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Abstract

Modeling the filtration of incompressible fluids through porous media requires

dealing with different types of partial differential equations in the fluid and

porous subregions of the computational domain. Such equations must be cou-

pled through physically significant continuity conditions at the interface sep-

arating the two subdomains. To avoid the difficulties of this heterogeneous

approach, a widely used strategy is to consider the Navier-Stokes equations in

the whole domain and to correct them introducing suitable terms that mimic

the presence of the porous medium. In this paper we discuss these two different

methodologies and we compare them numerically on a sample test case after

proposing an iterative algorithm to solve a Navier-Stokes/Forchheimer prob-

lem. Finally, we apply these strategies to a problem of internal ventilation of

motorbike helmets.

Keywords: Navier-Stokes equation, porous media flows, Darcy law,

Forchheimer equation, penalization method, finite elements.

1. Introduction1

In this paper we consider the modeling and numerical simulation of incom-2

pressible fluid flows in regions partially occupied by porous media. The driving3
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motivation of this work comes from a specific industrial problem of internal4

ventilation for motorcycle helmets. However, problems associated with filtra-5

tion of fluids in porous media have many other applications from geophysics to6

engineering and also physiology. Consider for example the percolation of water7

in hydrological basins through rocks or sand, the filtration of biofluids through8

living tissues, as well as industrial processes involving fluids going through filters9

and foams.10

The problem of industrial interest discussed in this work, which will be11

precisely described in Section 5, consists in modeling and simulating the internal12

air flow of a motorcycle helmet. A series of intakes and outtakes connected by13

channels dug into the protection layer let the fresh air enter the helmet and14

filtrate through the comfort tissue and the hair of the rider. An appropriate15

ventilation capable of effectively removing the heat and moisture produced by16

the head must be guaranteed in order to preserve the safety of the rider even in17

very hot and humid climates.18

This work, which focuses only on the fluid-dynamics aspects of the air flow,19

aims at investigating the possible modeling approaches for the physical descrip-20

tion of the system, and it represents a preliminary step towards a more complex21

model taking into account heat and sweat-related phenomena too (see [11]). In22

spite of the specific application, most of the considerations associated with both23

modeling and numerical simulation that will be discussed throughout the paper24

are valid in the more general framework of flow over saturated porous media.25

Due to the physical heterogeneity of the domain, a correct physical modeling26

of filtration processes would require to introduce different systems of partial27

differential equations in the free fluid domain and in the porous medium region,28

giving rise to an heterogeneous differential system.29

While for the vast majority of applications the Navier-Stokes equations rep-30

resent the model to describe incompressible flows in the free-fluid region, the31

modeling of flows through a saturated porous medium may require different32

models depending on the characteristics of the porous medium itself. A classi-33

cal model is given by the Darcy law [18], the simplest linear relation between the34
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velocity and the pressure. However, in case of high permeabilities the nonlinear35

Forchheimer equation [25] is usually adopted.36

A crucial issue in the definition of these heterogeneous models is the choice37

of suitable coupling conditions to describe the fluid flow across the surface of38

the porous medium through which the filtration occurs.39

Those coupled problems have received an increasing attention during the last40

years from both the mathematical and the numerical point of view. Starting41

from the original experimental works of Beavers and Joseph on the coupling42

conditions between a fluid and a porous medium, mathematical investigations43

have been carried out in [22, 36, 37, 38, 41, 42]. Under those conditions, the44

analysis of a coupled Stokes/Darcy problem has been studied in [10, 17, 19, 20,45

28, 29, 26, 27, 30, 40, 48] in the steady case, and in [12, 53] in the time-dependent46

case. Moreover, the case of the Navier-Stokes equations has been considered in47

[3, 14, 19, 31].48

However, because of the difficulties associated to the set-up and implemen-49

tation of those models, a different approach is widely used in many practical50

applications and it is implemented in most commercial softwares. This method,51

often called penalization approach (see, e.g., [9, 34, 35, 39]), consists in consid-52

ering in the whole computational domain a modified formulation of the Navier-53

Stokes equations which reduce to their classical form in the fluid region while54

they include additional resistance terms in the porous region. This approach is55

similar to the so-called fictitious domain method [1, 39].56

In this paper we compare these two different techniques studying their math-57

ematical formulation and their finite element approximation. In particular, the58

paper is organized as follows. In Section 2, we present the differential models59

for the fluid flow as well as for the saturated porous media flow, we discuss60

the coupling conditions for the heterogeneous case and we introduce suitable61

adimensional formulations. In Section 3, we consider the numerical approx-62

imation and we introduce possible solution strategies for the space-time dis-63

cretization of these problems. Numerical results for the heterogeneous Navier-64

Stokes/Forchheimer model are presented in Section 4, which includes also a65
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comparison of the simulation results obtained by the other modeling approaches.66

Finally, in Section 5 we show an example of application of the penalization67

method to the problem of internal ventilation of a helmet.68

2. Mathematical models for the flow over a porous medium69

We consider a bounded domain Ω ⊂ R
d (d = 2, 3) partitioned into two non-70

overlapping regions: Ω = Ωf ∪ Ωp, Ωf ∩ Ωp = ∅, where Ωf is the fluid domain71

(for example occupied by air or water) and Ωp the saturated porous medium72

domain. We indicate by Γ = Ωf ∩ Ωp the interface between the two domains73

(see Figure 1). From the physical point of view, Γ represents the contact surface74

between the porous medium and the free fluid.75

Figure 1: Subdivision of the computational domain Ω in a fluid region Ωf and a porous

domain Ωp.

2.1. Fluid domain: the Navier-Stokes equations76

In the fluid region Ωf , we consider a confined incompressible viscous fluid77

modeled by the Navier-Stokes equations: for all t > 0,78

ρ

(

∂uf

∂t
+ (uf · ∇)uf

)

− µ∆uf +∇pf = 0 in Ωf ,

∇ · uf = 0 in Ωf ,

(1)

where uf and pf denote respectively the velocity and the pressure of the fluid,79

ρ and µ are respectively the density and dynamic viscosity of the fluid and we80

assume that no external body forces are applied.81
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We have denoted by ∇, ∇· and ∆, respectively, the gradient, the divergence82

and the Laplace operators with respect to the space coordinates. Moreover,83

we recall that (v · ∇)w =
∑d

i=1 vi
∂w
∂xi

for all vector functions v = (v1, . . . , vd),84

w = (w1, . . . , wd).85

The Navier-Stokes equations are well-suited to numerically simulate laminar86

flows for which the Reynolds number87

Ref =
ρUL

µ
(2)

is not too high, U and L being a characteristic velocity and a characteristic88

length scale of the problem, respectively. For high Reynolds numbers turbulence89

effects become important and the Navier-Stokes equations need to be augmented90

with turbulence models, such as the RANS (Reynolds Averaged Navier-Stokes)91

ones. In our applications we will always place ourselves in the laminar case.92

2.2. Filtration through the porous domain93

Filtration through a saturated porous domain can be modeled by the Darcy94

law, which introduces an average fluid velocity on sample volumes of the porous95

medium sufficiently large with respect to the pore size.96

The Darcy law is the simplest (linear) relation between the seepage velocity97

up and the pressure pp in the porous medium, and it states that98

up = −K
µ
∇pp in Ωp, (3)

where µ is the dynamic viscosity coefficient already defined in (1), while K is99

the permeability coefficient. This law was originally obtained by Darcy with100

a famous experiment [18], and later rigorously derived from the Navier-Stokes101

equations by mathematical homogenization on structured porous grids (see,102

e.g., [50]). The permeability coefficient K can assume values ranging from103

K = 10−5m2 for very porous artificial materials to K = 10−20m2 for particular104

kind of soils or rocks. In case of a non-isotropic medium the scalar coefficient105

K is substituted by a permeability tensor K.106
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As the seepage velocity increases, the transition towards a non-linear drag107

is quite smooth. In order to characterize the importance of the inertial effects,108

similarly to the Navier-Stokes equations, it is possible to define the Reynolds109

number associated to the pores110

Rep =
ρUδ

µ
, (4)

where δ is the characteristic pore size.111

The Darcy law is reliable for values of Rep < 1 (see, e.g., [4]), otherwise it112

is necessary to consider a more general model which can account also for the113

inertial effects, like the non-linear Forchheimer equation [25]:114

∇pp = − µ

K
up −

ρCF√
K

|up|up in Ωp, (5)

where CF is the inertial resistance coefficient (or tensor in the non-isotropic115

case). The transition between the Darcy and the Forchheimer regimes occurs116

in the range 1 < Rep < 10. More in general, non-linear correction terms of117

the form |up|αup with 1 ≤ α ≤ 2 can be considered for Darcy’s law. Detailed118

discussions about their physical interpretation can be found in [23, 43]. As the119

Darcy law, the Forchheimer equation can be derived by homogenization from120

the Navier-Stokes equations (see [15]).121

The filtration model is fully determined considering the continuity equation:122

∇ · up = 0 in Ωp. (6)

The latter, combined with the Darcy equation (3), leads to the following elliptic123

equation involving only the pressure:124

−∇ ·
(

K

µ
∇pp

)

= 0 in Ωp. (7)

If only (7) is solved in Ωp, then the velocity can be recovered using the Darcy125

law (3).126

2.3. Coupling conditions across the interface127

To represent the filtration of the free fluid through the porous medium,128

we have to introduce suitable coupling conditions between the Navier-Stokes129
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and Darcy (or Forchheimer) equations across their common interface Γ. In130

particular, we consider the following three conditions.131

1. Continuity of the normal component of the velocity:132

uf · nf = −up · np on Γ, (8)

where nf and np are the unit normal vectors external to ∂Ωf and ∂Ωp,133

respectively (see Figure 1). Notice that nf = −np on Γ. Using Darcy law134

(3), equation (8) can be rewritten as135

uf · nf =
K

µ

∂pp
∂np

on Γ. (9)

This condition is a consequence of the incompressibility of the fluid.136

2. Continuity of the normal stresses across Γ (see, e.g., [36]):137

pf − µ
∂uf

∂nf
· nf = pp on Γ. (10)

Remark that pressures may be discontinuous across the interface.138

3. Finally, in order to have a completely determined flow in the free-fluid139

region, we have to specify a further condition on the tangential component140

of the fluid velocity at the interface.141

Beavers and Joseph [5] proposed an experimental condition stating that142

the difference between the slip velocity and the tangential seepage velocity143

at the interface is proportional to the shear rate therein:144

−
(

∂uf

∂nf

)

τ

=
αBJ√
K

(

uf − up

)

τ
on Γ. (11)

By (v)τ we indicate the tangential component to the interface of the vector145

v:146

(v)τ = v − v · n on Γ. (12)

The constant αBJ usually assumes values between 0.8 and 1.2 (see [5]).147

Since the seepage velocity up is far smaller than the fluid slip velocity uf148

at the interface, Saffman proposed to use the following simplified condition149

(the so-called Beavers-Joseph-Saffman condition) [49]:150

−
(

∂uf

∂nf

)

τ

=
αBJ√
K

(

uf

)

τ
on Γ. (13)
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This condition was later derived mathematically by homogenization by151

Jäger and Mikelić [36, 37, 38].152

The three coupling conditions described in this section have been extensively153

studied and analyzed also in [20, 21, 40, 45, 48, 51].154

Remark 2.1. Notice that we have written the Navier-Stokes equations in time-155

dependent form, while we consider steady models for the flow in the porous156

medium. This can be justified by the fact that the velocity in the fluid domain157

is generally much higher than the seepage velocity, so that the latter can be158

treated as steady at least during small time intervals. If this assumption was159

not satisfied, it would be possible to consider an unsteady model also in Ωp as160

studied for example in [12].161

2.4. Penalization method162

The coupled model discussed in the above sections is quite complex to solve,163

mainly because of the intrinsic difference in nature between the equations in the164

subdomains Ωf and Ωp. For this reason, the so-called penalization approach165

has been introduced to model the flow over porous media (see, e.g., [9, 34, 35]).166

This method consists in considering a modified set of Navier-Stokes equations in167

the whole domain including two penalization terms associated to the resistance168

induced by the porous medium in the subregion Ωp. These terms are related to169

the linear Darcy and the non-linear Forchheimer equations (3) and (5).170

More precisely, we consider the momentum equation:171

ρ

(

∂u

∂t
+ (u · ∇)u

)

− µ∆u+∇p+
(

µ

K
u+

ρCF√
K

|u|u
)

χΩp
= 0 in Ω, (14)

where the physical constants are the same already introduced in (1) and (5),172

while χΩp
= 1 in Ωp and χΩp

= 0 elsewhere, so that the last two terms vanish173

in the fluid domain. The variable u corresponds to the real velocity in Ωf and174

to the seepage velocity in Ωp.175

Remark 2.2. Notice that this method can be enhanced to deal with inner solid176

regions too, following the so-called “fictitious domain” approach proposed in [39]:177
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the modified Navier-Stokes equations are solved in the whole domain, with very178

strong variations of the permeability coefficient. Indeed, it can be rigorously179

shown via homogenization techniques (see [1]) that the proposed approach is180

consistent with the modeling of both solid (K → 0) and fluid (K → +∞) regions.181

Concerning the physical meaning of (14), the diffusive contribution −µ△u182

has been shown to be consistent with the modeling of highly porous materials,183

such as, for example, synthetic foams with porosity greater than 0.6, and some-184

times it is referred to as Brinkmann [8], or Brinkmann-Forchheimer equation185

[52], possibly with µ̃ 6= µ. On the other hand, the non-linear convective term186

(u · ∇)u has been criticized as an unsatisfactory way to include non-linear in-187

ertial effects, since, for example, it vanishes even for a steady incompressible188

unidirectional flow, regardless of the magnitude of the velocity u.189

However, since the penalization method is much easier to implement than the190

coupled approach of Sections 2.1-2.3, it is widely used in commercial softwares.191

Indeed, most of the commercial packages capable of simulating flows in domains192

partially occupied by porous media are based on this approach (see, e.g., [13,193

2, 24]). In these codes, the porous medium is usually characterized by two194

constants Pv and Pi called, respectively, viscous and inertial resistance which195

are different from zero only in the porous domain Ωp. Then, the following196

penalized Navier-Stokes equations are solved:197

ρ

(

∂u

∂t
+ (u · ∇)u

)

− µ∆u+∇p+ Pvu+ Pi|u|u = 0 in Ω,

∇ · u = 0 in Ω,

(15)

where198

Pv =







0 in Ωf

µ/K in Ωp,
and Pi =







0 in Ωf

ρCF /
√
K in Ωp.

(16)

2.5. Dimensionless formulations199

To better compare the models that we have considered, we introduce their200

dimensionless forms. We define the following dimensionless variables:201

x′ =
x

L
, t′ =

U

L
t, u′

f =
uf

U
, u′

p =
up

U
, p′f =

pf
ρU2

, p′p =
pp
ρU2

, (17)
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where L and U are respectively a characteristic length and velocity for the202

problem (we use the same for both the fluid and the porous medium).203

By substituting (17) in (1) (recall that in our case F = 0) we obtain the204

dimensionless formulation of the Navier-Stokes equations:205

∂u′
f

∂t′
+ (u′

f · ∇)u′
f − 1

Ref
∆u′

f +∇p′f = 0 in Ωf ,

∇ · u′
f = 0 in Ωf ,

(18)

where Ref is the Reynolds number defined in (2).206

The dimensionless form of the Darcy law (3) becomes207

u′
p = −Grn∇p′p in Ωp, (19)

where the dimensionless group Grn is defined as208

Grn =
ρKU

µL
. (20)

On the other hand, the dimensionless form of the Forchheimer equation (5)209

reads:210

u′
p +Grf |u′

p|u′
p = −Grn∇p′p in Ωp, (21)

having denoted by Grf the dimensionless group211

Grf =
ρCFU

√
K

µ
. (22)

The three coupling conditions (9), (10), (13) at the interface are make di-212

mensionless too, obtaining213

u′
f · nf = Grn

∂p′p
∂n′

p

, (23)

p′f − 1

Ref

∂u′
f

∂n′
f

· nf = p′p, (24)

−
(

∂u′
f

∂n′
f

)

τ

= Grc
(

u′
f

)

τ
, (25)

where Grc is defined by214

Grc =
αBJL√
K

. (26)
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Finally, the dimensionless form of the penalized Navier-Stokes equations (15)215

becomes216

∂u′

∂t′
+ (u′ · ∇)u′ − 1

Re
∆u′ +∇p′ +Grvu

′ +Gri|u′|u′ = 0 in Ω, (27)

with dimensionless groups217

Re =
ρLU

µ
, Grv =

PvL

ρU
, Gri =

PiL

ρ
. (28)

In the following we will refer to the dimensionless formulations omitting the218

apices for simplicity of notation.219

For the sake of clarity, let us summarize the models that we will consider in220

the next sections.221

• Navier-Stokes/Darcy (NSD) model:222

∂uf

∂t
+ (uf · ∇)uf − 1

Ref
∆uf +∇pf = 0 in Ωf ,

∇ · uf = 0 in Ωf ,

−∇ · (Grn∇pp) = 0 in Ωp,

uf · nf = Grn
∂pp
∂np

on Γ,

pf − 1

Ref

∂uf

∂nf
· nf = pp on Γ,

−
(

∂uf

∂nf

)

τ

= Grc(uf )τ on Γ.

(29)

• Navier-Stokes/Forchheimer (NSF) model:223

∂uf

∂t
+ (uf · ∇)uf − 1

Ref
∆uf +∇pf = 0 in Ωf ,

∇ · uf = 0 in Ωf ,

up +Grf |up|up = −Grn∇pp = 0 in Ωp,

∇ · up = 0 in Ωp,

uf · nf = −up · np on Γ,

pf − 1

Ref

∂uf

∂nf
· nf = pp on Γ,

−
(

∂uf

∂nf

)

τ

= Grc(uf )τ on Γ.

(30)
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• Penalization (PE) model:224

∂u

∂t
+ (u · ∇)u− 1

Re
∆u+∇p+Grvu+Gri|u|u = 0 in Ω,

∇ · u = 0 in Ω.

(31)

All the physical variables are dimensionless. Suitable boundary conditions225

will be introduced in Section 2.6.226

2.6. Boundary conditions227

We set now the boundary conditions referring, for simplicity to a specific 2D228

problem, but what we present can be extended to more general settings.229

We consider the setting in Figure 2, in which a horizontal fluid flows upon230

a saturated porous medium. The flow enters from the fluid inlet γ1 and exits231

at both the fluid and porous outlets γ3 and δ3. All the other boundaries are232

impermeable, with no-slip condition on γ2 and with a slip condition on δ1 and233

δ2. As reference dimensionless parameters we consider L as the height of the234

fluid channel and U as the maximal velocity at the inlet.235

Figure 2: Scheme of the bidimensional sample problem.

More precisely, the boundary conditions that we use for the NSD model (29)236
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read:237

uf = upois on γ1,

uf = 0 on γ2,

pfnf − 1

Ref

∂uf

∂nf
= 0 on γ3,

∂pp
∂np

= 0 on δ1 ∪ δ2,

pp = 0 on δ3.

(32)

The function upois is a given Pouiseuille velocity profile on γ1. The same bound-

ary conditions apply for the NSF problem (30) with (32)4 replaced by

up · np = 0 on δ1 ∪ δ2.

For the PE problem (31), we have to impose a slightly different set of bound-238

ary conditions:239

u = upois on γ1,

u = 0 on γ2,

pn− 1

Re

∂u

∂n
= 0 on γ3,

u · n = 0 on δ1 ∪ δ2,
(

∂u

∂n

)

τ

= 0 on δ1 ∪ δ2,

pn− 1

Re

∂u

∂n
= 0 on δ3.

(33)

Notice that condition (32)5 has been replaced by (33)6 since in the latter case240

the stress on δ3 is not given by the sole pressure, but by the whole Cauchy241

stress tensor. Moreover, condition (32)4 has been changed into (33)4 and (33)5.242

Indeed, thanks to Darcy’s law, (32)4 corresponds to the null normal velocity243

condition (33)4, while (33)5 has been introduced to ensure the well-posedness244

of the problem.245

As initial condition for all models we assume the velocity in the fluid region246

Ωf to be equal to the Poiseuille flow profile at the initial time, i.e., uf (t = 0) =247

upois in Ωf . On the other hand, we assume that at the initial time there is no248

flow in the porous medium, and that at the beginning of the simulation a rigid249

impermeable device separating the two domains is suddenly removed, allowing250

the penetration of the fluid in the porous bed.251
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3. Numerical approximation and solution algorithms252

In this section we address the finite element approximation of the coupled253

problems considered in Sections 2.5-2.6 and we propose an iterative solution254

method based on a domain decomposition approach.255

3.1. Space discretization256

We consider a regular triangulation Th of the domain Ωf ∪ Ωp, depending257

on a positive parameter h > 0, made up of triangles T . We assume that the258

triangulations Tfh and Tph induced on the subdomains Ωf and Ωp are compat-259

ible on Γ, that is they share the same edges therein. Finally, we suppose the260

triangulation induced on Γ to be quasi-uniform (see, e.g., [46]). An example of261

regular compatible triangulation in shown in Figure 3.262

Figure 3: Example of regular compatible computational mesh.

Several choices of finite element spaces can be made. If we indicate by Wh

and Qh the finite element spaces which approximate the velocity and pressure

fields, respectively, for the Navier-Stokes problem or for the penalization model,

there must exist a positive constant β∗ > 0, independent of h, such that the

classical inf-sup condition is satisfied, i.e., ∀qh ∈ Qh, ∃vh ∈ Wh, vh 6= 0, such

that
∫

D

qh∇ · vh ≥ β∗‖vh‖H1(D)‖qh‖L2(D),

where D = Ωf for (29) and (30) and D = Ω for (31).263

Several families of finite element spaces satisfying the inf-sup condition are264

provided in [7]. In the following, for the sake of exposition, we will make the265

special choice of piecewise quadratic elements for the velocity and piecewise266

linear for the pressure.267
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More precisely, we start by defining the following discrete spaces for the NSD268

problem:269

Xfh = {vh ∈ C0(Ωf ) : vh|T ∈ [P2(T )]
2 ∀T ∈ Tfh},

Vfh = {vh ∈ Xfh : vh = 0 on γ1 ∪ γ2},

Qfh = {qh ∈ C0(Ωf ) : qh|T ∈ P1(T ) ∀T ∈ Tfh},

Wph = {qh ∈ C0(Ωp) : qh|T ∈ P2(T ) ∀T ∈ Tph, qh = 0 on δ3}.

Then, the Galerkin approximation of the coupled NSD problem (29) reads: find270

ufh(t) ∈ Xfh, pfh(t) ∈ Qfh, pph ∈Wph such that271

∫

Ωf

∂ufh

∂t
· vfh +

∫

Ωf

(

(ufh · ∇)ufh

)

· vfh +

∫

Ωf

1

Ref
∇ufh · ∇vfh

−
∫

Ωf

pfh∇ · vfh +

∫

Γ

pphvfh · nf

+

∫

Γ

Grc
Ref

(

ufh

)

τ
· (vfh)τ = 0 ∀vfh ∈ Vfh,

∫

Ωf

qfh∇ · ufh = 0 ∀qfh ∈ Qfh,
∫

Ωp

Grn∇pph · ∇qph −
∫

Γ

ufh · nfqph = 0 ∀qph ∈Wph,

(34)

with ufh(t) = uh
pois on γ1, ufh(t) = 0 on γ2 and ufh(0) = uh

pois in Ωf . u
h
pois is272

a suitable approximation of upois in the finite element space Xfh.273

(The mathematical analysis of the time-dependent NSD problem has been re-274

cently carried out in [14].)275

In the case of the NSF problem (30), we cannot eliminate the unknown276

velocity up in Ωp as done for the Darcy equation. Thus, to write the Galerkin277

approximation of (30) we should consider a suitable family of inf-sup stable278

finite element spaces also in the porous domain. Moreover, we should introduce279

Lagrange multipliers to impose the continuity condition (30)5, following the280

approach used in [40] to deal with the velocity-pressure formulation of the Darcy281

problem. However, in our applications we will not use such mixed formulation282

for the Forchheimer equation, but we will solve only for pp in Ωp, as explained in283

Section 3.3. Thus, we do not discuss here the mixed finite element formulation284

and we refer the reader to [28, 32, 44].285
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In analogous way, we can define the following finite element spaces for the286

PE approach:287

Xh = {vh ∈ C0(Ω) : vh|T ∈ [P2(T )]
2 ∀T ∈ Th},

Vh = {vh ∈ Xh : vh = 0 on γ1 ∪ γ2 and vh · n = 0 on δ1 ∪ δ2},

Qh = {qh ∈ C0(Ω) : qh|T ∈ P1(T ) ∀T ∈ Th}.

The Galerkin approximation of (31) reads: find uh(t) ∈ Xh, ph ∈ Qh such that288

∫

Ω

∂uh

∂t
· vh +

∫

Ω

(

(uh · ∇)uh

)

· vh +

∫

Ω

1

Re
∇uh · ∇vh −

∫

Ω

ph∇ · vh

+

∫

Ω

Grvuh · vh +

∫

Ω

Gri|uh|uh · vh = 0 ∀vh ∈ Vh,
∫

Ω

qh∇ · uh = 0 ∀qh ∈ Qh,

(35)

with uh(t) = uh
pois on γ1, uh(t) = 0 on γ2, uh(0) = uh

pois in Ωf and uh(0) = 0289

in Ωp. u
h
pois is a suitable approximation of upois in the finite element space Xh.290

3.2. Time discretization291

To carry out the time discretization we keep in mind our main application:292

the simulation of the stationary air flow over the porous comfort layer inside a293

motorbike helmet. Then, since we are interested in the steady state solution,294

we adopt a first-order implicit Euler scheme with a semi-implicit treatment of295

the nonlinear convective term of the Navier-Stokes equations.296

We subdivide the time interval considering a fixed time step ∆t: 0 = t0 <297

t1 < . . . < tn < tn+1 < . . ., tn+1− tn = ∆t, ∀n ≥ 0, and we denote by the upper298

index n a quantity computed at the time step tn.299

Thus, the discretization in time and space of the coupled NSD problem (34)300
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becomes: for n ≥ 0, find un+1
fh ∈ Xfh, p

n+1
fh ∈ Qfh, pph ∈Wph such that301

1

∆t

∫

Ωf

un+1
fh · vfh +

∫

Ωf

(

(un
fh · ∇)un+1

fh

)

· vfh +

∫

Ωf

1

Ref
∇un+1

fh · ∇vfh

−
∫

Ωf

pn+1
fh ∇ · vfh +

∫

Γ

pphvfh · nf

+

∫

Γ

Grc
Ref

(

un+1
fh

)

τ
· (vfh)τ =

1

∆t

∫

Ωf

un
fh · vfh ∀vfh ∈ Vfh,

∫

Ωf

qfh∇ · un+1
fh = 0 ∀qfh ∈ Qfh,

∫

Ωp

Grn∇pph · ∇qph −
∫

Γ

un+1
fh · nfqph = 0 ∀qph ∈Wph,

(36)

with u0
fh = uh

pois in Ωf and un
fh = uh

pois on γ1, u
n
fh = 0 on γ2 for all n ≥ 0.302

On the other hand, for the PE model (35) we consider also a semi-implicit303

treatment of the nonlinear Forchheimer correction. Thus, its space-time dis-304

cretization becomes: find un+1
h ∈ Xh, p

n+1
h ∈ Qh such that305

1

∆t

∫

Ω

un+1
h · vh +

∫

Ω

(

(un
h · ∇)un+1

h

)

· vh +

∫

Ω

1

Re
∇un+1

h · ∇vh

−
∫

Ω

pn+1
h ∇ · vh +

∫

Ω

Grvu
n+1
h · vh +

∫

Ω

Gri|un
h |un+1

h · vh

=
1

∆t

∫

Ω

un
h · vh ∀vh ∈ Vh,

∫

Ω

qh∇ · un+1
h = 0 ∀qh ∈ Qh,

(37)

with u0
h = uh

pois in Ωf , u
0
h = 0 in Ωp, u

n
h = uh

pois on γ1, u
n
h = 0 on γ2 for all306

n ≥ 0.307

3.3. An iterative algorithm308

To solve the coupled problem (36) we would like to set up an iterative method309

requiring the alternate solution of the Navier-Stokes equations in Ωf and of310

the Darcy equation in Ωp. To this aim, we consider a domain decomposition311

approach similar to those studied in [19, 21].312

Since for our applications we are interested in computing the steady state313

solution, after discretizing in time we do not perform sub-iterations at each time314

step, but we adopt the following scheme.315
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Let ϕ0
h and ψ0

h be suitable approximations at the initial time of the pressure316

p0ph and of the normal velocity u0
fh · nf on Γ, respectively. Moreover, let 0 ≤317

α, β ≤ 1 be two relaxation parameters. Then, for n ≥ 0318

1. find un+1
fh ∈ Xfh, p

n+1
fh ∈ Qfh such that319

1

∆t

∫

Ωf

un+1
fh · vfh +

∫

Ωf

(

(un
fh · ∇)un+1

fh

)

· vfh

+

∫

Ωf

1

Ref
∇un+1

fh · ∇vfh −
∫

Ωf

pn+1
fh ∇ · vfh +

∫

Γ

ϕn
hvfh · nf

+

∫

Γ

Grc
Ref

(

un+1
fh

)

τ
· (vfh)τ =

1

∆t

∫

Ωf

un
fh · vfh ∀vfh ∈ Vfh,

∫

Ωf

qfh∇ · un+1
fh = 0 ∀qfh ∈ Qfh.

(38)

2. Update the normal velocity of the fluid across Γ:320

ψn+1
h = (1 − β)ψn

h + βun+1
fh · nf on Γ. (39)

3. Find pn+1
ph ∈Wph such that321

∫

Ωp

Grn∇pn+1
ph · ∇qph −

∫

Γ

ψn+1
h qph = 0 ∀qph ∈Wph. (40)

4. Compute the new pressure across Γ:322

ϕn+1
h = (1− α)ϕn

h + αpn+1
ph on Γ. (41)

5. Increment n and go back to step 1.323

This algorithm requires at each step to solve separately and in a sequential324

fashion the Navier-Stokes equations in Ωf and the Darcy equations in Ωp. Its325

structure resembles the classical Dirichlet-Neumann method in domain decom-326

position (see, e.g., [47]). However, notice that here, due to the characteristics of327

the problems at hand, the conditions imposed on the interface are of Neumann328

type for both sub-problems.329

This approach allows us to easily replace the Darcy model by the Forch-330

heimer equation solving the latter only for pph at each iteration. Indeed, adopt-331

ing a semi-implicit treatment of the nonlinear term of the Forchheimer equation,332
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instead of (40) we consider the problem: find pn+1
ph ∈ Wph such that333

∫

Ωp

Grn
1 + Grf |un

ph|
∇pn+1

ph · ∇qph −
∫

Γ

ψn+1
h qph = 0 ∀qph ∈Wph. (42)

The velocity in Ωp at time tn+1 can then be recovered by:334

un+1
p = − Grn

1 + Grf |un
p |
∇pn+1

p in Ωp. (43)

4. Numerical comparison between the different models in a 2D test335

case336

In this section we present some numerical results on a 2D test case using the337

three models studied in the previous sections.338

We consider a 2D computational domain as shown in Figure 2 to represent an339

air flow in a channel over a slightly porous tissue. We set ρ = 1.184 kg/m3,340

µ = 1.855 · 10−5 Pa s, K = 3.71 · 10−7 m2, αBJ = 1.0, CF = 0.5. Referring to341

Figure 2, our domain has length of 50 mm in the x-direction, height of 4 mm342

in the fluid domain and of 3 mm in the porous region.343

As reference characteristic quantities we consider L = 10−3m and U = 10−1m/s.344

Thus, the dimensionless parameters characterizing the models NSD, NSF and345

PE are: Ref = 6.38, Grn = 2.37, Grf = 1.94, Grc = 1.64, Grv = 0.42 and346

Gri = 0.82. (The dimensionless domain has dimension of 50 unit lengths in the347

x-direction and height of 4 and 3 unit lenghts in the fluid and in the porous348

medium regions, respectively.) Notice that in our case it is difficult to quantify349

Rep in (4) as the pore size δ is unknown. Boundary conditions are specified350

as in Section 2.6 and the Poiseuille velocity profile on the inlet boundary γ1 is351

upois = (y(4 − y), 0).352

The numerical implementation is carried out in the finite element package353

freeFEM++ [33], using the multi-frontal algorithms of UMFPACK for solving354

the local linear systems. The computational grids are uniform, unstructured,355

conforming on Γ and they are characterized by the adimensional grid parameter356

h = 1/N , N being the number of partitions of each unit length. P2 − P1 finite357

elements have been used for the spatial discretization.358
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We consider at first the NSF model with the iterative algorithm of Section 3.3.359

The NSF model permits to characterize explicitly Γ and to deal with larger360

Reynolds numbers Rep in the porous media domain than if the Darcy model is361

adopted (see [4, 42]).362

The finite element solution of the NSF problem at the steady state on a363

computational mesh with N = 3 corresponding to h = 1/3 and to about 6500364

elements is shown in Figure 4. We can see that the flow suddenly enters the365

porous medium creating a little recirculation region and then it stabilizes in an366

almost horizontal flow.367

Figure 4: Vector plot of the steady-state flow field (only the first 25 length units in the

x-direction are visualized) computed with the NSF model.

The normal component of the velocity through the interface is plotted in368

Figure 5(a), which clearly highlights that the major filtration occurs during the369

first 15-20 length units. The velocity profile at the outlet (i.e., at 50 length units370

in the x direction) represented in Figure 5(b) shows that the fluid velocity close371

to the interface is higher than the seepage velocity in the porous medium.372

The flow is conserved in the computational domain. Indeed, if we compute

the flux on the boundaries:

Fγ =

∫

γ1∪γ3∪δ3

u · n ,

with obvious choice of notation we have Fγ1
= −10.667, Fγ3

= 9.285, Fδ3 =373

FΓ = 1.382, so that Fγ = 0.374
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Figure 5: NSF model: normal velocity through the interface computed with respect to the

y-direction (a) and velocity profile at the outlet (b) (i.e., at 50 length units in the x direction).

The velocity profile at the outlet can be also evaluated analytically for the375

NSF coupled problem under the assumption of a fully horizontal flow, that is376

placing oneself at infinite distance from the inlet. The velocity field in Ωf be-377

comes uf = (u(y), 0) where u(y) is the solution of the boundary value problem:378

− 1

Ref

d2u

dy2
+ δp = 0 0 ≤ y ≤ 4, (44)

with the Dirichlet boundary condition on the top boundary:379

u(4) = 0, (45)

and with the Robin boundary condition at the contact interface with the porous380

medium:381

u′(0) = Grcu(0). (46)

Here, δp represents the constant value of the pressure drop along the x-direction.382

On the other hand, the (constant) horizontal seepage velocity in the porous383

medium becomes up = (0, v) where v is the solution of the Forchheimer equation384

for the limit horizontal flow:385

v +Grfv
2 +Grnδp = 0. (47)

Moreover, we have to impose the flow conservation between the inlet and outlet386

boundaries:387
∫ 4

0

upois(y)dy =

∫ 4

0

u(y)dy +

∫ 0

−3

vdy, (48)
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upois being the x-component of upois.388

The solution of (44)-(48) is389

u(y) = − D1Ref
214A2B3Grf

(y − 4)(y + 4 + 4Grcy), (49)

v =
1

2Grf

(

√

1 +
D1Grn
211B3

− 1

)

, (50)

where A1 = 1 + Grc, A2 = 1 + 4Grc, A3 = 9 + 64Grf , B1 = 64A1A2A3Ref ,390

B2 = 81A2
2Grn, B3 = A2

1Re
2
f , C1 = A2(2B1Grn +B2Grn + 212B3)

1/2, D1 =391

−9C1 +B1 +B2.392

In the case that we are considering, we have

u(y) = 1.38426 + 2.27264y− 0.654677y2 and v = 0.304974.

The computed and the analytical profiles are compared in Figure 6: as soon as393

the flow becomes parallel, which occurs near the outlet of the domain (i.e., at394

50 length units in the x direction), the analytical solution coincides with the395

numerical one. The numerical solution has been computed setting N = 3.396
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Figure 6: Comparison between the analytical solution (solid line) and the numerical results

obtained with the NSF model on different sections along the x-direction (dots), for the x

component of the velocity.

The effect of the Forchheimer coefficient CF on the flow is illustrated in397

Figure 7, where we can see that the behavior of the flow in the recirculation398
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zone near the inlet is modified as well as the velocity profile at outlet. Moreover,399

from the physical viewpoint, we remark that as the Forchheimer coefficient raises400

from 0.0 to 0.5 (its range of variability) the flux filtrating into the porous medium401

decreases (see Figure 7(c)).402
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Figure 7: NSF model: (a) normal component of the velocity across the interface and (b)

velocity profile at outlet for values of CF of 0.0 (solid line), 0.2 (dashed line) and 0.5 (dotted

line). (c) Flux entering the porous domain as a function of CF .

Let us consider now the NSD model. With the same settings used for the403

NSF model, we compute the solution of the NSD problem for different values404

of the permeability K.405

Figure 8 shows the computed normal velocities and outflow profiles for in-406

creasing values of K. As expected, as K grows, more and more flow enters the407

porous medium (see Figure 8(c)).408

Moreover, for both the NSD and the NSF models, notice that for high values409
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Figure 8: NSD model: (a) normal component of the velocity across the interface and (b)

velocity profile at outlet for values of K equal to 10−7 (solid line), 2 · 10−7 (dashed line),

4 · 10−7 (dot-dashed line) and 8 · 10−7 (dotted line). (c) Flux entering the porous domain as

a function of K.
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of the permeability the gap between the tangential component of the velocity of410

the fluid and the seepage velocity across the interface Γ reduces. Thus, Saffman’s411

assumption up ≪ uf on the interface is no more satisfied, and for large K the412

original Beavers and Joseph condition (11) cannot be replaced by (13). The413

difference between the two conditions can be directly seen on the computed414

velocity profile at the outlet (see Figure 9).415

0.5 1.0 1.5 2.0 2.5 3.0 3.5 ux

-3

-2

-1

1

2

3

4

y

0.5 1.0 1.5 2.0 2.5 3.0 ux

-3

-2

-1

1

2

3

4

y

(a) (b)

Figure 9: NSF model (CF = 0.5): comparison between the velocity profile at outlet ob-

tained using the Beavers-Joseph interface condition (solid line) and Beavers-Joseph-Saffman

one (dashed line), for a small value of the permeability K = 10−7 m2 (a) and a high one

K = 10−6 m2 (b).

The values of K used for the simulations reported in Figures 7(a)-(b) and416

8(a)-(b) are chosen to represent a porous medium with high permeability. In417

correspondence to such values, which are of interest for our target application418

(see Section 5), we can appreciate the difference between the results computed419

with two models NSD and NSF.420

If the value of the permeability becomes smaller, the results computed with421

those two models cannot be distinguished as we can see in Figure 10, where we422

compare the velocities and fluxes obtained for values of K from 10−7 to 10−10
423

m2. In such cases, it seems not worth using the nonlinear Forchheimer model424

instead of the Darcy one.425

We compare now NSD, NSF and PE. As expected, the PE model shows a426

very smooth transition of the velocity field from Ωf to the porous medium, in427
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Figure 10: Comparison between the normal component of the velocity across the interface

(top), the velocity profile at outlet (mid) and the flux entering the porous domain (bottom)

computed using either the NSD or the NSF model with K equal to 10−7 (solid line), 10−8

(dashed line), 10−9 (dot-dashed line) and 10−10 (dotted line).
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contrast to the jump that characterizes NSD and NSF (see Figure 11). Looking428

at the velocity profile obtained by PE, it would be impossible to find out where429

the porous medium is placed. Thus, this model does not represent correctly the430

macroscopic physical behavior in the contact area with the porous medium.431

However, outside the transition zone, the PE model compares quite well432

with the others. Indeed, at the outlet of the fluid domain, although the peak433

velocity is different (since the total flow must be constant), the velocity near the434

interface is very close to the one given by NSF or NSD. We can then conclude435

that the velocity profile is quite similar, except in the very first layer of the436

porous medium.437
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Figure 11: Velocity profile at outlet: solvers comparison (NSD dotted line, NSF dashed line,

PE solid line).

Observing the normal velocity in Figure 12, we can see that much more flow438

enters the porous medium in the case of the PE solver, since the inertial effects439

are taken in account not only by the Forchheimer term, but also by the inertial440

term of the Navier-Stokes equations.441

Finally, we study the flux FΓ (or equivalently Fδ3), analyzing its behavior442

with respect to the permeability K and the Forchheimer coefficient CF (in the443
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Figure 12: Normal component of the velocity across the interface: solvers comparison (NSD

dotted line, NSF dashed line, PE solid line).

latter case, we set the permeability to its original value K = 3.71 · 10−7m2).444

Figure 13 gives a comparison of its trend for the NSF and PE models. Although445

the values do not match, we can observe that all the curves display the same446

trends.447
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Figure 13: Trend of the flux across the interface for the NSF model (dashed line) and the PE

one (solid line), with respect to the permeability K (a) and the Forchheimer coefficient CF

(b).

Concerning the computational costs, despite its easiness of implementation448

if compared to NSD and NSF, the PE method is more expensive than the other449

two. Indeed, PE requires to solve the full Navier-Stokes equations both in Ωf450
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and Ωp while NSD and NSF replace them, respectively, by the simpler Darcy451

or Forchheimer equations in the porous media domain Ωp.452

5. Application to a 3D configuration of internal ventilation of a hel-453

met454

In this section we apply the PE approach to study a 3D configuration rep-455

resenting a schematic test case for the real helmet ventilation problem that456

motivated this work.457

The problem of internal ventilation of a motorcycle helmet is associated458

with the thermal comfort of the rider: a sufficient airflow must be guaranteed459

to ensure the use of the helmet even in very hot and humid external conditions.460

For these reasons each helmet has to be equipped with an efficient ventilation461

system capable of removing as much heat and sweat as possible from the head462

of the rider. At the moment there is a total lack of fluid-dynamic guidelines463

for the design of such ventilation systems, which are drawn only according to464

intuition and experience.465

ventilation system

porous comfort tissue

Pressure field induced

by the external airflow

Air Intake

Air Outtake

Figure 14: Schematic representation of an internal ventilation system for an helmet (left) and

3D geometry used in numerical simulations.

Figure 14 shows a sample geometry of one of such ventilation systems: a466

channel dug into the protection layer lets the external air enter inside the helmet,467

leading it directly above the head. The model includes two porous layers (with468

different permeabilities) in order to represent the comfort tissue attached to the469

29



interior of the helmet and the hair of the rider. The airflow is actually induced470

by the pressure gap between the inlet and the outlet, which is associated with471

the external shape of the helmet as well as with the velocity of the wind. In a real472

case, such pressure gradient could be obtained either by direct measurements473

or by external aerodynamics simulation of the cap alone.474

Disregarding in a first step the thermal analysis and all the sweat-related475

issues (we refer the reader to [11]), it is possible to assess the quality of the476

ventilation system by studying how the airflow is influenced by the geometry477

of the channels and by the thickness and the physical properties of the porous478

tissue.479

For our simulation, the inlet and outlet channels have a square section of edge480

6mm and their height is 23mm. The distance between the channels is 50mm,481

while the extension of the porous layers in the transversal direction is 40mm.482

The porous domain is made of a 2mm thick comfort tissue with permeability483

Kp = 5 · 10−8m2 and Forchheimer coefficient CF,p = 0.34, and of the hair484

layer supposed of 3mm thickness, with permeability Kh = 7.5 · 10−7m2 and485

Forchheimer coefficient CF,h = 0.5. (The data used in this simulation have been486

obtained within a collaboration with an industrial partner. For more details we487

refer to [16].) An unstructured tetrahedral mesh of about 32000 elements has488

been generated using freeFEM++.489

We impose a pressure drop of 0.1Pa between inlet and outlet. We refer to490

[6, 16] on how to include this boundary condition in the weak formulation. On491

the remaining boundaries we impose a zero airflow condition.492

Figures 15, 16 and 17 show the behavior of the airflow inside the computa-493

tional domain. In particular, focusing on the medial section, it is possible to494

see that the seepage velocity is higher on the hair than on the comfort tissue495

(which has a lower permeability), meaning that the air moves across the latter496

one and circulates beneath where it encounters a lower resistance.497

Finally, we can estimate the mass flow rate of this simple ventilation system498

by computing the surface integral of the vertical component of the velocity on499

the inlet (or on the outlet), which turns out to be 2.44 · 10−3m3/s. The mass500
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Figure 15: Velocity field across some vertical and horizontal sections of the domain.

Figure 16: Pressure field across some vertical and horizontal sections of the domain.
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Figure 17: Streamlines colored by velocity magnitude.

flow rate could be considered as objective function in an optimization framework501

aiming at optimizing the physical properties of the porous layer or the shape of502

the air channels. This issue will be the object of a future work.503

6. Conclusions504

We have presented different approaches for modeling incompressible flows505

in a domain partially occupied by a porous medium. In particular, we have506

considered models with different equations in the two subregions of the domain507

coupled via interface conditions (NSD and NSF), and a unified approach (PE)508

where the presence of the porous region is described by suitable coefficients of509

the same equation. We have proposed an iterative algorithm to compute the sta-510

tionary solution of the NSD and NSF models and discussed its implementation.511

Finally, we have shown an application of the PE method to the computation of512

the air flow for the internal ventilation of a motorcycle helmet.513

We can conclude that, on one hand, the NSF model allows to represent care-514

fully the physics of the problem since it permits to precisely locate the interface515
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and it features ad-hoc models for each subregion. However, its implementation516

is rather complex and its solution requires ad-hoc algorithms whose convergence517

properties may vary sensibly depending on the considered problem.518

On the other hand, the penalized model can be straightforwardly imple-519

mented in a code already developed for the solution of the Navier-Stokes equa-520

tions, but it cannot represent correctly the physical behavior of the fluid, espe-521

cially in the first layers of the porous domain.522

However, from the macroscopic viewpoint the results obtained with these523

models are not dramatically different. In many engineering applications where a524

careful description of the flow at the interface between fluid and porous medium525

is not required, like in the example of internal ventilation of Section 5, the526

penalization approach can thus provide results similar to those obtained by the527

coupled methods with less programming effort.528
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