
FlowStats: An Ontology Based Network
Management Tool

Konstantinos G. Kyriakopoulos, David J. Parish, John N. Whitley
Department of Electronic and Electrical Engineering

Loughborough University, Loughborough, LE11 3TU, U.K.
e-mail: {elkk, d.j.parish}@lboro.ac.uk.

Abstract—One of the problems that hinders large scale net-
work management tasks is the number of possible heterogeneous
data sources that provide network information and how to
focus on a desired network segment without requiring a deep
knowledge of the network structure. This work investigates how
to intelligently and efficiently refine and manage a vast amount
of network monitoring data sources, by using artificial intelligent
reasoning through an intuitive user interface. We aim to minimise
the user interaction and required user knowledge when searching
for the desired network monitoring information by refining the
presented information based on user choices. The concept of
Ontology is utilised to create a knowledge base of multiple
different aspects of our testbed: Internal Management structure,
Physical Location of data sources, and network switch meta-data.

Index Terms—Network Management, Netflow, Ontology, RDF,
databases

I. INTRODUCTION

W ITH the rapid development of new communication
technologies, rise in web applications, expansion in

social media and growth in virtual network environments, the
nature of computer networks has gradually become more com-
plicated and vast making network management and monitoring
a very complex task for network administrators.

In addition, the advances in virtual networks have created
environments where sources of computer network related
information get spawned and terminated rapidly and instan-
taneously as the topology of the virtual network adjusts to the
needs of the users.

One of the practical reasons that hinders network man-
agement tasks is the large number of possible heterogeneous
data sources that provide network information. In addition,
an administrator might need to focus on a particular scale
of the network topology. This scale might range from the top
“eagles eye” view to the detailed, per switch, or even per node
view. Currently, to achieve this with conventional tools in large
networks a deep and thorough understanding of the network
topology is required in order for an administrator to isolate a
particular data source of interest in the network.

This work investigates how to quickly and efficiently man-
age a vast amount of network segments, by using artificial
intelligent reasoning through an intuitive user interface. The
purpose is to create a tool (named FlowStats) that allows users
to find the right network segment using easy to understand
filtering options that apply on the metadata of the network

segments (for example, manufacturer and location of switch)
and/or their components (such as computer host’s owner,
hosts’ IP address).

An interesting approach in achieving this goal is to take
advantage of the relation-based properties inherited in an
ontological database. Ontologies, first appeared in [1] as a
a means of increasing the level of automation and reducing
human intervention.

This paper focuses on using ontologies to integrate meta
data information regarding the network components, in partic-
ular information from network flow sources (such as Cisco’s
netflow [2]), with the purpose of creating a user interface for
network administrators that is intuitive in refining network
segment related information. We aim to minimise the user
interaction when searching for the desired netflows by refining
the presented information based on user choices. Therefore,
using our proposed approach a network administrator would
be able to identify the sources of information that are of
interest quickly and without a deep knowledge of the network
structure.

The paper is organised as follows. A description of back-
ground knowledge regarding Ontology and its technologies
along with its advantages against relational databases is pre-
sented in Section II. Related work utilising Ontologies or
Relational databases along with research in using netflow
data for network management is presented in Section III. In
Section IV, we present the thought process behind building
the ontology for our tool. The experimental testbed structure
that was used as a proof of concept to demonstrate our tool is
described in Section V. In Section VI FlowStats’ mechanisms,
tools and components are presented and explained. Some
usage scenarios of our tool are shown in Section VII. Finally,
conclusions and future work are given in Section VIII.

II. BACKGROUND

A. Ontologies

In computer science an ontology is “a formal explicit
specification of a shared conceptualization for a domain of in-
terest” [3]. Ontologies are basically knowledge structures of a
particular domain that allow systems to automatically process
the meaning of information, deduce implicit information from
the explicit, and integrate heterogeneous data bases. Therefore,
an ontology can be a very important tool when constructing
and querying knowledge based systems [4], [5].



B. RDF, RDFS, SPARQL and OWL
Resource Description Framework (RDF) is a framework that

assists in stating simple facts and defining relationships among
resources using a format of “Resource - Property - Object”
that follows the paradigm “Subject - Predicate - Object”
(for example “UK is in Europe”). The terms “Subject” and
“Object” are known in ontology terminology as “Domain” and
“Range” respectively. The Resource and Property are always
defined in a URI form, however, the Object can either be a
URI or simply a literal (i.e. string, numeric, etc) [6]. RDF can
be represented (serialised) in various formats and some of the
most common formats are Turtle and XML serialisations .

An extension of RDF is RDF Schema (RDFS), that allows
for defining classes, properties, property restrictions and hi-
erarchies of properties and classes in order to represent more
complicated knowledge models. RDFS is used for defining the
Terminological Knowledge, also called Ontology, which rep-
resents the generalised knowledge, i.e. classes, properties, re-
lationships between classes and relationships between classes
and properties. Specialised knowledge is represented in the
Assertional Knowledge which is adequately described by the
RDF language and represents knowledge about instantiations
of classes and their associated properties [7].

The SPARQL (Sparql Protocol And RDF Query Language)
query language is used to query RDFS knowledge databases.
It is to ontology databases what SQL is to relational databases.

The OWL language enriches RDFS with semantic infor-
mation. OWL does not define the structure of the knowledge
model as RDFS does, but deals with the semantic relationships
between classes and their properties. In other words, OWL
provides Artificial Intelligence or inference capabilities to the
ontology [8]. For example if we have the statements “London
is in UK” and “UK is in Europe” then with the help of OWL
it can be inferred that “London is in Europe”.

C. Advantages of Ontologies

Ontologies have the following advantages in comparison to
conventional relational databases:

• Dealing with NULL values: Ontologies deal better with
the meaning of null values in comparison to relational
databases. They can handle the conceptual difference
between “existing but not known” and “does not exist”
more efficiently due to the usage of blank nodes [9]. One
of the purposes that blank nodes are used in knowledge
representation is for statements of existence of unidenti-
fied elements [7].

• Relating, merging, and integrating heterogeneous data:
Because Ontology schema is an open world assumption
and uses URI’s, it allows the answering of queries that
require information outside the central database by in-
tegrating (linking) data stored in remote locations. On
the other hand, in a relational database, because it is
based on a closed world assumption, there is no method
to reuse the schema outside this database. In contrast to
Ontologies, federalised queries can not be answered and
the administrator needs to extend the database schema by

loading the extra information which is stored remotely
[9], [6].

• Consistency of SPARQL: SPARQL, the querying lan-
guage used in Ontologies, is more standardised than
SQL. SQL has multiple dialects (MySQL, Oracle, DB2,
PostgreSQL) and users can get confused when moving
from one dialect to another. In contrast, SPARQL remains
the same no matter the implementation[9].

• Software maintenance: In SQL applications, whenever
we have to extend or modify the data information and
structure, the application’s source code, database schema
and SQL queries need to be adjusted appropriately. In
contrast, in SPARQL/RDF only the applications’ code
need to be modified, leading to much less software code
maintenance [9].

III. RELATED WORK

The authors in [10] propose a method for managing network
devices of different terminologies, interfaces and vendors,
through a single gateway. Ontologies are used primarily for
the creation of a unified application information base and as
a mapping algorithm for translating configuration commands
and terms between different vendors.

In [5], the authors present a network monitoring system
that manages heterogeneous network segments composed of
different vendors equipment. The actual data measured from
the network come from SNMP and pcap tools. However,
the ontology, in contrast to our work, gathers the typical
5-tuple information: computer network protocol definitions
(TCP, UDP, etc), source and destination IP addresses and
port numbers. Therefore, the ontology, is not designed with
the purpose of identifying netflow sources or other network
switch related meta data but to hold the 5-tuple data taken
from network packets.

Regarding the use of relational databases for storage, search-
ing and processing of network related data (most commonly
netflow), there have been several studies [11], [12], [13]
comparing the performance of relational databases against
flat file systems, i.e. binary files locally stored on the hard
disk of the netflow collector. Most studies agree that, at least
for smaller scale networks a flat file based system (such
as nfdump tool discussed later) is faster for querying and
retrieving information. It could be argued that in a distributed
database scenario, a relational database would scale better
without reduction in the performance. The focus of this paper
is the usage of artificial reasoning for identifying appropriate
netflow sources through intuitive filtering rather than analysing
the drawbacks and benefits of using relational databases for
storing the actual netflow data.

In [14], the authors present Gestalt, a system that takes
advantage of the distributed capabilities of ontologies to create
a federated query interface to simplify access to network
security data that would otherwise require manual inspection.
Specifically, Gestalt uses an ontology to infer types of data
sources that are useful for replying to a specific query, identify
these sources in order to access them and natively query them,



and, finally, to semantically integrate the results and return
them to the user.

IV. CONCEPT OF ONTOLOGY

One of the most important aspects for our work was
to design a well thought ontology, i.e. the Terminological
Knowledge that would hold knowledge in such a way as
to facilitate a network administrator to manage the network
infrastructure.

We designed an ontology combining three different aspects:

• The Internal Management structure of our organisation,
Loughborough University.

• The Physical Location of the University’s buildings in the
University campus.

• Switch Information regarding the users and their comput-
ers associated with the switch.

These aspects were chosen to represent possibilities which
ontologies could assist with; they are not a definite list.

Internal management structure provides information pertain-
ing to the hierarchical functional structure of our University,
but has no information regarding the physical location of the
described entities (schools, departments, etc). As can be seen
in Fig. 1, there are several hierarchical classes describing
the entities in the University’s structure: School, Department,
Group. There are also properties assigned to link each of the
classes. The property “hasSchool” for example has as subject
the class “University” and for object the class “School”. The
inverse of property “hasSchool” is defined as “inUni”.

In contrast to the Internal Management structure, the Phys-
ical Location ontology is a knowledge model of the physical
topology of the University campus without modelling any
knowledge from the functional information. As seen in Fig.
1, there is only one class, the “Location” that “contains”, or
inversely “isWithin”, another “Location” class. The property
“contains” has been defined as a transitive property, which
means that if LocationA contains LocationB and LocationB
contains LocationC then it is implied that LocationA con-
tains LocationC.

Finally, the knowledge base relating to the network serviced
by a particular switch, as seen in Fig. 1, includes information
regarding the model and manufacturer of the switch, the
devices (or nodes) attached to the switch, the associated person
with that device, and the device’s IP address. Note that the
property “hasNetflow” can be applied on anything as it does
not have any restriction on its domain. This was designed on
purpose in order to have flexibility to assign the property
on any class, i.e. School, Department, Group etc. As was
mentioned earlier, it is easy with ontologies to extend the
knowledge base with additional properties and classes. The
ontology was built from the ground up using Protégé [15].
Protégé is a well known tool in the ontology community
that assists in building knowledge structures and relationships
between the defined entities.

V. TEST BED

Even though we have built an ontology with the aim of
managing the University’s computer network, we initially
tested this in a controlled environment without interfering with
the organisation’s actual production network. For this purpose,
we built a test-bed (Fig. 2) in our laboratory as a first step,
that aims to showcase the usefulness of our conceptual tool.

We gather the network traffic information from three netflow
sources, each one dedicated to its own associated network. The
three networks set up in our test-bed are: a Virtual network, an
internal local network in our test-bed, and an external network,
which is actually our office’s connection to the Internet.

A. Description of the Virtual network
For setting up the virtual network, ESXi from VMware [16]

was used as a hypervisor. ESXi runs directly on the hardware
without requiring any operating system as it includes essential
drivers for booting and interacting with the hardware. ESXi
was installed on two distinct physical hosts composing our
physical infrastructure that will host virtual machines. In total,
there were three virtual machines set up for generating traffic.
One virtual machine, acting as a client, was installed on one
physical host, and two other virtual machines, acting as client
and server, were installed on the second physical host. That
ensures that there was traffic both internally in the physical
host and between two distinct physical hosts. Fig. 2 shows the
logical topology of the virtual network.

For managing the virtual network, vCenter Server was
installed as a virtual machine. The administrator can access
vCenter Server through a web browser and manage most
properties of the virtual network. A distributed virtual switch
was also deployed, namely Nexus 1000v [17]. Distributed
virtual switches are particularly useful for interconnecting
virtual machines hosted on distributed physical hosts. The
virtual switch was set up to send netflow data regarding the
virtual network to a netflow collector. In order to automatically
and periodically start and stop processes to generate data, and
therefore make the validation of FlowStats easier, three cron
(built-in Linux tool) schedules were scripted: downloading
a webpage (wget), securely copying a file over the virtual
network (scp) and finally streaming video (VLC) [18].

B. Description of Internal LAN
An internal LAN has been set up using a Netgear GS724T

(referred as GS) switch. Similarly to the virtual network, there
are two clients communicating with a server and following the
same cron job as described above. Because the GS switch did
not export Netflow, the switch ports where the clients and
server are connected were monitored and softflowd [19] was
tasked to compose the netflows and send them to the collector.

C. Description of External Network
The external network is basically the wired network of our

research group. The computers connected to this switch belong
to real PhD students and staff and do not follow any cron job
but represent normal usage with the seasonal and time of day
characteristics.



University

School

Department

Group

hasSchool

hasDep

hasGroup

inSchool

inUni

inDep

Thing

Model

Node

Person

hasNetflow

hasNode

belongsTo

has_model

serves

Manufacturer

is_made_by

has_model

hasAddressThing stringLocation isWithincontains

Fig. 1. Terminological Knowledge. In red: Internal Management structure,
In blue: Switch related information, In green: Physical Location.

User Interface

HTMLHTTP

R Shiny Server

Server Client Client 

Distributed virtual switch
Cisco Nexus 1000V

Physical Switch
of external network

ServerClient Client

Physical Switch
Netgear GS724T

Netflow Netflow NetflowNetflow Source Interfaces:

Virtual Network HSN Office HSN internal LAN

Ontology DB

Results

PostgreSQL
Netflow data

SPARQL
Queries

Results

SQL Queries

Internal Management Structure
Physical Location

Network Switch Metadata

Upload Ontology triples

Fig. 2. Network Diagram and FlowStats set up

VI. FLOWSTATS SET UP

A. Assertional Knowledge

As was mentioned earlier, the assertional knowledge de-
scribes the specific instances of the general classes in the
ontology (terminological knowledge). As can be seen in
Fig. 3 (c) we have populated the general knowledge with
specific instances to describe our test bed. For example, the
instance of Cisco Nexus switch “1000v” (a “Model” class)
has the property is made by, and the range of the property is
“Cisco” (a “Manufacturer” class). Similarly, more information
is instantiated for 1000v, including IP address and associated
devices. Note that for the Netgear GS and the External switch
only the IP and the manufacturer name are assigned, and this
will have an effect as will be explained in our case scenarios.

Regarding the Internal Management structure (Fig. 3 (a)),
two big Schools have been assigned under “Loughborough
University”, each School has a Department and so on. Obvi-
ously, this is a small segment of the real structure designed
just for experimental purposes and to demonstrate the capa-
bilities of artificial inference. Similarly, the physical location
knowledge, Fig. 3 (b), maps a segment of our University’s
buildings into instances of the classes defined in the ontology.

Loughborough University

Electronic Electrical and Systems Engineering School of Science.

Communications Computer Science

HSN WiCr

GS

NETS

1000v External

192.168.1.129

Cisco

hasSchool hasSchool

hasDep hasDep

hasGroup hasGroup

has Netflow

hasGroup

has Netflowhas Netflow

Loughborough Campus

Sir David Davies Haslegrave

contains contains

contains

hasNetflow
W2.42

hasNetflow

1000v GS External

hasNetflow

1000v
Server

Client1

Client2

is_made_by
has_Address

hasNode
hasNode

hasNode belongsTo
Kostas

belongsTo Dean

belongsTo Fran

192.168.255.90

Netgear

GS
is_made_by
has_Address 127.0.0.1

Cisco

External
is_made_by

has_Address

has_Address

has_Address

has_Address

192.168.1.109

192.168.1.141

192.168.1.112

(a) Internal Management

(b) Physical Location

(c) Switch Meta Data

Fig. 3. Assertional Knowledge

The entities HSN, Communications, NETS in the Internal
Management structure and W2.42, Sir David Davies and
Haslegrave in the Physical Location structure have been as-
signed a netflow source from our test-bed that hypothetically
represent the source of network monitoring data. These associ-
ations do not necessarily reflect the real nature of our structure
but allow us to illustrate the capabilities of ontology inference
without interfering with the University’s production network.

B. Netflow Set Up

A netflow architecture is composed of three distinct tools:
a sensor, a collector, and a reporting tool. Usually the sensor
needs to be attached either to a spanned (“mirrored”) port of
a switch or be connected to a hub in order to be able to listen
to all network traffic that needs to be monitored and construct
flows. Once the flow has ended, the sensor transmits this flow
data, usually over UDP, to a specific IP address (or more than
one address), where a netflow collector listens. In our testbed
scenario, softflowd was used as a netflow sensor in the cases
where the switch didn’t export netflows or where we didn’t
have access to configure the switch. Network switches and
routers are usually able to export netflow data but will need
to sacrifice CPU resources in doing so. Using a third party
option can be a cost efficient way of generating the netflow
data without sacrificing the performance of the switch/router
[20].

The collector listens to a specific UDP port where it expects
the netflow data to arrive after being transmitted by the sensor.
The collector is tasked with writing these netflow data to a



storage device for further analysis if required. In our case,we
used as a collector the nfcapd tool (part of nfdump suite of
tools [21]), which has the ability to automatically rotate files at
the end of an interval (default is 5 minutes). The information
in the files is in binary mode and requires special software to
read [20].

Some of the software that read netflow files for reporting
purposes are nfdump and flowdumper (built-in Linux tool).
However, our approach is to sequentially insert the incoming
netflow data into a relational database for further analysis and
interaction with our website framework.

C. Relational Database Set Up

The netflow capturing tool, nfcapd, has the option to run
a particular command at the end of the specified interval,
i.e. when a new file becomes available. We run a dameon
script, capture.pl, as a wraper to nfcapd, to simply execute
nfcapd with the above option enabled in order to run a second
script, inserter.pl, every time the specified interval lapses. In
other words, the daemon at boot runs the following command
/usr/local/bin/nfcapd -D -x ‘/usr/local/bin/inserter.pl
... ’ (command shortened for clarity).

The second script, inserter.pl, takes care of reading the flows
from the raw binary files and inserting each flow as a row
into the relational database. As a relational database, we used
PostgreSQL [22].

D. Website Set Up

The R language [23] was used for creating a script to
interact between the user interface, the relational database and
the ontological database. For the interaction with the ontology,
the R script calls a Python script using the “rdflib” library [24]
due to a lack of a native library in R. For building a website to
present the graphs, and filtering options, R Shiny was utilised
[25]. R Shiny is a web application framework for R that allows
for quick development of dynamic web applications.

VII. TEST CASE SCENARIOS

FlowStats currently provides 5 main tabs on the top menu
(Fig. 4 top). “Dates and Time”, “Netflow Filter”, “Port Fil-
tering”, “IP Filtering”, and “Actions”. The selections on the
first four tabs will affect the results presented in the Actions
tab. The Actions tab (Fig. 4 left hand pane) offers some of
the basic capabilities of a network management application:
Plotting of throughput and showing the top n (where n is user
customisable) utilised ports and nodes in the network for the
selected time period. The time period is selected in the first tab
of “Dates and Time”. By default the last 24 hours is selected.
However, the benefits of utilising an ontology knowledge base
are apparent in the “Netflow Filter” and “IP filtering” tabs.

Netflow Filter is actually a graphical interface to query the
ontology and its assertional knowledge. Netflow Filter allows
the combination of selections for each of the three distinct
knowledge structures, discussed in Section IV, in order to limit
choices to Netflow sources that meet the user selected criteria.

Fig. 4. FlowStats Menu and Actions tab

For example, a user could ask: Show me the most popular
nodes in Netgear switches from the School Of Electronic
and Electrical and Systems Engineering (EESE). The user
simply chooses EESE in the “School” field and Netgear in the
“Manufacturer” field and then proceeds in the “Actions” tab
to click on “Show Popular Nodes”. In the backend of our web
application, the system first queries the Ontology in order to
first find out which IP address(es) are applicable to be queried
with the appropriate Action. As a result only 192.168.255.90
(IP of GS switch) is queried, which corresponds to the Netgear
switch belonging in EESE. If the Manufacturer criteria was
not set, IP addresses from all manufacturers of switches in the
School of EESE would appear, i.e. IP addresses of 1000v and
GS (192.168.255.90 and 192.168.1.129) as can be confirmed
by combining the information from the tree diagrams in Fig.
3 (a) and (c).

Port Filtering allows the user to specify which network port
is of interest. This can either be selected by manually typing
port numbers in sequence (Fig. 5 (a): Source Port field) or the
user can select port number from a list of known ports (Fig. 5
(a): Dest. Port field). In this tab we can also filter by protocol.

Finally, IP filtering allows filtering by node/IP address.
There are two ways to do that, and the user can select
which method applies for Source and Destination fields in-
dependently (Fig. 5 (b) top menus). “Scan” method, scans
through the available addresses that exist in the relational
database (Fig. 5 (b) Destination Address field). “Known Users”
method, is using the Switch knowledge base, whereby the
appropriate fields of Source and/or Destination addresses (see
Fig. 5 (b) Source Address field) will automatically list the
available hosts by user name, and then proceed to identify
this hosts’ IP address (Fig. 5 (b) right pane). If instead, netflow
sources “External” or “GS” are selected, because no relevant
information is entered into the Assertional Knowledge, no
available address will be inferred and, therefore, neither listed
in the respective fields without, though, causing any problem
to the operation.



(a) Port Filtering (b) IP Filtering

Fig. 5. FlowStats Menu

VIII. CONCLUSION - FUTURE WORK

A web based tool for managing networks has been presented
in this work that tackles the issue of managing a large
number of multiple network management netflow sources
using artificial intelligent reasoning and intuitive filtering.
Even though there is a plethora of open source or licensed
network management tools available on-line, they do not focus
on using a knowledge base for the purpose of refining netflow
sources in order to proceed with querying those networks for
network management statistics.

In our approach, we automatically insert netflow statistics
in a relational database, using netflow sources as a method
for measuring network traffic. Three different aspects of our
infrastructure have been mapped into the knowledge base:
a functional structure for internal management, a physical
location relationship and switch related meta data.

For future work, we will compare the performance of
implementations that natively query for netflows and imple-
mentations that use big data databases. We are also thinking
of ways to tackle the problem of automatically populating the
ontology with relevant information. Ways to do that include
accessing log files, e.g. dhcpd.conf files in the DHCP server
to retrieve information for the topology of a network and
remotely connecting to existing databases that hold key meta-
data information.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web: A new
form of web content that is meaningful to computers will unleash a
revolution of new possibilities,” Scientific American, vol. 284, no. 5, pp.
1–5, 2001.

[2] “Cisco IOS netflow,” Website, http://www.cisco.com/.
[3] T. R. Gruber, “A translation approach to portable ontology specifica-

tions,” Knowledge acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[4] M. Trifan, B. Ionescu, D. Ionescu, O. Prostean, and G. Prostean, “An
ontology based approach to intelligent data mining for environmental
virtual warehouses of sensor data,” in Virtual Environments, Human-
Computer Interfaces and Measurement Systems, 2008. VECIMS 2008.
IEEE Conference on. IEEE, 2008, pp. 125–129.

[5] S.-Y. Yang and Y.-Y. Chang, “A new network management system
with ontology-supported multi-agent techniques,” in 2010 International
Symposium on Parallel and Distributed Processing with Applications
(ISPA). IEEE, 2010, pp. 275–282.

[6] S. Albahli and A. Melton, “ohStore: Ontology Hierarchy Solution to
Improve RDF Data Management,” in In 9th International Conference for
Internet Technology and Secured Transactions (ICITST-2014), December
2014.

[7] D. H. Sack, “Lecture 2: Semantic Web Technologies, in Open HPI
Course: Knowledge Engineering With Semantic Web Technologies,”
Website, April 2014, http://open.hpi.de/courses/semanticweb2014/.

[8] ——, “Lecture 5: Knowledge representations part 2, in Open HPI
Course: Knowledge Engineering With Semantic Web Technologies,”
Website, April 2014, http://open.hpi.de/courses/semanticweb2014/.

[9] “Advantages of RDF over relational
databases,” Website, Accessed January 2015,
http://answers.semanticweb.com/questions/19183/advantages-of-rdf-
over-relational-databases.

[10] A. K. Y. Wong, A. C. Chen, N. Paramesh, and P. Rav, “Ontology
mapping for network management systems,” in Network Operations and
Management Symposium, 2004. NOMS 2004. IEEE/IFIP, vol. 1. IEEE,
2004, pp. 885–886.

[11] A. Kobayashi, D. Matsubara, S. Kimura, M. Saitou, Y. Hirokawa,
H. Sakamoto, K. Ishibashi, and K. Yamamoto, “A proposal of large-scale
traffic monitoring system using flow concentrators,” in Management of
Convergence Networks and Services. Springer, 2006, pp. 53–62.

[12] M. Siekkinen, E. Biersack, G. Urvoy-Keller, V. Goebel, and T. Plage-
mann, “Intrabase: integrated traffic analysis based on a database man-
agement system,” in End-to-End Monitoring Techniques and Services,
2005. Workshop on, May 2005, pp. 32–46.

[13] R. Hofstede, A. Sperotto, T. Fioreze, and A. Pras, “The network
data handling war: Mysql vs. nfdump,” in Networked Services and
Applications-Engineering, Control and Management. Springer, 2010,
pp. 167–176.

[14] M. Atighetchi, J. Griffith, I. Emmons, D. Mankins, and R. Guidorizzi,
“Federated access to cyber observables for detection of targeted attacks,”
in MILCOM, 2014.

[15] S. U. Stanford Center for Biomedical Informatics Research, “Protégé: A
free, open-source ontology editor and framework for building intelligent
systems,” Website accessed on January 2015, http://protege.stanford.edu.

[16] VMware, “vSphere Hypervisor,” Website accessed on 1/2015,
http://www.vmware.com/products/vsphere-hypervisor. [Online]. Avail-
able: http://www.vmware.com/products/vsphere-hypervisor

[17] C. Systems, “Cisco Nexus 1000V Switch for
VMware vSphere,” Website accessed on 1/2015,
http://www.cisco.com/c/en/us/products/switches/nexus-1000v-
switch-vmware-vsphere/index.html. [Online]. Available:
http://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-
vmware-vsphere/index.html

[18] VideoLAN, “Vlc media player,” Website accessed on January
2015, http://www.videolan.org/vlc/index.html. [Online]. Available:
http://www.videolan.org/vlc/index.html

[19] “Softflowd: A flow-based network traffic analyser,” Website, Accessed
January 2015, http://www.mindrot.org/projects/softflowd/. [Online].
Available: http://www.mindrot.org/projects/softflowd/

[20] M. W. Lucas, “Monitoring network traffic with netflow,” Website,
http://www.onlamp.com/pub/a/bsd/2005/08/18/Big Scary Daemons.html.

[21] “Nfdump,” Accessed January 2015, http://nfdump.sourceforge.net/.
[Online]. Available: http://nfdump.sourceforge.net/

[22] “PostgreSQL,” Accessed January 2015, http://www.postgresql.org.
[Online]. Available: http://www.postgresql.org

[23] “The R Project for Statistical Computing,” Accessed January 2015.
[Online]. Available: http://www.r-project.org

[24] “rdflib: A python library for working with RDF,” Website, Accessed
January 2015, https://code.google.com/p/rdflib/. [Online]. Available:
https://code.google.com/p/rdflib/

[25] “Shiny by RStudio,” Accessed January 2015, http://shiny.rstudio.com.
[Online]. Available: http://shiny.rstudio.com


