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Summary. In this paper we study interface equations associated to the Darcy-Stokes problem
using the classical Steklov-Poincaré approach and a new one called augmented. We compare
these two families of methods and characterize at the discrete level suitable preconditioners
with additive and multiplicative structures. Finally, we present some numerical results to as-
sess their behavior in presence of small physical parameters.

1 Introduction and problem setting

Let Q C RY (d = 2,3) be a bounded domain decomposed into two non intersecting subdo-
mains: Qy, filled by a viscous incompressible fluid, and €2, formed by a porous medium,
separated by an interface I' = €2 N £2;,. The fluid in £ has no free surface and it can filtrate
through the adjacent porous medium. The motion of the fluid in £2f is described by the Stokes
equations:

—vAu+Vp=f, divu=0 inQy (€8]

where v > 0 is the kinematic viscosity, while u and p are the velocity and pressure. In 2, we
describe the fluid motion by the equations:

u, = —KVe, divu,=0 inQ, @)

where u,, is the fluid velocity, ¢ the piezometric head and K the hydraulic conductivity tensor.
The first equation is Darcy’s law that provides the simplest linear relation between velocity and
pressure in porous media. We can equivalently rewrite (2) as the elliptic equation involving
only the piezometric head:
—div(KVep) =0 inQ,. 3)
Besides suitable boundary conditions on d€, we supplement the Darcy-Stokes problem
(1), (3) with the following coupling conditions on I":

—KVeo-n=u-n, —n-T(u,p)-n=gp, —e7-T(u,p)-n=vu-T, )

where T (u, p) is the fluid stress tensor, T denotes a set of linear independent unit tangential
vectors to I” and € is a coefficient related to the characteristic length of the pores of the porous
medium. Conditions (4); and (4), impose the continuity of the normal velocity and of the nor-
mal component of the normal stress on I". The so-called Beavers-Joseph-Saffman condition
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(4)3 does not yield any coupling but provides a boundary condition for the Stokes problem
since it involves only quantities in the domain 7. For more details we refer to [9, 11, 12, 14].

2 Interface equations associated to the Darcy-Stokes problem

In [7, 8], we showed that the coupled Darcy-Stokes problem can be reformulated in terms of
the solution of equations defined only on the interface I" involving suitable Steklov-Poincaré
operators associated to the subproblems in € and ,. We formally briefly review this ap-
proach referring to the cited works for more details.

If we select as interface variable A € Hé({z (I") to represent the normal velocity across I':
A=u-n=—KVg@-nonT, we can express the solution of the Darcy-Stokes problem in terms
of the solution of the interface equation: find A € Hégz (I") such that

1/2
(S5 1)+ (Sak ) = (oo )+ (Xar k) Vit € Hf (). ®)

Equation (5) imposes the continuity condition (4),. The linear continuous operators X and X,

depend on the data of the problem and (-, -) denotes the duality pairing between Hé({ 2(F ) and

1

its dual (Hoéz(l“ )). Concerning S and S, we remark that

* the operator S; : H(;({Z(F ) — (H(%z(l" ))’ maps the space of normal velocities on I to
the space of normal stresses on I' through the solution of a Stokes problem in £, with
boundary conditionu-n=A onT.

» S4 maps the space of fluxes of ¢ on I to the space of traces of ¢ on I" via the solution of
a Darcy problem in €, with the boundary condition —KV¢-n = A on I". The operator
S, should be a map between H~'/2(I") and H'/2(I"), but in (5) we are applying it to
Hééz(l" ), a space with a higher regularity than needed where we cannot guarantee the
coercivity of the operator.

On the other hand, if we choose as interface unknown 1 € H'/2(I") the trace of the piezo-
metric headonI': =g = —n- T(u,p)-non I, the Darcy-Stokes problem can be equiv-

alently reformulated as find n € H'/2(I"):

(S )+ (Spmom) = (epop) + Qo) Ve HYA(I), ©)

where )¢ and ), are linear continuous operators depending on the data of the problem. Equa-
tion (6) imposes the coupling condition (4);. Here:

* the operator Sy maps the space of normal stresses on I" to the space of normal velocities
on I via the solution of a Stokes problem with the boundary condition —n-T(u,p) - n=17
on I'. This operator would naturally be defined from H -V 2(F ) to H(;({Z(F ) so that in (6)
we are applying it to functions with a higher regularity than needed.

* The operator S, : H'/>(I") — (H 1/2("))" maps the space of traces of @ on I' to the
space of fluxes of ¢ on I" by solving a Darcy problem in £, with the Dirichlet boundary
condition gg =nonl.
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3 Augmented interface equations

The classical approach summarized in Sect. 2 leads to reformulate the Darcy-Stokes problem
as interface equations depending on a single interface unknown: either A, the normal velocity
across I', or 1, the piezometric head on I". We have remarked that the Steklov-Poincaré opera-
tors S; and S are not acting on their natural functional spaces, but they are assigned functions
with higher regularity than expected. This prevents us from guaranteeing their coerciveness
(see [7]). In this section we present a different approach based on [5, 3, 4, 6] consisting in
writing the coupled Darcy-Stokes problem as a system of linear equations on I" involving
both variables A and 7.

3.1 The augmented Dirichlet-Dirichlet problem

To obtain the augmented Dirichlet-Dirichlet (aDD) formulation assume that A € Hdéz(l“ ) is
equal to the normal velocity u-n on I', but not necessarily to the conormal derivative of ¢ on
I'. On the other hand, let n € H 1/2 (I') be equal to the trace of @ on I" but not to the normal
component of the Cauchy stress of the Stokes problem on I". Then, to recover the solution of
the original Darcy-Stokes problem we have to impose both the continuity of normal velocity
and of normal stresses:

—Jrn-T((A), p(A) = frnp Ve Hy) (I
—JrKVo(n)-n& = [ A& VE e HV(I).

Using the definition of the Steklov-Poincaré operators, we can rewrite these conditions as:

find (A,n) € Holéz(l“) x H'/2(I") such that

(Sohopt) + (M) = (Xeult)  Vw € Ho (D) )
(Spm,8) = (A, &) = (xp,6) V& € HVA(I),

(& 5) ()= ()

where .7 : H'/2(I') — (H(%Z(F))’ and ¢ :Hééz(l") — (H'2(I"))' are linear continuous
maps.

We call (8) augmented Dirichlet-Dirichlet (aDD) formulation because both functions A
and 7 play the role of Dirichlet boundary conditions for the Stokes and the Darcy subproblems,
respectively. Notice that we are imposing the equalities (8) in the sense of dual spaces and that
the operators Sy and S, still act on their natural functional spaces.

or, in operator form:

3.2 The augmented Neumann-Neumann problem

We follow now a similar approach to Sect. 3.1, but we assume that A € H - 2(F ) is equal to
the conormal derivative of the piezometric head —KV¢-nonI andn € H -1/2 (I') is equal
to the normal component of the fluid Cauchy stress on I". Then, to recover the solution of the
original problem we impose the following equalities:

Jrum) mp=[rAp  VYueH VAI)
JroM)é=—[rnE VEeHTVD).

Using the definition of the Steklov-Poincaré operators, we can rewrite these conditions as:
find (A,n) € HY/2(I") x H~'/2(I") such that
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(Semmhe — (A s = (o) Yue HV/2(I)
<<Sdlvé>>*+<<na§>>*:«deé»* VgEH_l/z(r)7

corresponding to the operator form:

(5 0)0)-2)
=S Sp)\n xr

Here ., : H~'/>(I') = H'/?>(I') and ¢, : H~'/2(I") %H%Z(F) are linear continuous maps,
while (-,-), and (-, -)+ denote the corresponding pairing.

We call this formulation augmented Neumann-Neumann (aNN) because both functions A
and 7 play the role of Neumann boundary conditions for the Darcy and the Stokes subprob-
lems, respectively.

The aNN formulation may be regarded as the “dual” of the aDD approach. Notice that
the operators Sy and S, are now acting on their natural spaces, differently form the classical
setting of Sect. 2. The analysis of problems (8) and (10) can be carried out following the
guidelines of [5].

(&)

4 Algebraic formulation of the interface problems

We consider a finite element discretization of the coupled problem using conforming grids
across the interface I". The discrete spaces for the Stokes problem satisfy the inf-sup condition.
In this way we obtain the linear system:

F D 0 0 u; ff,'
D' Arr 0 —Mr | [ur | _ | fsr an
0 0 Gi Gr o Ipi
0 M Cri Crr) \e@r Sor

where ur is the vector of the nodal values of the normal velocity on I" while u; is the vector
of the remaining degrees of freedom (velocity and pressure) in 4. On the other hand, @- is
the vector of the (unknown) values of ¢ on I" while @; corresponds to the remaining degrees
of freedom in £2,.

The discrete counterpart of the Steklov-Poincaré operators can be found computing the
Schur complement systems corresponding to either ur- or @-. Precisely, we find:

Yy =Arr —DTF~'D, Iy =MLE"Mr,

_ _ 12
Zp:CFF_CFiC,',‘ICify Xy=MrZ, IMIZ. 12)

The characterization of these discrete operators in terms of the associated Darcy or Stokes
problems in €, and Q allows us to provide upper and lower bounds for their eigenvalues.
Assuming v and K constants in € and €2, respectively, and the computational mesh to be
uniform and regular, we can find (see [7, 13, 15]) (X indicates that the inequalities hold up to
constants independent of 4, v, K):

hv<o(X)=v, v1=<0o(Zy)=<hv!

K =20(Z,) =K, mK ! =<0(Z;) 2hK™! (13

The discrete counterparts of the interface problems (5), (6), (8), (10) read:

* Discrete interface equation for the normal velocity: find ur- such that

Xsur +Xqur =X+ X4 (14)
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* Discrete interface equation for the piezometric head: find @ such that

Zf¢F+EP¢F:xf+xp' (15)

* Discrete aDD problem: find (ur, @) such that

Xy —Mr ur y
=(%5). 16
G =) (o) () ®

* Discrete aNN problem: find (ur, @) such that

Xy Mr\ (ur) _ Xd) 17
(o) (o) = (37) "

The augmented approach allows to compute both interface variable at once but it requires
to solve a system whose dimension is twice the one of the classical methods.

5 Iterative solution methods and numerical results

We present now some numerical methods to solve problems (14)-(17) focusing on cases where
the fluid viscosity v and the hydraulic conductivity K are small. These are indeed situations of
interest for most practical applications. In [10] a Robin-Robin method was proposed to solve
effectively (14). Here we adopt the generalized Hermitian/skew-Hermitian splitting (GHSS)
method of [2] for (14) and (15) and the HSS method of [1] for (16) and (17). We start consid-
ering (14).

The matrix X5 4 X; has no skew-symmetric component being symmetric positive definite,
but thanks to the estimates (13) we can mimick the splitting proposed in [2] considering X, as
a matrix multiplied by a coefficient (v) which may become small. Thus, we can characterize
the preconditioner for (14):

P = (2ay) N(Z+aul)(Zg+aul). (18)
Proceeding analogously for (15), we can characterize the preconditioner
Py =(20) (2, + aal)(Z + aal). (19)

Preconditioners P, and P, involve suitable acceleration parameters & and ¢ and can be
used within GMRES iterations. Remark that they can be regarded as generalizations of the
Robin-Robin method introduced in [7, 10].

On the other hand, as the matrices in (16) and (17) are positive skew-symmetric with sym-
metric positive definite diagonal blocks, we apply the HSS splitting proposed in [1] separating
the symmetric and the skew-symmetric parts of the matrices. Thus, we can characterize the
following preconditioners for GMRES iterations for (16) and (17), respectively, with o3, 0y
suitable acceleration parameters:

A (Es+osl 0 ol —M.
_ 1 s 3 3 r
Py = (205) ( 0 2,,+a31) (M} sl ) 20)
L (Ea+asl 0 oul M,
— 1 d 4 4 T
Py = (204) ( 0 I+ a41) (—MIZ a4l) : @D

According to [2] these preconditioners are effective when either the skew-symmetric or the
symmetric part dominates. Thanks to (13) we can expect that for small v and K the skew-
symmetric part dominates in (16) and the symmetric one in (17).
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All preconditioners P; require the solution of a Stokes problem in £ and of a Darcy
problem in ©,,. However, P; and P, have a multiplicative structure while in P3 and Py the two
subproblems may be solved in a parallel fashion. They are all effective when v and K be-
come small. A thorough study of these preconditioners will make the object of a future work,
where also the choice of the parameters ¢; will be analyzed. For the tests reported in table 1,
following [2], we set @, 03 =~ \/V, 0y ~ VK and a4 ~ 10~!. However, a better characteri-
zation of such parameters is necessary to have a more robust behavior of the preconditioners,
independent of both the mesh size and of the coefficients v and K.

In the numerical tests, both the Stokes and the Darcy subproblems are solved via direct
methods. The matrices in (20) and (21) involving M and [ are assembled explicitly and the
associated linear systems are solved using direct methods. We consider Q; = (0,1) x (1,2),
Q, = (0,1)? with interface I" = (0, 1) x {1} and the analytic solution: u = ((y— 1)+ (y—1) +
Lx(x—1)), p=2v(x+y—1), 0 =K ' (x(1=x)(y— 1)+ (y—1)3/3) +2vx. A comparison
with preconditioners X for (14) and X, for (15) studied in [7] is also presented. Although
such preconditioners are optimal with unitary v and K, they perform quite poorly when small
viscosities and permeabilities are considered.
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