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Abstract   

This paper describes a real-time system performance analysis methodology and toolset that has been developed at SEIC to be an 

integral part of a broader BAE Systems Military Air Solutions (MAS) process and toolset for Integrated Modular Systems (IMS). 

The proposed modelling approach and toolset components provide some key ‘through-life’ real-time system engineering benefits 

relating to system performance, including : the ability to construct a performance prediction model during the early stages of 

system design and to independently model the timing behaviour of end-to-end transactions across a distributed system of shared 

processing and network resources. 
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1 Introduction 

This paper describes a real-time system performance 

analysis methodology and supporting toolset that have been 

developed for integrated modular systems (IMS) [1]. The 

solution is not specific to IMS, however, but generally 

applicable to a much broader class of real-time distributed 

systems that require evidence of predictable performance to 

be generated during development. The ability to 

demonstrate that the final target system has met its timing 

requirements is a key capability in the development of a 

real-time system. This can be carried out by constructing a 

model of system timing behaviour that can be used to make 

predictions about maximum response times, communication 

delays, delay variations and resource utilisation. A 

performance modelling solution has been developed that 

provide such capabilities. The approach, known as 

reservation-based analysis (RBA) [2], also provides some 

further ‘through-life’ system engineering benefits : 

• the ability to construct a performance prediction model 

during the early stages of system design and then 

continually evolve this model to incorporate increasing 

design and implementation details – this allows 

engineers to make ongoing predictions about system 

performance throughout development based on the 

latest information available; in turn, system upgrade 

scenarios can be similarly evaluated for potential 

performance properties; 

• the ability to independently model the timing behaviour 

of specific end-to-end transactions across a distributed 

system of shared processing and network resources 

and, correspondingly, limit the scope of re-

analysis/verification in the event of localised changes 

to system requirements or implementation details. 

 

The rest of this paper gives an overview of the RBA 

approach and the recently developed toolset components 

that support the construction and automated execution of 

the system performance model. 

2 Performance Modelling Motivation and Approach 

Timing analysis models are normally developed in a 

‘bottom-up’ manner, ie. the model is not finalised until after 

the implementation and integration details of the system 

have been decided. Hence, it is not possible to assess the 

performance of the system until late in the development 

process. The results of analysis performed at this late stage 

of development are, of course, essential to support final 

verification of the system timing requirements. Deficiencies 

discovered at this late stage, however, can give rise to 

significant re-work, the costs of which are typically 

significant and a major factor in the overall development 

cost of industrial real-time systems. The risk of re-work 

associated with the development and verification of the 

timing properties of the system can be reduced by making 

the notion of timing analysis more integral to the systems 

engineering process as a whole, allowing it to be applied 

throughout the development of the system, starting much 

earlier in the process. This allows an ongoing assessment of 

emergent system performance properties relative to 

specified timing requirements and also provide progressive 

guidance on the selection of design/implementation details 

at successive stages of development. 

In the earlier stages of development, performance-related 

information will be scarce for most or all parts of the 

system. Even if the system level timing requirements are 

well defined and decomposed to varying extent during 

design stages, the ability to perform timing analysis relies 
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fundamentally on the notion of resources – some media 

through which the logical components of the system 

design/implementation can be executed. Processing 

resource and scheduling details are required for calculating 

worst-case execution and response times of software 

components. Analogous details of communication media 

are required to determine worst-case communication 

delays. In order to perform timing analysis prior to the 

system implementation stage, it is therefore necessary to 

work with an implementation-independent, abstract model 

of system resources. When implementation details are later 

finalised, performance predictions acquired via the abstract 

model can then be verified for the target system. This gives 

rise to a two-stage approach to timing analysis :  

• abstract timing analysis – performed during the 

definition and decomposition stages of development on 

the basis of the abstract resource model; the net result 

is a set of worst-case (and best-case) guarantees 

regarding the timing behaviour of the system that are 

subject to a set of obligations being met by the final 

target implementation; 

• target-specific timing analysis – performed during the 

system implementation and integration stages of 

system development, the aim being to demonstrate that 

the set of obligations imposed during the abstract 

timing analysis phase have actually been met. 

In RBA, the end-to-end timing properties of the system are 

captured, decomposed and analysed in terms of real-time 

transactions. The transaction model is hierarchical, in the 

form of an acyclic, directed, nested graph, capturing an 

evolving system definition during development. The leaf 

nodes of the graph capture the concurrent processing and 

communication elements within the transaction, termed 

activities; non-leaf nodes are referred to as nested 

transactions. The edges of the graph capture the precedence 

and nesting relationships within the transaction. The 

parameters via which timing behaviour is represented and 

observed are the same for a single activity, a group of 

related activities, a nested transaction and a system level 

transaction, thus providing a highly composable and 

scalable model. 

For any given transaction or activity λi,..,k the basic timing 

parameters are represented in RBA as follows : 

• input jitter, in

kiJ ,..,
 - the maximum width of the time 

window that spans the arrival of all associated input 

events; 

• output jitter, out

kiJ ,..,
 - the maximum width of the time 

window that spans the delivery of all associated output 

events; 

• minimum I/O separation, di,..,k - the minimum 

separation in time between input and output events; 

• minimum inter-arrival time, ai,..,k - the minimum 

separation in time between successive input event 

windows. 

These timing parameters are inter-related via the minimum 

and maximum response times for λi,..,k (denoted by ri,..,k and 

Ri,..,k ) as shown in Figure 1. 

output event window :

input event

window :

Ji,..,k
in

Ji,..,k
out

di,..,k

Ri,..,k

ri,..,k

 

Figure 1 – Basic Timing Parameters 

For each given transaction topology and assignment of 

timing parameters, the transaction level end-to-end delays 

and jitter can be expressed as a function of the leaf-node 

activity response time parameters. This involves a depth-

first traversal of the topology graph, accounting for activity 

level processing and communication delays, precedence 

relationships and nesting relationships at each stage – see 

[3] for details and examples. The approach can be used in 

either a bottom-up or top-down manner, ie. to determine 

transaction level delays from activity level response times 

or, as part of a more structured decompositional approach to 

achieve performance by design, to derive activity resource 

usage constraints directly from system/transaction level 

requirements. 

In the latter context, an abstract (target-independent) 

scheduling model is provided in RBA that can be used as a 

basis for schedule implementation and analysis. This model 

links activity level response times and resource usage 

constraints via a bandwidth reservation model referred to as 

the rate-based execution model. A range of compliant 

cyclic and priority-based scheduling solutions is then 

available to implement the final target schedule, guided by 

the execution space constraints illustrated in Figure 2, 

where ci,..,k and Ci,..,k denote the minimum and maximum 

resource usage requirements and vi,..,k and Vi,..,k denote the 

minimum and maximum execution rates. 

 

Figure 2 – Valid Execution Space for Activity λi,..,k 

Significantly, from a broader systems engineering 

perspective, the predictions obtained from the abstract rate-

based execution model are target-independent. The final 

target-dependent predictions are ultimately dependant on 

the final scheduler implementation but can be guaranteed to 

be within the bounds predicted from the target-independent 

model by adopting an RBA rate-based execution model 

compliant scheduling solution. An example of such a 

solution is given later in the paper (see section 8). 
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3 RBA Toolset Structure 

The process and toolset allow the RBA mathematical 

framework and accompanying set of scheduling rules to be 

applied as part of an evolving avionics system/software 

design model as follows : 

• the system/software design model, expressed in UML, 

is annotated with performance related information 

using a defined RBA-UML profile; performance 

attributes can be based on simple estimates/budgets, 

actual measurements or analytical predictions (such as 

from source code analysers); specific end-to-end 

transactions are then captured within the design model 

to be the target of analysis; 

• an automatic RBA-XML file generation utility is used 

to export the UML model data from the design tool; the 

export utility embodies an RBA-XML schema to 

ensure validity of the exported XML file; 

• the XML file is then imported into MATLAB and the 

analysis is performed to determine system level 

performance properties including maximum end-to-end 

delays, maximum delay variations and resource 

utilisation profiles; numerical and simple visual 

representation of results are provided to the engineer. 

Each of these toolset components and corresponding stages 

of the performance modelling process are described in the 

sections that follow. 

4 RBA UML Model Construction 

The first stage of the process is to create the source RBA 

UML model in the required form. The source model will 

typically be constructed within an overall IMS/system 

design model in order to use pre-defined components from 

that model as a means of reducing duplicated design effort 

and achieving consistency. The structure and contents of 

the non-RBA parts of the IMS/system model are entirely at 

the discretion of the system designer. The RBA model 

structure contains three main packages : 

• rba_configurations package, containing all the RBA 

model data specific to the IMS/system under design; 

• rba_connectors package, containing some generic 

reusable components to aid RBA model construction; 

• rba_profile package, containing the generic definition 

of the UML profile for RBA. 

Note that the rba_profile package and the rba_connectors 

package contain standard model components. The user is 

free to extend the contents of the rba_connectors package 

but not the rba_profile package, which contains the 

following UML stereotype definitions : 

• rba_activity, to identify UML model elements as RBA 

activities, with tag values to capture associated timing 

properties as follows : 

• rba_utilisation, a utilisation/bandwidth budget 

value in the range [0, 100]%; 

• rba_resourceId, a cross-reference into the IMS 

model to identify the allocated (processing) 

resource; 

• rba_jitterTolerance, a maximum value on 

permitted activity release jitter (in milliseconds); 

• rba_activityRef, a cross-reference into the IMS 

model to identify the IMS software component 

associated with this activity; 

• rba_connector, to create precedence relationships 

between activities; with a single tag definition as 

follows : 

• rba_connectorRef, a cross-reference into the IMS 

model to identify the associated IMS ‘virtual’ 

communication channel (VC); 

• rba_merge, to create many-to-one precedence 

relationships in the construction of end-to-end 

transactions; 

• rba_trigger, to create transaction trigger events. 

The rba_configurations package contains all of the RBA 

model data that is specific to the IMS/system under design. 

Each configuration is in fact contained in a separate sub-

package to capture the RBA activity and transaction model 

data specific to each static system configuration (in a 

similar manner to how the IMS Blueprint information is 

stored separately for each configuration). For each static 

configuration, a value ∆ is specified – in simple terms this 

equates to the minor cycle time in a cyclic scheduling 

solution (although the full RBA model is more general and 

can support a different value of ∆  for each activity, 

corresponding different granularities of bandwidth 

allocation – a future toolset enhancement waiting to 

happen). Each RBA transaction that exists (or at least is 

needed to be modelled) in the configuration is then captured 

as a UML activity diagram, as illustrated below : 

 

Figure 3 – Example RBA Transaction as UML Activity 

Diagram 

The rba_connectors package contains a set of generic 

connector components that can be reused to construct the 

IMS/system specific model. At present, the package only 

holds one such component, the merge connector, which can 

be used in the UML activity diagrams to create many-to-

one precedence relationships in RBA transactions. 

5 UML Model Data Export to XML  

The second stage of the process is to export the RBA UML 

model data to an XML file format. Current RBA toolset 

development work is using  the Artisan Studio UML tool 

which offers a variety of ways to export data from the UML 

model into other formats, including an API that can be 

accessed via Visual Basic code; a standard XMI file export 

facility and a Web Publisher facility (the chosen approach 

for reasons of simplicity of use and completeness of 

exported data). 
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The Artisan Studio Web Publisher exports the UML model 

data to a compound HTML/XML format – a master HTML 

file that references multiple XML files. A Visual Basic 

programme has been written to then convert these outputs 

into the required XML format as specified by an RBA 

XML schema. The user interface for this toolset component 

is shown below, illustrating how the user can select an 

arbitrary subset of configurations and transactions to be the 

focus of subsequent performance analysis. 

 

Figure 4 – RBA XML Writer User Interface 

In subsequent user views, the basic model elements and 

performance data can be reviewed prior to final XML file 

generation. 

 

Figure 5 – Example Transaction Data View 

The RBA XML Writer also allows previously exported 

XML files to be reimported for review at a later date if 

required. 

6 XML Schema and Instance File 

This subsection gives a short description of the XML 

schema and corresponding instance file format. At the head 

of the file is a set of basic element declarations and at the 

end of the file is a set of basic type definitions. The main 

body of the file is then encapsulated in the top level 

rba_model element which is comprised of a sequence of 

rba_configuration elements : 

<xs:element name="RBA_Model"> 

  <xs:complexType> 

    <xs:sequence> 

      <xs:element ref="rba_configuration"  

        minOccurs="1" maxOccurs="unbounded"/> 

    </xs:sequence> 

  </xs:complexType> 

</xs:element> 

The rba_configuration element is then composed of a 

sequence of rba_activity and rba_transaction elements : 

<xs:element name="rba_configuration"> 

  <xs:complexType> 

    <xs:sequence> 

      <xs:element name="delta" type="delta"  

        maxOccurs="1"/> 

      <xs:element ref="n_act"  

        maxOccurs="unbounded"/> 

      <xs:element ref="rba_activity" minOccurs="1"  

        maxOccurs="unbounded"/> 

      <xs:element ref="rba_transaction" minOccurs="1"  

        maxOccurs="unbounded"/> 

      </xs:sequence> 

    <xs:attribute ref="name"/> 

  </xs:complexType> 

</xs:element> 

Each rba_activity element has a number of associated 

timing properties corresponding to the UML model 

rba_activity stereotype tag values : 

<xs:element name="rba_activity"> 

  <xs:complexType> 

    <xs:sequence> 

      <xs:element ref="rba_act" maxOccurs="1"/> 

      <xs:element ref="rba_u_act" maxOccurs="1"/> 

      <xs:element ref="rba_res_list" maxOccurs="1"/> 

      <xs:element ref="rba_jitterTolerance"  

        maxOccurs="1"/> 

    </xs:sequence> 

  </xs:complexType> 

</xs:element> 

Each rba_transaction element is then defined by a sequence 

of activity connections (precedence/ordering relationships), 

each of which is identified by a source and destination : 

<xs:element name="rba_transaction"> 

  <xs:complexType> 

    <xs:sequence> 

      <xs:element ref="n_act_trans" maxOccurs="1"/> 

      <xs:element ref="connection" minOccurs="1"  

        maxOccurs="unbounded"/> 

      <xs:element ref="trans_act" maxOccurs="1"/> 

    </xs:sequence> 

    <xs:attribute ref="name"/> 

  </xs:complexType> 

</xs:element> 

<xs:element name="connection"> 

  <xs:complexType> 

    <xs:attribute ref="source"/> 

    <xs:attribute ref="destination"/> 

  </xs:complexType> 

</xs:element> 

The rest of the XML schema contains the basic type 

definitions required to support these elements. 



7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)  

Loughborough University – 20
th

 - 23
rd

 April 2009 

7 XML Import into MATLAB 

The third stage of the process is to import the XML file data 

into MATLAB for the analysis to be performed. To this 

end, an XML-to-MATLAB code generator has been 

developed. The code generator is structured as follows : 

• a front-end that parses the (validated) XML instance 

file and creates the analogous data structures in the 

MATLAB workspace; 

• a back-end that converts the workspace data into a 

series of MATLAB M-files, one for each configuration 

itemised in the source XML file. 

Each M-file contains all the global/system level, activity 

level and transaction level data required to perform the 

RBA analysis on a single configuration. 

8 Performance Analysis in MATLAB 

Firstly, each system resource (processor or communication 

medium) is analysed independently given the following set 

of information : 

• the set of allocated model elements (activities) and 

their attributes; 

• the details of the local resource scheduling (or medium 

access control) policy; 

• the resource requirements of any other software 

components requiring access to the resource (such as 

operating system components, middleware services, 

I/O drivers, interrupt service routines etc.) not 

explicitly captured in the source model. 

The second point above is a significant factor in deciding 

the form of localised resource level analysis to be used. For 

the purposes of initial toolset development and 

demonstration, one form of analysis for cyclic scheduling 

and two different forms of analysis for static priority-based 

scheduling (different mathematical models with different 

degrees of accuracy) have been implemented. This serves to 

indicate the impact of scheduling policy and choice of 

analysis method on the performance predictions obtained. 

Having obtained the results of the analysis of each system 

resource with its allocated activities, these results are then 

fed into an end-to-end transaction model to determine the 

overall system level response times. 

To illustrate these stages of schedule definition and 

analysis, Table 1 gives an example set of timing attributes 

imported into MATLAB from the UML model via the 

XML file – this is a uniprocessor example based on the 

Generic Avionics Processor (GAP) defined in [3]. Each 

GAP ‘task’ is modelled as a single RBA activity since there 

is no benefit in further decomposition in this example. All 

GAP tasks are periodic with period Tj=Rj, except for τ10 

which is sporadic with minimum inter-arrival time a10=200. 

Since no input jitter is specified for the periodic tasks, it is 

assumed that aj=Tj for these tasks. Conversely, assigning 

a10=T10 for the sporadic task (the value of 200 shown in 

brackets in the table) gives a total task set utilisation 

requirement of 83.5%. 

 

j Function Cj Rj vj=Uj 

1 Radar Track Filter 2 25 0.08 

2 RWR Contact Mgt. 5 25 0.2 

3 Data Bus Poll Device 1 40 0.025 

4 Weapon Aiming 3 50 0.06 

5 Radar Target Update 5 50 0.1 

6 Nav. Update 8 59 0.1355 

7 Display Graphic 9 80 0.1125 

8 Display Hook Update 2 80 0.025 

9 Target Update 5 100 0.05 

10 Weapon Protocol 1 200 0.005 

11 Nav. Steering Cmds. 3 200 0.015 

12 Display Sores Update 1 200 0.005 

13 Display Keyset 1 200 0.005 

14 Display Stat. Update 3 200 0.015 

15 BET E Status Update 1 1000 0.001 

16 Nav. Status 1 1000 0.001 

Table 1 – Example Timing Attributes 

8.1 Basic Cyclic Implementation Scheme 

The basic cyclic implementation scheme can be applied to 

derive an RBA-compliant schedule by first selecting an 

appropriate value for the cycle time ∆. Then, for each 

activity λj :  

• the ‘normalised’ response time  

∆








∆
=

∆ j

j

R
R

; 

• the ‘normalised’ execution rate  

∆

∆
=

j

j

j
R

C
v

; 

• the time δj for which the task must be executed in 

each cycle ∆  

 ∆=
∆

jj vδ
; 

• the guaranteed response time (target-independent) 

∆












=

j

j

j

C
R

δ

δ

; 

• the minimum run-time execution rate  

∆
=

j

jv
δ

δ ; 

• the guaranteed computation time  

j

j

j

R
C δ

δ

∆
=

∆

. 

Given the schedule construction constraint 
j

j
Rmin≤∆ , 

assign ∆=25. This leads to the cyclic scheduling parameter 

assignment and response time results given in Tables 2, 3 

and 4 (and their associated figures). 
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Figure 6 – Example - Cyclic Schedule Implementation 

(Execution Rate Parameters) 

 

Figure 7 – Example - Cyclic Schedule Implementation 

(Response Time Parameters) 

 

Figure 8 – Example - Cyclic Schedule Implementation 

(Computation Time Parameters) 

A number of observations can be made from these results. 

From Figure 6, the sum of the initial execution rate 

parameters (vj) corresponds exactly to the total utilisation 

requirement of the task set (83.51%). This arises since the 

worst-case response time of every task is equal to its 

minimum inter-arrival time. After defining a cycle time of 

∆=25, the sum of the rate parameters ( ∆

jv ) corresponds to a 

total bandwidth allocation of 88.37%, a noticeable but 

reasonable increase compared to the true requirement. At 

the final stage of calculation, however, the need to provide 

integer values for the final rate parameters ( δ

jv ) gives rise to 

a significant over-allocation of bandwidth due to the 

combination of rounding effects for the overall task set. The 

final bandwidth allocation is 120% and, hence, the extent of 

the over-allocation is sufficient to make the task set no 

longer schedulable on a single processor (by this scheme). 

The cyclic schedule has been constructed, however, to 

allow individual activities to be removed (or have their 

timing attributes changed) without affecting other activities 

in the schedule. Hence, it is straight forward to reduce the 

task set to one that is schedulable on a single processor by 

simply removing one or more activities (to be reallocated to 

another processor) until the final bandwidth allocation is 

less than 100%. The ability to manipulate the schedule in 

this manner is a considerable benefit in the context of 

engineering larger-scale real-time systems.  

A counter effect of bandwidth over-allocation is an 

equivalent reduction in worst-case response times ( δ

jR ) 

compared to the stated requirements (Rj), as can be seen in 

Figure 7. For example, λ15 has a final bandwidth allocation 

of 4% (equivalent to its execution rate of 0.04) compared to 

its stated requirement of 0.1%. The corresponding reduction 

in its worst-case response time is apparent in the final value 

of 25 compared to an original requirement of 1000. The 

over-allocation of bandwidth is due to the restriction that 

every task is executed (for a duration δj) in every cycle ∆, 

as reflected in the final computation times ( δ

jC ) given in 

Figure 8. This restriction leads to a simpler (and more 

readily modifiable) scheduling solution but can be lifted to 

allow a more flexible scheme to be defined in favour of 

reducing the bandwidth over-allocation. Such a scheme is 

described and illustrated below. 

Note that the basic scheme does not compromise the true 

timing requirements of the task set – there is no imposition 

of false iteration rates for the purposes of constructing a 

schedule (a criticism often levelled at cyclic scheduling 

solutions). Furthermore, the schedule is incrementally 

modifiable such that schedulability can be maintained 

following activities being added, removed or modified by 

merely ensuring that the final bandwidth allocation is less 

than 100% (and that the choice of ∆ is still suitable). 

8.2 Cyclic Server Implementation Scheme 

As suggested above, it is possible to reduce the bandwidth 

over-allocation associated with the basic cyclic 

implementation scheme by relaxing the constraint that 

every activity must be offered the chance to execute in 

every cycle. This gives rise to the cyclic bandwidth server 

scheme. The starting point is once again the selection of a 

cycle time ∆ subject to the same constraint. Then define a 

the server activity λ
S
(δ

S
,N

S
) as a notional activity that is 

allocated δ
S
 execution time units in every ∆ cycle but does 
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not actually consume that allocation itself. Instead, the 

server offers the resource to other activities so that these 

can execute with an effective cycle time of N
S
∆. The total 

bandwidth of the server can then be used to execute a 

number of activities that individually have relatively low 

bandwidth requirements that would otherwise be allocated a 

disproportionate amount of bandwidth by the basic scheme. 

The cyclic server solution exploits the fact that the basic 

scheme does not require the execution time allocated to an 

activity within a scheduling cycle to be contiguous. The 

analysis associated with the cyclic server is, therefore, 

exactly analogous to that for the basic cyclic scheme but 

with ∆ replaced by N
S
∆. The cyclic server method is 

actually a generalisation of the basic cyclic scheme 

described above, where multiple cycle times are supported. 

The following example illustrates the use of the cyclic 

server method to improve bandwidth allocation compared 

to the basic cyclic implementation scheme. Assuming the 

same basic cycle time ∆=25, define a server λ
S
(2,40) to 

execute the low utilisation activities {λ10, …, λ16}. Figure 9 

shows the improved results under this scheme (the values of 

other parameters not shown in the table are the same as 

before under the basic cyclic scheme). 

The total capacity of the server λ
S
(2,40) is 08.0=

Sv . Hence, 

92% of the total processor capacity is available for non-

server-based activities {λ1, …, λ9} and 8% for server-based 

activities {λ10, …, λ16}. So, whilst the total bandwidth 

allocation is more efficient than for the basic scheme - 

97.5% compared to 120%, this is not sufficient to guarantee 

feasibility on a single processor – it is also necessary to 

show separately that activities {λ1, …, λ9} can be executed 

within their 92% allocation and that activities {λ10, …, λ16} 

can be executed within their 8% allocation. From Figure 9, 

the combined allocation for activities {λ1, …, λ9} turns out 

to be exactly 92% and the combined allocation for activities 

{λ10, …, λ16} is 5.5%. Hence, the complete set of activities 

is schedulable on a single processor under this scheme. The 

improved efficiency of this scheme is also reflected in the 

increased number of activities that have been allocated the 

exact bandwidth to meet their requirements – 10 out of the 

16 activities now, compared to only 4 previously. 

 

Figure 9 – Example - Cyclic Server Implementation 

(Execution Rate Parameters) 

 

Figure 10 – Example - Cyclic Server Implementation 

(Response Time Parameters) 

 

Figure 11 – Example - Cyclic Server Implementation 

(Computation Time Parameters) 

 

Figure 11b – Example - Cyclic Server Implementation 

(Computation Time Parameters) 

Having obtained the results of the analysis of each system 

resource with its allocated activities, these results are then 

fed into the end-to-end transaction model to determine the 

overall system level response times. 
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9 Conclusions 

The RBA performance modelling approach and toolset 

have been developed to provide through-life performance 

modelling support to the systems engineering process. The 

following toolset concepts and components have been 

implemented so far : 

• a UML model structure and profile for RBA that 

integrates with the BAE Systems MAS IMS model 

structure and profile; 

• an automatic XML file generator from UML model 

data (currently in Artisan Studio); 

• an XML data representation and validation schema; 

• an automatic MATLAB scenario file generator from 

XML model data; 

• a suite of schedule definition and analysis routines in 

MATLAB. 

Work continues on the toolset development and technology 

transfer to BAE Systems MAS. 
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