
7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

Process and Tool Support

for Real-Time Performance Analysis of

Integrated Modular Systems

A. Grigg
1
, L. Guan

2
, P.R.Baalham

1
, S.G.Manuel

2

1
 Systems Engineering Innovation Centre (SEIC), Loughborough, UK

(a.grigg@lboro.ac.uk, p.r.baalham@lboro.ac.uk)
2
 Dept. of Computer Science, Loughborough University

(l.guan@lboro.ac.uk, s.g.manuel@lboro.ac.uk)

Abstract

This paper describes a real-time system performance analysis methodology and toolset that has been developed at SEIC to be an

integral part of a broader BAE Systems Military Air Solutions (MAS) process and toolset for Integrated Modular Systems (IMS).

The proposed modelling approach and toolset components provide some key ‘through-life’ real-time system engineering benefits

relating to system performance, including : the ability to construct a performance prediction model during the early stages of

system design and to independently model the timing behaviour of end-to-end transactions across a distributed system of shared

processing and network resources.

Keywords – Real-Time Systems; Performance Analysis; Predictability;. Integrated Modular Systems; Tool Support.

1 Introduction

This paper describes a real-time system performance

analysis methodology and supporting toolset that have been

developed for integrated modular systems (IMS) [1]. The

solution is not specific to IMS, however, but generally

applicable to a much broader class of real-time distributed

systems that require evidence of predictable performance to

be generated during development. The ability to

demonstrate that the final target system has met its timing

requirements is a key capability in the development of a

real-time system. This can be carried out by constructing a

model of system timing behaviour that can be used to make

predictions about maximum response times, communication

delays, delay variations and resource utilisation. A

performance modelling solution has been developed that

provide such capabilities. The approach, known as

reservation-based analysis (RBA) [2], also provides some

further ‘through-life’ system engineering benefits :

• the ability to construct a performance prediction model

during the early stages of system design and then

continually evolve this model to incorporate increasing

design and implementation details – this allows

engineers to make ongoing predictions about system

performance throughout development based on the

latest information available; in turn, system upgrade

scenarios can be similarly evaluated for potential

performance properties;

• the ability to independently model the timing behaviour

of specific end-to-end transactions across a distributed

system of shared processing and network resources

and, correspondingly, limit the scope of re-

analysis/verification in the event of localised changes

to system requirements or implementation details.

The rest of this paper gives an overview of the RBA

approach and the recently developed toolset components

that support the construction and automated execution of

the system performance model.

2 Performance Modelling Motivation and Approach

Timing analysis models are normally developed in a

‘bottom-up’ manner, ie. the model is not finalised until after

the implementation and integration details of the system

have been decided. Hence, it is not possible to assess the

performance of the system until late in the development

process. The results of analysis performed at this late stage

of development are, of course, essential to support final

verification of the system timing requirements. Deficiencies

discovered at this late stage, however, can give rise to

significant re-work, the costs of which are typically

significant and a major factor in the overall development

cost of industrial real-time systems. The risk of re-work

associated with the development and verification of the

timing properties of the system can be reduced by making

the notion of timing analysis more integral to the systems

engineering process as a whole, allowing it to be applied

throughout the development of the system, starting much

earlier in the process. This allows an ongoing assessment of

emergent system performance properties relative to

specified timing requirements and also provide progressive

guidance on the selection of design/implementation details

at successive stages of development.

In the earlier stages of development, performance-related

information will be scarce for most or all parts of the

system. Even if the system level timing requirements are

well defined and decomposed to varying extent during

design stages, the ability to perform timing analysis relies

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288375211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

fundamentally on the notion of resources – some media

through which the logical components of the system

design/implementation can be executed. Processing

resource and scheduling details are required for calculating

worst-case execution and response times of software

components. Analogous details of communication media

are required to determine worst-case communication

delays. In order to perform timing analysis prior to the

system implementation stage, it is therefore necessary to

work with an implementation-independent, abstract model

of system resources. When implementation details are later

finalised, performance predictions acquired via the abstract

model can then be verified for the target system. This gives

rise to a two-stage approach to timing analysis :

• abstract timing analysis – performed during the

definition and decomposition stages of development on

the basis of the abstract resource model; the net result

is a set of worst-case (and best-case) guarantees

regarding the timing behaviour of the system that are

subject to a set of obligations being met by the final

target implementation;

• target-specific timing analysis – performed during the

system implementation and integration stages of

system development, the aim being to demonstrate that

the set of obligations imposed during the abstract

timing analysis phase have actually been met.

In RBA, the end-to-end timing properties of the system are

captured, decomposed and analysed in terms of real-time

transactions. The transaction model is hierarchical, in the

form of an acyclic, directed, nested graph, capturing an

evolving system definition during development. The leaf

nodes of the graph capture the concurrent processing and

communication elements within the transaction, termed

activities; non-leaf nodes are referred to as nested

transactions. The edges of the graph capture the precedence

and nesting relationships within the transaction. The

parameters via which timing behaviour is represented and

observed are the same for a single activity, a group of

related activities, a nested transaction and a system level

transaction, thus providing a highly composable and

scalable model.

For any given transaction or activity λi,..,k the basic timing

parameters are represented in RBA as follows :

• input jitter, in

kiJ ,..,
 - the maximum width of the time

window that spans the arrival of all associated input

events;

• output jitter, out

kiJ ,..,
 - the maximum width of the time

window that spans the delivery of all associated output

events;

• minimum I/O separation, di,..,k - the minimum

separation in time between input and output events;

• minimum inter-arrival time, ai,..,k - the minimum

separation in time between successive input event

windows.

These timing parameters are inter-related via the minimum

and maximum response times for λi,..,k (denoted by ri,..,k and

Ri,..,k) as shown in Figure 1.

output event window :

input event

window :

Ji,..,k
in

Ji,..,k
out

di,..,k

Ri,..,k

ri,..,k

Figure 1 – Basic Timing Parameters

For each given transaction topology and assignment of

timing parameters, the transaction level end-to-end delays

and jitter can be expressed as a function of the leaf-node

activity response time parameters. This involves a depth-

first traversal of the topology graph, accounting for activity

level processing and communication delays, precedence

relationships and nesting relationships at each stage – see

[3] for details and examples. The approach can be used in

either a bottom-up or top-down manner, ie. to determine

transaction level delays from activity level response times

or, as part of a more structured decompositional approach to

achieve performance by design, to derive activity resource

usage constraints directly from system/transaction level

requirements.

In the latter context, an abstract (target-independent)

scheduling model is provided in RBA that can be used as a

basis for schedule implementation and analysis. This model

links activity level response times and resource usage

constraints via a bandwidth reservation model referred to as

the rate-based execution model. A range of compliant

cyclic and priority-based scheduling solutions is then

available to implement the final target schedule, guided by

the execution space constraints illustrated in Figure 2,

where ci,..,k and Ci,..,k denote the minimum and maximum

resource usage requirements and vi,..,k and Vi,..,k denote the

minimum and maximum execution rates.

Figure 2 – Valid Execution Space for Activity λi,..,k

Significantly, from a broader systems engineering

perspective, the predictions obtained from the abstract rate-

based execution model are target-independent. The final

target-dependent predictions are ultimately dependant on

the final scheduler implementation but can be guaranteed to

be within the bounds predicted from the target-independent

model by adopting an RBA rate-based execution model

compliant scheduling solution. An example of such a

solution is given later in the paper (see section 8).

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

3 RBA Toolset Structure

The process and toolset allow the RBA mathematical

framework and accompanying set of scheduling rules to be

applied as part of an evolving avionics system/software

design model as follows :

• the system/software design model, expressed in UML,

is annotated with performance related information

using a defined RBA-UML profile; performance

attributes can be based on simple estimates/budgets,

actual measurements or analytical predictions (such as

from source code analysers); specific end-to-end

transactions are then captured within the design model

to be the target of analysis;

• an automatic RBA-XML file generation utility is used

to export the UML model data from the design tool; the

export utility embodies an RBA-XML schema to

ensure validity of the exported XML file;

• the XML file is then imported into MATLAB and the

analysis is performed to determine system level

performance properties including maximum end-to-end

delays, maximum delay variations and resource

utilisation profiles; numerical and simple visual

representation of results are provided to the engineer.

Each of these toolset components and corresponding stages

of the performance modelling process are described in the

sections that follow.

4 RBA UML Model Construction

The first stage of the process is to create the source RBA

UML model in the required form. The source model will

typically be constructed within an overall IMS/system

design model in order to use pre-defined components from

that model as a means of reducing duplicated design effort

and achieving consistency. The structure and contents of

the non-RBA parts of the IMS/system model are entirely at

the discretion of the system designer. The RBA model

structure contains three main packages :

• rba_configurations package, containing all the RBA

model data specific to the IMS/system under design;

• rba_connectors package, containing some generic

reusable components to aid RBA model construction;

• rba_profile package, containing the generic definition

of the UML profile for RBA.

Note that the rba_profile package and the rba_connectors

package contain standard model components. The user is

free to extend the contents of the rba_connectors package

but not the rba_profile package, which contains the

following UML stereotype definitions :

• rba_activity, to identify UML model elements as RBA

activities, with tag values to capture associated timing

properties as follows :

• rba_utilisation, a utilisation/bandwidth budget

value in the range [0, 100]%;

• rba_resourceId, a cross-reference into the IMS

model to identify the allocated (processing)

resource;

• rba_jitterTolerance, a maximum value on

permitted activity release jitter (in milliseconds);

• rba_activityRef, a cross-reference into the IMS

model to identify the IMS software component

associated with this activity;

• rba_connector, to create precedence relationships

between activities; with a single tag definition as

follows :

• rba_connectorRef, a cross-reference into the IMS

model to identify the associated IMS ‘virtual’

communication channel (VC);

• rba_merge, to create many-to-one precedence

relationships in the construction of end-to-end

transactions;

• rba_trigger, to create transaction trigger events.

The rba_configurations package contains all of the RBA

model data that is specific to the IMS/system under design.

Each configuration is in fact contained in a separate sub-

package to capture the RBA activity and transaction model

data specific to each static system configuration (in a

similar manner to how the IMS Blueprint information is

stored separately for each configuration). For each static

configuration, a value ∆ is specified – in simple terms this

equates to the minor cycle time in a cyclic scheduling

solution (although the full RBA model is more general and

can support a different value of ∆ for each activity,

corresponding different granularities of bandwidth

allocation – a future toolset enhancement waiting to

happen). Each RBA transaction that exists (or at least is

needed to be modelled) in the configuration is then captured

as a UML activity diagram, as illustrated below :

Figure 3 – Example RBA Transaction as UML Activity

Diagram

The rba_connectors package contains a set of generic

connector components that can be reused to construct the

IMS/system specific model. At present, the package only

holds one such component, the merge connector, which can

be used in the UML activity diagrams to create many-to-

one precedence relationships in RBA transactions.

5 UML Model Data Export to XML

The second stage of the process is to export the RBA UML

model data to an XML file format. Current RBA toolset

development work is using the Artisan Studio UML tool

which offers a variety of ways to export data from the UML

model into other formats, including an API that can be

accessed via Visual Basic code; a standard XMI file export

facility and a Web Publisher facility (the chosen approach

for reasons of simplicity of use and completeness of

exported data).

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

The Artisan Studio Web Publisher exports the UML model

data to a compound HTML/XML format – a master HTML

file that references multiple XML files. A Visual Basic

programme has been written to then convert these outputs

into the required XML format as specified by an RBA

XML schema. The user interface for this toolset component

is shown below, illustrating how the user can select an

arbitrary subset of configurations and transactions to be the

focus of subsequent performance analysis.

Figure 4 – RBA XML Writer User Interface

In subsequent user views, the basic model elements and

performance data can be reviewed prior to final XML file

generation.

Figure 5 – Example Transaction Data View

The RBA XML Writer also allows previously exported

XML files to be reimported for review at a later date if

required.

6 XML Schema and Instance File

This subsection gives a short description of the XML

schema and corresponding instance file format. At the head

of the file is a set of basic element declarations and at the

end of the file is a set of basic type definitions. The main

body of the file is then encapsulated in the top level

rba_model element which is comprised of a sequence of

rba_configuration elements :

<xs:element name="RBA_Model">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="rba_configuration"

 minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The rba_configuration element is then composed of a

sequence of rba_activity and rba_transaction elements :

<xs:element name="rba_configuration">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="delta" type="delta"

 maxOccurs="1"/>

 <xs:element ref="n_act"

 maxOccurs="unbounded"/>

 <xs:element ref="rba_activity" minOccurs="1"

 maxOccurs="unbounded"/>

 <xs:element ref="rba_transaction" minOccurs="1"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="name"/>

 </xs:complexType>

</xs:element>

Each rba_activity element has a number of associated

timing properties corresponding to the UML model

rba_activity stereotype tag values :

<xs:element name="rba_activity">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="rba_act" maxOccurs="1"/>

 <xs:element ref="rba_u_act" maxOccurs="1"/>

 <xs:element ref="rba_res_list" maxOccurs="1"/>

 <xs:element ref="rba_jitterTolerance"

 maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Each rba_transaction element is then defined by a sequence

of activity connections (precedence/ordering relationships),

each of which is identified by a source and destination :

<xs:element name="rba_transaction">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="n_act_trans" maxOccurs="1"/>

 <xs:element ref="connection" minOccurs="1"

 maxOccurs="unbounded"/>

 <xs:element ref="trans_act" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute ref="name"/>

 </xs:complexType>

</xs:element>

<xs:element name="connection">

 <xs:complexType>

 <xs:attribute ref="source"/>

 <xs:attribute ref="destination"/>

 </xs:complexType>

</xs:element>

The rest of the XML schema contains the basic type

definitions required to support these elements.

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

7 XML Import into MATLAB

The third stage of the process is to import the XML file data

into MATLAB for the analysis to be performed. To this

end, an XML-to-MATLAB code generator has been

developed. The code generator is structured as follows :

• a front-end that parses the (validated) XML instance

file and creates the analogous data structures in the

MATLAB workspace;

• a back-end that converts the workspace data into a

series of MATLAB M-files, one for each configuration

itemised in the source XML file.

Each M-file contains all the global/system level, activity

level and transaction level data required to perform the

RBA analysis on a single configuration.

8 Performance Analysis in MATLAB

Firstly, each system resource (processor or communication

medium) is analysed independently given the following set

of information :

• the set of allocated model elements (activities) and

their attributes;

• the details of the local resource scheduling (or medium

access control) policy;

• the resource requirements of any other software

components requiring access to the resource (such as

operating system components, middleware services,

I/O drivers, interrupt service routines etc.) not

explicitly captured in the source model.

The second point above is a significant factor in deciding

the form of localised resource level analysis to be used. For

the purposes of initial toolset development and

demonstration, one form of analysis for cyclic scheduling

and two different forms of analysis for static priority-based

scheduling (different mathematical models with different

degrees of accuracy) have been implemented. This serves to

indicate the impact of scheduling policy and choice of

analysis method on the performance predictions obtained.

Having obtained the results of the analysis of each system

resource with its allocated activities, these results are then

fed into an end-to-end transaction model to determine the

overall system level response times.

To illustrate these stages of schedule definition and

analysis, Table 1 gives an example set of timing attributes

imported into MATLAB from the UML model via the

XML file – this is a uniprocessor example based on the

Generic Avionics Processor (GAP) defined in [3]. Each

GAP ‘task’ is modelled as a single RBA activity since there

is no benefit in further decomposition in this example. All

GAP tasks are periodic with period Tj=Rj, except for τ10

which is sporadic with minimum inter-arrival time a10=200.

Since no input jitter is specified for the periodic tasks, it is

assumed that aj=Tj for these tasks. Conversely, assigning

a10=T10 for the sporadic task (the value of 200 shown in

brackets in the table) gives a total task set utilisation

requirement of 83.5%.

j Function Cj Rj vj=Uj

1 Radar Track Filter 2 25 0.08

2 RWR Contact Mgt. 5 25 0.2

3 Data Bus Poll Device 1 40 0.025

4 Weapon Aiming 3 50 0.06

5 Radar Target Update 5 50 0.1

6 Nav. Update 8 59 0.1355

7 Display Graphic 9 80 0.1125

8 Display Hook Update 2 80 0.025

9 Target Update 5 100 0.05

10 Weapon Protocol 1 200 0.005

11 Nav. Steering Cmds. 3 200 0.015

12 Display Sores Update 1 200 0.005

13 Display Keyset 1 200 0.005

14 Display Stat. Update 3 200 0.015

15 BET E Status Update 1 1000 0.001

16 Nav. Status 1 1000 0.001

Table 1 – Example Timing Attributes

8.1 Basic Cyclic Implementation Scheme

The basic cyclic implementation scheme can be applied to

derive an RBA-compliant schedule by first selecting an

appropriate value for the cycle time ∆. Then, for each

activity λj :

• the ‘normalised’ response time

∆

∆
=

∆ j

j

R
R

;

• the ‘normalised’ execution rate

∆

∆
=

j

j

j
R

C
v

;

• the time δj for which the task must be executed in

each cycle ∆

 ∆=
∆

jj vδ
;

• the guaranteed response time (target-independent)

∆

=

j

j

j

C
R

δ

δ

;

• the minimum run-time execution rate

∆
=

j

jv
δ

δ ;

• the guaranteed computation time

j

j

j

R
C δ

δ

∆
=

∆

.

Given the schedule construction constraint
j

j
Rmin≤∆ ,

assign ∆=25. This leads to the cyclic scheduling parameter

assignment and response time results given in Tables 2, 3

and 4 (and their associated figures).

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

Figure 6 – Example - Cyclic Schedule Implementation

(Execution Rate Parameters)

Figure 7 – Example - Cyclic Schedule Implementation

(Response Time Parameters)

Figure 8 – Example - Cyclic Schedule Implementation

(Computation Time Parameters)

A number of observations can be made from these results.

From Figure 6, the sum of the initial execution rate

parameters (vj) corresponds exactly to the total utilisation

requirement of the task set (83.51%). This arises since the

worst-case response time of every task is equal to its

minimum inter-arrival time. After defining a cycle time of

∆=25, the sum of the rate parameters (∆

jv) corresponds to a

total bandwidth allocation of 88.37%, a noticeable but

reasonable increase compared to the true requirement. At

the final stage of calculation, however, the need to provide

integer values for the final rate parameters (δ

jv) gives rise to

a significant over-allocation of bandwidth due to the

combination of rounding effects for the overall task set. The

final bandwidth allocation is 120% and, hence, the extent of

the over-allocation is sufficient to make the task set no

longer schedulable on a single processor (by this scheme).

The cyclic schedule has been constructed, however, to

allow individual activities to be removed (or have their

timing attributes changed) without affecting other activities

in the schedule. Hence, it is straight forward to reduce the

task set to one that is schedulable on a single processor by

simply removing one or more activities (to be reallocated to

another processor) until the final bandwidth allocation is

less than 100%. The ability to manipulate the schedule in

this manner is a considerable benefit in the context of

engineering larger-scale real-time systems.

A counter effect of bandwidth over-allocation is an

equivalent reduction in worst-case response times (δ

jR)

compared to the stated requirements (Rj), as can be seen in

Figure 7. For example, λ15 has a final bandwidth allocation

of 4% (equivalent to its execution rate of 0.04) compared to

its stated requirement of 0.1%. The corresponding reduction

in its worst-case response time is apparent in the final value

of 25 compared to an original requirement of 1000. The

over-allocation of bandwidth is due to the restriction that

every task is executed (for a duration δj) in every cycle ∆,

as reflected in the final computation times (δ

jC) given in

Figure 8. This restriction leads to a simpler (and more

readily modifiable) scheduling solution but can be lifted to

allow a more flexible scheme to be defined in favour of

reducing the bandwidth over-allocation. Such a scheme is

described and illustrated below.

Note that the basic scheme does not compromise the true

timing requirements of the task set – there is no imposition

of false iteration rates for the purposes of constructing a

schedule (a criticism often levelled at cyclic scheduling

solutions). Furthermore, the schedule is incrementally

modifiable such that schedulability can be maintained

following activities being added, removed or modified by

merely ensuring that the final bandwidth allocation is less

than 100% (and that the choice of ∆ is still suitable).

8.2 Cyclic Server Implementation Scheme

As suggested above, it is possible to reduce the bandwidth

over-allocation associated with the basic cyclic

implementation scheme by relaxing the constraint that

every activity must be offered the chance to execute in

every cycle. This gives rise to the cyclic bandwidth server

scheme. The starting point is once again the selection of a

cycle time ∆ subject to the same constraint. Then define a

the server activity λ
S
(δ

S
,N

S
) as a notional activity that is

allocated δ
S
 execution time units in every ∆ cycle but does

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

not actually consume that allocation itself. Instead, the

server offers the resource to other activities so that these

can execute with an effective cycle time of N
S
∆. The total

bandwidth of the server can then be used to execute a

number of activities that individually have relatively low

bandwidth requirements that would otherwise be allocated a

disproportionate amount of bandwidth by the basic scheme.

The cyclic server solution exploits the fact that the basic

scheme does not require the execution time allocated to an

activity within a scheduling cycle to be contiguous. The

analysis associated with the cyclic server is, therefore,

exactly analogous to that for the basic cyclic scheme but

with ∆ replaced by N
S
∆. The cyclic server method is

actually a generalisation of the basic cyclic scheme

described above, where multiple cycle times are supported.

The following example illustrates the use of the cyclic

server method to improve bandwidth allocation compared

to the basic cyclic implementation scheme. Assuming the

same basic cycle time ∆=25, define a server λ
S
(2,40) to

execute the low utilisation activities {λ10, …, λ16}. Figure 9

shows the improved results under this scheme (the values of

other parameters not shown in the table are the same as

before under the basic cyclic scheme).

The total capacity of the server λ
S
(2,40) is 08.0=

Sv . Hence,

92% of the total processor capacity is available for non-

server-based activities {λ1, …, λ9} and 8% for server-based

activities {λ10, …, λ16}. So, whilst the total bandwidth

allocation is more efficient than for the basic scheme -

97.5% compared to 120%, this is not sufficient to guarantee

feasibility on a single processor – it is also necessary to

show separately that activities {λ1, …, λ9} can be executed

within their 92% allocation and that activities {λ10, …, λ16}

can be executed within their 8% allocation. From Figure 9,

the combined allocation for activities {λ1, …, λ9} turns out

to be exactly 92% and the combined allocation for activities

{λ10, …, λ16} is 5.5%. Hence, the complete set of activities

is schedulable on a single processor under this scheme. The

improved efficiency of this scheme is also reflected in the

increased number of activities that have been allocated the

exact bandwidth to meet their requirements – 10 out of the

16 activities now, compared to only 4 previously.

Figure 9 – Example - Cyclic Server Implementation

(Execution Rate Parameters)

Figure 10 – Example - Cyclic Server Implementation

(Response Time Parameters)

Figure 11 – Example - Cyclic Server Implementation

(Computation Time Parameters)

Figure 11b – Example - Cyclic Server Implementation

(Computation Time Parameters)

Having obtained the results of the analysis of each system

resource with its allocated activities, these results are then

fed into the end-to-end transaction model to determine the

overall system level response times.

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

9 Conclusions

The RBA performance modelling approach and toolset

have been developed to provide through-life performance

modelling support to the systems engineering process. The

following toolset concepts and components have been

implemented so far :

• a UML model structure and profile for RBA that

integrates with the BAE Systems MAS IMS model

structure and profile;

• an automatic XML file generator from UML model

data (currently in Artisan Studio);

• an XML data representation and validation schema;

• an automatic MATLAB scenario file generator from

XML model data;

• a suite of schedule definition and analysis routines in

MATLAB.

Work continues on the toolset development and technology

transfer to BAE Systems MAS.

10 References

[1] J.Kemp, A.S.Wake, B.Williams, “Development of the

ASAAC Software Architecture,” Proceedings of ERA

Avionics Conference and Exhibition, 2000.

[2] A.Grigg, “Researvation-Based Timing Analysis – A

Partitioned Timing Analysis Model for Distributed

Real-Time Systems,” University of York Thesis YCST-

2002-10, 2002.

[3] C.D.Locke, D.R.Vogel, T.J.Mesler, “Building A

Predictable Avionics Platform in Ada,” Proceedings of

IEEE Real-Time Systems Symposium, 1991.

