Sa = 0. Making the necessary

substitutions and taking the limit as oa — 0 gives

PZ/Pl =0 = _[72((:172 _C27+C3)]/(C372 _C27+C1) v Po. = {1 Or }T (33)

where

C.=2x(a-x,fla+L+L) ., C, :2xp(a—xp)z(C7+3a2(L1+L2)—2a3) (34)
C,=2a’c - axf,(C7 +6a’L, + 4a3)+ 2a2xp(C7 —3al,L, +3a’L, + a3)— aC, (35)
C,=(L+L ) +3a(L+L) , C,=a’(L+3L,+3a) (36)

and ¢ represents mode vector format {F’1 P, }T . The orthogonal condition to the zero relative

shearing displacement condition is zero opening force ahead of the crack tip. The mode corresponding

to this condition could be derived by applying orthogonality through Eqg. (20), however it is more

convenient in this instance to simply enforce F; =0. Noting that F g, is infinite in Euler beam
theory and that therefore the finite F g, in Eq. (30) is negligible, the requirement for F.; =0 is

simply Qg = 0, which from Eq. (24) gives

Pz/PlzﬂF=72(C173+C472+C57+Ce)/(C67/3+C572+C47+C1) ) §0ﬂF:{l ﬂF}T (37)

where

C, = 2xp(a— xp)z(ZC7 +6a’(L,+L,)+5a°) (38)

10



C, = X3(2C, +6a%(L, + L, )+14a’)— ax?(C, +12a’L, —6a’L, +28a°) )
—2a%x,(2C, - 3a%L, +6a’L, —7a° ~9aL,L, )+ 3aC,
C, =6a°x2 —3ax2(C, +6a’L, +4a°)+6a’x, (C, -3aL,L, +3a’L, +a°)-3aC,  (40)
Now considering the second set of pure modes, the pure mode | mode is given by zero shear force at

the crack tip. The shear force at the crack tip is

Fg = a, FsBé,1 ta, FsBﬁl ta, FsBﬁ2 (41)

The mode partition coefficients are known from Eq. (24) and the crack tip shear forces relating to

each mode vector are known from Refs. (10,12).

FsB@1 = 67(1_ 7/)/lh1(1+ 7)2J , FsBﬂl = 67/[h1(1+ 37)] : FsBﬁz = 27/2/[h1(72 _l)] (42)

Making these substitutions and setting F; =0 gives

PZ/Pl =0 =-1, Po. = {1 2 }T (43)
Finally, for the pure mode Il mode from the second set, the relative opening displacement at X = da

is zero (Dop) =0.

X=da

(DOp )x:ga = (Wl )x:()‘a - (Wz )x:a‘a (44)

Making the necessary substitutions and taking the limit as da — 0 gives

Pz/Plzlb);: :73 v Ppe :{1 ﬂé}T (49)
That 67 and S, relating P, to P, are the same as & and S/, whichrelate M ,; to M,; (10,12),
should be no surprise. The axial forces N,; and N,;, induced at the crack tip by P, and P,, clearly

= 0 is unaffected by

have no effect on the opening displacement. Therefore the condition (Dop )X:[Sa

N,z and N,,,and B¢ = /3, . Also, if P, and P, are equal and opposite P, /P, =—1, then regardless
of how beams 1 and 2 deflect, beams 3 and 4 do not deflect and the crack tip rotations are zero.

Therefore N,; and N, are both zero and the two crack tip bending moments are in the ratio of &, .

If P, and P, are applied in different locations then this would not be observed because each load

would have a different moment arm around the crack tip.

If the above procedure is repeated for Timoshenko beams, it is found that the ¢, mode changes to

coincide with the ¢, mode, which is different to that obtained from Euler beam theory due to the

static indeterminacy of clamped-clamped beams (the relative shearing displacement is otherwise not

11



affected by through-thickness shear). Similarly the ¢, mode coincides with the ¢, mode, which is

also different to that obtained from Euler beam theory. For cases when the through-thickness shear
effect is not excessively large, Egs. (33) and (37) are good approximations. The expressions for the
Timoshenko ‘F modes’ are not as simple as those for the Euler ‘F modes’, so are not presented here in
general form. They are however easily derived for specific cases with numerical—rather than

algebraic—quantities.

2.4. Contacting fractures

For some values of P, and P,, the beams either side of the fracture will come into contact. This raises

two questions: where is the point of first contact, and what happens after contact?

To find the point of first contact X, using Euler beam theory, two conditions must be satisfied: first,
the relative opening displacement at this point must be zero; second, the relative opening

displacement must be a minimum at X = X_, which implies that it is the point of first contact.

Dy ), =0 . (6D, /x)_ =0 (46)

Solving Egs. (46) simultaneously for PZ/F’1 and X_, and ignoring the obvious and unavailing

solutions for the crack tips, gives

3 i
P/P=y" =5t (47)
for all values of X. This implies simultaneous contact everywhere along the fracture for this value of

P/R .

If P,/P, isincreased beyond /3¢, the contact can either be at a point or distributed. Obviously the

solution must not allow interpenetration between the upper and lower beams anywhere. In addition,

since linear elastic mechanics is being used, there can only be one valid solution. Therefore point

contactat X = Xp which is a reasonable assumption, will be considered and shown to satisfy the

requirements, thus demonstrating that it is the correct solution.

Say that two loads P, and P, are applied to the beam at x = X, and that they cause point contact at
this same location. Call the point contact force P.. It acts to prevent non-physical intersection. The

net shear loads P, and P, acting on the beams are therefore

Pl:Plc+Pc J P2=P2c_P

c

(48)

12



Note that P, and P, in Egs. (48) are the same quantities that appear in all the equations thus far. The

final condition that must be satisfied is

(D, )sz -0 (49)

p

Solving Egs. (48) and (49) for P, P, and P, gives

I:)lz(F)lc+P20)/(l+7/3) ’ P2:73(P10+P20)/(1+73) ! PCZ(PZC_ysplc)/(l-i_}/?’) (50)
Substituting Egs. (50) into D,, =w, —w, reveals that D,, =0 for all values of x. Therefore the

requirements for physical contact behavior are satisfied by this solution and the ERR partition is then

found in the usual way.

Using Timoshenko beam theory, at P, /P, = S = ¢ there is both zero opening force ahead of the
crack tip and zero relative opening displacement just behind. Therefore crack tip running contact

occurs at P, /P, = B¢ and a pure mode Il fracture is obtained. Since there is running contact, if the

loading ratio PZ/F’1 is increased further then the crack tip remains closed as the contacting region

grows.

3. Simply supported isotropic beams

The theory presented in Section 2 is easily modified for simply supported isotropic beams. In this
section, the modified theory is briefly summarized. For this new case, Egs. (51) to (53) replace Egs.
(3) to (5) and (7).

2 1 (Rx® M,x? Ps, X
L(RAX —MAx]H//A . W, = [A -4 j+1//Ax+L (51)

Vs TELL 2 EILl 6 2 bhG_ x”
Lim Po X (52)
=— X——2— [+
v, El, B, 6 Ve,
M, x? M.L’ P.x* PLS P, (x-L
1 ( B Ve % et +V/BZ(X_L2)+ Bz( 2) (53)

W, = 2
El,| 2 2 6 6 bhG

Since zero rotation is no longer enforced at the supports, two additional boundary conditions are
required at these locations. For simple supports these are

My=0=-F L -Mg , M.=0=RL,-Mgy (54)
This new system of equations is now easily solved for the left crack tip for the special case when

thXZK‘2 — oo (Euler beam theory). All the unknown quantities are then known in terms of the
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independent variables P, and P,. Again, the immediate results are not presented here for reasons of

conciseness. If the analysis is carried out for when y =1, P, and P, are applied at the same location,

ie. x, =X, =X, and M; =M, =N, =N, =0, the four pure mode relationships for both the left
1 ) p

and right crack tips are

P,/P,=0; =y*(Cr*-Ciy-C,)/(C,r* +Ciy-C,) (55)
P,/P, = B =r*(Ciy* +2C,y* +Cyy +C, )/(Cyy* +Cyr* +2C,y +C,) (56)
PZ/P1:¢9"::—1 ' Pz/Plzﬂ;::73 (57)

where
C, = 2xp(a— xp)z(a+ L+L,) . C,=Cxl+ axp(a2 ~2C, )+a°L, (58)
C,=2x3(a+L, +L,)-Cyx2 +ax,(3a2 —4C, )+ 3a°L, (59)
C, =-3C,x% +ax,(6C, —3a%)-3a’L, , C,=ala+L,+L,) (60)

The contact behavior is found to be identical to the clamped-clamped case, i.e. contact at P, /P, = a

for all values of X between beams 1 and 2 and point contact at X = X, afterwards.

If the above procedure is repeated for Timoshenko beams then as before, it is found that the ¢,
mode coincides with the ¢, mode; the ¢, mode coincides with the ¢, mode; and the ¢, and

@, modes are different to those obtained from Euler beam theory. However for cases when the

through-thickness shear effect is not excessively large, Egs. (55) and (56) are good approximations.
The expressions for the Timoshenko ‘F modes’ are not as simple as those for the Euler ‘F modes’, so
are not presented here in general form. They are however easily derived for specific cases with

numerical quantities.

4. Clamped-clamped laminated composite beams

4.1. Governing equations

A general clamped-clamped laminated composite beam with a delamination now receives the same
analysis. Contact between the upper and lower sub-laminates is not treated initially. The extensional,
coupling, bending and shearing stiffness are denoted by A, B, D and H respectively. Note that
these quantities take different values under the plane-strain assumption from those from under the
plane-stress assumption however they make no difference to the following development. Subscripts 1

and 2 are used to indicate the upper and lower sub-laminates respectively. No subscript is used for the

14



intact part of the laminate. A, is therefore the extensional stiffness of the upper sub-laminate and A

is the extensional stiffness of the intact laminate, etc. With reference to Figure 1.1 and using the

constitutive relation from classical laminate theory,

N1,2(X)/b Al,z Bl,z 0 dul,z/dx
~My,(x)/bt=|B, D, O —dy,,/dx (61)

Pl,Z(X)/b 0 0 H,, dWl,z/dX_‘//l,z
N, (x)/b A B 0 du,, /dx
~M,,(x)/bt=|B D 0 —dy,,/dx (62)
P,.4(x)/b 0 0 H|ldw,,/dx—y,;,
where
0 0
Nl,2 (X) = Nl,ZBl -N 1,2<X - Xp1_2> ' Pl,Z(X): Pl,zB1 - P1,2<X_ Xp1_2> (63)
0
Ml,Z(X): Ml,za1 - P1,231X -M 1,2<X - Xp1,2> + P1,2<X - Xp112> (64)
N3,4 (X) =N B, P3,4(X) = PBL2 (65)
My(x)=Mg =P, (x-L,) . M,(x)=M, —P, x (66)

As shown in Figure 1.1a, the origin of X in these equations depends on the beam in question: it is at

location B, and to the right for beams 1 and 2; for beams 3 and 4 it is at the respective left-hand sides
and to the right; Positive deflection, w is always upwards; the rotations dw/dx and y are positive

in the anticlockwise direction. From Eqgs. (61) to (66), the following are easily derived:

Bl,Z(NlVZle - Nl‘2<x =X, >)

- +
Vi b(A1,2D1,2 ~ Blz,z) V1,28,
2 (67)
A-]-'2(2M1,2B1X_2M1,2<X_ Xp1,2>+ P1,2<X_ Xp1,2> _ P1’281X2j
" 2
Zb(Ai,z Dl,z - Bl,Z)
2
Bl’z(Nl’zlez B N1’2<X B Xpl,2> ) I:?L,Zle - I:)1,2<X - Xp12>
Wiz = + X+W, 5 + :
- Zb(ALle,z - Blz,z) Vice, H28 le,Z .
2 2 3 . (68)
A1,2 3M1,251X _3M1,2<X - Xp1‘2> + P1,2<X— Xpm> — PLZle
" 2
Gb(Ai,z Dl,z - Bl,Z)
2BN, X +2AM, X+ 2AL,P, X — AP, x*
Vs = 2 B By By (69)

2b(AD - B?)
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_ 3BNg x* +3AM x* +3AL P, x* — AP, X’ . P, X

" 6b(AD - B?) bH 7
_(2BNg, +2AM, Jx—L,)- AP, (x*-L2)
V= 2b(AD—B?) ()
" (38N, +3AM, Jx? —2L,x+L2)- AR, (x° —3|_§x+2|_§)+ Py, (x-L,) -
‘ 6b(AD - B?) bH
D, 5Ny 5 X= N, (X=X
u1’2 _ 1,2( 1,2B, l,2< pi2 >)—|—u11281

b(A,D,, - B2 )

Blyz(ZMlVZle - 2|v|1,2<x - Xpu>+ pLZ<X “x,, >2 ~ Pl,Zlez) (73)
2b(A,,D,, - BZ,)

_ 2DNg x+2BMg x+2BL P, x - BPlez

s 2b(AD - B?) ()
2DN. (x—L,)+2BM_ (x-L,)-BP, (x* - L2
u, = Bz( 2)+ Zb(AE(_ 82)2) Bz( 2) (75)

As before, there are 12 unknown quantities: the six left crack tip forces M, 55, N, ,5 and P, 5 , and

the deflections, rotations and axial displacements at the left crack tip W, ,5 , ¥, ,5 and U, 5 . Egs.

(14) and (19) are still applicable. The continuity of rotation at the two crack tips is treated in the same

way as in Section 2.1 and the following boundary conditions are obtained:

WYioe, = (dW3/dX)X:L1 - (Pl,ZBl +F, )/(le,z) (76)

Vies, = (dW4/dX)x=o - (Pl,ZBZ + Fn82 )/(le,z) (77)
Note that Eqgs. (76) and (77) reduce to Eq. (15) for Euler beams, for which bH — oo The crack tip
opening force F g is known from the previously established mode partition theory for one-

dimensional fracture in laminated composite DCBs (10,13). It is dependent on the mode partition and

is a function of the crack tip forces. An expression for F g is given in the following section.

The algebraic solution for the general case is extensive. The solution for the much simpler symmetric
case with Euler beams is instead given for reasons of practicality. From symmetry we have

L=L =L, Xplzxpzza/Z , M;=M,=N;=N,=0 (78)
Symmetry provides two additional boundary conditions, which simplify the calculations. These are

zero axial displacement and zero rotation at the mid-span.
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(ul)x:% = (uz )x:% ’ (Wl)x:% = (V/z )X=% (79)

The resulting crack tip forces are

M,,s =C,P,,[2aA A L(h, +h, ' —8A,L*(2D, ,L —aD,, + ahB,, +ah,B,, )
+4A,,L%(-4D,,L +2aD,, +ahB, , = ah,B, , —2h,B, ,L — 2h,B,,L)
+aAL(ah?A, +ah?A, F 4ah, ,B,, + 2ah,,B, , ¥ 4h,,B,,L ~8D,,L + 4aD,,)
+4aBL(-aB, , + 2B, ,L — 2aB,, + ah, A, —ah, A )+ 4a?DL(A, + A,) (80)
+8L%(2B2,L + 2B,B,L — aBZ, — aB,B, )- 2a°B? + 2a°AD|
—2C,LP,,(a+2L)-4B,,L(B, +B,)+4D,,L(A +A,)
+aA(2D,, +h,,B,,)-2aBB,, = 2A,,B,,L(h, +h,)]

N, =22C,L(a+2L)P, +P,)2AAL(h, +h,)+ah,,AA,,

(81)
+ 4L(A2 Bl - Ale)i Za(ABl,z - Ai,ZB)]
where
C, = [64A1L2(D1 +D,-hB,-h,B,)+64A,l*(D,+ D, +hB, +h,B,)
+32aL(AD+ AD, + A,D + AD, —h,AB +h AB +h,AB, —h AB,)
(82)

+16AA,L%(h, +h, ¥ +8aAL(h2A +h?A, )—641%(B, + B, )
—64aBL(B, + B,)+16a°(AD - B2)|"

4.2. Energy release rate partition

All of the crack tip forces are known from the solution of the above equations. The ERRs can
therefore be found. The mode partition theory for one-dimensional fracture in laminated composite
DCBs is briefly summarized here. For full details, readers should refer to works (10,13). All
expressions are for the left crack tip B;. The 1’ subscript is therefore dropped for convenience. It is
then simple to find the ERR for the right crack tip B..

Initially the effect of through-thickness shear is ignored, as in the case of Euler beam theory where

bH — 0. It is accounted for later. The total ERR is

.1 [MljB+M{B_M§+N{B+N22*B_N§_281M1*8N15_ZBZMiBNZBJrZBMfNBJ(%)
D, D D A A A B, B, B

Ai*:Ai_Biz/Di ) Bi*:Biz_AiDi , Di*:Di_Biz/Aﬁ (84)

17



The range of subscript i is 1 to 2, which again refers to the upper and lower sub-laminates

respectively. For the intact part of the laminate, no subscript is used. Other terms in Eq. (83) are

1
NB=N18+NZB ) MB=M18+M2B+E(thZB_h2NlB) (85)

Since the ERR is a function of four crack tip forces, four pure modes are required to find the partition.

There are 12 pure modes to choose from in the Euler case (six pure mode | and six pure mode II). The

order of the variables in the mode vectors is ¢ = {MlB M,s N Ny }T . It is convenient to

select the following four modes to make the partition:

o, =1 6 0 0 , @, = p 0 0f

0, =L 0 B Of , ¢, =1L 00 B (86)

where
91 = (822 - Az Dz XBl + hlAl/Z)/[(BlZ - AlDlez - hz Az /2)] (87)
f=-D;(D; +D;6, - D" )/[D; (D5 + D;6, - D0, ) (88)

6,]h,/(2D*)-B,/B; +B/B"|+1/D; -1/ D’

= 89
P9 Jen, /B U +UA +hZ 4D ) -h, (2D )+ BB BB
4 - 6,ln,/(2D*)-B/B*|-1/D; +1/D" 0)
3 * ® ® * * %
03|.Bh1/B +]7/A2 _l/A _hlz/(4D )J_hl/(ZD )+ B/B
273 (M 8B, + N B —M s .5, )/132 o, _:Bl)"' N28ﬂ1/[ﬁ3(01 _ﬁl)]
aﬂ1 _ (MlBelﬂZ -M 25132 - NlBel)/[ﬂZ(Hl _ﬂl)]_ NZBel/[ﬁS(el _131)] (91)
aﬂz NlB /ﬂz
a/)’s Nza/ﬂs
Within the context of Euler beam theory, which has interaction between the ¢, mode and the ¢,
modes, the mode | ERR is
G, = 0‘612601 + 056,105[,1AGM1 + OtelaﬁZAGé,lﬂz + aglaﬁ3AGglﬁ3 (92)
where
2 2 F., 6 oa
GH = 12 i*—i_e_l*_w ! AG&,B = nBelz 1* - ﬂl* (93)
 2b°| D D, D v 4b D/ D,
F.,6 oa F.,oa
AG@/} = n3912 i*_ Bléz , AGeﬂ = nBelz 1* + Bzé?) (94)
2 4b D, B, v 4b D, B,
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2(D;D°6 + D;D” - D;D; - 2D; D;6, - D; D6, )
D'(D; - D;4,)

FnB€15a = (95)

There are 13 pure modes within the context of Timoshenko beam theory, however the absence of
interaction means that six of them from the first set coincide with six of them from the second set,

giving seven unique pure modes (four pure mode | and three pure mode I1). There are also two

additional contributions to the mode | ERR G, : the ERR due to shearing, denoted by G ; and the

ERR due to interaction between the ¢, mode crack tip opening force and the relative opening

displacement due to shearing, and vice versa, denoted by AGHIP . The ERRs are therefore

G= 1 [Mlzs + Mzzs _ Mé n les + szs _N_é_ZBlMlBNlB
2b2 D* D* D* * * A* B*
) 2 A A X (96)
_2B,MygNys ZBMENB]JFGP +ay G,y
B, B 1
G, = a,?ngl +Gp + 2, AG,p (97)
where
GP :(Hlpzs_Hzpls)z/[szHle(Hl+H2)] (98)
b
AG - L(Ps Pe) HH, [1 & _(@+6) (99)
6P 2 * * %
b?(H, H, ) 2(H,+H,)\D; D; D

The crack tip opening force F g, which is required to solve the governing equations from
Timoshenko beam theory in Section 4.1, can now be derived. Since the Py modes are characterized

by zero opening force ahead of the crack tip, the crack tip opening force Fg is given by

Fe = Qy FnBy1 + Fogp (100)
where , is known in terms of the crack tip forces from Eq. (91), Fntl is the crack tip opening force

in mode ¢, and F g is the crack tip opening force due to shearing. From Timoshenko beam theory,

they are

%
F = L 1 +9_12_(1+01)2 F =H2P18_H1P23 (101)
"4 1 2(H,+H,) D D; D* LR H,+H,

The governing equations in Section 4.1 can now be solved to find the crack tip forces and obtain the
ERR partition.
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4.3. Two sets of orthogonal pure modes

For the symmetric case with Euler beams, for which the crack tip forces are given by Egs. (80) and

(81), the F modes arising from the displacement conditions (i.e. zero relative shearing when
P,/P, =6, , and zero relative opening displacement when P, /P, = ;) can be presented

algebraically. By substituting the displacements and crack tip forces for this symmetric case into Egs.

(32) and (44) and equating them to zero, the following F modes are obtained:

P,/P, =6, =—B;(2B, +h,A)/[B;(2B, -h,A)| , ¢, =L 6.) (102)
P,/P=p:=D;/D . ¢, =0 Bf (103)
The F modes arising from the zero crack tip opening force when PZ/F’l = S condition is too
extensive to be presented here algebraically. However, for specific cases, a numerical value for ¢

can be calculated by enforcing orthogonality with & . The ERR can be written as

G={r PRJClR PRf (104)
where [C] is found by examining coefficients of P, and P, in Eqg. (83) when Egs. (80) and (81) have

been substituted in. Therefore S can be found by solving

0= g lch 67 (105)
Similarly 6 can be found by solving
o={ o fcl pf (106)
which always gives
o, =-1 (107)

If the above procedure is repeated for Timoshenko beams then as before, it is found that the Py
mode changes to coincide with the P, mode, which is different to that obtained from Euler beam

theory. Similarly the ¢, mode coincides with the ¢, mode, which is also different to that obtained

from Euler beam theory. The expressions for the Timoshenko ‘F modes’ are long and complex in their
general form, so are not presented here. They are however easily derived for specific cases with
numerical quantities. Furthermore, when the through-thickness shear effect is not excessively large,

Eqgs. (102) and (105) are good approximations.
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4.3. Contacting fractures

To find the point of first contact X_ using Euler beam theory, again the two conditions given by Egs.

(46) must be satisfied. Solving these equations simultaneously for PZ/P1 and X_ and ignoring the

obvious and unavailing solutions for the crack tips, gives

P2/P1 = D;/D; = B (108)
for all values of X. This implies simultaneous contact everywhere along the fracture for this value of

P,/R.

If P,/P, isincreased beyond S, the contact can either be at a point or distributed. In the same way
as before for the isotropic case, point contact at X = X, is assumed, which is a reasonable assumption,

and shown to satisfy the requirement that it prevents intersection between the upper and lower sub-

laminates for all values of X.

Two loads P and P, are applied to the beam at x = x,, and they cause point contact at this same
location. The point contact force P, acts to prevent non-physical interpenetration. The net shear loads

P, and P, acting on the beams are given by Eq. (48). Eq. (49) is the equation that must be satisfied to

prevent intersection at X = X, . Solving Egs. (48) and (49) for B, P, and P, gives

P, = AB; (P, + P, )/(AB? + ABZ — AAD, - AA,D,) (109)

P, = AB; (P, + P, )/(A,B? + ABZ ~ AAD, - AA,D,) (110)
P, =|(AAD, - ABZ)P, —(AAD, - AB? P, [/(ABZ+ AB: - AAD, -AAD,) (111)
Substituting Egs. (109) to (111) into D,, =w, —w, reveals that D,, =0 for all values of x.

Therefore the requirements for physical contact behavior are satisfied by this solution, demonstrating

that it is the correct one.

Using Timoshenko beam theory, at P, /P, = S = ¢ there is both zero opening force beyond the
crack tip and zero relative opening displacement just behind. Therefore crack tip running contact
occurs at P, /P, = ;- and a pure mode 11 fracture is obtained. Since there is running contact, if the
loading ratio PZ/Pl is increased further then the crack tip remains closed as the contacting region

grows.

21



5. Numerical investigations

To verify the theory, a finite element method (FEM) simulation capability was developed based on
the Euler and Timoshenko beam theories and 2D elasticity. Normal and shear point interface springs
with the very high stiffness of 10** N/m were used to model perfectly bonded plies (14,26-29).
Through convergence studies this value was found to be large enough to approach the behavior of a
rigid interface, but not so high as to introduce excessive numerical error. The ERR partition was
calculated using the virtual crack closure technique in conjunction with these interface springs (14,26-

29). A contact algorithm was also implemented to deal with any possible contact in loading.

Two clamped-clamped beam cases were investigated. The first case is an asymmetric, isotropic one,
the data for which is given in Table 1.1. The second case is a symmetric laminated composite one. It
has a quasi-isotropic lay-up with 16 plies. There is a delamination between the fourth and fifth plies,

which gives a thickness ratio of = 3. The data for this case is given in Table 1.2. The material

properties are for a T300/976 graphite/epoxy ply (28).

One set of simulations, which used linear Timoshenko beam elements, is compared against the Euler
beam theory. Very large out-of-plane shear moduli G, = G, = G,, =10"°N/m were used to

simulate Euler beam theory. As is the case for the spring stiffness, convergence studies were carried

out and this value for G,, was found to be large enough to approach the behavior of Euler beams, but

not so high as to introduce excessive humerical error. Two layers of elements were used to represent
the beams with one on either side of the fracture. The elements were distributed uniformly. To avoid
shear locking, reduced integration was applied. Use of linear Timoshenko beams correctly enforces

continuity along the interface ahead of the crack tip.

Another set of simulations, which was the same as the first set but which instead used the normal out-
of-plane shear moduli (those given in Tables 1.1 and 1.2) and a shear correction factor of x> = 5/6,

is compared against the Timoshenko beam theory.

The final simulations used four-node quadrilateral (QUADA4) finite elements with the normal out-of-
plane shear moduli. Layers of QUAD4 elements model the sub-laminates and they are also joined
with very high stiffness normal and shear interface springs. In the composite case, a layer of QUADA4
elements was used for each individual ply. This was found to be necessary to obtain converged
results. In the isotropic case, two and four layers of QUAD4 elements were needed in the top and
bottom beams respectively for sufficient convergence. The elements were distributed uniformly along
the length and thickness. The results from these simulations are compared against the Euler and

Timoshenko theories and an averaged partition rule.
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The following sections present the results from these three sets of simulations for the two different

cases. The only applied loads are P, and P,; P, was held constantat 1 N and P, was varied.

5.1. Tests with clamped-clamped isotropic beams

Results from the various analytical theories and numerical simulations of the isotropic clamped-
clamped beam are presented in Tables 1.3 and 1.4 and Figure 1.3. Plane stress is assumed in all
analytical and numerical calculations. The ERR partition for the left crack tip is given. In Figure 1.3
and for every figure in this section, unfilled data markers indicate results from simulations with
contact modeling and filled markers indicate results from simulations without. The results from the
simulations using Timoshenko beam elements and the very large shear modulus are compared against
the Euler beam partition theory. Excellent agreement is seen between the two sets of data. The two
sets of pure modes are plainly visible where G, /G =0 and G, /G =1. The two methods are in
agreement that point contact at the loading location and at the crack tips contact occur simultaneously

at P, =8 N ; and that after first contact, both crack tips remain closed and the fracture is pure mode

The Timoshenko beam partition theory is compared with results from numerical simulations with the
normal shear modulus. As expected, the ¢, and ¢, modes coincide with the ¢, and ¢, modes
respectively. The numerical results with 800x2 elements very closely follow the analytical values.
The results with 200x2 elements are in less good agreement. This demonstrates that the element size
oa needs to be very small otherwise Fnsgﬁa is not negligible and a second set of pure modes is
generated numerically. This is consistent with the discussion and observations in previous work (10-

13). As expected, crack tip running contact begins at the ¢, mode. Crack tip running contact

necessarily gives G, /G =0. Beyond the ¢4, mode, the crack tips remain closed. The numerical

simulations model this contact behavior very closely.

An ‘averaged partition rule’ has been tested in previous work (10-13) and has been found to generally
give good agreement with the fracture mode partition from 2D elasticity for: (1) all thickness ratios,
(2) all loading conditions, and (3) all material properties, including laminated composite. Particularly
regarding material properties, there is some complex mechanical behavior in the case of even simple
laminates like bimaterials (20). However despite this, the averaged rule can still provide a reasonable
approximation. Readers are referred to these publications (10-13) for further details. Detailed papers
by the authors on the topic of fractures on bimaterial interfaces are in preparation (24,25). The

averaged rule is as follows:
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G, =a, G, +a,a,AG,, [2+a,a,AG,, [2+G, +a,AG,, (112)
The effect of shearing is small in this case because the beam is relatively thin. Therefore the averaged

fracture mode partition lies approximately midway between the Euler and Timoshenko curves. There

is excellent agreement between this curve and the 2D FEM results. In addition to the above, it is once

again seen that the ¢, and ¢, modes are still approximately the pure modes.

5.2. Tests with clamped-clamped laminated composite beams

The data is now presented for the clamped-clamped laminated composite beam. The plane-strain

assumption was used in all these analytical and numerical calculations. Under this assumption,

A=A, B=B, D=D,and H=A,.

Since many of the observations are the same as for the isotropic case, they are not repeated. New
observations are simply added. Tables 1.5 and 1.6 and Figure 1.4 present results from the various
analytical theories and numerical simulations of the laminated composite clamped-clamped beam are
presented in. There is excellent agreement between the Euler beam partition theory and the Euler
numerical results. There is also excellent agreement between the Timoshenko beam theory and the

Timoshenko numerical results.

In this composite case there is a much larger difference between the @, and ¢, modes than what

was seen for the isotropic case (compare Tables 1.1 and 1.2). Having an Euler curve with substantially
different ¢, and ¢, modes makes it substantially different to the Timoshenko curve. This large
difference might therefore have strained the accuracy of the average partition approximation. Despite
this possibility, the agreement observed between the averaged partition and the 2D FEM is excellent

for the whole the range of P, simulated.

6. Further discussion and conclusions

Analytical theories have been developed for mixed-mode delamination in layered isotropic and
laminated composite straight beam structures. Unlike the theories developed by the authors in Refs.
(9-18) for mixed-mode cracks in layered isotropic and laminated composite DCBs, in these beam
structures the internal forces at the crack tips are generally complex functions of remotely applied
loads. It is not generally possible to obtain pure ‘crack tip modes’, i.e. modes which relate crack tip
guantities, because these quantities cannot be set independently of each other. Instead some

combinations of these modes can give pure mode I or Il fractures.
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This work mainly focused on the most common practical cases of layered isotropic and laminated
composite straight beam structures with shear forces applied at an arbitrary location in the

delaminated region. For these beams, the ‘F modes’ have been derived for each crack tip. The F

modes give the ratios required between applied shear forces P, and P, , to give pure fractures modes.

The theories have been developed based on the Euler and Timoshenko isotropic and laminated

composite beam theories. Both theories have their own orthogonal ¢, and @, pure modes which

are called the first set. They correspond to zero relative shearing displacement just behind the crack
tip and zero crack tip opening force respectively. For the statically indeterminate beam structures
examined in this paper, the first set of pure modes from Euler beam theory is generally different in
value to the first set from Timoshenko beam theory. However when the through-thickness effect is

small, the Euler pure modes may be a close approximation to the Timoshenko pure modes.

In Euler beam theory, there is a second set of orthogonal pure modes ¢, and @, , which are

different to the first set. They correspond to zero crack tip shearing force and zero relative opening

displacement just behind the crack tip respectively. Within the context of Timoshenko beam theory,

the ¢, and ¢, modes coincide with the ¢, and ¢, modes. Therefore the @, and ¢, modes

form a complete basis for mixed mode partitions.

The Euler and Timoshenko beam theory mode partitions agree very well with the corresponding beam
FEM predictions. The averaged partition approximation, which has been described in previous work
by the authors (10-13), has been further tested. The approximation generally agrees very well with the
2D FEM results, even when the difference between the Euler and Timoshenko curves is substantial

and the accuracy of the approximation might have become strained.

The developed theories will be a valuable analytical tool in many applications for example for
analytical researchers to develop fracture propagation criteria; for design engineers to design high
integrity structures and for numerical analysts to benchmark their simulations, etc. These theories
have also been extended to isotropic and composite axisymmetric plates, curved beams and shells;

they will be reported in a future paper.
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Table 1.1: Data for numerical simulations of a clamped-clamped isotropic beam

Elastic modulus, E 70 GPa
Shear modulus, G,, 26 GPa
Poisson’s ratio, v,, 0.35

Beam thicknesses, h, and h,

Intact lengths of beam, L, and L,

1 mmand 2 mm

10 mm and 25 mm

Length of fracture, a 65 mm
Width of beam, b 10 mm
Loading location, X, 20 mm

Euler pure modes 6, B:, 6 and S,

Timoshenko pure modes 6 and S

-3.92,2.81,-1and 8

-3.84 and 2.75

Table 1.2: Data for numerical simulations of a clamped-clamped laminated composite beam

Ply longitudinal modulus, E,, 139.3 GPa
Ply transverse modulus, E,, 9.72 GPa
Out-of-plane modulus, E,, 9.72 GPa
In-plane shear modulus, G,, 5.58 GPa
Out-of-plane shear moduli, G, 5.58 GPa
Out-of-plane shear moduli, G,, 3.45 GPa

In-plane Poisson’s ratio, v, 0.29

Out-of-plane Poisson’s ratio, v,, 0.29

Out-of-plane Poisson’s ratio, v,, 0.4
Ply thickness, t, 0.125 mm

Sub-laminate lay-up 1 (top)
Sub-laminate lay-up 2 (bottom)

Laminate thicknesses, h, and h,

90/-45/0/45

(45/0/-45/90),/90/-45/0/45

0.5mmand 1.5 mm

Intact lengths of beam, L, =L, 25 mm
Length of fracture, a 50 mm
Width of beam, b 10 mm
Loading location, X, 25 mm

-26.45, 4.98, -1 and 66.90

Euler pure modes 6, B:, 6. and S,

Timoshenko pure modes 6 and S -23.20 and 4.74
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Table 1.3: Comparison between various theories for clamped-clamped isotropic beam energy release
rate partitions with varying P, and P, =1N.

G, /G (%)
Numerical Numerical Numerical Averaged
. Euler . Timo. Timo. : 2D FEM
0N RN a2 ATREL @0 goee I o0
Timo. ' Timo. Timo. Timo.) QUAD4s)
beams) beams) beams)
-10 70.30 70.30 88.54 87.39 84.07 79.94 80.23
-8 77.28 77.27 92.34 91.38 88.62 85.15 85.05
-6 86.94 86.93 96.73 96.09 94.27 91.92 91.28
-4 99.46 99.45 99.97 99.92 99.77 99.49 98.13
-2 107.63 107.62 92.34 93.60 96.40 99.58 97.69
0 76.34 76.34 48.13 51.43 56.70 61.84 60.69
2 13.35 13.36 2.92 4.24 6.15 7.78 8.07
4 -7.25 -7.23 4.36 3.05 0.99 -0.87 0.91
6 -5.45 -5.44 16.42 14.24 10.38 6.64 9.10
8 0.00 0.01 26.16 23.76 19.15 14.47 17.14
10 5.01 5.02 33.09 30.65 25.70 20.54 23.25

Table 1.4: Comparison between various theories for clamped-clamped isotropic beam contact

behavior with varying P, and P, =1N.

First contact

After first contact

P, (N)

G, /G (%)

P, (N)

G, /G (%)

Analytical
Euler

Numerical Euler
(100%2 Timo.
beams)

Analytical
Timo.

Numerical Timo.
(800%2 Timo.
beams)

Numerical Timo.
(200x2 Timo.
beams)

Averaged
Analytical (Euler
& Timo.)

2D FEM (400x6
QUADA4s)

8

7.99

2.75

3.06

3.67

4.33

3.52

0

10

10

10

10

10

10

0
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Table 1.5: Comparison between various theories for clamped-clamped laminated composite beam
energy release rate partitions with varying P, and P, =1N.

G, /G (%)
Numerical Numerical Numerical Averaged
. Euler . Timo. Timo. : 2D FEM
R0 RN o2 ATEEL @oo e RN (oo
Timo. ' Timo. Timo. Timo.) QUAD4s)
beams) beams) beams)
-10 145.33 145.33 87.57 89.20 98.46 113.51 101.99
-8 147.63 147.62 79.89 82.13 93.05 111.45 100.40
-6 145.01 145.00 68.83 71.93 84.24 105.37 95.65
-4 134.61 134.60 54.04 58.15 71.19 93.47 86.17
-2 114.10 114.09 36.51 41.43 53.97 74.79 70.87
0 83.82 83.81 19.27 24.13 34.51 50.90 50.73
2 48.24 48.24 6.41 9.90 16.58 26.46 29.71
4 14.30 14.30 0.47 1.65 3.83 6.72 12.78
6 -12.60 -12.61 0.98 -0.24 -2.39 -5.75 2.50
8 -30.77 -30.77 5.66 2.59 -3.12 -11.51 -1.66
10 -41.30 -41.29 12.21 7.99 -0.36 -12.56 -1.69

Table 1.6: Comparison between various theories for clamped-clamped laminated composite beam
contact behavior with varying P, and P =1N.

First contact After first contact
P, (N) G, /G (%) P, (N) G, /G (%)
Analytical 66.90 0 100 0
Euler
Numerical Euler
(100x2 Timo. 66.77 0 100 0
beams)
Analytical 474 0 100 0
Timo.
Numerical Timo.
(800x2 Timo. 6.38 0 100 0
beams)
Numerical Timo.
(200x2 Timo. 10.18 0 100 0
beams)
Averaged
Analytical (Euler 18.23 0 100 0
& Timo.)
2D FEM
(200x16 11.60 0 100 0
QUADA4s)
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Figure captions

Figure 1.1: A clamped-clamped beam with a fracture and its loading conditions. (a) General

description. (b) Force diagram of each beam.
Figure 1.2: Details of the crack influence region Aa ahead of the left crack tip.

Figure 1.3: Comparison between various theories for clamped-clamped isotropic beam energy release

rate partitions with varying P, and P, =1N.

Figure 1.4: Comparison between various theories for clamped-clamped laminated composite beam

energy release rate partitions with varying P, and P, =1N.
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Figure 1.1: A clamped-clamped beam with a fracture and its loading conditions. (a) General
description. (b) Force diagram of each beam.
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Figure 1.2: Details of the crack influence region Aa ahead of the left crack tip.
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Figure 1.3: Comparison between various theories for clamped-clamped isotropic beam energy release

rate partitions with varying P, and P, =1N.
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Figure 1.4: Comparison between various theories for clamped-clamped laminated composite beam
energy release rate partitions with varying P, and P, =1N.
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