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Summary. We consider a magnetohydrodynamic (MHD) problem which models
the steady flow of a conductive incompressible fluid confined in a bounded region
and subject to the Lorentz force exerted by the interaction of electric currents and
magnetic fields. We present an iterative method inspired to operator splitting to
solve this nonlinear coupled problem, and a discretization based on conforming finite
elements.

1 Introduction

MHD studies the interaction of electrically conductive fluids and electromagnetic
fields. One of the most interesting aspects of this interaction is the possibility to
generate the so-called Lorentz’s force, which permits to influence the motion of the
fluid in a completely contactless way. With this respect, an important application
of MHD occurs in the production of metals.

The mathematical modeling of the processes taking place in such industrial
plants is very involved since it requires to take into account many phenomena (multi-
phase and free-surface flows, electromagnetic fields, temperature effects, chemical
reactions, etc.). However, the core model describing the interaction between the
liquid metal and the magnetic fields is a nonlinear system formed by Navier-Stokes’
and Maxwell’s equations coupled by Ohm’s law and Lorentz’s force. The literature
concerning both the mathematical analysis and the finite element approximation of
this coupled problem is broad (see, e.g., [5, 7, 8, 9, 10] and references therein).

In this paper, we consider a formulation of a steady MHD problem as a nonlinear
coupled system in five unknowns, namely, magnetic field, velocity and pressure of
the fluid, electric currents and potential, which presents a “nested” saddle-point
structure. Moreover, following the common numerical approach in electromagnetism,
we express the magnetic field as the solution of a curl-curl problem, instead of using
the Biot-Savart law (see, e.g., [10]).

After briefly discussing the well-posedness of this problem (Sect. 2), we propose
and analyze an iterative solution method based on operator-splitting techniques
(Sect. 3). In Sect. 4, we present a conforming finite element approximation, and
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we discuss the algebraic form of the iterative schemes. Finally, we present some
numerical results (Sect. 5).

2 Setting and Well-Posedness of the Problem

We consider a bounded domain Ω ⊂ R3 of class C 1,1 (see, e.g., [1]), which contains
a bounded Lipschitz subdomain Ωf ⊂ Ω filled by an electrically conductive fluid.
An external conductor Ωs is attached to a part of the boundary Γs ⊂ ∂Ωf , in order
to inject an electric current into Ωf . Finally, let Ωe be an external device which
possibly generates a magnetic field Be. A schematic representation of the domain is
shown in Fig. 1.
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Fig. 1. Schematic representation of the computational setting

In Ωs we assign an electric current Js which originates a magnetic field, say B̄s.
This current is such that div Js = 0 in Ωs, Js ·n = 0 on ∂Ωs \Γs, and Js ·n = js on
Γs, where n denotes the unit normal vector directed outward of ∂Ωf . The (known)
function js ∈ L2(Γs) fulfills the compatibility condition

∫
Γs
js = 0. We suppose that

the contact interface Γs between Ωf and Ωs is perfectly conductive, i.e.

Js · n = js = Jf · n on Γs . (1)

In the fluid domain Ωf we have a current Jf which generates a magnetic field B̄f .
The global magnetic field B is thus due to the superposition of three components:
B = Be + B̄s + B̄f .

The motion of the incompressible conductive fluid in Ωf is described by the
steady Navier-Stokes’ equations:

−η�u + ρ(u · ∇)u +∇p− Jf ×B|Ωf = 0, div u = 0 in Ωf , (2)

where u and p are the velocity and the pressure of the fluid, respectively, while
η, ρ > 0 are the fluid viscosity and density. We supplement (2) with the Dirichlet
boundary condition u = g on ∂Ωf , g being an assigned velocity field such that∫

∂Ωf
g ·n = 0. Jf ×B|Ωf is the Lorentz force exerted on the fluid by the interaction

of the magnetic field B and the electric current Jf .
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Finally, the electric current Jf satisfies

σ−1Jf +∇φ− u×B|Ωf = 0, div Jf = 0 in Ωf , (3)

where φ is the electric potential and σ > 0 is the electric conductivity of the fluid.
We impose the boundary condition (1) on Γs, while we set Jf · n = 0 on ∂Ωf \ Γs.

In order to give a more useful representation of the magnetic field B, we consider
the divergence-free extension Esjs of js. Es is a continuous extension operator Es :
L2(Γs) → H(div;Ωf ), such that Esjs · n = 0 on ∂Ωf \ Γs, Esjs · n = js on Γs,
and div(Esjs) = 0 in Ωf (see [2]). Then, we decompose Jf = J0 + Esjs, with
J0 ∈ H(div;Ωf ), J0 · n = 0 on ∂Ωf .

Now, let us consider the currents

Js =

⎧⎨⎩
Esjs in Ωf ,
Js in Ωs,
0 in Ω \ (Ωf ∪Ωs),

and J0 =

{
J0 in Ωf ,
0 in Ω \Ωf ,

(4)

where J0 satisfies div J0 = 0 in Ω and J0 · n = 0 on ∂Ω. Then, the magnetic fields
Bs and B0 generated by Js and J0, respectively, can be represented as the solution
of the problems:

curl (µ−1Bs) = Js in Ω ,
div Bs = 0 in Ω ,
Bs · n = 0 on ∂Ω ,

and
curl (µ−1B0) = J0 in Ω ,

div B0 = 0 in Ω ,
B0 · n = 0 on ∂Ω .

(5)

µ > 0 is the magnetic permeability that we assume to be constant in Ω.
The usual approach to compute B0 is to introduce a vector potential A such

that curl A = B0, and to reformulate the corresponding problem (5) as

curl (µ−1curl A) + εA = J0 in Ω ,
A× n = 0 on ∂Ω .

(6)

Remark that the boundary condition A × n = 0 on ∂Ω implies B0 · n = 0 on ∂Ω,
and that the perturbation term of order O(ε), with 0 < ε � 1, has been added to
guarantee the uniqueness of the solution A, which otherwise would be defined only
up to gradients of arbitrary scalar functions.

Using these notations, we can rewrite the magnetic field B as B = Be + Bs +
curl A, A being the only unknown component which depends on the unknown
current J0.

Notice that the MHD problem (2), (3) and (6) would be nonlinear even if we
considered instead of (2) the Stokes equations:

−η�u +∇p− Jf ×B|Ωf = 0, div u = 0 in Ωf . (7)

Indeed, there is an intrinsic nonlinearity due to the coupling terms Jf ×B|Ωf and
u×B|Ωf . For simplicity, we illustrate our solution method avoiding for the moment
the nonlinearity due to the convection term (u · ∇)u in (2). Thus, from now on, we
regard (7), (3), (6) as our MHD problem.

The well-posedness of the MHD system can be proved using the Banach Con-
traction Theorem. In particular, we can state the following result (see [2]).
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Proposition 1. Assume that Be|Ωf
∈ (L3(Ωf ))3. If the physical parameters µ−1,

η, σ−1 are sufficiently large, whereas the boundary data g ∈ (H1/2(∂Ωf ))3, js ∈
L2(Γs) and the assigned magnetic field Be are small enough, the MHD problem has
a unique solution A ∈ H(curl;Ω), u ∈ (H1(Ωf ))3, p ∈ L2

0(Ωf ), Jf ∈ H(div;Ωf ),
φ ∈ L2

0(Ωf ).

The conditions imposed on the physical parameters are required to ensure the
existence of a solution and its uniqueness. From the proof in [2], we can see that
the larger the viscosity η of the fluid and the smaller its conductivity σ, the larger
the boundary data g and js may become.

3 Iterative Solution Methods

In this section, we consider possible methods to compute the solution of the MHD
problem by independently solving its fluid and magnetic-field subproblems. In par-
ticular, we first compute curl A in Ω, and then we linearize (7) and (3) in Ωf using
the magnetic field just obtained. The latter problems can be solved separately or in a
coupled fashion. Ad-hoc solution techniques known in literature may be used to deal
with each subproblem, and “reusage” of existing specific codes may be envisaged as
well.

Precisely, we propose the following algorithm.

Consider an initial guess J
(0)
0 for the electric current in Ωf , and set J

(0)
0 as in

(4). For k ≥ 0, until convergence,

1. solve (6) with J
(k)
0 as right-hand side to compute A(k).

2. Then, solve the problem in Ωf using one of the following strategies:
2a. Coupled approach: solve in Ωf the system

−η�u(k+1) +∇p(k+1) − (J
(k+1)
0 + Esjs)× (Be + Bs + curl A(k)) = 0, (8)

div u(k+1) = 0, (9)

σ−1(J
(k+1)
0 + Esjs) +∇φ(k+1) − u(k+1) × (Be + Bs + curl A(k)) = 0, (10)

div (J
(k+1)
0 + Esjs) = 0. (11)

2b. Split approach: solve first the Stokes problem (8)-(9) in Ωf , taking J
(k)
0

instead of J
(k+1)
0 . Then, using the velocity field u(k+1) just computed, solve

(10)-(11).
3. In both cases 2a/b, define the electric current at the successive step possibly

considering a relaxation: J
(k+1)
0 ← θ J

(k+1)
0 + (1− θ)J(k)

0 , 0 < θ ≤ 1.

Under the same hypotheses of Proposition 1, we can show that there exists a
positive radius ρJ > 0 such that J

(k)
0 converges with respect to the L2-norm in the

ball BJ = {J ∈ H(div;Ωf ) : ‖J‖L2(Ωf ) ≤ ρJ} (see [2]).
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4 Conforming Finite Element Approximation

Let Th be a regular triangulation of Ω made up of tetrahedra, such that the trian-
gulations induced on Ω \Ωf and Ωf are compatible on ∂Ωf .

We discretize the MHD system considering the H(curl;Ω)-conforming Nédélec
elements to approximate the vector potential A, the H(div;Ωf )-conforming Raviart-
Thomas elements for the electric current and potential, and the Taylor-Hood ele-
ments for the Stokes problem (see, e.g., [11] for a presentation of these spaces).
Thanks to the inf-sup stability enjoyed by the Raviart-Thomas and the Taylor-Hood
elements, it can be proved that also this compound finite element approximation is
inf-sup stable, without any further compatibility requirement (see [2]).

Finally, remark that using Raviart-Thomas and Nédélec elements we can deal in
a more natural way also with non-convex polyhedral domains, where the magnetic
field is in general not in H1, and it would be erroneously represented by elements
of Lagrangian type.

Let us now briefly consider the algebraic form of step 2 in the algorithm of
Sect. 3.

After computing the discrete field A
(k)
h (h denotes finite element approxima-

tions), we assemble the following matrix which realizes at the discrete level the
coupling between the fluid and the electric-current problems in Ωf :

C
(k)
ij = −

∫
Ωf

[Ji
h × (Bh

e + Bh
s + curl A

(k)
h )] · vj

h .

(Ji
h and vj

h denote basis functions for the discrete spaces of the electric currents and
fluid velocity, respectively.)

Then, in the coupled approach 2a, one has to solve the 4×4 block linear system:⎛⎜⎜⎝
A BT (C(k))T 0
B 0 0 0

−C(k) 0 D ET

0 0 E 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

u
(k+1)
h

p
(k+1)
h

J
(k+1)
0,h

φ
(k+1)
h

⎞⎟⎟⎟⎠ = f , (12)

whose matrix presents a “nested” saddle-point structure.
On the other hand, the decoupled strategy 2b requires to solve first the linear

system (which corresponds to the Stokes problem):(
A BT

B 0

)(
u

(k+1)
h

p
(k+1)
h

)
=

(
−(C(k))T J

(k)
0,h

0

)
+ boundary terms, (13)

and then the system associated to (3):(
D ET

E 0

)(
J

(k+1)
0,h

φ
(k+1)
h

)
=

(
C(k)u

(k+1)
h

0

)
+ boundary terms. (14)

Thus, an iteration (13)-(14) corresponds to a Gauss-Seidel step for (12).
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5 Numerical Results

We consider a rectangular domain Ωf between two parallel conductive wires at 0.25
m from its lateral walls and bottom surface (Fig. 2, left). An electric current in
the wires originates a magnetic field Be (Fig. 2, right). We impose u = 0 on ∂Ωf ,
Jf · n = 0 on the lateral boundary, while we assign Jf · n = 20 A on the top and
bottom surfaces. The physical parameters are chosen to represent a melted metal.

y

z

3m
0.5m

1m

Jf .n

x

Wf

Conducting wires

Fig. 2. Schematic representation of the setting (left), and restriction of the field
lines of the magnetic field Be to Ωf (right)

We consider two uniform computational meshes made of tetrahedra, and few
possible choices of the degree of the polynomials used for the finite element
approximation. We apply the decoupled algorithm 2b, using a relaxation with
θ = 0.4. The stopping criterion is based on the relative increment of the un-
known Jf , with tolerance 10−5. The implementation has been done within NGSolve
(http://www.hpfem.jku.at/ngsolve/), while the linear systems have been solved us-
ing the direct solver PARDISO
(http://www.computational.unibas.ch/cs/scicomp/software/pardiso/).

As shown in Fig. 3, the interaction between the magnetic fields and the elec-
tric current Jf gives rise to a double symmetric rotational movement of the fluid
with larger velocity towards the bottom of Ωf . The iterations required to conver-
gence are reported in table 1. We observe that they remain bounded and essentially
independent of the number of unknowns.

6 Conclusions and Perspectives

The preliminary numerical results obtained using the decoupled iterative scheme
seem quite promising. However, a more thorough analysis of the convergence rate
is in order, especially concerning the dependence on the mesh size h and on the
degree of the polynomials used. Moreover, we are investigating effective techniques
for the saddle-point problem (12) (see [4]), with particular interest in applications to
optimal control, where problems with a similar structure are quite often encountered
when imposing the optimality (Karush-Kuhn-Tucker) conditions (see [3, 6]).
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