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Abstract 

The high-speed first serve has become an increasingly dominant factor in tennis, raising concerns over 

the influence modern racket technology has on the game.  One concern is that rackets are now too 

powerful and so overemphasise a player’s ability to produce fast serves.  This may help explain the 

‘penalty shootout’ scenario, where match result id dictated by the relative speed and consistency of the 

players’ first serves.  There is some concern that on the faster surfaces, maximum service speeds have 

reached, or are approaching, the service returnee’s reaction threshold, making it virtually impossible for 

players to return the ball.  To shed light on the issue the factors relating to ‘racket power’, the amount a 

racket magnifies a player’s innate ability to impart linear velocity to a tennis ball, need to be considered.   

 

Various studies have been performed that shed some light on the subject.  This paper presents an 

overview of the published literature related to ‘racket power’ in the game of tennis, a review of previous 

research on specific and sometimes controversial issues.  Areas meriting further investigation are 

identified to encourage future research into racket power. 

 

Introduction 

Over the last 20 years tennis racket designs have changed dramatically. Perhaps most significantly of all, 

early wooden rackets have given way entirely to rackets constructed from high-tech materials more 

commonly associated with the aerospace industry.  These developments began with a surge in interest in 

the game in the late 1960s but, ironically, these same advances might ultimately be responsible for the 
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demise of tennis prompted by a drastic decline in its merits as a spectator sport.  Without detracting from 

the athleticism and skills of the elite players, modern racket designs appear to enable the serve to be 

played so reliably at such elevated speeds that even the fastest player reaction times are too slow to 

permit regular return of service (Groppel, 1986, Arthur, 1992, Brody, 1995).  Serve velocities in the 

professional game were recorded for the first time in 1990, when only 5 players served in excess of 

200kph.  By 1995 this number had risen to 38 and, although firm data is not yet available, it is widely 

believed that most of the current top 200 players on the ATP tour are capable of reaching the 200 kph 

benchmark.  Greg Rusedski holds the current world record for the fastest serve recorded in 1998, at 240 

kph (Coe, 1999). 

The International Tennis Federation (ITF) regards the percentage of sets settled by tiebreaks as a key 

indicator of the influence of the serve on the game.  In the extreme, the service games of some players 

are seldom broken and this is especially evident on the fast grass courts where the ball skids off the 

grass, bouncing lower and giving the receiver even less time to react.  Data gathered from recent 

Wimbledon championships show that up to 36% of sets involving certain players end in tie-breaks, with 

a very clear correlation between this indicator and service speed (Coe, 1999).  Matches on grass courts 

have been compared to a ‘shoot-out’, in which the outcome is determined principally by service speed 

and this is of concern to officials, players and spectators.  The Sampras – Ivanesevic Wimbledon final of 

1994, in which only 3 of the 206 points lasted more than 4 shots, was described by Fred Perry as “..one 

of the most boring finals in history”.   

Any loss in spectator interest could initiate a downward spiral in which sponsors withdraw support 

causing a reduction in prize monies and publicity followed by further decline in public interest. This 

paper reviews the procedures adopted and the data generated by researchers whose vital role in 

protecting the future of tennis is to provide fundamental understanding of the role of the racket in the 

high speed tennis serve. (Groppel, 1986, Arthur, 1992, Brody, 1995). 

For a long time rules controlling the tennis racket itself were very lenient, allowing the racket to be of 

almost any material, shape, size or mass.  It was only with the introduction of oversize rackets in the 

1970’s that tennis officials became concerned about racket designs and the ITF (International Tennis 

Federation) limited the size of the racket head in 1980 (Arthur 1992, Brody 1995).   Prior to this the 

rules stated simply that the ball must be hit with an “implement”, implying the racket could be anything 

the player wished to hit the ball with (Fisher 1977).  Since this intervention, limits on racket 

specification have become far more stringent in an attempt tot prevent development from drastically 
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changing the nature of the game.  The current regulations (ITF, 1999) are divided into four sections.  In 

summary, the racket should be characterised by: 

1. A flat hitting surface consisting of a uniform pattern of crossed strings.  Strings must be free from 

attached objects. 

2. Dimensions not exceeding: 

(a)  73.66 cm for the length and 32.75 cm in width for the frame and 

(b)  39.37 cm in length and 29.21 cm in width for the string surface. 

3. A frame free of any objects not reducing wear and tear or vibration. 

4. A frame free of any device that will allow it to change the physical property of the racket during the 

playing of a point. 

The ITF is currently investigating different ways of monitoring and controlling the importance of the 

serve.  There are various ways to achieve this but this paper is only concerned with the racket’s 

contribution.  As a first step towards investigating the influence of the racket in the modern game the 

paper provides an overview of all the literature related to the factors influencing the racket’s role in 

tennis serves.  These issues include; coefficient of restitution; the ‘sweet spot’; representative gripping 

conditions; racket strings and results from motion studies. 

Coefficient of restitution 

The coefficient of restitution (COR) is a ratio often used in impact to indicate the capacity to recover 

from the impact of a given pair of bodies.  The COR is a ratio of the restoration impulse magnitude to 

the deformation impulse magnitude between the two bodies: 
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where Fr and Fd are the contact forces during restoration and deformation respectively, t0 is the 

deformation and t the contact time.  Under idealised conditions the COR is a constant for the pair of 
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bodies and Equation (1) reduces to the ratio of relative velocity after impact to the relative velocity 

before impact between the two (Meriam and Kraige,1989): 
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where ub and ur is the ball and racket velocity before impact, respectively and vb and vr the respective 

velocities after impact.  Equation 2 is the definition most often used to predict velocities resulting from 

sports ball impacts (Daish, 1972), although the reality that most of these involves materials exhibiting 

strain rate dependent behaviour introduces some difficulty to its application. 

Head (1976) per formed a series of test for his define of the oversized prince racket.  To prove the 

revolutionary improvement of the racket ball were fired at stationary rackets at up to 60 mph (27 m/s). 

In and outbound ball velocities were measured using high-speed motion pictures and COR values 

calculated.  Head defined COR for tennis rackets as the ratio of the struck ball’s velocity to the relative 

incoming velocity.  Tests were per formed on under grip clamped, player held and free suspended 

conditions but only values for the grip clamped conditions were disclosed.  The COR measurements 

were plotted for various points over the string surface and contour maps of areas with COR values 

within the same range were used to compare different rackets.  Values measured varied from 0.3 at the 

tip of the head to above 0.6, close to the throat. 

In a later paper Brody (1979) compared the maximum COR of different rackets.  His results raised the 

problem of a proper definition for COR testing conditions.  Brody’s tests were performed with a ball 

dropped from 3.7 m onto a racket, head-clamped in a vice.  The COR values of approximately 0.85 were 

considerably higher than the measurements made previously by Head.  By clamping the head of the 

racket, the energy losses to the racket frame are eliminated resulting in higher values for COR.  The 

issue is further complicated by COR values published later for freely suspended, player held and 

simulated play conditions.  To aid clarity these different measures will be indicated by suffix in 

subsequent sections as follows: 

 CORhc = head clamped  CORgp = grip pivoted 

 CORgc = grip clamped  CORp = player held 

 CORf = free suspended  CORs = simulated play 
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Watanabe et al (1979) measured CORf, CORgc and CORp (i.e. under free, grip clamped and player held 

conditions) for wooden rackets at different impact velocities, ranging between approximately 5 m/s and 

25 m/s.  The tests revealed that the COR values for these rackets decreased with impact velocities and 

were independent of grip condition.  Values obtained were all in the region of 0.43, lower than those 

obtained by Head, but, in calculating COR, Watanabe et al neglect the post impact racket velocity.  This 

is acceptable for the head clamped condition (CORhc) since the racket is prevented from moving, but not 

for CORgc, CORp and CORf since the post impact racket velocity is significant and would have indicate 

a difference in true COR (the ratio of pre- and post-impact velocity differences).  Hatze later referred to 

this type of measure as an apparent COR or ACOR (Hatze 1993).  Thus, Watanabe et al actually 

reported values of ACORf, ACORp and ACORgc. 

In 1980 Elliot performed ACORgc measurements at discrete points along the longitudinal and transverse 

axes of the strung surface for conventional wooden and oversized rackets at 21 m/s (Elliot 1980). These 

tests revealed a similar map across the racket surface to that found by Head.  Along the longitudinal axis 

the values increase from close to zero at the tip up to a maximum, approximately 2 cm before the throat, 

and then decrease slightly towards the throat.   Measurements along the transverse axis increased from 

almost zero at the extremity to a maximum at the longitudinal axis.  The ACORgc values measured 

confirmed Head’s claims of a higher ACORgc for oversized rackets compared to conventional rackets.  

The maximum values for oversized rackets were approximately 0.50 compared to 0.45 for the 

conventional rackets.  This difference is even greater for equivalently displaced off-centre impacts, 

confirming the increased polar moment theory for oversized rackets initiated by Head (1976). 

In 1982 Elliott reported the results of ACORs tests on a range of moving wooden rackets.  Head speeds 

ranged from 6.40-7.42 m/s, depending on racket inertia.  The approaching ball velocity was 22.7 m/s 

producing relative incident velocities between the ball and the racket of 29.40-30.12 m/s.  These 

measurements yielded ACORs values of approximately 0.65, which is significantly higher than his 

previously measured ACORgc values.  Although Elliott did not address this issue, it raised the question 

of the importance of static ball in contrast to static racket tests to mimic real playing conditions (Elliott 

1982). 

Liu addressed the issue of relative velocities by deriving a mathematical model of a static racket and 

moving ball impact (Liu 1983).  Liu defined COR for his static racket/moving ball model using the 

equation: 
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where sv  is the post-impact racket string centre velocity.  The measurements of incident and rebound 

ball velocities, obtained from Watanabe (1979), were substituted into the developed model and produced 

COR values in the range 0.8 to 0.95, which correlate well with Liu’s model’s predictions and 

measurements by Brody (1981). Liu argues that models for both clamped and free rackets yield almost 

identical equations relating the so-called Apparent Coefficient of Restitution (ACOR, the ratio between 

post- and pre-impact ball velocity) and COR and concludes that both are independent of the gripping 

conditions.  This supports Watanabe et al’s findings.  Both are further substantiated by Baker and 

Putnam’s earlier discovery that the impulses applied to the racket during impact for both free and 

clamped conditions are identical at impact speeds of 26.5-28.2 m/s (Baker and Putnam, 1979). 

In 1991 Casolo derived a method of determining ball velocities from an analysis of the contributions of 

different limb segments on the racket (Casolo 1991).  As part of his model he defines a complicated 

coefficient of restitution, , that keeps account of the energy dissipated during impact.  is assumed to be 

a constant for a specific relative incident velocity and is defined by two equations: 

 vb – Vrb =   Vrb (4) 

 vr – Vrb =   (Vrb – ub-r) (5) 

where ub-r is the pre-impact relative speed between the ball and the racket, Vrb the ball and racket 

velocities at the point of maximum ball penetration (velocities are equal at this point).  The values of  

determined, using test data obtained by Van Gheluwe (1985), range from 0.31-38. 

Hatze (1992) specifically distinguishes between COR and ACOR and reports CORs values for his 

human arm simulation rig.  During testing, balls were fired at different rackets gripped by a 

representative gripping device, the ‘manusimulator’.  The velocities were determined using a high-speed 

camera and yielded CORs values of between 0.758-0.885 at a ball speed of 20 m/s. 

Hatze (1993) reported further the CORs and ACORs results for the manusimulator, as well as the CORhc 

for different rackets.  Typical values obtained were; CORs = 0.83; ACORs = 0.43; CORhc = 0.848.  His 

results also confirm that values for all these COR measures decrease with an increase in incident 

velocity. 
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In 1993 Kawazoe published an energy model for predicting COR (Kawazoe 1993).  ACORf values for 

impacts at 30 m/s were predicted using the model and then compared with real test data for impacts at 

26.4 m/s.  Kawazoe found maximum ACORf values of approximately 0.5 and confirmed the variation of 

COR along the longitudinal axis of the racket reported earlier by Head (1976) and Elliott. 

Wilson (1995) measured the ACORgc over the entire surface of rackets at speeds up to 19 m/s.  A map of 

the entire strung surface is similar to those obtained previously (Head, 1976, Elliott 1980) with 

maximum values of approximately 0.6 at the throat of the racket.  An unexplained result, a second peak 

located near the tip of the racket, was also reported.  It is postulated that this was not detected in other 

studies because the region was neglected or because the phenomenon does not occur at the higher 

velocities these studies achieved.  However, Grabiner (1983) had performed a similar mapping with an 

incident velocity of 10.62 m/s and did not find this phenomenon either. 

Brody (1995) and then later Cross (1997) confirmed and explained Wilson’s findings.  For impacts at 

the tip, the ball hits at the ‘dead spot’, defined by Cross.  Initially the ball stops dead at impact while the 

racket flexes.  Before the ball drops, the racket to returns to hit the ball for the second time, 

approximately 15 ms later.  The net result is a local increase in COR.  This phenomenon depends on a 

match between the racket frequencies and the string ball contact time, which might explain why it is not 

recorded by all researchers.  

In 1997 Brody published a rigid-body model based on energy and momentum conservation equations 

(Brody 1997).  This model incorporates a single ACORhc value measured for the specific racket, and 

provides an equation for ACORf.  Using the equation, values were calculated for various locations along 

the racket’s longitudinal axis and compared to experimental results.  The calculated values range from 

0.267 at the tip to 0.522 at the throat, while the experimental values range from 0.167 at the tip, to a 

maximum of 0.492 close to the throat, dropping off to 0.485 at the throat.  Brody concludes that 

controlling service speed purely by limiting ACORf is likely to be inadequate, since ball speed varies 

with (1 + ACORhc) times the racket velocity at impact.  However, since the racket velocity achieved is 

dependent on its inertia properties controlling the net combined effect of ACOR and racket inertia is 

important. 

In the same year, Cross (1997) measured and published the forces, deflections and ACORgc values for a 

ball bouncing on different beams at different locations along their length.  Cross found that the beam (or 

racket) has a well-defined ‘dead spot’, the point of minimum rebound velocity on a stationary racket, 
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near the tip of the racket.  However, he agreed with Brody (1997) this spot acts as the point of maximum 

rebound velocity for a moving racket. 

In 1998 Cross further stated that the maximum rebound velocity is near the centre of the strings but 

shifts towards the racket tip as mass, length and head heaviness increase (Cross 1998). 

The ‘sweet spot’ 

‘Sweet spot’ is a term commonly used by players and manufacturers.  For most players it is a zone on 

the racket resulting in the most comfortable ‘feel’ at impact.  Consequently it is important they hit the 

ball in this region as often as possible.  To make this more likely manufacturers have tried to design 

rackets that have the largest possible sweet spot and often refer to this aspect as giving them the 

definitive advantage over their competitors.  Most of the early references to the sweet spot were vague 

but as recognition of its importance increased it became necessary to find a scientific explanation and 

definition for the phenomenon.  It was soon realised that the term ‘spot’ was misleading a combination 

of phenomena occur over a region of the string bed rather than at a definite point.  

Considerable attention was given to the sweet spot after the introduction of the Prince over-sized racket 

in 1976.  The racket’s inventor, Howard Head, claimed that its wider head had a sweet spot, or power 

region, almost four times bigger than a conventional racket.  He determined the power region by firing a 

range of balls at a racket and measuring the ACOR at various locations.  The sweet spot was defined as 

the area where the ACOR measured was above a certain value.  The Prince racket was the first racket 

designed to have its centre of percussion (COP) within the playable area of the racket (Head 1976). 

In 1979 Brody proposed that the sweet spot be defined as the COP, an explicit point as opposed to a 

region (Brody 1979). If the ball impacts at this point the racket moves about an instantaneous centre of 

rotation located in the grip region.  The COP is therefore directly linked to a specific grip location and is 

different for different grip positions.  Impact at the COP causes no net reaction force at the hand, at the 

corresponding grip point.  This considerably reduces the shock on the hand and makes the impact feel 

more pleasant.  Since a player’s hand contacts the grip at more than a single point, Brody’s COP based 

sweet spot definition might be extended to encompass the string bed region resulting in an instantaneous 

centre of rotation within the hand contact area. 
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Brody later described another possible definition, based on racket vibration work by Hedrick et al 

(1979) and Lacoste (1976), together with practical ways of determining the differently defined sweet 

spots (Brody 1981).  Impact with the ball causes the racket to oscillate at its natural frequencies.  The 

natural frequencies and corresponding mode shapes are dependent on gripping conditions.  For some 

mode shapes there are points of no oscillation, known as nodes.  If struck at these points the ball will 

generate little response of the racket at the corresponding natural frequency.  Hedrick et al measured the 

string bed node locations, for a number of rackets, where the fundamental mode of a freely suspended 

racket produced a corresponding second node in the grip region.  This raised the question of what is a 

representative gripping condition for the racket during testing (to be discussed later in more detail). 

Much later, Cross defined another point of interest on the strings, the ‘dead spot’ (Cross 1997).  This is 

the point near the tip of the racket, where the rebound velocity is almost zero when a ball hits a 

stationary free racket. During play, two phenomena come into effect when a ball hits this ‘dead spot’.  

Most, if not all, modern rackets will vibrate excessively, dissipating a significant amount of the available 

energy.  However, if the racket is rotating about a point near its heel, as is likely, the equivalent mass of 

the racket at the impact point comes close to that of the ball.  As a result, without energy losses, the 

racket stops dead and all momentum is transferred to the ball.  The net effect, including energy losses, is 

that the COR is locally higher than might otherwise be expected.  Although players pay a penalty in 

terms of increased discomfort and fatigue caused by the increased racket vibration and reaction forces at 

the hand, the dead spot moves faster than the COP or maximum COR regions because of the rackets 

angular velocity.  This may result in a faster serve. 

The concept of the sweet spot has been well summarised by Brody (1987) and Cross (2000).  There are 

four points or regions related to the sweet spot of the racket; the maximum COR area, COP region and 

the node (Figure 1).  Each of these properties effects the way the player perceives impact, i.e. improving 

or worsening the racket ‘feel’.  In the next section the influence of the sweet spot on serve velocity will 

be expanded upon. 

Area of maximum COR (maximum energy efficiency). 

This is the area on the racket where the racket returns the most energy to the ball during low racket 

velocity tests, thus delivering the highest ball speeds.  The region is determined by carrying out a series 

of COR tests across the entire string surface.  Most manufacturers use one of two ways to determine this 

region but the two methods differ considerably leading to confusion.  The rackets are either clamped 

rigidly by the head or at the handle.  Clamping at the head reveals a region of high COR close to the 
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middle of the racket and with maximum COR values of about 0.85.  Clamping at the handle reveals a 

region closer to the throat with maximum COR values of about 0.65.  The lower COR in the grip-

clamped condition is a result of the energy being absorbed by the deformation of the racket frame.  This 

energy is not returned to the ball during the contact while, in as with the head clamped condition, no 

energy is absorbed by the racket frame.  For the grip-clamped condition the COR is higher closer to the 

throat since the frame is effectively stiffer at the throat.  The problem with the definition of the high 

COR region with the clamped handle is that it is too close to the throat of the racket to be utilised by 

most players.  According to research by racket manufacturers, most players hit the ball in the upper 1/3 

of the racket face and therefore miss this region.  Various attempts by manufacturers are made to shift 

the power region towards the centre of the head. 

Centre of Percussion 

For each point in the COP region there is a conjugate point on the grip where the translation and rotation 

motion components caused by impact cancel (Figure 2).  Hence impact at the COP results in no force on 

the hand.  This point is usually closer to the middle of the racket than the COR. 

Node (minimal uncomfortable vibrations) 

Although the exact effects of the gripping conditions are still open to debate, most researchers agree that 

the racket vibration modes fall somewhere between those for the free suspended and grip-clamped 

conditions.  The clamped condition has a fundamental frequency at about 20-30 Hz, while the second 

mode and the fundamental mode of the free racket are both in the range 100-150 Hz.  The latter 

frequencies are found to be uncomfortable by players.  These modes both have a node close to the centre 

of the racket face, about 1/5 of the racket length from the tip.  An impact at this point will not excite the 

undesirable frequency and will be more comfortable to the player.  

‘Dead spot’ (Maximum serve velocity)  

The racket velocity at the tip of the racket is the highest for the racket, since it is located furthest from 

centre of rotation, which located near the grip at the time of impact.  Under the high-speed serve 

conditions, the dead spot, which produce the lowest COR values during the static tests, turns into a 

momentary ‘sweet spot’, resulting in the highest rebound ball velocities. 
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Representative gripping conditions 

To study experimentally, or even computationally, actual tennis racket performance under ball impact 

conditions requires careful consideration of the boundary constraints.  Perhaps one of the most 

controversial issues in this respect has been to establish a representative gripping condition.  The 

problem is to find a gripping condition that can be used repeatably in racket tests that faithfully 

reproduces ‘in play’ performance.  During real play a human hand grips the racket, and using a human 

subject arguably produces the most acceptable results.  However, the lack of precise control for an 

individual, the effects of fatigue, the variability between individual players and consequent lack of 

repeatability are serious obstacles to objective racket testing.  Consequently, researchers have resorted to 

a variety of experimental gripping conditions that can be reproduced in the laboratory with a degree of 

repeatability, using both simple and complex mechanisms.  The issue is further complicated by the fact 

that under play conditions the racket is subject to arbitrary, high velocity movements.  To reproduce the 

dynamic gripping conditions, let alone realistic relative velocities between racket and ball, is not trivial. 

Consequently, there are 5 categories of experimental gripping condition reported in the literature:  

1. Hand-held:  a racket held by a human hand but not necessarily executing a shot and so not 

necessarily representative of play. 

2. Free:  a racket supported by some means that at impact contributes little or no resistance to the 

racket motion.   

3. Grip-pivoted:  a racket supported by some kind of pivot at the butt of the handle allowing it to rotate 

freely about that point during impact. 

4. Grip-clamped:  a racket clamped at the grip by a restraint that does not allow any rotation or 

translation in the griped area. 

5. Head-clamped:  a racket with the head clamped to a solid object, eliminating any contribution from 

the rest of the racket frame. 

Initial investigations of the importance of grip firmness revealed a major influence on rebound velocity 

(Bunn 1955, Plagenhoef 1970, Broer 1973, Tilmanis 1975).  These researchers claimed that a firm grip 

would prevent the energy lost to racket rotation and therefore return more energy to the ball. 
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Hatze (1976) developed a mathematical model of the racket impact by estimating the equations of 

motion, using the appropriate Lagrangian function.  Tests were performed on a wooden racket (strung at 

250 N tension) with ball speeds of up to 34.1 m/s under three different conditions, namely; pivoted at the 

grips; hand-held and real play conditions.  Strain gauges were fitted on the racket frame to measure the 

impulse and at the pivot point on the handle to measure transverse vibrations.  Substituting the test 

values into the model, Hatze predicted an increase in incident velocity causes a decrease in contact time.  

The model also predicted that an increase in grip firmness would cause an increase in the racket 

vibration amplitude.  The player tests revealed that a loose grip resulted in a 10-15% decrease in the 

reaction impulse at the impact point and a reduction in unpleasant vibrations at the hand.  Hatze did not 

record the rebound ball velocity to confirm that there was a net loss to the ball when gripping loosely. 

Baker and Putnam (1979) fired balls at rackets (strung at 178 to 267 N tension) under grip-clamped and 

free conditions.  Part I of the experiment was performed at ball impact speeds of 28.2 m/s on different 

rackets.  Pre- and post-impact velocities were recorded using a high-speed camera and used to determine 

the impulse imparted on the ball.  Contrary to earlier findings, no difference in impulse between the free 

and head-clamped conditions was found for any of the rackets.  For part II, the response of a single 

racket ball impact speed of 26.5 m/s was recorded, and the deflections between the two gripping 

conditions compared.  The contact times for both cases were 4 ms and resultant deflections along the 

racket were found to be virtually the same during ball contact. After contact the deflections for the 

different conditions differ dramatically but this occurs after the ball has left the racket.  The small 

deflections during contact can easily be observed to be a result of the two different mode shapes, 

especially the initial negative deflection of the racket tip.  Another interesting observation is that for the 

grip-clamped condition only 46% of the total frame deflection, at the impact point, occurs during 

impact.  The small difference in deflection of the handle during impact between the grip-clamped and 

free condition indicates that gripping forces play some part during impact but the similarities in impact 

point deflection suggest their effect on the ball is insignificant.  Unfortunately, although Baker and 

Putnam note that the impacts were central to the head, their precise location with respect to the centre of 

percussion is unknown.  Nor did they study the importance of gripping condition to impacts elsewhere 

along the racket centreline, although they did note that grip conditions affect the outcome of off-centre 

hits. 

Watanabe et al (1979) fired balls at speeds ranging from approximately 5 m/s to 25 m/s at rackets 

(strung at 267 N tension) under three different gripping conditions, namely; grip-clamped; hand-held 

and a vertically suspended free racket.  Incident and rebound velocities were recorded and ACOR values 
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calculated.  For the entire range of incident velocities, the rebound velocity was found to be independent 

of the grip conditions with ACOR values for all conditions of approximately 0.43. Watanabe et al did 

not report the ball impact location with respect to the centre of percussion for their gripping conditions. 

In 1979 Brody measured and reported the contact time of a tennis ball on the racket strings as well as the 

racket oscillation (Brody 1979). The contact time was found to be 4.5 ms and the half-period of 

oscillation for different rackets measured at a minimum of 15.3 ms.  Brody concluded that most of the 

energy absorbed by the racket frame is not returned to the ball because the ball has left the strings before 

the racket has snapped back to release the energy to the ball.  The work was concerned with the effect of 

racket stiffness on rebound velocities but the implication might be that most of the gripping effects are 

similarly ‘lost’ to the ball.  

In a paper on the tennis racket sweet spot, Brody (1981) dismisses the importance of mode shapes and 

vibration frequencies for grip-clamped and free rackets.  The fundamental frequency of the grip-

clamped condition was reported to be between 25-40 Hz.  The frequency of the second mode was 

reported to be between 127-168 Hz, similar to the first non-zero mode for the free condition.  The node 

on the racket face for both these conditions is found roughly at the same point, approximately 1/5 of the 

racket length from the tip.  The implication is that, although the racket behaves in some intermediate 

manner during play, the racket response at the point of impact is quite similar in either the free or grip-

clamped cases, and so relatively independent of grip condition. 

Elliott et al. (1980) published rebound velocity tests comparing over-sized and conventional rackets 

(strung at 245 N tension).  They claimed the reason for executing their tests on a hand-held racket was 

because the vibrations from the clamped condition were found to be different in frequency response, 

amplitude and duration of vibrations, but no data were presented to support this statement. 

Brannigan and Adali (1981) developed a mathematical model of a tennis racket including the ball, 

strings, racket and the hand.  The model was used to predict racket behaviour for a free racket.  The 

predicted the first and second natural frequencies for a free racket as approximately 60 Hz and 100 Hz 

respectively, with an impact time of approximately 5 ms, supporting Brody’s results for the second 

mode (Brody 1980, 1997). 

In 1982 Elliott projected balls at 22 m/s at a moving racket (strung at 245 N tension), actuated 

pneumatically and with adjustable grip tightness (Elliott 1982).  To control the grip tightness the torque 

in the bolts of the gripping device was varied between 0.45-0.75 Nm.   The racket speed 5 cm from the 
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tip of the racket ranged between 6.4-7.4 m/s for different rackets.  Force transducers located in the racket 

arm measured reaction force at the grip and stroboscopic photography measured velocities.  Impacts 

along the centre line in longitudinal as well as transverse directions were performed.  The largest ACOR 

was found at the centre of the racket head.  At this point a statistically insignificant increase of 7% in the 

rebound velocity and of 17% in reaction impulse was found.  However, it was also found that grip 

tightness had a more pronounced effect on the off-centre impacts.  A reduction in ACOR of 

approximately 15% was discovered between the racket centre and tip, in line with Hatze’s findings. 

Contrastingly, Grabiner et al (1983) dropped balls at low speeds (10.62 m/s) onto a “freely-rotating” and 

a clamped racket (267N tension).  Rebound velocities were measured using high-speed cameras.  Using 

a multivariate regression analysis it was found that there was no difference between the rebound 

velocities from the different clamping conditions, even on off-centre hits.  The researchers noted that the 

ball inbound velocity used is low but fail to note the transverse motion constraint effects for their freely-

rotating racket.  The racket was suspended horizontally from two wires attached a point on the neck and 

grip respectively and so resist the effects of a vertical impact. 

The mathematical model later developed by Liu (1984) showed that for both the free and grip-clamped 

conditions, the rebound velocity of the ball was a function of the coefficient of restitution between the 

ball and the strung racket and independent of the gripping condition. 

Missavage et al (1984) developed a similar mathematical model to Liu in 1984 but solved it using a 

numerical finite difference method.  The moment at the handle of the racket was found to be zero during 

the time of contact, meaning the ball has already left the racket before the impulse has reached the 

handle.  This implies that the gripping condition does not influence the coefficient of restitution.  The 

model predicted that for a drastically stiffened or shortened racket, the grip firmness would affect the 

coefficient of restitution.  An effective increase in stiffness decreases the time for the impulse to reach 

the handle and produces a positive moment integral i.e. a moment at the hand during impact.  Practical 

tests were performed and found that the COR for a much stiffer racket increased from 0.36 to 0.42 

between free and grip-clamped conditions.  Similarly for the shortened racket the COR increased from 

0.50 to 0.59.  With the increase in effective stiffness for both cases less energy is dissipated into 

vibrational energy of the racket increasing the energy returned to the ball. 

In 1989 Knudson and White mounted two force sensing resistors in the handle of a tennis racket (strung 

at 245 N tension) to measure forces in key areas on the hand (Knudson and White 1989).  An 

accelerometer was mounted at the racket’s centre of gravity to measure the racket vibration.  Players 
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were instructed to hit a natural forehand drive at balls fired at them with incident ball velocities of 

approximately 12 m/s.  The two force sensors measured consistent patterns within 100 ms of the impact 

and were found to be out of phase.  Comparing the accelerations and force measurements revealed that it 

took 2 ms for the impulse to travel from the racket centre of gravity to the handle. 

In the same year, Brody fitted a vibration sensor to the throat of the racket to measure the damping time 

for a racket’s natural vibrations (Brody 1989).  The vibration found most uncomfortable by players is 

the first non-zero mode of the free racket, which is between 120 and 200 Hz.  The damping time for free 

rackets was found to be between 180-750 ms, compared to that of a hand-held racket measured as 20-30 

ms.  It was also found that a tight grip dampens the vibrations within 2 to 3 cycles, much sooner than the 

loose grip.  

Later Hatze (1992) reported the use of this manusimulator, an adaptive test machine to reproduce player-

testing conditions for the forehand swing with representative gripping conditions.  Balls were fired at 

16-26 m/s, onto a manusimulator-held racket. CORs measurements of between 0.758-0.885 were 

recorded, similar to previous real play test results of 0.750-0.885, by Groppel et al (1987) and 

considerably higher than CORgc measurements obtained by other researchers, ranging from 0.608-0.699. 

In 1992 Leigh and Liu published a model of the ball, strings and frame as a combination of spring and 

dampers (Leigh and Liu 1992).  Results from the model imply that the returned impulse reaches the 

racket head at 1.7 and 1.2 times of the impact time, after the ball has left the strings, for clamped and 

free rackets respectively.  Interestingly, the results reveal that increased damping in the racket would 

increase the COR for the racket. 

Hatze (1993) also developed and published a theoretical model, based on the energy losses in the ball, 

strings, racket and grip.  COR measurements were obtained from manusimulator-held, grip-clamped and 

head clamped rackets.  Results revealed that at larger impact velocities (22.7-30 m/s) a tighter grip 

increases the ACOR by approximately 3-8%.  It was determined that there was no difference between 

static and moving racket tests.  Energy losses to the different components were calculated as; strings 2-

4%; hand 2%; ball 15% and frame 58-64%.  Approximately 20% of the original kinetic energy is 

returned to the ball. 

In his paper of 1997, Brody calculated the estimated time it takes for the transverse wave to move 

towards the handle and back by estimating the wave velocity as 120 m/s.  The propagation time to the 

handle and back was approximately 8 ms, which supports the theory that the ball leaves the strings 
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before the impulse returns.  Tests revealed that the frequencies for the possible racket oscillation modes 

are; grip-clamped from 23-35 Hz; free from 125-200 Hz and hand-held approximately 150 Hz.  Brody 

implies that the free condition best approximates real play results.  This is not certain since,as he pointed 

out earlier, the head node positions and vibration frequencies for the first non-zero mode of the free 

racket and the second mode of the grip-clamped racket are very similar (Brody 1997). 

Cross (1997) supports Brody’s dynamic analysis of a racket, by considering the gripping condition’s 

influence in terms of the speed of propagation of the pulse.  The speed of the transverse wave through 

the racket was estimated to be 100 m/s and it therefore travels about 50 cm during a contact time of 5 

ms.  Since this is shorter than the distance to the handle and back, the ball would have left the strings and 

gripping has no effect.  Cross attached piezoelectric crystals onto a racket to measure vibration 

characteristics for a static racket under different clamping conditions.  Results reveal that the clamped 

racket does not truly represent the hand-held racket since the fundamental frequency of 23 Hz measured 

for the clamped racket was not present. The second mode frequency of the clamped racket shifts from 

125 to 100 Hz for the hand-held racket.  This frequency corresponds well with the fundamental 

frequency of the free racket.  In addition to the node at the middle of the strings, the hand-held case 

exhibits a node near the thumb that again implies a free condition.  The head-clamped and free 

conditions similarly damp the high frequency modes by a factor of 10 and the hand-held condition 

reduces the fundamental frequency of the free racket from 110 to 100Hz.  Cross concludes that the 

hand-held racket vibrations are better simulated by the free condition. 

In the following year Cross reported vibration tests on rackets by fitting a piezoelectric element and 

capacitance plates to the racket tip (Cross 1998).  The respective frequencies measured for grip-pivoted, 

hand-held and free conditions were 85 Hz, 102 Hz and 109 Hz.  Another series of tests were performed 

with a hand-held racket fitted with piezoelectric cells fitted from tip to handle.  Cross pointed out that 

the pulse propagation is faster than the analysis of the fundamental mode implies since the impact 

excites higher vibration modes as well.  Using a kinematic model for the upper-arm, forearm and racket 

chain.  He further concludes that the hand plays an important part in racket performance for shots hit not 

at the centre of percussion. 

In summary, the published work can be broadly divided into two categories; publications that claim the 

gripping conditions do not affect the ball impact, and those that do.  However, the division is perhaps 

not as wide as it initially appears. 
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Although there seem to be obvious differences between published results, these can be attributed to 

different test methods and variables.  Some test variables include: 

- different rackets, strings and balls 

- dimensions and placing of test components like accelerometers and force sensors 

- location of the impact point 

- impact speed 

- string tensions 

- the definition of test measures (e.g. COR, ACOR) 

Tests were not performed with the same variables for the difference between the impulse results found 

by Hatze (1976) and Baker and Putnam (1979).  Hatze measures impulse using strain gauges on the 

racket while Baker and Putnam calculated the impulse from the measured ball velocities. 

Another cause for differing opinions is the question of ‘significance’.  For example, Elliott found a 17 % 

reduction in reaction impulse which, compares well with the 10-15% found by Hatze.  Hatze, however, 

concluded that the change in impulse will lead to an increase in the “power of the stroke” even though 

rebound velocity and COR were not measured.  On the other hand, Elliott, who measured COR, found 

changes in reaction impulse have a corresponding “non-significant increase in rebound velocity”. 

A popular approach to investigate the gripping condition’s influence is to estimate the propagation time 

of a transverse wave through the racket.  The principle is that, for the grip condition to have an effect on 

the rebound velocity the transverse pulse caused by the impact needs to travel from the point of impact 

to the handle and back to the impact point.  If the ball is still in contact with the strings at this moment 

the grip will affect the rebound velocity otherwise it will have no effect.  Most tests revealed a contact 

time of 4-5 ms but the complex racket geometry and the short time span makes it difficult to determine 

the exact propagation time.  Values based on the racket’s fundamental mode ranged from approximately 

8-12 ms but it is not clear that higher frequency vibrations can be neglected. 

Many statements were based on vibration analysis of the racket by mathematical models or vibration 

tests.  Again, discrepancies between results were recorded because of differences between variables, 

especially racket properties and impact point.  The vibration frequencies measured for rackets under the 

different gripping conditions are:  

 Grip-clamped:  23 to 35 Hz (first mode), 125Hz (second mode) 

 Pivoted: 85 Hz 

 Hand-held: 100 to 150 Hz 
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 Free: 125 to 200 Hz 

 Strings: 500Hz (under all grip conditions) 

It is concluded the grip-clamped racket vibration response of the hand-held racket is closer to that of the 

free racket.  For the free condition the mode shapes are essentially the same as for the hand-held 

condition except for a slight shift in the two nodes towards the end-points of the racket and 

approximately a 10% decrease in vibration frequency results.  Hence, if tests on vibration aspects of 

racket impact are performed the free condition will produce the most representative results. 

For off-centre impacts there is only one claim, made by Grabiner (1983), to indicate that the gripping 

has no influence for off-centre impacts, while no other research supports this.  The “free-rotating” 

experimental arrangement Grabiner describes includes an artificial lateral constraint introduced by the 

two non-compliant suspension cords that perhaps explains his conclusions. 

A summary of all the COR results gathered by the various researchers under particular grip conditions is 

presented in Table 1. 

† Performed on a stiffened racket 

Year Researcher COR type COR values Ball speed 
(m/s) 

1976 Head CORgc 0.3-0.6 27 

1979 Brody CORhc 0.854 8.5 

1979 Watanabe et al. 

CORgc 0.44 19.30 
CORp 0.43 19.63 

CORf 0.43 16.49 

1980 Elliott et al. ACORgc 0.45-0.50 21 

1982 Elliott. ACORs 0.65 22.7 

1984 †Missavage et al 
ACORf 0.36 25.3 
ACORgc 0.42 25.3 

1992 Hatze CORs 0.758-0.885 20 

1993 Hatze 

CORs 0.83 21.19 
ACORs 0.43 21.19 

ACORs 0.42 21.16 

CORhc 0.80 21.05 

1993 Kawazoe ACORf 0.5 26.4 

1995 Wilson ACORgc 0.6 19 

1997 Brody ACORf 0.492 20 

Table 1 :  COR results from the literature. 
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String effects 

From their own experience and empirical studies, players and coaches have known for some time that 

lower string tensions enable more powerful shots but that higher tensions promote accuracy. The ball is 

designed to be imperfectly elastic so increased impact deformation results in increased kinetic energy 

losses.  By contrast, the racket strings are made of more perfectly elastic materials.  Reducing the string 

tension, gauge, pattern density or increasing length reduces the transverse stiffness of the string bed so 

that the ball deforms less and the strings more during impact.  Thus, the strings absorb proportionally 

more of the impact’s energy than the ball.  Since the half period of the ball/string bed system is roughly 

the same as the impact duration, most of the energy absorbed by the strings is then returned to the ball as 

kinetic energy.  Many researchers refer to this phenomenon as the “trampoline” effect (Brody 1987). 

There is a lower limit for the maximum COR of a racket when the tension is low that the strings start to 

move relative to each other, losing energy to friction.  Elliott (1982) also found an upper limit for string 

tension at 245N, that was later confirmed by Thornhill (1993) who established that the optimum string 

tension for most strings is between 200N – 245N.  Brannigan and Adali (1981) developed a 

mathematical model of a tennis racquet including the ball, strings, racket and the hand.  Results 

confirmed that a lower string tension results in a longer impact time and a decrease in tension increases 

the rebound velocity.  Thinner and less dense strings also provide more spin, because they “cut” into the 

ball, giving more grip (Brody 1985). 

The increase in shot accuracy with string tension is more difficult to measure.  The logical explanation is 

that the higher tension allows less distortion of the strings so that there is a smaller error angle for off-

centre impacts (Brody 1979, 1987).  Another reason given is the higher tension leads to more 

deformation of the ball, which results in a bigger contact interface with the strings and therefore better 

control (Groppel 1982).  Increased stiffness of the racket frame may also have an effect on the accuracy 

(Widing and Moeinzadeh 1990). 

Motion analysis 

Published research includes several studies of human motion during the tennis serve.  These provide an 

understanding of the contribution that different body parts make to achieve a certain racket speed.  

Figure 4 provide an explanation of medical terms used in the subsequent section.  Motion studies also 
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provide velocity and acceleration data for important points and segments useful for developing 

representative testing equipment.   

J. Johnson (1957) reported results from a study of speed, slice and accuracy for advanced women 

players.  Using 8-mm film she discovered, rather simply, that speed and accuracy were independent for 

her test group.   

Several years later M.L. Johnson (1976) described the high swing action based on a 128 fps 

cinematographic analysis performed by Plagenhoef (1971).  Three main components of upper body 

activity were identified: 

(i) Cocking: the racket is positioned parallel to and pointing down the spine, with the elbow at 

approximately 90 and upper arm pointing forwards and upwards. 

(ii) Swing: the racket is swung through approximately 180.  The motion is initiated by shoulder girdle 

rotation followed by straightening of the flexed arm. 

(iii) Pronation: the racket is ‘whipped’ into the impact by a 180 rotation of the forearm through the 

impact. 

In 1970 Plagenhoef used footage from a single camera at 64 fps and simple linear momentum theory to 

explain the service performance of several players (Plagenhoef, 1970).  The different grip firmness used 

by Pilic and Laver changed the effective racket striking mass and, explaining why Pilic could hit a ball 

at 118 mph (53 m/s) with a racket head speed of 73 mph (34 m/s) while Laver only achieved 100 mph 

(45 m/s) from 83.5 mph (37 m/s). 

Adrian (1971) compared the overhead patterns for tennis, volleyball and badminton using two camera 

systems, at 730 and 775 fps respectively.  Angular velocities of body segments calculated over the 6ms 

before impact revealed elbow extension of 1371 degrees/s (23.93 rad/s) and wrist flexion of 2743 

degrees/s (47.87 rad/s), with ball speed measured at 39.29 m/s. 

Anderson (1979) published a combined electromyographic and tri-plane cinematographic study (64-100 

fps) comparing the ball throw and tennis serve.  Although there is some similarity between the two, 

significant differences between the sequential timing of the two actions suggest players should not train 

for one by practising the other.  A similar study of Japanese male tennis players using 16 mm film at 100 
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to 200 fps was also reported by Miyashita et al (1980) indicating an approximately 300 ms period 

negligible muscle contraction, 2 to 500 ms before impact. 

In 1983 Elliott and Wood published a 2 camera cinematographic comparison of two different service 

techniques.  Both techniques exhibit a deceleration of racket angular velocity from approximately 0.02 s 

prior to impact (Elliott and Wood 1983).  That same year Elliott also published a study of topspin 

generation from the serves of junior and adult players.  Using 2 cameras, one for the player (200 fps) the 

other for the ball (300 fps) he observed topspin values up to 1140 rpm (119 rad/s) for the adults at 

service speeds of 45 m/s (Elliott 1983). 

Van Gheluwe and Hebbelinck (1985) recorded the serve action for a top class male and young female 

using 4 cameras at 400 fps.  The results provide useful typical serve velocities, especially the racket head 

velocities (head centre), which were found to be from 30.8 to 32.2 m/s before impact and 17.5 to 19.7 

m/s after impact.  The ratio of the racket speed after impact to before impact is calculated as 

approximately 0.6 and the COR as 0.57 to 0.60.  50 to 70% of the racket impact point speed was found 

to be due to its angular velocity before impact.  The more distal the joint the closer its peak velocity was 

to the time of impact.  Van Gheluwe and Hebbelinck concluded that the player applied little impulse to 

the racket during impact since the net momentum of the racket-ball system remained the same. 

Elliott et al (1986) presented a comparison between serve action of four elite male and four elite female 

players using 3D reconstruction from two 200 fps cameras.  The tests showed that males swing the 

racket with average head speeds of 34.8m/s, producing service velocities of 42.4 m/s.  Their data also 

reveals a decrease in racket angular velocity before impact.  Visual interpretation of the film showed that 

forearm pronation and upper arm endoration has a considerable effect on racket speed approximately 5 

ms prior to impact.  

In 1987 Van Gheluwe et al reported a 3D study (3 cameras, 300 fps) of three skilled players.  They 

report an explosive endorotation of the upper arm just after maximum pronation and just before impact 

and conclude this is an important point of racket speed development (Van Gheluwe et al 1987).  

However, Van Gheluwe et al (1985) noted earlier that the hand decelerated just before impact and that 

this helps to generate the racket’s angular velocity.  It is more likely that instead of generating racket 

speed, endorotation of the upper arm at this stage merely prevents excessive hand and thus racket grip 

deceleration. 
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In 1988 Elliott published a review of work in this field, postulating that service related injury may be 

due to high internal forces in the kinematic chain and reduced muscular activity in skilled players 

(Elliott 1988).  In the following year Bahamonde (1989) published joint forces and torques based on an 

inverse dynamics analysis of 3D cinematographic data.  Most torque was generated by the shoulder 

(internal rotation and horizontal adduction) and elbow (arm extension), with a large torque throughout.  

The pronation/supination torque was negligible suggesting this is a guiding or releasing action rather 

than a racket driving one. 

In 1988 Buckley and Kerwin published an EMG/cinematographic study of 5 players supporting the 

findings of other researchers that much of the force creating the high speed elbow extension comes from 

passive energy flows developed along the body’s kinematic chain (Buckley and Kerwin 1988).  They 

noted that the elbow extension velocity of approximately 44 rad/s is beyond the 20 rad/s limit imposed 

by the maximum contractile velocity of human skeletal muscle.  In any case, the force that can be 

generated at such high speed would be minimal.  The triceps’ contribution, peaking just before impact, 

is a powerful stabilising co-contraction, rather than a dominant muscle torque. 

Several years later, Springings et al (1994) published mathematical equations to determine racket 

velocity contributions for the kinematic chain segments from a cinematographic analysis of a high 

quality player with a racket head speed of 27 m/s.  The racket velocity graphs reveal a slight deceleration 

just before impact but the magnitude of a segment’s angular velocity was deemed insufficient to judge 

its contribution to racket speed.  For example, the lower horizontal cross-flexion speed of the upper arm 

is 1/3 that of forearm pronation but ‘contributes’ 6.5 as opposed to 4 m/s to the head speed.  They do 

not, however, show conclusively whether segment velocity is the cause of head speed or whether 

segment velocity is simply required not to impede head speed. 

In Cohen et al (1994), correlated anthropometric data and serve velocity amongst 40 tournament players 

using a Sony Video 8 Handycam, a Jugs radar gun and upper extremity strength and usability measuring 

equipment.  They concluded that serve velocity depends on flexibility of dominant wrist and shoulder 

flexion, dominant shoulder internal rotation at 0 of abduction, and torque generation during elbow 

extension. 

Recently, Elliott et al (1995) presented a cinematographic (3 cameras, 200 fps) comparison between the 

service actions of 11 elite players.  Internal rotation of the upper arm reached its peak 5ms before 

impact.  Segment contributions to the 31 m/s horizontal racket head speed were calculated as: 

- internal rotation of upper arm (54.2%) 
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- hand flexion (31.0%) 

- horizontal flexion & abduction of upper arm (12.9%) 

- linear shoulder velocity (9.7%) 

- forearm pronation (5.2%) 

- forearm extension (-14.4%) 

To summarise, there appears to be lack of agreement over the source of speed in the service action, 

perhaps because the position measurement errors are so large in most cases causing the inverse 

dynamics calculations to be inconclusive as well as difficult.  Buckley and Kerwin’s paper perhaps 

provides the key to understanding the combined results of so many researchers.  The force/contraction 

speed limitations for human skeletal muscle suggest the service energy is generated early in the action 

by contraction of the larger muscles at low speed.  This is transferred in a ‘whiplash’ action through the 

kinematic chain with consequent sequential angular velocity magnification.  Distal segment rotation and 

muscular activity during this period serve only to guide, release and unimpede the energy transfer. 

Since all researchers agree that peak racket velocity occurs slightly before impact it appears service 

impact simulation can be adequately achieved in the laboratory under constant velocity conditions. 

Conclusions 

It is evident that the designs of rackets have changed considerably in the past 20 years and there is no 

doubt this has had a dramatic effect on the speed of the modern game.  No credit should be taken away 

from the players who handle these powerful instruments with incredible speed and precision react to 

balls projected at tremendous speeds.  Unfortunately, as in any other modern sport, the game’s survival 

lies in its popularity with the public of whom most are just spectators.  The real full effects of the latest 

rackets are still concealed because most of the top players prefer playing with the rackets they are used 

to, instead of the most powerful ones.  These players are skilled enough to sacrifice the extra power for 

more control.  Stefan Edberg was quoted on the introduction of the new more powerful wide-bodied 

rackets as saying: "Wide-bodies are just too powerful.  Balls just take off.  That's fine if you're hitting 

the ball flat, but once you try to put on topspin, you can't get a grip on the ball."  The real problem will 

start when the next generation of players, who grow up using these powerful rackets, get to the top 

rankings.  The words of Goran Ivanisevic, once one of the fastest servers, echo this concern: "You can 

see kids age 12 and 13 playing with wide-bodied rackets hitting the ball harder than me." (Arthur, 1992) 
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It was observed that the highest incident ball velocities at which tests were performed was at 

approximately 30m/s.  These velocities are considerably lower than the serve velocities reached by the 

top players.  It is necessary, therefore, for a series of COR tests to be performed in the 40 to 60m/s 

range.  These tests will evaluate the validity of the tests performed at lower speeds. 

Another shortcoming observed in the literature, is the availability of more accurate 3-dimensional, 

motion data from under normal play conditions.  Most of the motion data was acquired analysing 

footage captured either with single cameras, or at relatively low frame rates.  This induces significant 

deviations in results, leaving certain phenomena during the high-speed serve unexplained. 
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Figure 1:  Common locations of four definitions of the 'sweet spot' of a racket. 
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Figure 2:  Centre of percussion. 
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Figure 3: Mode shapes for clamped and free-standing racket. 
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Figure 4:  Range of motions of the upper limb. 


