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Abstract 

The literature on data envelopment analysis (DEA) often employs multiplier models that 

incorporate very small (theoretically infinitesimal) lower bounds on the input and output 

weights. Computational problems arising from the solution of such programs are well known. 

In this paper we identify an additional theoretical problem that may arise if such bounds are 

used in a multiplier model with weight restrictions. Namely, we show that the use of small 

lower bounds may lead to the identification of an efficient target with negative inputs. We 

suggest a corrected model that overcomes this problem.  
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1 Introduction 

In standard models of data envelopment analysis (DEA), the radial input and output 

projections of decision making units (DMUs) often exhibit mix inefficiency (are only weakly 

but not strongly efficient) – see, e.g., Cooper et al. (2007) and Thanassoulis et al. (2008). 

Such projected DMUs cannot therefore be generally regarded as efficient targets. A common 

approach to the identification of efficient targets is the maximisation of component (input and 

output) slacks as a secondary optimisation goal. There are two principal approaches known in 

the literature that allow us to implement this procedure: the optimisation of the radial 

improvement factor and component slacks can be performed either in a single optimisation 

stage or in separate stages.  

In the single-stage approach, the multiplier DEA model is solved by incorporating a 

small (theoretically infinitesimal) lower bound 0ε >  on all input and output weights. 

Equivalently, the objective function of the dual envelopment model is modified to include the 

input and output slacks multiplied by ε . The purpose of this approach is to let the DEA 

model assess the input or output radial efficiency of a DMU, while simultaneously 

accounting for possible mix inefficiency as a secondary goal (hence the requirement that ε  

be very small). 

Ali and Seiford (1993a) point out that the single-stage approach may lead to 

computational problems. In order to keep the assessment of radial efficiency as the main goal 

and mix improvements as the secondary objective, 0ε >  needs to be as small as possible. 

However, the use of a very small ε  may lead to unacceptable inaccuracies arising from the 

finite precision of computer solutions. Because of this drawback, the two-stage optimisation 

approach of Ali and Seiford (1993b) appears to have become a preferred solution method of 

DEA models. 1   

In this paper we consider DEA models with weight restrictions. These are additional 

constraints often imposed on variable input and/or output weights in multiplier DEA models 

(Thanassoulis et al., 2004; Podinovski, 1999, 2004b; Cook and Zhu, 2008). Such restrictions 

may be used to incorporate value judgements in a DEA model and generally lead to an 

improved ability of the model to discriminate between the efficiency of DMUs (Allen et al., 

1997).  

                                                        
1  Another problem identified by Ali and Seiford (1993a) is that for insufficiently small values of ε  the 
multiplier model may be infeasible and its dual envelopment model unbounded. This issue has attracted further 
research in the literature but is unrelated to our results.  
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The incorporation of weight restrictions in a multiplier DEA model generates 

additional terms in the dual envelopment model. Podinovski (2004a) shows that such terms 

are interpretable as production trade-offs – the latter express simultaneous changes to the 

inputs and outputs deemed possible if implemented at any DMU in the technology. This 

interpretation explains an earlier observation (Charnes et al., 1989, Roll et al., 1991) that the 

use of weight restrictions leads to an expansion of the model of technology. 

The dual relationship between weight restrictions and production trade-offs can be 

used as a basis for the construction of weight restrictions for which the expanded technology 

and its efficient frontier are technologically meaningful (i.e., all DMUs in the expanded 

technology are technologically feasible, or producible). For example, Podinovski (2007a) 

assesses production trade-offs and the corresponding weight restrictions in the context of 

higher education. Amado and Dyson (2009) and Amado and Santos (2009) use this method in 

applications of DEA to health care provision. Santos et al. (2011) and Santos and Amado 

(2014) construct production trade-offs and weight restrictions for electricity distribution 

utilities and the court system. Atici and Podinovski (2015) illustrate the use of trade-offs in 

the assessment of efficiency of agricultural farms.  

It may appear that the two solution methods applicable to DEA models without 

weight restrictions should also be applicable to models with weight restrictions. However, as 

shown by Podinovski (2007b), if the standard second optimisation stage is used to solve DEA 

models with weight restrictions, the resulting target DMU may have negative inputs, which is 

often meaningless. This problem is overcome by the modified second optimisation stage 

suggested by Podinovski (2007b). 

In this paper we consider the use of the standard single-stage procedure for DEA 

models with weight restrictions and show its potential shortcomings. Our development is 

motivated by a significant DEA literature in which weight restrictions of different types are 

incorporated in the multiplier models together with the lower bound 0ε >  on all input and 

output weights.  

We give examples of efficiency assessment in which the use of an arbitrarily small 

lower bound 0ε >  on the multiplier weights results in a negative input of the efficient target 

DMU. This problem occurs under both assumptions of constant (CRS) and variable (VRS) 

returns to scale (Charnes et al., 1978; Banker et al., 1984). We show that this effect arises not 

because of computational inaccuracies (our solutions are exact) but simply as a consequence 

of accounting for the radial and mix inefficiency in the same optimisation stage. Therefore, 
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even disregarding computational problems, a straightforward incorporation of the lower 

multiplier bound 0ε >  is theoretically unsound. 

To overcome the noted problem, we suggest a modification to the single-stage 

formulation. This makes the new single-stage model (in both multiplier and envelopment 

forms) theoretically correct and useful for the compact expression of the two objectives: the 

assessment of radial and mix inefficiency of a DMU. We show that the corrected single-stage 

model may also be useful for the exact solution of simple illustrative examples. 

The suggested model does not address the computational difficulties discussed by Ali 

and Seiford (1993a). In practical computations, preference should still be given to the use of 

the two-stage method of Ali and Seiford (1993b). For models with weight restrictions, the 

second stage of this method needs a modification developed by Podinovski (2007b).  

 

2 Production technology with weight restrictions 

In this section we briefly outline the dual relationship between weight restrictions and 

production trade-offs. We also clarify the notion of production technology arising in DEA 

models with weight restrictions.2 We use these notions in Section 3 to show that the single-

stage statement of DEA models may lead to an incorrect identification of efficient targets.  

To be specific, consider assessing the output radial efficiency of DMU ( , )o oX Y  by a 

CRS multiplier model that incorporates the following K weight restrictions on the vectors v 

and u of input and output weights, respectively: 

0t tv P u Q− ≥  ,   1,...,t K= . (1) 

We refer to inequalities (1) with zero on the right-hand side as homogeneous weight 

restrictions (Podinovski 2004a). 3  Components of vectors m
tP ∈  and s

tQ ∈  may be 

positive, negative or zero.  

Consider the standard CRS output-oriented multiplier model that incorporates weight 

restrictions (1). Let m
jX +∈  and s

jY +∈  denote the input and output vectors of observed 

                                                        
2 For a theoretical development of this production technology, see Podinovski (2004a, 2015) and Podinovski 
and Bouzdine-Chameeva (2013, 2015). 
3 Non-homogeneous weight restrictions have a non-zero constant on the right-hand side. Examples of such 
weight restrictions are absolute weight bounds (Dyson and Thanassoulis, 1988). Using the normalising equality 
of the multiplier model (2), or its input-oriented analogue, non-homogeneous weight restrictions can be restated 
as homogeneous ones. However, the latter will depend on the unit under the assessment and the orientation of 
the model. An extended discussion of non-homogeneous weight restrictions is presented in Podinovski (2005). 
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DMUs 1,...,j n= . The output radial efficiency of DMU ( , )o oX Y  is the inverse of the optimal 

value *η  of the following linear program: 

* min ov Xη =  , (2) 

subject to  1ou Y = , 

  0j jv X u Y− ≥  ,  1,...,j n= , 

0t tv P u Q− ≥  ,  1,...,t K= , 

, 0u v ≥ .  

The envelopment model dual to (2) can be stated as follows (the constraints of the 

dual are stated as equalities by using nonnegative slack vectors e and d): 
* maxη η= , (3) 

subject to 
1 1

n K

j j t t o
j t

X P d Xλ π
= =

+ + =∑ ∑ , 

1 1

n K

j j t t o
j t

Y Q e Yλ π η
= =

+ − =∑ ∑ , 

, , , 0d eλ π ≥ , η  sign free. 

Observe that the incorporation of weight restrictions (1) in the multiplier model (2) 

has generated additional dual terms  

( , )t tP Q ,  1,...,t K= ,        

in the envelopment model (3) applied in variable proportions 0tπ ≥ . Podinovski (2004a) 

refers to these terms as production trade-offs. The envelopment model (3) projects DMU 

( , )o oX Y  on the boundary of the expanded CRS technology defined as follows.  

Definition 1 (Podinovski 2004a). The CRS technology with production trade-offs CRS TO−  is 

the set of all DMUs ( , ) m sX Y + +∈ ×   for which there exist intensity vectors nλ +∈ , 

Kπ +∈ , and slack vectors md +∈  and se +∈  such that  

1 1

1 1

,

.

n K

j j t t
j t

n K

j j t t
j t

X P d X

Y Q e Y

λ π

λ π

= =

= =

+ + =

+ − =

∑ ∑

∑ ∑
 (4) 
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The meaning of Definition 1 is straightforward. The terms 
1

n
j jj
Xλ

=∑  and 
1

n
j jj
Yλ

=∑  

on the left-hand side of equations (4) describe an arbitrary DMU in the standard CRS 

technology. The terms 
1

K
t tt
Pπ

=∑  and 
1

K
t tt
Qπ

=∑  modify this DMU by applying trade-offs 

( , )t tP Q  in some proportions 0tπ ≥ . The resulting DMU is further modified by increasing its 

inputs by the vector d and by reducing its outputs by the vector e, which is consistent with the 

assumption of free disposability. Provided all inputs and outputs remain nonnegative, the 

DMU ( , )X Y  on the right-hand side of (4) is considered a member of technology CRS TO− .4 

The VRS technology VRS TO−  is defined similarly, by additionally requiring that 

vector λ  satisfies the normalising condition  

1

1
n

j
j
λ

=

=∑ . (5) 

Remark 1. It is well known that the incorporation of weight restrictions (1) in the multiplier 

model (2) may result in its infeasibility, which corresponds to the unbounded optimal value 

of the envelopment program (3). Podinovski and Bouzdine-Chameeva (2013, 2015) show 

that this happens when weight restrictions generate free production5 in the CRS technology 

CRS TO−  and call such weight restrictions inconsistent with the data set. Furthermore, weight 

restrictions may be inconsistent even if the multiplier and therefore envelopment models (2) 

and (3) (and their VRS analogues) have a finite optimal value for each observed DMU. 

Therefore the inconsistency of weight restrictions cannot be detected simply by solving 

standard models (2) or (3). Podinovski and Bouzdine-Chameeva (2013, 2015) develop 

special analytical and computational methods for checking if the weight restrictions (1) are 

consistent. If weight restrictions are inconsistent, this means that we made an error in their 

specification and that the weight restrictions need reassessing. In our further development we 

assume that the weight restrictions (1) are consistent – this guarantees that models (2) and 

(3), their VRS analogues and corresponding input-oriented variants have a finite optimal 

solution. 

 

                                                        
4  The CRS technology CRS TO−  and the corresponding VRS technology VRS TO−  can also be defined 
axiomatically (Podinovski, 2004a). 
5 Technology   allows free production if there exists a nonzero vector of outputs Y  that can be produced from 
a zero vector of inputs, i.e., (0, )Y ∈ . 
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3 Examples 

The following examples show that the single optimisation stage applied to DEA models with 

weight restrictions may lead to the identification of “efficient targets” with negative inputs.  

 

< Table 1 here > 

 

Example 1. Table 1 shows DMUs A and B evaluated on two inputs and one output. Suppose 

we wish to assess the output radial efficiency of DMU B using the single-stage VRS DEA 

model, in which 0.001ε = .6 Further assume that we wish to incorporate the following weight 

restriction that links the weights 1v  and 2v  of the first and second inputs: 

1 22 1 0v v− + ≥ . (6) 

With weight restriction (6), the conventional single-stage output-oriented multiplier 

VRS model for DMU B is stated as follows:  

min 1 21 3ν ν ω+ +   (7) 

subject to 

11 1u = , 

1 2 13 1 1 0uν ν ω+ − + ≥ , 

1 2 11 3 1 0uν ν ω+ − + ≥ , 

1 22 1 0v v− + ≥ , 

1 2 1, , 0.001v v u ≥ , ω  sign free.  

As discussed in Section 2, the weight restriction (6) generates the dual production 

trade-off stated as 2
1 ( 2,1)P = − ∈  and 1

1 (0)Q = ∈ . The envelopment model dual to (7) 

takes on the following form:  

max 1 2 10.001( )d d eη + + +  (8) 

subject to 

1 13 1 2 1 1A B dλ λ π+ − + = , 

1 21 3 1 1 3A B dλ λ π+ + + = , 

11 1 1 1A B eλ λ η+ − = , 

1A Bλ λ+ = , 

                                                        
6 Taking smaller values of ε , e.g., 610ε −= , makes no difference to our example and leads to the same effect. 
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1 1 2 1, , , , , 0A B d d eλ λ π ≥ , η  sign free. 

The above envelopment program has a unique exact optimal solution (this is seen from the 

graph discussed below and can be proved formally using duality theory7): 

ˆ 1Aλ = , ˆ 0Bλ = , 1ˆ 2π = , 1̂ 2d = , 2
ˆ 0d = , 1ˆ 0e = , ˆ 1η = . (9) 

This solution does not appear problematic: one would conventionally interpret the 

reciprocal value ˆ1 / 1η =  as the output radial efficiency of DMU B and correctly conclude 

that this DMU is output radial efficient. (Note that, in this example, 1 is the exact output 

radial efficiency of DMU B – it is obtained with 0ε = .) Furthermore, the non-zero optimal 

slack 1̂ 2d =  appears to indicate the amount of mix inefficiency that DMU B should eliminate 

by reducing Input 1, in order to become fully efficient. 

A problem with the above solution arises if we calculate the efficient target to 

DMU B. As in the case without weight restrictions, we define the efficient target as the radial 

target of DMU B modified by the optimal slacks.8 This gives us the following target DMU 

ˆ ˆ( , )X Y  in which the first two components are inputs and the last is output: 

1

2

1

ˆ1 1 1ˆ
ˆ3 1 3

ˆ
ˆ ˆ 11 1

d
X

d
Y eη

 − −     = − =           +    

. (10) 

                                                        
7 Indeed, consider dual programs (7) and (8). Note that 1 2 1, , ,v v u ωΓ = , where 1 0.001v = , 2 0.002v = , 1 1u =  
and 0.995ω =  (all values are exact), is feasible in program (7). (Solution Γ  was obtained by a linear solver but 
its optimality is verified below by duality theory.) Furthermore, the objective functions of programs (7) and (8) 
calculated at the respective feasible solutions Γ  and (9) are equal to the same value 1.002. By duality, solution 
Γ  is optimal in program (7), and solution (9) is optimal in program (8). Substituting Γ  into the constraints (7) 
and using complementary slackness conditions, we conclude that, in any optimal solution to (8), we have 

2 1 0B d eλ = = = . Substituting these values into the constraints of (8), we prove that optimal solution (9) is 
unique.  
8 If the resulting inputs and outputs are nonnegative, this target DMU is by definition a member of the expanded 

technology VRS TO− . Because Input 1 of DMU ˆ ˆ( , )X Y  in formula (10) is negative, ˆ ˆ( , ) VRS TOX Y −∉ . An 
alternative definition is given by Allen et al. (1997) according to which the efficient target is defined as the 
combination of observed DMUs taken with the optimal coefficients jλ . For this definition, the target DMU lies 
in the original technology (unmodified by weight restrictions), and no problems highlighted by our example 
arise. However, as noted by Allen et al. (1997), in the latter definition the radial nature of efficiency breaks 
down and some of the target inputs and outputs may be worse than their current levels observed at DMU 
( , )o oX Y . Thus, in our example, according to the latter definition, the efficient target of DMU B is DMU A 

(whose ˆ
Aλ  is equal to 1). Note that Input 1 of DMU A is worse (greater) than its value at DMU B. It is also 

worth noting that, in the case of CRS, it is theoretically possible (at least in carefully constructed examples) that 
all optimal coefficients jλ  are equal to zero. Then, calculating the efficient target based only on the optimal 
vector λ , we obtain the zero DMU (the origin) as the efficient target, which clearly appears problematic.   



 9 

It is clear that the exact optimal solution to the single-stage program (8) results in an 

inappropriate “efficient target” with a negative value of the first input, and DMU ˆ ˆ( , )X Y  is 

not in technology VRS TO− . 

Figure 1 illustrates the above solution. The darker area above and to the right of the 

line KBAL is the standard VRS technology in the two input dimensions. (In this example the 

output dimension is not important and is not shown.) As seen from model (8) and according 

to Definition 1, the DMUs in the VRS technology are further modified by the trade-off  

1 ( 2,1)P = −  , 1 (0)Q =  generated by the weight restriction (6) and used in a variable 

proportion 1 0π ≥ . For example, the application of trade-off 1 1( , )P Q  to DMU A with 1 1π =  

adds hypothetical DMU F to the technology. The same trade-off with 1 1.5π =  creates DMU 

C. Overall, letting 1π  to change in the range [0,1.5] generates the line CA. By the assumption 

of free disposability of inputs, the effect of this trade-off is the addition of the light grey area 

above the line CA to the original VRS technology. Note that we cannot take 1 1.5π >  because 

this results in negative values of Input 1. In particular, DMU D is not included in the 

technology VRS TO− . Also note that the application of trade-off 1 1( , )P Q  to the other DMUs 

(e.g., to DMU B) does not add new points to the technology.  

The incorrect target DMU ˆ ˆ( , )X Y  corresponds to point D in Figure 1 and is outside 

the technology.  

It may appear reasonable to correct this problem by replacing the negative “target” 

input 1−  in (10) by zero and taking DMU ( , ) (0,3,1)X Y =   as the “corrected” target unit. The 

latter DMU corresponds to point G in Figure 1. It is, however, clear that G is dominated by 

unit C and is therefore inefficient and cannot be considered an efficient target for B. This 

shows that replacing negative inputs by zeros is theoretically unsound. 

The above example demonstrates that the incorporation of a secondary goal of 

maximising input and output slacks as in program (8) may lead to negative input target 

values. This is consistent with the finding of Podinovski (2007b) who shows that the simple 

maximisation of the input and output slacks in a separate optimisation stage in programs with 

weight restrictions may also lead to negative inputs values. Note that this problem does not 

arise in standard CRS and VRS DEA models without weight restrictions, with a small lower 

bound 0ε >  on the input and output weights. 
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Example 2. In the above example DMU B is output radial efficient. A minor modification of 

this example shows that the same negative input targets may be obtained for a DMU that is 

output radial inefficient. Indeed, consider DMU B′  that has the same two inputs as DMU B 

in Table 1 and the output equal to 0.5. Assume that DMUs A and B′  are observed. Solving 

the model similar to (8), we obtain the optimal solution (9) in which ˆ 1η =  is replaced by 

ˆ 2η = . This means that the output radial efficiency of DMU B′  is equal to ˆ1 / 0.5η = . Its 

“efficient target” is the same as above and defined by formula (10). In this modified example, 

point B in Figure 1 represents the output radial projection of DMU B′ .   

 

Example 3. Negative input targets may also occur in an input-oriented model. Consider 

observed DMUs A and B in Table 2. To assess the input radial efficiency of DMU B in a 

VRS model with weight restriction (6), we solve the following program: 

min 1 2 3 10.001( )d d d eθ − + + +  (11) 

subject to 

1 13 2 2 1 2A B dλ λ π θ+ − + = , 

1 21 6 1 1 6A B dλ λ π θ+ + + = , 

31 2 1 2A B dλ λ θ+ + = , 

11 1 1 1A B eλ λ+ − = , 

1A Bλ λ+ = , 

1 1 2 3 1, , , , , , 0A B d d d eλ λ π ≥ , θ  sign free. 

It is straightforward to verify that the unique exact optimal solution to program (11) is 

1Aλ = , 0Bλ = , 1 2π = , 1 2d = , 2 0d = , 3 0d = , 1 0e = , 0.5θ = . (12) 

Therefore, the input radial efficiency of DMU B is equal to 0.5. Repeating 

computations as in Example 1, we obtain the “efficient target” of DMU B with a negative 

input: 

1

2

3

1

2 1 1
36 1
12 1
11 1

d
X d
Y d

e

θ

θ

θ

 − − 
     −   = =     −        + 

 

  



 



. (13) 

Example 4. Similar examples can be given for the case of CRS. Consider the data set in 

Table 2. To assess the input radial efficiency of DMU B, we solve program (11) from which 
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we remove the normalising equality 1A Bλ λ+ = . This program has the same unique optimal 

solution (12) as in the case of VRS, resulting in the same “efficient target” (13) with a 

negative input. The CRS input radial efficiency of DMU B is equal to 0.5.  

Similarly, the CRS output radial efficiency of DMU B is, as expected, also equal to 

0.5. In this case, the target unit for DMU B is ( , ) ( 2,6,2,2)X Y′ ′ = − , where the first three 

components are the inputs and the fourth is the output. Note that the target value for Input 1 is 

negative. 

 

4 The corrected single-stage model 

Based on Definition 1, below we suggest a simple modification to the single-stage 

envelopment and multiplier models that overcome the problem highlighted in Section 3. 

These models identify efficient projections of inefficient units on the boundary of 

technologies CRS TO−  and VRS TO− . In particular, by definition of such technologies, this 

implies the nonnegativity of the target inputs and outputs.  

 

4.1 Output-oriented models 

Taking into account Definition 1, the single-stage output-oriented program that identifies an 

efficient target within the technology CRS TO−  may be stated in the following form:9 

1 1

max
m s

i r
i r

η ε x ς
= =

 + + 
 
∑ ∑  (14) 

subject to  ( , )o o CRS TOX Yx η ς −− + ∈ , , 0x ς ≥ . 

The full statement of program (14) is as follows: 

1 1

max
m s

i r
i r

η ε x ς
= =

 + + 
 
∑ ∑  (15a) 

subject to 
1 1

n K

j j t t o
j t

X P d Xλ π x
= =

+ + = −∑ ∑ ,    (15b) 

1 1

n K

j j t t o
j t

Y Q e Yλ π η ς
= =

+ − = +∑ ∑ ,    (15c)  

0oX x− ≥ ,       (15d) 

                                                        
9 To avoid confusion with the vectors e and d used in Definition 1, we denote the input slacks mx +∈  and 
output slacks sς +∈ . 
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0oYη ς+ ≥ ,       (15e) 

, , , , , 0d eλ π x ς ≥ , η  sign free.    (15f) 

Note that program (15) can be simplified. First, at any of its optimal solutions, vector 

e must be a zero vector. 10  Second, for all sufficiently small 0ε >  condition (15e) is 

redundant.11  Therefore, program (15) can be restated as follows: 

1 1

max
m s

i r
i r

η ε x ς
= =

 + + 
 
∑ ∑  (16a) 

subject to 
1 1

n K

j j t t o
j t

X P d Xλ π x
= =

+ + = −∑ ∑ ,    (16b) 

1 1

n K

j j t t o
j t

Y Q Yλ π η ς
= =

+ = +∑ ∑ ,     (16c) 

0oX x− ≥ ,       (16d) 

, , , , 0dλ π x ς ≥ , η  sign free.     (16e) 

Let * * * * * *, , , , ,dλ π x ς η  be an optimal solution to program (16). Define the target 

DMU as 

 * * * * *( , ) ( , )o oX Y X Yx η ς= − + .      (17) 

Because * *( , )X Y  satisfies equations (4) (where e is a zero vector), and * 0X ≥  and 

* 0Y ≥ , we have * *( , ) CRS TOX Y −∈ . The next result shows that DMU * *( , )X Y  can be 

regarded as an efficient target of DMU ( , )o oX Y . 

Theorem 1. DMU * *( , )X Y  is efficient in technology CRS TO− . 

A proof of Theorem 1 is given in Appendix A. 

Denoting v, u and w the dual vectors corresponding to constraints (16b) and negated 

constraints (16c) and (16d), respectively, the dual to program (16) can be stated as follows:12 

( )min ov Xw+   (18) 

                                                        
10 Indeed, if we assume to the contrary that 0e ≥  and 0e ≠ , then redefining 0e =  and eς ς= +  keeps (15c) 
and (15e) true, while improving the objective function (15a), which is impossible due to the assumed optimality 
of the current solution. Therefore, vector e in program (15) can be assumed zero and removed from the 
formulation. 
11 Theorem 2.1 proved in Sherali (1982) implies that, for all sufficiently small 0ε > , an optimal η  in  program 
(15) is also optimal in program (3) and is, therefore, nonnegative. Because vector ς  is nonnegative, for all 
sufficiently small 0ε > , constraint (15e) is satisfied at any optimal solution to (15) and can be omitted. 
12 The nonnegativity condition on vector v in program (18) is dual to the primal vector 0d ≥ . 
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subject to  1ou Y = , 

0j jv X u Y− ≥  ,  1,...,j n= , 

0t tv P u Q− ≥  ,  1,...,t K= , 

i iv w ε+ ≥ ,   1,...,i m= , 

ru ε≥ ,   1,...,r s= , 

, 0v w ≥ .  

It is worth noting that the above program is different to model (7) which was shown 

to be generally incorrect by an example in Section 3. 

4.2 Input-oriented models 

In the input orientation, program (16) needs an obvious modification as follows, where θ  

represents the proportional input improvement factor: 

1 1

min
m s

i r
i r

θ ε x ς
= =

 − + 
 
∑ ∑  (19) 

subject to 
1 1

n K

j j t t o
j t

X P d Xλ π θ x
= =

+ + = −∑ ∑ ,      

1 1

n K

j j t t o
j t

Y Q Yλ π ς
= =

+ = +∑ ∑ ,       

0oXθ x− ≥ ,         

, , , , 0dλ π x ς ≥ , θ  sign free.       

Any optimal solution to program (19) defines an efficient target to DMU ( , )o oX Y  in 

the usual way: 
* * * * *( , ) ( , )o oX Y X Yθ x ς= − + , 

where *θ , *x  and *ς  are components of an optimal solution to (19). It is straightforward to 

verify that Theorem 1 remains true in this case. 

Using similar notation for dual vectors v, u and w as above, the dual to program (19) 

is stated as follows:  

max ou Y  (20) 

subject to  ( ) 1oXwv =+  , 

0j jv X u Y− ≥  ,  1,...,j n= , 
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0t tv P u Q− ≥  ,  1,...,t K= , 

i iv w ε+ ≥ ,   1,...,i m= , 

ru ε≥ ,   1,...,r s= , 

, 0v w ≥ .  

Remark 2. In the case of VRS, the envelopment program (16) includes an additional 

normalising equality (5). The corresponding multiplier program (18) is modified accordingly, 

by incorporating the additional sign-free variable ω  corresponding to (5). The input-

orientated program (19) and its dual (20) are treated in the same way. An obvious analogue of 

Theorem 1 remains valid in all these cases.  

5 Revisiting the solution of Example 1 

Below we illustrate the use of the new models by revisiting Example 1. As demonstrated, 

solving the single-stage model (8) leads to an incorrect target ˆ ˆ( , )X Y  for the inefficient DMU 

B. As shown above, instead of (8), we should solve program (16) which takes on the 

following form: 

max 1 2 10.001( )η x x ς+ + +  (21) 

subject to 

1 1 13 1 2 1 1A B dλ λ π x+ − + = − , 

1 2 21 3 1 1 3A B dλ λ π x+ + + = − , 

11 1 1A Bλ λ η ς+ = + , 

11 0x− ≥ , 

23 0x− ≥ , 

1A Bλ λ+ = , 

1 1 2 1 2 1, , , , , , , 0A B d dλ λ π x x ς ≥ , η  sign free. 

It is straightforward to verify that (21) has the following exact unique optimal 

solution: 
* 1Aλ = , * 0Bλ = , *

1 1.5π = , * *
1 2 0d d= = , *

1 1x = , *
2 0.5x = , *

1 0ς = , * 1η = .  

The corresponding efficient target is stated as follows: 
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*
1*
*
2*

* *
1

1 0
3 2.5

11

X
Y

x

x

η ς

 −  
     = − =     
    +   

.  

As discussed above, by the construction of program (16), we have * *( , ) VRS TOX Y −∈ . 

By Theorem 1, DMU * *( , )X Y  is efficient. In Figure 1, this DMU corresponds to point C. 

Note that DMU * *( , )X Y  dominates ( , ) (0,3,1)X Y =   obtained in Section 3 by replacing the 

negative input in unit (10) by zero.  

 

6 Conclusion 

The identification of efficient targets of inefficient DMUs in conventional CRS and VRS 

DEA models may be viewed as a combination of two stages. According to Ali and Seiford 

(1993b), the first stage identifies the input or output radial projection of the DMU under the 

assessment on the boundary of the technology. The second stage aims at the elimination of 

any mix inefficiency at the radial target DMU. This is achieved by the maximisation of the 

sum of residual input and output slacks.  

Alternative single-stage multiplier DEA models incorporate a small (theoretically 

infinitesimal) lower bound 0ε >  on the input and output weights. Their dual envelopment 

models simultaneously assess the input or output radial efficiency of the DMU as the primary 

goal, and also account for the input and output slacks in the objective function, as a 

secondary goal.  

It is well known that practical solutions of single-stage DEA models with a very small 

finite ε  may cause unacceptable computational inaccuracies (Ali and Seiford, 1993a). 

Solving such programs generally requires that the tolerance parameters of the simplex 

method be specifically fine-tuned to the data set. Despite these computational shortcomings, 

stating DEA models as single-stage programs is very common in the DEA literature.  

In our paper we examine DEA models with additional weight restrictions, which is a 

common technique used in many applications. In envelopment DEA models, weight 

restrictions take on the form of production trade-offs between inputs and outputs. Podinovski 

(2007b) shows that such models can be solved by the two-stage method of Ali and Seiford 

(1993b) in which the second stage needs a modification.   
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The current paper looks at the single-stage solutions of DEA models with weight 

restrictions. This is motivated by a large DEA literature in which such models are stated 

simultaneously with the lower bound ε  on the input and output weights. 

The examples given in our paper show that the single-stage VRS and CRS DEA 

models with weight restrictions, even if solved exactly and for an arbitrarily small 0ε > , may 

result in negative inputs of the target DMUs. We show that this problem arises because not 

all conditions of the definition of technology with weight restrictions are properly accounted 

for in standard DEA formulations. We subsequently develop a single-stage DEA model with 

weight restrictions that theoretically produces efficient targets located on the boundary of the 

assumed production technology. We illustrate the use of this model by an example in which 

we obtain its exact solution and illustrate it by a graph. 

Similar to conventional DEA models without weight restrictions, the suggested 

single-stage models might still be problematic in practical computations (although all 

computer solutions of the examples given in our paper turned out to be exact with the default 

parameters of the simplex method, as verified by duality theory). Therefore in practice, 

similar to DEA models without weight restrictions, it might still be more straightforward to 

perform computations in separate stages.  
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Appendix A: Proof of Theorem 1 
 
Suppose * *( , )X Y  defined by (17) is inefficient in CRS TO− . Then there exists a DMU 

( , ) CRS TOX Y −′ ′ ∈   such that *X X δ′ = −  and *Y Y γ′ = + , where at least one of the vectors 

mδ +∈  and sγ +∈  is not a zero vector. Because DMU ( , ) CRS TOX Y −′ ′ ∈ , it satisfies (4) with 

some vectors , , , 0d eλ π′ ′ ′ ′ ≥ . Then 

*

1 1

n K

j j t t o
j t

X P d X Xλ π x δ
= =

′ ′ ′ ′+ + = = − −∑ ∑ , 

* *

1 1

n K

j j t t o
j t

Y Q e Y Yλ π η ς γ
= =

′ ′ ′ ′+ − = = + +∑ ∑ . 

Denote *x x δ= +  and * eς ς γ ′= + + . Then *, , , , ,dλ π x ς η′ ′ ′    is a feasible solution of 

program (16). Note that  

* *

1 1 1 1

m s m s

i r i r
i r i r
x ς x ς

= = = =

+ > +∑ ∑ ∑ ∑

 . 

Therefore the solution * * * * * *, , , , ,dλ π x ς η  is not optimal in program (16), which contradicts 

the assumption. Therefore * *( , )X Y  is efficient. □ 
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DMU Input 1 Input 2 Output 

A 3 1 1 

B 1 3 1 

 
Table 1 DMUs A and B in Example 1. 
 
 
 
 
 
 

DMU Input 1 Input 2 Input 3 Output 

A 3 1 1 1 

B 2 6 2 1 

 
Table 2 DMUs A and B in Examples 3 and 4. 
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Figure 1 The VRS technology induced by DMUs A and B in Example 1 (shown in two input 
dimensions). The line AC corresponds to weight restriction (6). 
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