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Abstract 

Completely analytical theories are presented for calculating the total energy release rate (ERR) in a 

mixed-mode delamination in layered isotropic and laminated composite straight beam structures and 

for partitioning it into opening mode I and shearing mode II components. The theories are developed 

within the contexts of both the Euler and Timoshenko beam theories. The theories are extensively 

verified against numerical simulations using the finite element method. The developed theories 

provide a valuable means for the design of such beam structures against delamination. 

1. Introduction 

Layered isotropic and laminated composite straight beams are commonly used in many different 

engineering structures, such as aircraft, buildings and bridges, etc. Delamination is a major concern in 

these applications, for example, a commonly-used method to repair or strengthen a concrete beam in 
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civil engineering is to bond either a metal plate or a carbon-fiber-reinforced laminate onto it. The 

fracture toughness against debonding at the interface is a crucial design parameter. In general, 

debonding is a mixed-mode fracture, that is, it consists of both mode I opening and mode II shearing. 

The toughness depends on the proportions of these two individual fracture modes. Therefore, it is 

imperative to partition the total energy release rate (ERR) of a mixed-mode fracture into its mode I 

and II components which govern the fracture toughness or the fracture propagation criterion. 

Some of the earliest analytical work on the topic of one-dimensional fracture—that is, fracture which 

propagates in one direction with mode I and mode II components only—was reported by Williams 

(1), who made some significant contributions to the understanding for isotropic double cantilever 

beams (DCBs). A semi-analytical partition theory was given by Schapery and Davidson (2), which 

was also for isotropic DCBs and based on Euler beam theory. They were not able to give Williams’s 

(1) pair of pure modes and claimed that Euler beam theory doesn’t provide quite enough information 

to obtain a decomposition of energy release rate into opening and shearing mode components. They 

therefore used the finite element method (FEM) to solve the two-dimensional continuum problem 

around the crack tip in order to partition the energy release rate. Suo and Hutchinson (3-5) used a 

similar approach to Schapery and Davidson (2), but instead of using the FEM, they used integral 

equation methods to obtain a two-dimensional linear elasticity solution for the crack tip region. The 

resulting partition theory is analytical except for one parameter, which is determined numerically. 

Schapery and Davidson’s (2) and Suo and Hutchinson’s (3-5) partition theories generally give 

different partitions to William’s (1) partition theory. Zou et al. (6) derived a completely analytical 

partition theory for isotropic DCBs based on Timoshenko beam theory. Bruno and Greco (7) obtained 

the same partition but for Euler beams instead of Timoshenko beams. Luo and Tong (8) derived the 

same partition theory as Bruno and Greco (7), also for Euler beams, but by a different method. None 

of the work by Zou et al. (6), Bruno and Greco (7) and Luo and Tong (8) is in agreement with 

Williams’s (1), Schapery and Davidson’s (2), or Suo and Hutchinson’s (3) partition theories. 

Recently, based on a fundamental physical understanding and a complete mechanical representation 

of the problem, a powerful mathematical methodology has been created by the authors to partition the 

total ERR. Several challenging fracture problems have been solved analytically. The research results 

have been reported in a series of publications (9-18). The authors’ mixed-mode partition theory based 

on classical laminate theory has been shown (11,18) to agree very well with the test data obtained 

from a series of experimental studies by different research groups (19-23). Also, the authors’ latest 

work (26,27) shows that authors’ mixed-mode partition theory based on first-order shear-deformable 

laminate theory plays a key role in the development of a local mixed-mode partition theory between 

two dissimilar elastic materials. 
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The major aim of the present study is to extend the previous work (9-18) to develop analytical 

theories to calculate the total ERR and its mode I and II partitions for a mixed-mode delamination in 

layered isotropic and laminated composite straight beams under various loading conditions and 

boundary conditions. The work provides a valuable means for the design of such beam structures 

against delamination. 

The structure of this paper is as follows: Sections 2 and 3 develop analytical theories for layered 

isotropic beams; Section 4 develops analytical theories for laminated composite beams; numerical 

tests are presented in Section 5; and further discussions and conclusions are made in Section 6. 

Nomenclature 

a  length of fracture 

AAA  , , 21  extensional stiffness of upper, lower and intact beams 

b  beam width 

BBB  , , 21  coupling stiffness of upper, lower and intact beams 

DDD  , , 21  bending stiffness of upper, lower and intact beams 

shop DD  ,  crack tip relative opening and shearing displacements 

E  Young’s modulus 

sBnB FF  ,  crack tip normal and shear forces 

1θnBF  crack tip opening force due to mode 
1θ

ϕ  

nBPF  crack tip opening force due to shearing 

III GGG  , ,  total, mode I and mode II energy release rates 

PG  mode I energy release rate due to shearing 

xzG  shear modulus 

ii
GG βθ  ,  energy release rates due to mode 

iθ
ϕ  and mode 

iβ
ϕ  

hhh  , , 21  thicknesses of upper, lower and intact beams 

HHH  , , 21  out-of-plane shearing stiffness of upper, lower and intact beams 

III  , , 21  second moments of area of upper, lower and intact beams 

21  , LL  length of left and right intact parts of beam 

21  , MM  bending loads acting on upper and lower beams 

iii BBB MMM  , , 21  bending moments on upper, lower and intact beams at crack tip i  
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21  , NN  axial loads acting on upper and lower beams 

iii BBB NNN  , , 21  axial forces on upper, lower and intact beams at crack tip i  

cP  point contact force 

21  , PP  shear loads acting on upper and lower beams 

iii BBB PPP  , , 21  crack tip shear forces on upper, lower and intact beams at crack tip i  

4321  , , , uuuu  axial displacements of the upper, lower, left and right beams 

4321  , , , wwww  deflections of the upper, lower, left and right beams 

21
 , pp xx  distance from left crack tip to loading location on upper and lower beams 

iϕ
α  mixed mode partition coefficient for mode iϕ  

ii ββ ′ ,  the two pure mode II ‘crack tip modes’ from the ith set 

FF ββ ′ ,  the two pure mode II ‘F modes’ 

γ  thickness ratio 12 hh  

ji
G ϕϕ∆  energy release rate interaction between modes iϕ  and jϕ  

ii θθ ′ ,  the two pure mode I ‘crack tip modes’ from the ith set 

FF θθ ′ ,  the two pure mode I ‘F modes’ 

2κ  shear correction factor 

ii βθ ϕϕ  ,  mode vectors for the ith mode I and the ith mode II 

4321  , , , ψψψψ  rotations of normals to mid-surface of the upper, lower, left and right beams 

2. Clamped-clamped isotropic beams 

2.1. Governing equations 

A general clamped-clamped beam with a fracture is shown in Figure 1.1. Contact between the upper 

and lower beams is not treated initially. With reference to Figure 1.1b and using the constitutive 

relation from Timoshenko beam theory for isotropic materials, the following are easily derived: 
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Subscripts 1 and 2 refer to the upper and lower beams respectively. Subscripts 3 and 4 refer to the 

left- and right-hand intact laminates. The left crack tip is at location B1. The right crack tip is at 

location B2. In these equations, the origin of x  is at B1 and to the right for beams 1 and 2; for beams 3 

and 4 it is at the respective left-hand sides and to the right (as shown in Figure 1.1a); w  is the upward 

deflection; the rotations, dxdw  and ψ  are anticlockwise. The angle brackets are Macaulay brackets, 

denoting the ramp function. The axial displacements of the beams are 

 ( ) ( )
12,11 2,12,12,12,12,1 BpB ubEhxxNxNu +−−=  (6) 

 ( )bEhxNu B13 =     ,    ( ) ( )bEhLNxNu BB 24 22
−=  (7) 

Equilibrium can be used to describe all the forces in Figure 1.1b in terms of the six left crack tip 

forces 
12,1 BM , 

12,1 BN  and 
12,1 BP , and the applied loads 2,1M , 2,1N  and 2,1P . 

 
1BA PR −=     ,    111

LPMM BBA −−=     ,    
1BA NN =  (8) 

 
2BC PR =     ,    

22 2 BBC MLPM −=     ,    
2BC NN =  (9) 

 ( ) 2
2,12,12,12,12,1 122121 BBBBB NhNhMMM −++=  (10) 

 
2,12,12,1 21 BBB NNN +=     ,    

2,12,12,1 21 BBB PPP +=  (11) 

 ( )
2,1112 2,12,12,12,12,1 pBBB xaPaPMMM −+−−=  (12) 

 2,12,12,1 12
NNN BB −=     ,    2,12,12,1 12

PPP BB −=   (13) 

Eqs. (1) to (7) therefore contain 12 unknown quantities: the six left crack tip forces 
12,1 BM , 

12,1 BN  

and 
12,1 BP , and the deflections, rotations and axial displacements at the left crack tip 

12,1 Bw , 
12,1 Bψ  and 
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12,1 Bu . 12 boundary conditions are therefore required to enforce continuity at the crack tip. There is 

continuity of deflection at the two crack tips. 

 ( )
111 321 LxBB www ===     ,    ( ) ( ) ( ) 0421 === == xaxax www  (14) 

There is also continuity of rotation at the two crack tips but this boundary condition requires special 

consideration. In cases where the shear modulus is finite, but the through-thickness shear effect is still 

small relative to bending, it is sufficient to use the following approximation: 

 ( )
111 321 LxBB === ψψψ     ,    ( ) ( ) ( ) 0421 === == xaxax ψψψ  (15) 

In this work, an improved boundary condition is derived and used instead of the approximate Eq. (15). 

Using a single Timoshenko beam to model the intact region ahead of a crack tip, as in Eqs. (3) to (5), 

gives constant shear strain through the thickness. In reality, due to the normal and shear stress 

distributions on the interface ahead of the crack tip, the shear strain is not generally constant through 

the thickness. Note that the rotations 1ψ  and 2ψ  are continuous across the crack tips (although the 

mid-surface rotations dxdw1  and dxdw2  are not) but they are not equal. One way to represent the 

mechanics is to model the intact side of each crack tip using two Timoshenko beams with normal and 

shear stress distributions on the interface and continuous rotations across the crack tip. This would be 

both complex and incompatible with Eqs. (3) to (5). Instead, the method used in this work, which 

turns out to be very accurate, is to use a single Timoshenko beam to model the intact side of each 

crack tip, and account for the presence of the normal and shear stress distributions on the interface 

with discontinuous rotations 2,1ψ  across the crack tip. This is justified because the region affected by 

the crack tip in linear elastic fracture mechanics is small. 

Consider the region around a general crack tip, as shown in Figure 1.2. The origin of the ξ  coordinate 

is at the crack tip B and towards the left. The deflection w  is upwards and the rotations dxdw  and 

ψ  are defined as positive in the anticlockwise direction. The interface stresses in the figure show only 

the sign convention rather than any representative distribution. Within the region affected by the crack 

tip, the through-thickness shearing equations from Timoshenko beam theory are 

 ( ) ∫=−
ξ

ξσψκ
02,12,12,1

2
2,1 dbPdxdwGbh nBxz   (16) 

The mid-surface rotations dxdw1  and dxdw2  are discontinuous at the crack tip but for a rigid 

interface, ( ) ( ) aa dxdwdxdw dξdξ == = 21 , which are the midplane rotations of beams 1 and 2 at a very 

small distance ad  ahead of the crack tip B. Since the rotations 1ψ  and 2ψ  are continuous and ad  is 

very small, therefore ( ) Ba 2,12,1 ψψ
dξ
=

=
. Also, if the intact side of the crack tip is modeled with a 
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single Timoshenko beam across the thickness, then ( ) ( )Ba
dxdwdxdw =

=dξ2,1 . The rotation 

boundary conditions are therefore 

 ( ) ( ) ( )2
2,12,132,1 1111

κψ xznBBLxB GbhFPdxdw −= =  (17) 

 ( ) ( ) ( )2
2,12,1042,1 222

κψ xznBBxB GbhFPdxdw −= =  (18) 

where ∫=
a

nnB dbF
d

ξσ
0

, which is the crack tip opening force. Note that Eqs. (17) and (18) reduce to 

Eq. (15) for Euler beams, for which ∞→2κxzbhG . The crack tip opening force nBF  is known from 

the previously established mode partition theory for fracture in isotropic DCBs (10,12). It is 

dependent on the mode partition and is a function of the crack tip forces. An expression for nBF  is 

given in the following section. 

There is also continuity of axial displacement at the two crack tips. 

 ( ) ( ) 2
111 31,232,1 LxLxB huu === ψ     ,    ( ) ( ) ( ) 2041,2042,1 ===

= xxax
huu ψ  (19) 

The system of 12 equations, given by Eqs. (14) and (17) to (19), can now be solved to give all the 

unknown quantities in terms of the six independent variables 2,1M , 2,1N  and 2,1P . The immediate 

results are not presented here for reasons of conciseness. 

2.2. Energy release rate partition 

ERR can be determined by knowledge of the forces at the crack tip. If all these forces are known, then 

the ERRs can be found in the same way as for isotropic DCBs (10,12). All of the crack tip forces are 

known from the solution of the above equations. The mode partition theory for fracture in isotropic 

DCBs is briefly summarized here. For full details, readers should refer to Refs. (10,12). All 

expressions are for the left crack tip B1. The ‘1’ subscript is therefore dropped for convenience. It is 

then simple to find the ERR for the right crack tip B2. 

Initially the effect of through-thickness shear is ignored, as in the case of Euler beam theory where 

∞→2κxzbhG . It is accounted for later. The total ERR is 

 ( ) 
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where BeN1  is the effective axial force, defined as 

 γBBBe NNN 211 −=  (21) 
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Since the ERR is a function of three crack tip forces, three pure-mode vectors are required to find the 

partition. There are eight independent pure-mode vectors to choose from in the Euler case (two pure-

mode-I modes and two pure-mode-II modes from each of the two sets). The order of the variables in 

the mode vectors is { }T
BeBB NMM 121=ϕ . It is convenient to select the following three pure 

modes to make the partition: 

 { }T
1 01

1
θϕθ =     ,    { }T

1 01
1

βϕβ =     ,    { }T
201

2
βϕβ =  (22) 

where 

 2
1 γθ −=     ,    ( ) ( )γγγβ 3132

1 ++=     ,    ( ) ( )[ ]132 12 −+= γγβ h  (23) 

Mode 
1θ

ϕ  is a pure mode I mode, which has zero relative shearing displacement just behind the crack 

tip. Modes 
1β

ϕ  and 
2β

ϕ  are pure mode II modes, which have zero opening force ahead of the crack 

tip. Using these modes, the mode partition coefficients are 
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for 1=γ  and 1≠γ  respectively. 

Within the context of Euler beam theory, there is interaction between the 
1θ

ϕ  mode and the 
iβ

ϕ  

modes, denoted by 
i

G βθ1
∆ . The mode I ERR is 

 
2121111111

2
βθβθβθβθθθ ααααα GGGGI ∆+∆+=  (25) 

where 

( )[ ]γγθ += 124 3
1

2
1

hEbG     ,    ( ) ( )γγ θβθ 3113
111

+−=∆ GG     ,    ( )γγ θβθ +1=∆
121

GG  (26) 

To find the ERR using Timoshenko beam theory, the through-thickness shear effect must be 

considered. The interaction between the 
1θ

ϕ  mode and the 
iβ

ϕ  modes disappears, that is, 

0
2,11
=∆ βθG . There are nine independent pure modes within the context of Timoshenko beam theory 

(there is an extra pure mode I mode due to through-thickness shearing), however the absence of 

interaction means that four of them from the second set coincide with four of them from the first set, 

giving five unique pure modes (three pure mode I and two pure mode II). There are also two 

additional contributions to the mode I ERR IG : the ERR due to shearing, denoted by PG ; and the 



 9 

ERR due to interaction between the 
1θ

ϕ  mode crack tip opening force and the relative opening 

displacement due to shearing, and vice versa, denoted by PG
1θ

∆ . The ERRs are therefore 

 ( ) PP
Be

BB
BBBe GGNhMM

II
M

I
M

bh
N

bE
G
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2
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2

2
2

1

2
1

1
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1
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where 
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( )

( ) 22
1
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1

34
1 κγ

γ
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xz

BB
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EGhb
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+

−
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The crack tip opening force nBF , which is required to solve the governing equations from 

Timoshenko beam theory in Section 2.1, can now be found. Since the 
1β

ϕ  and 
2β

ϕ  modes are 

characterized by zero normal force ahead of the crack tip, only the 
1θ

ϕ  mode and the opening force 

due to shearing contribute to the crack tip opening force, giving 

 nBPnBnB FFF +=
11 θθα  (30) 

where 
1θ

α  is known in terms of the crack tip forces from Eq. (24) and 
1θnBF  is the crack tip opening 

force in the 
1θ

ϕ  mode and nBPF  is the crack tip opening force due to shearing. From Timoshenko 

beam theory, these quantities are 

 ( )( ) 2/122
1

22 148
1

γκγθ += EhGF xznB     ,    ( ) ( )γγ +−= 121 BBnBP PPF  (31) 

The governing equations in Section 2.1 can now be solved to find the crack tip forces and to obtain 

the ERR partition. 

2.3. Two sets of orthogonal pure modes 

Since the crack tip forces in Eq. (24) cannot be set independently of the loads applied at 
1px  and 

2px , 

it is clearly not possible to obtain purely mode vectors 
1θ

ϕ , 
1β

ϕ , or 
2β

ϕ  at a given crack tip. In this 

work these modes are referred to as ‘crack tip modes’ because they relate crack tip quantities only. 

Some combinations of these modes however can give pure mode I or II fractures. These modes are 

now derived for the left crack tip for the special case when ∞→2κxzbhG  (Euler beam theory) and 

1≠γ ; 1P  and 2P  are applied at the same location, i.e. ppp xxx ==
21

 and 02121 ==== NNMM . 
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These fracture modes are now referred to as ‘F modes’ and denoted by a subscript ‘F’, because they 

relate the forces 1P  and 2P . 

Because of Refs. (10,12), there are expected to be two sets of pure F modes, where the first set 

corresponds to zero relative shearing displacement just behind the crack tip (pure mode I) and zero 

opening force ahead of the crack tip (pure mode II); and where the second set corresponds to zero 

relative opening displacement just behind the crack tip (pure mode II) and zero crack tip shearing 

force (pure mode I). 

Mathematically, the relative shearing displacement at an infinitely small distance ad  behind the crack 

tip, ( ) axshD d=  is expressed as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 22 22211121 axaxaxaxaxaxaxsh huhuuuD ddddddd ψψ ======= +−+=−=  (32) 

where u  represents the axial displacement at the interface. For the pure-mode-I mode from the first 

set, the relative shearing displacement at ax d=  is zero, that is ( ) 0== axshD d . Making the necessary 

substitutions and taking the limit as 0→ad  gives 

 ( )[ ] ( )12
2

332
2

1
2

12 CCCCCCPP F +−+−−== γγγγγθ     ,    { }T
FF

θϕθ 1=  (33) 

where 

 ( ) ( )321
2

1 2 LLaxaxC pp ++−=     ,    ( ) ( )( )3
21

2
7

2
2 232 aLLaCxaxC pp −++−=  (34) 

 ( ) ( ) 8
3

2
2

217
23

2
2

7
233

3 332462 aCaLaLaLCxaaLaCaxxaC ppp −++−+++−=  (35) 

 ( ) ( )221
3

217 3 LLaLLC +++=     ,    ( )aLLLaC 33 21
2
1

2
8 ++=  (36) 

and Fϕ  represents mode vector format { }TPP 21 . The orthogonal condition to the zero relative 

shearing displacement condition is zero opening force ahead of the crack tip. The mode corresponding 

to this condition could be derived by applying orthogonality through Eq. (20), however it is more 

convenient in this instance to simply enforce 0=nBF . Noting that 
1θnBF  is infinite in Euler beam 

theory and that therefore the finite nBPF  in Eq. (30) is negligible, the requirement for 0=nBF  is 

simply 0
1
=θα , which from Eq. (24) gives 

( ) ( )14
2

5
3

665
2

4
3

1
2

12 CCCCCCCCPP F ++++++== γγγγγγγβ   ,  { }T
FF

βϕβ 1=  (37) 

where 

 ( ) ( )( )3
21

2
7

2
4 5622 aLLaCxaxC pp +++−=  (38) 
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( )( ) ( )
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2
2

1
2
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2
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2

2
1

2
7

23
21

2
7

3
5

3976322  

286121462

aCLaLaLaLaCxa

aLaLaCaxaLLaCxC

p

pp

+−−+−−

+−+−+++=
 (39) 

 ( ) ( ) 8
3

2
2

217
23

2
2

7
233

6 33364636 aCaLaLaLCxaaLaCaxxaC ppp −++−+++−=  (40) 

Now considering the second set of pure modes, the pure mode I mode is given by zero shear force at 

the crack tip. The shear force at the crack tip is 

 
221111 ββββθθ ααα sBsBsBsB FFFF ++=  (41) 

The mode partition coefficients are known from Eq. (24) and the crack tip shear forces relating to 

each mode vector are known from Refs. (10,12). 

( ) ( )[ ]2
1 116

1
γγγθ +−= hFsB     ,    ( )[ ]γγβ 316 11

+= hFsB     ,    ( )[ ]12 2
1

2
2

−= γγβ hFsB  (42) 

Making these substitutions and setting 0=sBF  gives 

 112 −=′= FPP θ     ,    { }T
FF

θϕθ ′=′ 1  (43) 

Finally, for the pure mode II mode from the second set, the relative opening displacement at ax d=  

is zero ( ) 0=
= axopD
d

. 

 ( ) ( ) ( ) axaxaxop wwD ddd ===
−= 21  (44) 

Making the necessary substitutions and taking the limit as 0→ad  gives 

 3
12 γβ =′= FPP     ,    { }T

FF
βϕβ ′=′ 1  (45) 

That Fθ ′  and Fβ ′ , relating 2P  to 1P , are the same as 1θ ′  and 1β ′ , which relate BM 2  to BM1  (10,12), 

should be no surprise. The axial forces BN1  and BN2 , induced at the crack tip by 1P  and 2P , clearly 

have no effect on the opening displacement. Therefore the condition ( ) 0=
= axopD
d

 is unaffected by 

BN1  and BN2 , and 1ββ ′=′F . Also, if 1P  and 2P  are equal and opposite 112 −=PP , then regardless 

of how beams 1 and 2 deflect, beams 3 and 4 do not deflect and the crack tip rotations are zero. 

Therefore BN1  and BN2  are both zero and the two crack tip bending moments are in the ratio of 1θ ′ . 

If 1P  and 2P  are applied in different locations then this would not be observed because each load 

would have a different moment arm around the crack tip. 

If the above procedure is repeated for Timoshenko beams, it is found that the 
Fθ

ϕ ′  mode changes to 

coincide with the 
Fθ

ϕ  mode, which is different to that obtained from Euler beam theory due to the 

static indeterminacy of clamped-clamped beams (the relative shearing displacement is otherwise not 
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affected by through-thickness shear). Similarly the 
Fβ

ϕ ′  mode coincides with the 
Fβ

ϕ  mode, which is 

also different to that obtained from Euler beam theory. For cases when the through-thickness shear 

effect is not excessively large, Eqs. (33) and (37) are good approximations. The expressions for the 

Timoshenko ‘F modes’ are not as simple as those for the Euler ‘F modes’, so are not presented here in 

general form. They are however easily derived for specific cases with numerical—rather than 

algebraic—quantities. 

2.4. Contacting fractures 

For some values of 1P  and 2P , the beams either side of the fracture will come into contact. This raises 

two questions: where is the point of first contact, and what happens after contact? 

To find the point of first contact cx  using Euler beam theory, two conditions must be satisfied: first, 

the relative opening displacement at this point must be zero; second, the relative opening 

displacement must be a minimum at cxx = , which implies that it is the point of first contact. 

 ( ) 0=
= cxxopD     ,    ( ) 0=∂∂

= cxxop xD  (46) 

Solving Eqs. (46) simultaneously for 12 PP  and cx , and ignoring the obvious and unavailing 

solutions for the crack tips, gives 

 FPP βγ ′== 3
12  (47) 

for all values of x . This implies simultaneous contact everywhere along the fracture for this value of 

12 PP . 

If 12 PP  is increased beyond Fβ ′ , the contact can either be at a point or distributed. Obviously the 

solution must not allow interpenetration between the upper and lower beams anywhere. In addition, 

since linear elastic mechanics is being used, there can only be one valid solution. Therefore point 

contact at pxx = , which is a reasonable assumption, will be considered and shown to satisfy the 

requirements, thus demonstrating that it is the correct solution. 

Say that two loads cP1  and cP2  are applied to the beam at pxx =  and that they cause point contact at 

this same location. Call the point contact force cP . It acts to prevent non-physical intersection. The 

net shear loads 1P  and 2P  acting on the beams are therefore 

 cc PPP += 11     ,    cc PPP −= 22  (48) 



 13 

Note that 1P  and 2P  in Eqs. (48) are the same quantities that appear in all the equations thus far. The 

final condition that must be satisfied is 

 ( ) 0=
= pxxopD  (49) 

Solving Eqs. (48) and (49) for 1P , 2P  and cP  gives 

( ) ( )3
211 1 γ++= cc PPP     ,    ( ) ( )3

21
3

2 1 γγ ++= cc PPP     ,    ( ) ( )3
1

3
2 1 γγ +−= ccc PPP  (50) 

Substituting Eqs. (50) into 21 wwDop −=  reveals that 0=opD  for all values of x . Therefore the 

requirements for physical contact behavior are satisfied by this solution and the ERR partition is then 

found in the usual way. 

Using Timoshenko beam theory, at FFPP ββ ′==12  there is both zero opening force ahead of the 

crack tip and zero relative opening displacement just behind. Therefore crack tip running contact 

occurs at FPP β=12  and a pure mode II fracture is obtained. Since there is running contact, if the 

loading ratio 12 PP  is increased further then the crack tip remains closed as the contacting region 

grows. 

3. Simply supported isotropic beams 

The theory presented in Section 2 is easily modified for simply supported isotropic beams. In this 

section, the modified theory is briefly summarized. For this new case, Eqs. (51) to (53) replace Eqs. 

(3) to (5) and (7). 

 AA
A xMxR

EI
ψψ +








−=

2
1 2

3
3     ,    2

23

3
3

1

26
1

κ
ψ

xz

B
A

AA

bhG
xP

xxMxR
EI

w ++







−=  (51) 

 
2

2

2 6
1 2

4
4 B

B
B

xP
xM

EI
ψψ +










−=  (52) 

 ( ) ( )
2
2

2

3
2

32
2

2

4
4

2

2

2222

6622
1

κ
ψ

xz

B
B

BBBB

bhG
LxP

Lx
LPxPLMxM

EI
w

−
+−+










+−−=  (53) 

Since zero rotation is no longer enforced at the supports, two additional boundary conditions are 

required at these locations. For simple supports these are 

 
11 10 BBA MLPM −−==     ,    

22 20 BBC MLPM −==  (54) 

This new system of equations is now easily solved for the left crack tip for the special case when 

∞→2κxzbhG  (Euler beam theory). All the unknown quantities are then known in terms of the 
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independent variables 1P  and 2P . Again, the immediate results are not presented here for reasons of 

conciseness. If the analysis is carried out for when 1≠γ , 1P  and 2P  are applied at the same location, 

i.e. ppp xxx ==
21

 and 02121 ==== NNMM , the four pure mode relationships for both the left 

and right crack tips are 

 ( ) ( )11
2

221
2

1
2

12 CCCCCCPP F −+−−== γγγγγθ  (55) 

 ( ) ( )11
2

3
3

443
2

1
3

1
2

12 22 CCCCCCCCPP F ++++++== γγγγγγγβ  (56) 

 112 −=′= FPP θ     ,    3
12 γβ =′= FPP  (57) 

where 

 ( ) ( )21
2

1 2 LLaxaxC pp ++−=     ,    ( ) 1
3

5
22

52 2 LaCaaxxCC pp +−+=  (58) 

 ( ) ( ) 1
3

5
22

521
3

3 3432 LaCaaxxCLLaxC ppp +−+−++=  (59) 

 ( ) 1
32

5
2

54 3363 LaaCaxxCC pp −−+−=     ,    ( )215 LLaaC ++=  (60) 

The contact behavior is found to be identical to the clamped-clamped case, i.e. contact at 3
12 γ=PP  

for all values of x  between beams 1 and 2 and point contact at pxx =  afterwards. 

If the above procedure is repeated for Timoshenko beams then as before, it is found that the 
Fθ

ϕ ′  

mode coincides with the 
Fθ

ϕ  mode; the 
Fβ

ϕ ′  mode coincides with the 
Fβ

ϕ  mode; and the 
Fθ

ϕ  and 

Fβ
ϕ  modes are different to those obtained from Euler beam theory. However for cases when the 

through-thickness shear effect is not excessively large, Eqs. (55) and (56) are good approximations. 

The expressions for the Timoshenko ‘F modes’ are not as simple as those for the Euler ‘F modes’, so 

are not presented here in general form. They are however easily derived for specific cases with 

numerical quantities. 

4. Clamped-clamped laminated composite beams 

4.1. Governing equations 

A general clamped-clamped laminated composite beam with a delamination now receives the same 

analysis. Contact between the upper and lower sub-laminates is not treated initially. The extensional, 

coupling, bending and shearing stiffness are denoted by A , B , D  and H  respectively. Note that 

these quantities take different values under the plane-strain assumption from those from under the 

plane-stress assumption however they make no difference to the following development. Subscripts 1 

and 2 are used to indicate the upper and lower sub-laminates respectively. No subscript is used for the 
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intact part of the laminate. 1A  is therefore the extensional stiffness of the upper sub-laminate and A  

is the extensional stiffness of the intact laminate, etc. With reference to Figure 1.1 and using the 

constitutive relation from classical laminate theory, 
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 (61)  
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00
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ψ
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H
DB
BA
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 (62)  

where 

 ( ) 0

2,12,12,1 2,11 pB xxNNxN −−=     ,    ( ) 0

2,12,12,1 2,11 pB xxPPxP −−=  (63)  

 ( )
2,12,111 2,1

0

2,12,12,12,1 ppBB xxPxxMxPMxM −+−−−=  (64)  

 ( )
2,14,3 BNxN =     ,    ( )

2,14,3 BPxP =  (65)  

 ( ) ( )13 11
LxPMxM BB −−=     ,    ( ) xPMxM BB 224 −=  (66)  

As shown in Figure 1.1a, the origin of x  in these equations depends on the beam in question: it is at 

location B1 and to the right for beams 1 and 2; for beams 3 and 4 it is at the respective left-hand sides 

and to the right; Positive deflection, w  is always upwards; the rotations dxdw  and ψ  are positive 

in the anticlockwise direction. From Eqs. (61) to (66), the following are easily derived: 

 

( )
( )

( )2
2,12,12,1

2
2,1

2

2,12,12,12,1
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2,12,12,1
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2

22
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BDAb

xPxxPxxMxMA

BDAb

xxNxNB

BppB

B
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−






 −−+−−

+

+
−

−−
= ψψ

 (67) 
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2,12,1
2,12,12
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2,1
2

2,12,1

2,1

6
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2

12,12,11

2,11
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2,11

BDAb

xPxxPxxMxMA
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xxPxP
wx

BDAb

xxNxNB
w

BppB
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BB
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 −−+−−

+

−−
+++

−






 −−

= ψ

  (68) 

 ( )2

2
1

3 2
222

1111

BADb
xAPxPALxAMxBN BBBB

−

−++
=ψ  (69) 
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 ( ) bH
xP

BADb
xAPxPALxAMxBN

w BBBBB 11111

2

32
1

22

3 6
333

+
−

−++
=   (70) 

 
( )( ) ( )

( )2

2
2

2
2

4 2
22

222

BADb
LxAPLxAMBN BBB

−

−−−+
=ψ  (71) 

 
( )( ) ( )

( )
( )
bH

LxP
BADb

LxLxAPLxLxAMBN
w BBBB 2

2

2
2

2
2

32
22

2

4
2222

6
23233 −

+
−

+−−+−+
=   (72) 

 

( )
( )

( )2
2,12,12,1

2
2,1

2

2,12,12,12,1

2,12
2,12,12,1

2,12,12,1
2,1

2

22
   

12,12,11

1

2,11

BDAb

xPxxPxxMxMB

u
BDAb

xxNxND
u

BppB

B
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 −−+−−

+

+
−

−−
=

 (73) 

 ( )2

2
1

3 2
222

1111

BADb
xBPxPBLxBMxDN

u BBBB

−

−++
=  (74) 

 
( ) ( ) ( )

( )2

2
2

2
22

4 2
22

222

BADb
LxBPLxBMLxDN

u BBB

−

−−−+−
=  (75) 

As before, there are 12 unknown quantities: the six left crack tip forces 
12,1 BM , 

12,1 BN  and 
12,1 BP , and 

the deflections, rotations and axial displacements at the left crack tip 
12,1 Bw , 

12,1 Bψ  and 
12,1 Bu . Eqs. 

(14) and (19) are still applicable. The continuity of rotation at the two crack tips is treated in the same 

way as in Section 2.1 and the following boundary conditions are obtained: 

 ( ) ( ) ( )2,12,132,1 1111
bHFPdxdw nBBLxB −= =ψ  (76) 

 ( ) ( ) ( )2,12,1042,1 222
bHFPdxdw nBBxB −= =ψ  (77) 

Note that Eqs. (76) and (77) reduce to Eq. (15) for Euler beams, for which ∞→bH . The crack tip 

opening force nBF  is known from the previously established mode partition theory for one-

dimensional fracture in laminated composite DCBs (10,13). It is dependent on the mode partition and 

is a function of the crack tip forces. An expression for nBF  is given in the following section. 

The algebraic solution for the general case is extensive. The solution for the much simpler symmetric 

case with Euler beams is instead given for reasons of practicality. From symmetry we have 

 LLL == 21     ,    2
21

axx pp ==     ,    02121 ==== NNMM  (78) 

Symmetry provides two additional boundary conditions, which simplify the calculations. These are 

zero axial displacement and zero rotation at the mid-span. 
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 ( ) ( )
2221 axax uu == =     ,    ( ) ( )

2221 axax == = ψψ  (79) 

The resulting crack tip forces are 

 

( ) ( )[
( )

( )
( ) ( )

( ) ]
( ) ( ) ( )[
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 (80) 

 
( )( ) ( )[
( ) ( )]BAABaBABAL

AAahhhLAAPPLaLCN B

2,12,12112

2,11,221212112,1

24   

222
1

−±−+

++++±=
 (81) 

where 

 

( ) ( )[
( )

( ) ( ) ( )
( ) ( )] 122
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2
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2
2

2
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2
2

2
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2
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211221122211

121121
2

2222121
2

11
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64816   

32   
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BADaBBaBL

BBLAhAhaALhhLAA

ABhABhBAhBAhADDAADDAaL
BhBhDDLABhBhDDLAC

 (82) 

4.2. Energy release rate partition 

All of the crack tip forces are known from the solution of the above equations. The ERRs can 

therefore be found. The mode partition theory for one-dimensional fracture in laminated composite 

DCBs is briefly summarized here. For full details, readers should refer to works (10,13). All 

expressions are for the left crack tip B1. The ‘1’ subscript is therefore dropped for convenience. It is 

then simple to find the ERR for the right crack tip B2. 

Initially the effect of through-thickness shear is ignored, as in the case of Euler beam theory where 

∞→bH . It is accounted for later. The total ERR is 
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2 (83) 

where 

 iiii DBAA 2−=∗     ,    iiii DABB −=∗ 2     ,    iiii ABDD 2−=∗  (84) 
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The range of subscript i  is 1 to 2, which again refers to the upper and lower sub-laminates 

respectively. For the intact part of the laminate, no subscript is used. Other terms in Eq. (83) are 

 BBB NNN 21 +=     ,    ( )BBBBB NhNhMMM 122121 2
1

−++=  (85) 

Since the ERR is a function of four crack tip forces, four pure modes are required to find the partition. 

There are 12 pure modes to choose from in the Euler case (six pure mode I and six pure mode II). The 

order of the variables in the mode vectors is { }T
BBBB NNMM 2121=ϕ . It is convenient to 

select the following four modes to make the partition: 

 { }T
1 001

1
θϕθ =     ,    { }T001 11

βϕβ =  

 { }T001 22
βϕβ =     ,    { }T

3001
3

βϕβ =  (86) 

where 

 ( )( ) ( )( )[ ]22 22211
2

111122
2
21 AhBDABAhBDAB −−+−=θ  (87) 

 ( ) ( )[ ]1122111121 θθθβ ∗∗∗∗∗∗∗∗ −+−+−= DDDDDDDD  (88) 
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Within the context of Euler beam theory, which has interaction between the 
1θ

ϕ  mode and the 
iβ

ϕ  

modes, the mode I ERR is 

 
31312121111111

2
βθβθβθβθβθβθθθ ααααααα GGGGGI ∆+∆+∆+=  (92) 

where 
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11 22
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DDD

DDDDDDDDDDaFnB  (95) 

There are 13 pure modes within the context of Timoshenko beam theory, however the absence of 

interaction means that six of them from the first set coincide with six of them from the second set, 

giving seven unique pure modes (four pure mode I and three pure mode II). There are also two 

additional contributions to the mode I ERR IG : the ERR due to shearing, denoted by PG ; and the 

ERR due to interaction between the 
1θ

ϕ  mode crack tip opening force and the relative opening 

displacement due to shearing, and vice versa, denoted by PG
1θ

∆ . The ERRs are therefore 
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 PPI GGGG
1111

2
θθθθ αα ∆++=  (97) 

where 

 ( ) ( )[ ]2121
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1221 2 HHHHbPHPHG BBP +−=  (98) 
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The crack tip opening force nBF , which is required to solve the governing equations from 

Timoshenko beam theory in Section 4.1, can now be derived. Since the 
iβ

ϕ  modes are characterized 

by zero opening force ahead of the crack tip, the crack tip opening force nBF  is given by 

 nBPnBnB FFF +=
11 θθα  (100) 

where 
1θ

α  is known in terms of the crack tip forces from Eq. (91), 
1θnBF  is the crack tip opening force 

in mode 
1θ

ϕ  and nBPF  is the crack tip opening force due to shearing. From Timoshenko beam theory, 

they are 

 ( )
( ) 2

1
2

1

2

2
1

121

21 11
21





















 +
−+

+
= ∗∗∗ DDDHH

HHFnB
θθ

θ     ,    
21

2112

HH
PHPHF BB

nBP +
−

=  (101) 

The governing equations in Section 4.1 can now be solved to find the crack tip forces and obtain the 

ERR partition. 



 20 

4.3. Two sets of orthogonal pure modes 

For the symmetric case with Euler beams, for which the crack tip forces are given by Eqs. (80) and 

(81), the F modes arising from the displacement conditions (i.e. zero relative shearing when 

FPP θ=12 , and zero relative opening displacement when FPP β ′=12 ) can be presented 

algebraically. By substituting the displacements and crack tip forces for this symmetric case into Eqs. 

(32) and (44) and equating them to zero, the following F modes are obtained: 

 ( ) ( )[ ]2221111212 22 AhBBAhBBPP F −+−== ∗∗θ     ,    { }T
FF

θϕθ 1=  (102) 

 ∗∗=′= 1212 DDPP Fβ     ,    { }T
FF

βϕβ ′=′ 1  (103) 

The F modes arising from the zero crack tip opening force when FPP β=12  condition is too 

extensive to be presented here algebraically. However, for specific cases, a numerical value for Fβ  

can be calculated by enforcing orthogonality with Fθ . The ERR can be written as 

 { }[ ]{ }TPPCPPG 2121=  (104) 

where [ ]C  is found by examining coefficients of 1P  and 2P  in Eq. (83) when Eqs. (80) and (81) have 

been substituted in. Therefore Fβ  can be found by solving 

 { }[ ]{ }T
FF C θβ 110 =  (105) 

Similarly Fθ ′  can be found by solving 

 { }[ ]{ }T
FF C βθ ′′= 110  (106) 

which always gives 

 1−=′Fθ  (107) 

If the above procedure is repeated for Timoshenko beams then as before, it is found that the 
Fθ

ϕ ′  

mode changes to coincide with the 
Fθ

ϕ  mode, which is different to that obtained from Euler beam 

theory. Similarly the 
Fβ

ϕ ′  mode coincides with the 
Fβ

ϕ  mode, which is also different to that obtained 

from Euler beam theory. The expressions for the Timoshenko ‘F modes’ are long and complex in their 

general form, so are not presented here. They are however easily derived for specific cases with 

numerical quantities. Furthermore, when the through-thickness shear effect is not excessively large, 

Eqs. (102) and (105) are good approximations. 
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4.3. Contacting fractures 

To find the point of first contact cx  using Euler beam theory, again the two conditions given by Eqs. 

(46) must be satisfied. Solving these equations simultaneously for 12 PP  and cx  and ignoring the 

obvious and unavailing solutions for the crack tips, gives 

 FDDPP β ′== ∗∗
1212  (108) 

for all values of x . This implies simultaneous contact everywhere along the fracture for this value of 

12 PP . 

If 12 PP  is increased beyond Fβ ′ , the contact can either be at a point or distributed. In the same way 

as before for the isotropic case, point contact at pxx =  is assumed, which is a reasonable assumption, 

and shown to satisfy the requirement that it prevents intersection between the upper and lower sub-

laminates for all values of x . 

Two loads cP1  and cP2  are applied to the beam at pxx =  and they cause point contact at this same 

location. The point contact force cP  acts to prevent non-physical interpenetration. The net shear loads 

1P  and 2P  acting on the beams are given by Eq. (48). Eq. (49) is the equation that must be satisfied to 

prevent intersection at pxx = . Solving Eqs. (48) and (49) for 1P , 2P  and cP  gives 

 ( ) ( )221121
2
21

2
1221121 DAADAABABAPPBAP cc −−++= ∗  (109) 

 ( ) ( )221121
2
21

2
1221212 DAADAABABAPPBAP cc −−++= ∗  (110) 

( ) ( )[ ] ( )221121
2
21

2
122

2
121211

2
21221 DAADAABABAPBADAAPBADAAP ccc −−+−−−=  (111) 

Substituting Eqs. (109) to (111) into 21 wwDop −=  reveals that 0=opD  for all values of x . 

Therefore the requirements for physical contact behavior are satisfied by this solution, demonstrating 

that it is the correct one. 

Using Timoshenko beam theory, at FFPP ββ ′==12  there is both zero opening force beyond the 

crack tip and zero relative opening displacement just behind. Therefore crack tip running contact 

occurs at FPP β=12  and a pure mode II fracture is obtained. Since there is running contact, if the 

loading ratio 12 PP  is increased further then the crack tip remains closed as the contacting region 

grows. 
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5. Numerical investigations 

To verify the theory, a finite element method (FEM) simulation capability was developed based on 

the Euler and Timoshenko beam theories and 2D elasticity. Normal and shear point interface springs 

with the very high stiffness of 1014 N/m were used to model perfectly bonded plies (14,26-29). 

Through convergence studies this value was found to be large enough to approach the behavior of a 

rigid interface, but not so high as to introduce excessive numerical error. The ERR partition was 

calculated using the virtual crack closure technique in conjunction with these interface springs (14,26-

29). A contact algorithm was also implemented to deal with any possible contact in loading. 

Two clamped-clamped beam cases were investigated. The first case is an asymmetric, isotropic one, 

the data for which is given in Table 1.1. The second case is a symmetric laminated composite one. It 

has a quasi-isotropic lay-up with 16 plies. There is a delamination between the fourth and fifth plies, 

which gives a thickness ratio of 3=γ . The data for this case is given in Table 1.2. The material 

properties are for a T300/976 graphite/epoxy ply (28). 

One set of simulations, which used linear Timoshenko beam elements, is compared against the Euler 

beam theory. Very large out-of-plane shear moduli mN1016
2313 === GGGxz  were used to 

simulate Euler beam theory. As is the case for the spring stiffness, convergence studies were carried 

out and this value for xzG  was found to be large enough to approach the behavior of Euler beams, but 

not so high as to introduce excessive numerical error. Two layers of elements were used to represent 

the beams with one on either side of the fracture. The elements were distributed uniformly. To avoid 

shear locking, reduced integration was applied. Use of linear Timoshenko beams correctly enforces 

continuity along the interface ahead of the crack tip.  

Another set of simulations, which was the same as the first set but which instead used the normal out-

of-plane shear moduli (those given in Tables 1.1 and 1.2) and a shear correction factor of 652 =κ , 

is compared against the Timoshenko beam theory. 

The final simulations used four-node quadrilateral (QUAD4) finite elements with the normal out-of-

plane shear moduli. Layers of QUAD4 elements model the sub-laminates and they are also joined 

with very high stiffness normal and shear interface springs. In the composite case, a layer of QUAD4 

elements was used for each individual ply. This was found to be necessary to obtain converged 

results. In the isotropic case, two and four layers of QUAD4 elements were needed in the top and 

bottom beams respectively for sufficient convergence. The elements were distributed uniformly along 

the length and thickness. The results from these simulations are compared against the Euler and 

Timoshenko theories and an averaged partition rule. 
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The following sections present the results from these three sets of simulations for the two different 

cases. The only applied loads are 1P  and 2P ; 1P  was held constant at 1 N and 2P  was varied. 

5.1. Tests with clamped-clamped isotropic beams 

Results from the various analytical theories and numerical simulations of the isotropic clamped-

clamped beam are presented in Tables 1.3 and 1.4 and Figure 1.3. Plane stress is assumed in all 

analytical and numerical calculations. The ERR partition for the left crack tip is given. In Figure 1.3 

and for every figure in this section, unfilled data markers indicate results from simulations with 

contact modeling and filled markers indicate results from simulations without. The results from the 

simulations using Timoshenko beam elements and the very large shear modulus are compared against 

the Euler beam partition theory. Excellent agreement is seen between the two sets of data. The two 

sets of pure modes are plainly visible where 0=GGI  and 1=GGI . The two methods are in 

agreement that point contact at the loading location and at the crack tips contact occur simultaneously 

at N 82 =P ; and that after first contact, both crack tips remain closed and the fracture is pure mode 

II. 

The Timoshenko beam partition theory is compared with results from numerical simulations with the 

normal shear modulus. As expected, the 
Fθ

ϕ ′  and 
Fβ

ϕ ′  modes coincide with the 
Fθ

ϕ  and 
Fβ

ϕ  modes 

respectively. The numerical results with 800×2 elements very closely follow the analytical values. 

The results with 200×2 elements are in less good agreement. This demonstrates that the element size 

ad  needs to be very small otherwise aFnB dθ1
 is not negligible and a second set of pure modes is 

generated numerically. This is consistent with the discussion and observations in previous work (10-

13). As expected, crack tip running contact begins at the 
Fβ

ϕ  mode. Crack tip running contact 

necessarily gives 0=GGI . Beyond the 
Fβ

ϕ  mode, the crack tips remain closed. The numerical 

simulations model this contact behavior very closely. 

An ‘averaged partition rule’ has been tested in previous work (10-13) and has been found to generally 

give good agreement with the fracture mode partition from 2D elasticity for: (1) all thickness ratios, 

(2) all loading conditions, and (3) all material properties, including laminated composite. Particularly 

regarding material properties, there is some complex mechanical behavior in the case of even simple 

laminates like bimaterials (20). However despite this, the averaged rule can still provide a reasonable 

approximation. Readers are referred to these publications (10-13) for further details. Detailed papers 

by the authors on the topic of fractures on bimaterial interfaces are in preparation (24,25). The 

averaged rule is as follows: 
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The effect of shearing is small in this case because the beam is relatively thin. Therefore the averaged 

fracture mode partition lies approximately midway between the Euler and Timoshenko curves. There 

is excellent agreement between this curve and the 2D FEM results. In addition to the above, it is once 

again seen that the 
Fθ

ϕ  and 
Fβ

ϕ  modes are still approximately the pure modes. 

5.2. Tests with clamped-clamped laminated composite beams 

The data is now presented for the clamped-clamped laminated composite beam. The plane-strain 

assumption was used in all these analytical and numerical calculations. Under this assumption, 

11AA = , 11BB = , 11DD =  and 55AH = . 

Since many of the observations are the same as for the isotropic case, they are not repeated. New 

observations are simply added. Tables 1.5 and 1.6 and Figure 1.4 present results from the various 

analytical theories and numerical simulations of the laminated composite clamped-clamped beam are 

presented in. There is excellent agreement between the Euler beam partition theory and the Euler 

numerical results. There is also excellent agreement between the Timoshenko beam theory and the 

Timoshenko numerical results. 

In this composite case there is a much larger difference between the 
Fθ

ϕ  and 
Fθ

ϕ ′  modes than what 

was seen for the isotropic case (compare Tables 1.1 and 1.2). Having an Euler curve with substantially 

different 
Fθ

ϕ  and 
Fθ

ϕ ′  modes makes it substantially different to the Timoshenko curve. This large 

difference might therefore have strained the accuracy of the average partition approximation. Despite 

this possibility, the agreement observed between the averaged partition and the 2D FEM is excellent 

for the whole the range of 2P  simulated. 

6. Further discussion and conclusions 

Analytical theories have been developed for mixed-mode delamination in layered isotropic and 

laminated composite straight beam structures. Unlike the theories developed by the authors in Refs. 

(9-18) for mixed-mode cracks in layered isotropic and laminated composite DCBs, in these beam 

structures the internal forces at the crack tips are generally complex functions of remotely applied 

loads. It is not generally possible to obtain pure ‘crack tip modes’, i.e. modes which relate crack tip 

quantities, because these quantities cannot be set independently of each other. Instead some 

combinations of these modes can give pure mode I or II fractures. 
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This work mainly focused on the most common practical cases of layered isotropic and laminated 

composite straight beam structures with shear forces applied at an arbitrary location in the 

delaminated region. For these beams, the ‘F modes’ have been derived for each crack tip. The F 

modes give the ratios required between applied shear forces 1P  and 2P , to give pure fractures modes. 

The theories have been developed based on the Euler and Timoshenko isotropic and laminated 

composite beam theories. Both theories have their own orthogonal 
Fθ

ϕ  and 
Fβ

ϕ  pure modes which 

are called the first set. They correspond to zero relative shearing displacement just behind the crack 

tip and zero crack tip opening force respectively. For the statically indeterminate beam structures 

examined in this paper, the first set of pure modes from Euler beam theory is generally different in 

value to the first set from Timoshenko beam theory. However when the through-thickness effect is 

small, the Euler pure modes may be a close approximation to the Timoshenko pure modes. 

In Euler beam theory, there is a second set of orthogonal pure modes 
Fθ

ϕ ′  and 
Fβ

ϕ ′ , which are 

different to the first set. They correspond to zero crack tip shearing force and zero relative opening 

displacement just behind the crack tip respectively. Within the context of Timoshenko beam theory, 

the 
Fθ

ϕ ′  and 
Fβ

ϕ ′  modes coincide with the 
Fθ

ϕ  and 
Fβ

ϕ  modes. Therefore the 
Fθ

ϕ  and 
Fβ

ϕ  modes 

form a complete basis for mixed mode partitions. 

The Euler and Timoshenko beam theory mode partitions agree very well with the corresponding beam 

FEM predictions. The averaged partition approximation, which has been described in previous work 

by the authors (10-13), has been further tested. The approximation generally agrees very well with the 

2D FEM results, even when the difference between the Euler and Timoshenko curves is substantial 

and the accuracy of the approximation might have become strained. 

The developed theories will be a valuable analytical tool in many applications for example for 

analytical researchers to develop fracture propagation criteria; for design engineers to design high 

integrity structures and for numerical analysts to benchmark their simulations, etc. These theories 

have also been extended to isotropic and composite axisymmetric plates, curved beams and shells; 

they will be reported in a future paper. 
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Table 1.1: Data for numerical simulations of a clamped-clamped isotropic beam 

Elastic modulus, E  70 GPa 

Shear modulus, xzG  26 GPa 

Poisson’s ratio, xzν  0.35 

Beam thicknesses, 1h  and 2h  1 mm and 2 mm 

Intact lengths of beam, 1L  and 2L  10 mm and 25 mm 

Length of fracture, a  65 mm 

Width of beam, b  10 mm 

Loading location, px  20 mm 

Euler pure modes Fθ , Fβ , ′
Fθ  and ′

Fβ  -3.92, 2.81, -1 and 8 

Timoshenko pure modes Fθ  and Fβ  -3.84 and 2.75 

Table 1.2: Data for numerical simulations of a clamped-clamped laminated composite beam 

Ply longitudinal modulus, 11E  139.3 GPa 

Ply transverse modulus, 22E  9.72 GPa 

Out-of-plane modulus, 33E  9.72 GPa 

In-plane shear modulus, 12G  5.58 GPa 

Out-of-plane shear moduli, 13G   5.58 GPa 

Out-of-plane shear moduli, 23G   3.45 GPa 

In-plane Poisson’s ratio, 12ν  0.29 

Out-of-plane Poisson’s ratio, 13ν  0.29 

Out-of-plane Poisson’s ratio, 23ν  0.4 

Ply thickness, pt  0.125 mm 

Sub-laminate lay-up 1 (top) 45/0/45/90 −  

Sub-laminate lay-up 2 (bottom) ( ) 45/0/45/90/90/45/0/45 2 −−  

Laminate thicknesses, 1h  and 2h  0.5 mm and 1.5 mm 

Intact lengths of beam, 21 LL =  25 mm 

Length of fracture, a  50 mm 

Width of beam, b  10 mm 

Loading location, px  25 mm 

Euler pure modes Fθ , Fβ , ′
Fθ  and ′

Fβ  -26.45, 4.98, -1 and 66.90 

Timoshenko pure modes Fθ  and Fβ  -23.20 and 4.74 
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Table 1.3: Comparison between various theories for clamped-clamped isotropic beam energy release 
rate partitions with varying 2P  and N 11 =P . 

  ( )% GGI  

( )N 2P  Analytical 
Euler 

Numerical 
Euler 

(100×2 
Timo. 
beams) 

Analytical 
Timo. 

Numerical 
Timo. 

(800×2 
Timo. 
beams) 

Numerical 
Timo. 
(200×2 
Timo. 
beams) 

Averaged 
Analytical 
(Euler & 
Timo.) 

2D FEM 
(400×6 

QUAD4s) 

-10 70.30 70.30 88.54 87.39 84.07 79.94 80.23 

-8 77.28 77.27 92.34 91.38 88.62 85.15 85.05 

-6 86.94 86.93 96.73 96.09 94.27 91.92 91.28 

-4 99.46 99.45 99.97 99.92 99.77 99.49 98.13 

-2 107.63 107.62 92.34 93.60 96.40 99.58 97.69 

0 76.34 76.34 48.13 51.43 56.70 61.84 60.69 

2 13.35 13.36 2.92 4.24 6.15 7.78 8.07 

4 -7.25 -7.23 4.36 3.05 0.99 -0.87 0.91 

6 -5.45 -5.44 16.42 14.24 10.38 6.64 9.10 

8 0.00 0.01 26.16 23.76 19.15 14.47 17.14 

10 5.01 5.02 33.09 30.65 25.70 20.54 23.25 

Table 1.4: Comparison between various theories for clamped-clamped isotropic beam contact 
behavior with varying 2P  and N 11 =P . 

 First contact After first contact 

 ( )N 2P  ( )% GGI  ( )N 2P  ( )% GGI  

Analytical 
Euler 8 0 10 0 

Numerical Euler 
(100×2 Timo. 

beams) 
7.99 0 0 0 

Analytical 
Timo. 2.75 0 10 0 

Numerical Timo. 
(800×2 Timo. 

beams) 
3.06 0 10 0 

Numerical Timo. 
(200×2 Timo. 

beams) 
3.67 0 10 0 

Averaged 
Analytical (Euler 

& Timo.) 
4.33 0 10 0 

2D FEM (400×6 
QUAD4s) 3.52 0 10 0 
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Table 1.5: Comparison between various theories for clamped-clamped laminated composite beam 
energy release rate partitions with varying 2P  and N 11 =P . 

  ( )% GGI  

( )N 2P  Analytical 
Euler 

Numerical 
Euler 

(100×2 
Timo. 
beams) 

Analytical 
Timo. 

Numerical 
Timo. 

(800×2 
Timo. 
beams) 

Numerical 
Timo. 
(200×2 
Timo. 
beams) 

Averaged 
Analytical 
(Euler & 
Timo.) 

2D FEM 
(200×16 

QUAD4s) 

-10 145.33 145.33 87.57 89.20 98.46 113.51 101.99 

-8 147.63 147.62 79.89 82.13 93.05 111.45 100.40 

-6 145.01 145.00 68.83 71.93 84.24 105.37 95.65 

-4 134.61 134.60 54.04 58.15 71.19 93.47 86.17 

-2 114.10 114.09 36.51 41.43 53.97 74.79 70.87 

0 83.82 83.81 19.27 24.13 34.51 50.90 50.73 

2 48.24 48.24 6.41 9.90 16.58 26.46 29.71 

4 14.30 14.30 0.47 1.65 3.83 6.72 12.78 

6 -12.60 -12.61 0.98 -0.24 -2.39 -5.75 2.50 

8 -30.77 -30.77 5.66 2.59 -3.12 -11.51 -1.66 

10 -41.30 -41.29 12.21 7.99 -0.36 -12.56 -1.69 

Table 1.6: Comparison between various theories for clamped-clamped laminated composite beam 
contact behavior with varying 2P  and N 11 =P . 

 First contact After first contact 

 ( )N 2P  ( )% GGI  ( )N 2P  ( )% GGI  

Analytical 
Euler 66.90 0 100 0 

Numerical Euler 
(100×2 Timo. 

beams) 
66.77 0 100 0 

Analytical 
Timo. 4.74 0 100 0 

Numerical Timo. 
(800×2 Timo. 

beams) 
6.38 0 100 0 

Numerical Timo. 
(200×2 Timo. 

beams) 
10.18 0 100 0 

Averaged 
Analytical (Euler 

& Timo.) 
18.23 0 100 0 

2D FEM 
(200×16 

QUAD4s) 
11.60 0 100 0 
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Figure captions 

Figure 1.1: A clamped-clamped beam with a fracture and its loading conditions. (a) General 

description. (b) Force diagram of each beam. 

Figure 1.2: Details of the crack influence region a∆  ahead of the left crack tip. 

Figure 1.3: Comparison between various theories for clamped-clamped isotropic beam energy release 

rate partitions with varying 2P  and N 11 =P . 

Figure 1.4: Comparison between various theories for clamped-clamped laminated composite beam 

energy release rate partitions with varying 2P  and N 11 =P . 
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Figure 1.1: A clamped-clamped beam with a fracture and its loading conditions. (a) General 
description. (b) Force diagram of each beam. 
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Figure 1.2: Details of the crack influence region a∆  ahead of the left crack tip. 
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Figure 1.3: Comparison between various theories for clamped-clamped isotropic beam energy release 
rate partitions with varying 2P  and N 11 =P . 
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Figure 1.4: Comparison between various theories for clamped-clamped laminated composite beam 
energy release rate partitions with varying 2P  and N 11 =P . 
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