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We consider dynamics of magnetic billiards with curved boundaries and strong inhomogeneous

magnetic field. We investigate a violation of adiabaticity of charged particle motion in this system.

The destruction of the adiabatic invariance is due to the change of type of the particle trajectory:

particles can drift along the boundary reflecting from it or rotate around the magnetic field at some

distance from the boundary without collisions with it. Trajectories of these two types are

demarcated in the phase space by a separatrix. Crossings of the separatrix result in jumps of the

adiabatic invariant. We derive an asymptotic formula for such a jump and demonstrate that an

accumulation of these jumps leads to the destruction of the adiabatic invariance. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928473]

The magnetic billiard is a well known model in statistical

physics and nonlinear dynamics. This model imitates

many real complicated systems describing various prob-

lems in magnetism, plasma physics, solid state physics,

and astrophysics. The destruction of adiabaticity of

charged particle motion in magnetic billiards simulates

such important phenomena as exponential decay of cor-

relations and breaking of time reversal symmetry in dy-

namical systems. In this paper, we investigate a new

mechanism responsible for the violation of adiabaticity

for systems with impacts. This mechanism is related to

the separatrix crossing in the phase space. We apply

methods of the adiabatic theory of smooth systems to

magnetic billiards (i.e., for systems with impacts) and

derive the expression determining the rate of adiabatic

invariance destruction.

I. INTRODUCTION

Billiards are considered as universal models of many

physical processes (see special section devoted to billiard

models27 and review Ref. 19). Although, these are rather sim-

ple systems with geometrical laws of particle motion, they

are able to simulate various statistical properties,8,41 statisti-

cal relaxation processes,10 the property of exponential decay

of correlations,12,13 ergodicity of gas models,6 and breaking

of time reversal symmetry of motion.11 Billiard also serves as

a simple model of the Fermi acceleration process.28,29,36

Among many billiard models, the model of magnetic bil-

liards (i.e., motion of charged particles inside some plane do-

main with the imposed magnetic field39) plays an important

role. The magnetic billiard serves as a useful model for quan-

tum mechanical problems15,22,30 and modeling of magnetic

properties of materials (diamagnetism, paramagnetism, con-

ductance, magnetic edge state, etc.),1,20,26,31,42 interaction of

matter with laser field,21,38 and molecular/atom dynamics.2,3,37

In the model of magnetic billiards, the magnetic field

amplitude controls a regularity level of the billiard

motion.7,16 There are several investigations of stochastiza-

tion of motion in the magnetic billiards with and without

curvature of the boundaries of domain where charged par-

ticles move.18,23,43,44 One of possible triggers of stochasti-

zation of motion is the destruction of adiabatic invariance

(for magnetic billiards, the role of this invariant is played

by the classical magnetic moment35). It was shown that

destruction of the adiabaticity in magnetic billiards can re-

alize in case of an inhomogeneous magnetic field.34 The

primary origin of this process is related to jumps of the adi-

abatic invariant due to the change of type of particle motion

(from drifting along the boundary to gyrorotation at some

distance from the boundary without collisions). Different

types of particle motion correspond to different domains in

the phase space demarcated by a separatrix. There is a gen-

eral theory of destruction of adiabatic invariance due to the

separatrix crossing in smooth systems.9,32,33,46 Recently,

this theory was generalized for systems with elastic

impacts.17 In this paper, we adopt this theory to derive the

equation for the rate of the adiabatic invariance destruction

in magnetic billiards with an inhomogeneous magnetic

field.

II. GENERAL EQUATIONS

We apply the Hamiltonian approach for investigation of

charged particle motion in system with impacts (see also

Refs. 49 and 50). This motion inside the 2D domain near the

curved boundary and under the action of the transverse mag-

netic field can be described using curved coordinates s and r:

s is directed along the boundary, while r is the transverse

coordinate (see scheme in Fig. 1).

The corresponding Hamiltonian and sympletic structure

have the form34

H ¼ 1

2m
p2

r þ
p2

s

1þ k sð Þrð Þ2

 !

x2 ¼ dpr � dr þ dps � ds

þ e�1 1þ k sð Þrð Þ e
c

B r; sð Þdr � ds: (1)
a)Electronic mail: artemyev@iki.rssi.ru
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Here, pr and ps are components of particle momentum, e and

c are particle charge and speed of light, e�1B is the magnetic

field magnitude, k(s) is the boundary curvature, and e is a

constant positive parameter. We consider the charged parti-

cle motion in the strong magnetic field, i.e., e� 1 and ampli-

tude of B is of the order of one. The reflection from the

boundary r¼ 0 corresponds to the transformation ps ! ps,

pr!�pr.

We introduce a canonical momentum Ps¼ psþ e�1

A(r, s) where

A r; sð Þ ¼
e

c

ðr
0

1þ k sð Þgð ÞB g; sð Þdg: (2)

Thus, Hamiltonian (1) takes the form

H ¼ 1

2m
p2

r þ
Ps � e�1A r; sð Þ

1þ k sð Þr

 !2
0
@

1
A;

x2 ¼ dpr � dr þ dPs � ds:

(3)

We expand Eq. (2) up to terms �r2

Aðr; sÞ � e

c
B0 sð Þr þ e

2c
r2 k sð ÞB0 sð Þ þ B00
� �

; (4)

where B0¼B(0, s) and B00 ¼ @B=@rjr¼0. We introduce new

variables r/e ! r, s/e ! s, t/e ! t and expand Hamiltonian

(3) as

H ¼ H0 pr; r; es;Psð Þ þ eH1 r; es;Psð Þ;

H0 ¼
1

2m
p2

r þ
1

2m
U;

U ¼ Ps �
e

c
B0 esð Þr

� �2

;

H1 ¼ �
1

m
Uk esð Þr � e

2cm

ffiffiffiffi
U
p

r2 k esð ÞB0 esð Þ þ B00 esð Þ
� �

:

(5)

We introduce dimensionless variables and parameters

ðpr;PsÞ ! ðpr;PsÞ=
ffiffiffiffiffiffiffiffi
mh0

p
;

bðesÞ ¼ B0ðesÞ=B0ð0Þ;
s! seB0ð0Þ=c

ffiffiffiffiffiffiffiffi
mh0

p
;

r ! reB0ð0Þ=c
ffiffiffiffiffiffiffiffi
mh0

p
;

kðesÞ ! kðesÞ
ffiffiffiffiffiffiffiffi
mh0

p
c=eB0ð0Þ;

t! teB0ð0Þ=mc;

B00ðesÞ=B0ð0Þ ¼ b00eB0ð0Þ=c
ffiffiffiffiffiffiffiffi
mh0

p

(6)

and rewrite Eq. (5) as

H0 ¼
1

2
p2

r þ
1

2
Ps � brð Þ2

H1 ¼ � Ps � brð Þ2kr � 1

2
Ps � brð Þr2 kbþ b00

� �
:

(7)

Here, h0 is a characteristic value of particle energy, while

dimensionless (normalized on h0) energy is h. For frozen

(s, Ps) Hamiltonian H0 describes periodic particle oscillations

near the boundary r¼ 0. The phase portrait shown in Fig. 1

demonstrates that there are two types of particle trajectories:

with collisions and without collisions with the boundary. The

phase region filled by trajectories of these two types are

demarcated by the separatrix (shown by the solid grey curve).

The region surrounded by the separatrix corresponds to par-

ticles that do not collide with the boundary. Particles colliding

with the boundary r¼ 0 are reflected from it. For slowly vary-

ing (s, Ps), the position of the separatrix changes due to mag-

netic field inhomogeneity, and particles can change the type

of motion, i.e., particles colliding with the boundary can start

moving along the trajectories without collisions. Such separa-

trix crossing leads to violation of the adiabaticity of the

motion because the period of particle oscillations near the sep-

aratrix depends on the particle energy singularly (cf. Ref. 17).

To describe this violation of the adiabaticity we introduce the

action as the area surrounded by the trajectory25 and describe

the dynamics of this action

I ¼ 1

2p

þ
prdr

¼ 1

p

ðrmax

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h� Ps � b esð Þrð Þ2

q
dr ; (8)

where the coordinate rmax is defined as

rmax ¼
Ps þ

ffiffiffiffiffi
2h
p

b esð Þ : (9)

To introduce I as a new variable we use the generating function

Wðr; Î; s; P̂sÞ ¼ sP̂s þ
ðr
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h� ðPs � bðesÞ~rÞ2

q
d~r; (10)

where the new momentum P̂s ¼ Ps � @W=@s. Thus, the new

Hamiltonian is

FIG. 1. Top panel shows the fragment of the particle trajectory, while the

bottom panel shows the corresponding phase portrait in the (r, pr) plane.
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Ĥ ¼ Ĥ0 I; es;Psð Þ þ e ~H1 I;/; es;Psð Þ
þ eĤ1 I;/; es;Psð Þ;

~H1 ¼
@W

@s

@H

@Ps
� @H0

@s

@W

@Ps
;

(11)

where Ĥ1 is H1 from Eq. (7) written in new variables and we

keep notation I for Î . Instead of the variable conjugate to I,
we use a phase / defined as

r ¼ Ps þ
ffiffiffiffiffi
2h
p

sin /ð Þ
b esð Þ

;

_/ ¼ b; / 2 �/�; pþ /�½ �;

/� ¼ arcsin Ps=
ffiffiffiffiffi
2h
p� �

;

(12)

/ is a gyrophase, but it changes from one collision with the

boundary to another one. In the new variables, the

Hamiltonian H1 takes the form

Ĥ1 ¼
1

2

2hð Þ3=2

b2

Psffiffiffiffiffi
2h
p
� �2

b00 þ kb
� �

sin /ð Þ

þ 1

2

2hð Þ3=2

b2
2b00

Psffiffiffiffiffi
2h
p sin2 /ð Þ

þ 1

2

2hð Þ3=2

b2
b00 � kb
� �

sin3 /ð Þ: (13)

Fig. 1 shows that for frozen values of (s, Ps) particles move

along the periodic trajectories in the phase plane (r, pr). For

slowly changing (s, Ps), the area surrounded by these trajecto-

ries and boundary r¼ 0 can be considered as an adiabatically

conserved quantity. This invariant is conserved with an accu-

racy � e. However, we can introduce the improved adiabatic

invariant J which is conserved everywhere far from the sepa-

ratrix with the accuracy�e2. The adiabatic invariant experien-

ces small jumps in case of change of type of motion. Such

change appears when a charged particle moving along the

boundary (and reflecting from it) takes off from the boundary

and starts drifting along the contours B(r, s)¼ const. In anal-

ogy with smooth systems (without collisions, see Ref. 32),

the change of type of motion could result in a jump of I (see

Refs. 17 and 34). In case when a particle comes to the bound-

ary again after a certain time, jumps of the adiabatic invariant

may result in stochastization of charged particle motion.34 To

estimate the efficiency of this stochastization, one should

derive the expression for the jump of the adiabatic invariant.

To derive the expression for the jump, use the improved adia-

batic invariant J¼ Iþ eu where

u ¼ Ĥ1 þ ~H1 � hĤ1 þ ~H1i
@H0=@I

� @I

@Ps

@W

@s
(14)

and brackets denote the averaging over / oscillations.32

Function u can be calculated at any point along the r-axis. For

the point r¼ 0 (i.e., at the boundary), Eq. (14) takes the form

u ¼ �hĤ1i þ h ~H1i
@H0=@I

¼ � T

2p
hĤ1i þ h ~H1i
� �

; (15)

where

4ph ~H1i ¼
ðT
0

@H0

@Ps

ðt
0

@H0

@es
d~t

0
B@

1
CAdt (16)

�
ðT
0

@H0

@es

ðt
0

@H0

@Ps
d~t

0
B@

1
CAdt (17)

and T is the period of particle oscillation in the (r, pr) plane

(the time interval between two collisions with the boundary).

Thus, to derive the expression for jump DJ, one should con-

sider two terms: DI and Du.

III. JUMP OF THE ADIABATIC INVARIANT

The main variation of the adiabatic invariant corresponds

to particle motion near (and taking off from) the boundary.

Thus, we consider the close vicinity of the moment of particle

taking off from the boundary. This moment corresponds to

the equation Ps �
ffiffiffiffiffi
2h
p

¼ 0. Thus, following the general

approach (see Ref. 32), we introduce a variable K as a differ-

ence of particle energy h and energy calculated at the separa-

trix Hsep ¼ P2
s=2 : K ¼ h� P2

s=2 ¼ hð1� P2
s=2hÞ. At the

close vicinity of the boundary, K is small (at the boundary

H¼Hsep and K¼ 0). To derive an expression for change of

adiabatic invariant at time-scale of one period of oscillations

at the (r, pr) plane, we need to obtain formula for period of

these oscillations T and rate of change eH of area S sur-

rounded by the separatrix.

To obtain formula for T, we use the identity T
¼ 2pð@I=@hÞ ¼ 2pð@I=@KÞ and consider small enough

j¼K/h (i.e., we consider particle motion near the separa-

trix). We evaluate integral (8)

I ¼ 2h

pb

ð1
�Ps=

ffiffiffiffi
2h
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
dy

¼ 2h

pb

1

2

p
2
þ Psffiffiffiffiffi

2h
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðPs=

ffiffiffiffiffi
2h
p
Þ2

q
þ arcsin

Psffiffiffiffiffi
2h
p
� �� �

¼ 2h

pb

1

2

p
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
1� j
p ffiffiffi

j
p
þ arcsin

ffiffiffiffiffiffiffiffiffiffiffi
1� j
p� �� �

(18)

and expand it around j¼ 0

I � 2h

pb

p
2
� 1

3
j3=2

� �
: (19)

Equation (19) provides the following expression for period

of particle oscillations:

T � Tsep � 3pa
ffiffiffi
j
p

; (20)

where Tsep is regular (not depending on j) part of period

(i.e., period calculated along the separatrix), while a¼ 2/

(3pb).
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The value of H can be calculated as H ¼ fS;H0g
¼ ð@S=@esÞð@H0=@PsÞ � ð@S=PsÞð@H0=@esÞ. In the limit j
! 0, we have H � �ð@S=@PsÞð@H0=@esÞ where (see

Ref. 32)

@H0

@es
¼ � @I=@es

@I=@h
¼ b0s

b
h;

@S

@Ps
¼ �

þ
@ H � Hsepð Þ

@Ps
dt ¼ b

þ
rdt ¼ 2p

ffiffiffiffiffi
2h
p

b
:

(21)

Thus, we have eH ¼ �pb0sð2hÞ3=2=b2.

Then, the same procedure should be performed with u
term given by Eq. (15). For term h �H1i, we have

hĤ1i ¼
1

2

2hð Þ3=2

b3T
2b00

Psffiffiffiffiffi
2h
p

ðpþ/�

�/�

sin2 /ð Þd/

þ 1

2

2hð Þ3=2

b3T
b00 � kb
� � ðpþ/�

�/�

sin3 /ð Þd/

þ 1

2

2hð Þ3=2

b3T

Psffiffiffiffiffi
2h
p
� �2

b00 þ kb
� � ðpþ/�

�/�

sin /ð Þd/

¼ 2hð Þ3=2

b3T

Psffiffiffiffiffi
2h
p
� �2

b00 þ kb
� �

cos /�

þ 2hð Þ3=2

b3T
b00

Psffiffiffiffiffi
2h
p p

2
þ /� � 1

2
sin 2/�

� �

þ 2hð Þ3=2

b3T

2

3
b00 � kb
� � 1

2
sin2/� þ 1

� �
cos /�; (22)

where /� ¼ arcsinð
ffiffiffiffiffiffiffiffiffiffiffi
1� j
p

Þ. Thus, expansion of Eq. (22)

around j¼ 0 gives

hĤ1i �
2hð Þ3=2

b3T
b00 þ kb
� � ffiffiffi

j
p

1� jð Þ

þ 2hð Þ3=2

b3T
b00 p� 2

ffiffiffi
j
p
� pj

2

� �

þ 2hð Þ3=2

b3T
b00 � kb
� � ffiffiffi

j
p

1� 1

3
j

� �

� 2hð Þ3=2

b3T
b00p 1� j=2ð Þ: (23)

For the second term in Eq. (15), one can find

h ~H1i ¼
1

4p

ðT
0

@H0

@Ps

ðt
0

@H0

@es
d~t � @H0

@es

ðt
0

@H0

@Ps
d~t

0
B@

1
CAdt

¼ 2hð Þ3=2
b0s

4pb3

ð/�þp

�/�

sin2 /ð Þ
ð/
�/�

sin ~/
� �

d~/d/� 2hð Þ3=2
b0s

4pb3

�
ð/�þp

�/�

sin /ð Þ
ð/
�/�

sin2 ~/
� �

d~/

0
B@

1
CAd/ ¼ 0: (24)

Thus, expression for J around j¼ 0 takes the form

J ¼ I þ eu ¼ I � eTh �H1i

¼ I � e
2hð Þ3=2

2b3
b00 1� j=2ð Þ: (25)

Let us estimate effects of variations of terms I and u on jump

of the improved adiabatic invariant J. One can show that for

j � e the change of J for one period of the oscillations (i.e.,

between two collisions) is a value of order e3/j3=2. The value

of j decays by eH between two collisions. Thus, the change

of J when j decays from a value �1 to a value �e is

�e2=e1=2 � e3=2. The change of J when j decays from a

value �1 to a value j� 	 e is �e2=j1=2
� � e3=2. Thus, for

calculation of asymptotic of change of J, it is enough to con-

sider motion when j
j*. However, the change of eu for

this motion is �ej* at most. Take e � j*� e1=2. Then, the

change of eu for this motion is �e3=2. Thus, we can neglect

the variation of u in our calculation of asymptotic of jump of

J and consider only variation of I for motion in the domain

of small j.

For one period of oscillations in the (r, pr) plane, we can

write the following expression for change of 2pI ¼ S
þ h

Ð j
0

Tðhj; s;PsÞdj (change between ith and (iþ 1)th colli-

sions with boundary; the index i decreases as the particle

moves to the position of taking off):

2pðIi � Iiþ1Þ ¼ DSi þ h

ðji

jiþ1

TðHsep þ hj; s;PsÞdj; (26)

where T is given by Eq. (20), while the change of the area

surrounded by the separatrix DS is

DSi ¼ Si � Siþ1 ¼ eH
1

2
Ti þ Tiþ1ð Þ (27)

and eH is a rate of S variation calculated for the position of

taking off, while Ti is the period calculated in the ith collisions

with boundary. Substituting Eq. (20) to Eq. (26), we get

2p Ii � Iiþ1ð Þ ¼ eHTsep �
3

2
eHpa j1=2

i þ j1=2
iþ1

� �

þh

ðji

jiþ1

Tsep � 3paj1=2
� �

dj

¼ eHTsep �
3

2
eHpa j1=2

i þ j1=2
iþ1

� �
þ hTsep ji � jiþ1ð Þ � 2pah j3=2

i � j3=2
iþ1

� �
:

(28)

As h(ji – jiþ1)¼�eH (see Ref. 4), Eq. (28) can be rewritten

as

Ii � Iiþ1 ¼ �
3

4
eHa j1=2

i þ j1=2
iþ1

� �
� ah j3=2

i � j3=2
iþ1

� �
: (29)

We calculate the sum of changes (29) starting from the pe-

riod i¼N – 1 far from the separatrix and up to period i¼ 0

(the last period before the separatrix crossing)
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I0 � IN ¼
XN�1

i¼0

Ii � Iiþ1ð Þ ¼ �ah j3=2
0 � j3=2

N

� �

� 3

2
eHa

XN

i¼0

j1=2
i � 1

2
j1=2

N � 1

2
j1=2

0

 !
: (30)

We also should add the last period of oscillations including

the separatrix crossing

I�1 � I0 ¼
1

2p
DS�1 � h

ðj0

0

Tdj� h

ð0
j�1

Tsepdj

0
B@

1
CA

¼ � 3

4
eHaj1=2

0 þ ahj3=2
0 ; (31)

where Tsep is the regular part of the period, i.e., the first term

in Eq. (20). The regular part of integral compensates the reg-

ular part of DS�1. Sum of Eq. (30) and (31) gives

I�1 � IN ¼ �
3

2
eHa

XN

i¼0

j1=2
i þ ahj3=2

N þ 3

4
eHaj1=2

N : (32)

We introduce the new variable n ¼ hj0=ðeHÞ 2 ð0; 1Þ and

use expression hji ¼ hj0 þ ieH to rewrite Eq. (32)

I�1 � IN ¼�A eHð Þ3=2

� 3

2

XN

i¼0

nþ ið Þ1=2� nþNð Þ3=2� 3

4
nþNð Þ1=2

 !
;

(33)

where A ¼ a=
ffiffiffi
h
p
¼ 2=ð3pb

ffiffiffi
h
p
Þ. Thus, the total jump of the

adiabatic invariant can be written as

DJ ¼ lim
N!1
ðI�1 � INÞ ¼ �AðeHÞ3=2f ðnÞ; (34)

where

f nð Þ ¼ 3

2
lim

N!1

XN

i¼0

nþ ið Þ1=2 � 3

4
nþ Nð Þ1=2 � nþ Nð Þ3=2

:

(35)

The function f(n) can be written in the integral form17

f nð Þ ¼ 3

4
ffiffiffi
p
p

ð1
0

dt

t3=2

1

2
� nþ 1

t
� exp �ntð Þ

1� e�t

� �
: (36)

The final dimensional expression for the jump DJ is

DJ ¼ �AðeHÞ3=2f ðnÞ; (37)

where DJ, A, and H are written in dimensional form (we

take into account that
ffiffiffiffiffi
2h
p

¼ 1 when h0 is equal to the initial

value of energy H)

H ¼ �pc 2h0ð Þ3=2 ffiffiffiffi
m
p

eB2
0

@B0

@s

A ¼ 2

3p
mc

eB0

ffiffiffiffiffi
h0

p :

(38)

Equation (32) shows that DJ� e3=2. The variable n changes

significantly in case of small variations of initial particle

position far from the position of taking off. Thus, n is tradi-

tionally considered as a quasi-random variable with uniform

distribution within the range (0, 1) (see Ref. 32).

IV. NUMERICAL SIMULATIONS

To verify Eq. (37), we numerically integrate trajectories

of charged particles interacting with the boundary. Equation

(37) shows that DJ does not depend on the boundary curva-

ture k(s); thus, we restrict our consideration by a simplified

system with the straight boundary. We introduce Cartesian

coordinates (x, y) and conjugate momenta (px, py) for the

dimensionless Hamiltonian

H ¼ 1

2
p2

x þ
1

2
py � b eyð Þx
� �2; (39)

where b(ey)¼ 1þ (ey)2 for x> 0, and energy h¼ 1/2. The

improved adiabatic invariant J coincides with I at the bound-

ary x¼ 0; thus, we use I defined at x¼ 0 instead of calcula-

tion of function u.

An example of the particle trajectory in this system is

shown in Fig. 2. The particle moves along the boundary

x¼ 0 reflecting from it and rotating in the magnetic field.

This motion corresponds to the increase of jyj, i.e., the parti-

cle drifts toward the negative y values. Due to the increase of

b with jyj, the particle Larmor radius becomes smaller and

the distance between the boundary and the center of the

Larmor circle becomes larger during the drift along the

boundary. Around y��100, the particle takes off from the

boundary. This moment is shown in detail in the middle

panel of Fig. 2. After taking off from the boundary, the

FIG. 2. The particle trajectory in the

(x, y) plane (left panel) and the

moment of particle taking off (middle

panel) are shown for system (39) with

e¼ 10�2. Right panels show py and I
profiles along the trajectory.
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particle starts rotating around magnetic field without colli-

sions with the boundary. This rotation is much faster than

the drift along the boundary, while the boundary drift is

much faster than the gradient drift of particles far from the

boundary. Thus, the particle trajectory looks like a sequence

of circles slightly shifted one relative to other (see the middle

panel of Fig. 2). The moment of taking off corresponds to

py¼ 1 (i.e., d ¼ 1� py=
ffiffiffiffiffi
2h
p

¼ 0). We show both profiles of

py and the adiabatic invariant I to demonstrate that I starts

changing before the py¼ 1 point, while for py> 1 the adia-

batic invariant is constant with a high accuracy. This change

of the adiabatic invariant between the initial value and final

(for py> 1) value is the jump of J.

To check the dependence of DJ on the small parameter e
and on quasi-random variable n, we compare numerical

results and the analytical expression for DJ. To this end, we

choose three values of e, generate an ensemble of 106 par-

ticles with different n, and trace these particles backward

and forward in time. Then, for each trajectory, we determine

the jump of the adiabatic invariant and normalize it on the

coefficient �A(eH)3=2. For trajectories with the same n, we

calculate the value of f as a ratio of DJ and �A(eH)3=2 (see

Eq. (37)). Comparison of such numerical functions f(n) and

integral expression (36) is shown in Fig. 3. One can see that

for small enough e the numerical calculations describe ana-

lytical expressions quite well.

V. DISCUSSION AND CONCLUSIONS

The violation of adiabaticity described by Eq. (37) is

related to a non-smooth dependence of the period of oscilla-

tions on energy near the separatrix: T � Tsep � 3pa
ffiffiffi
j
p

,

Eq. (20). For separatrix crossings in smooth Hamiltonian

systems considered in Refs. 9, 32, 33, and 46, the period has

a logarithmic singularity on a separatrix, T� lnj. The corre-

sponding jump in adiabatic invariant is DJ� e. In our case,

the singularity is weaker, �
ffiffiffi
j
p

, what results in a smaller

jump: DJ� e3=2.

Besides the general theoretical interest, obtained results

can be important for description of processes in cosmic

plasma systems. Equation (37) shows that the jump of the

adiabatic invariance in the system with strong magnetic field

and impacts is about �e3=2. The amplitude of this jump is

significantly larger than the rate of the magnetic moment

change in system with strong magnetic field without a

change of type of the particle motion, DJ � expð�1=eÞ (see

Refs. 14 and 47). There are several space plasma systems

where magnetic field configuration assumes the billiard-like

motion with the change of type of motion (drift along the

boundary and gyrorotation at some distance from the bound-

ary). These are magnetic structures with a local minimum

of the magnetic field inside some volume and the strong

magnetic field outside it (e.g., plasmoids,40,45 magnetic

holes,5,24,48 etc.). The particle (electron) motion inside such

structures resembles the billiard motion. Thus, our theory

predicts that for a time interval Dt� 1/e a change of the mag-

netic moment for such particles is about e3=2. The averaged

jump hDJin is equal to zero, thus, the rate of the adiabatic

invariant diffusion is determined as hðDJÞ2in=Dt � e4. As a

result, for a time interval � e�4 all particles inside such mag-

netic structures should be significantly mixed due to the

destruction of initial magnetic momenta.

To conclude, we have derived the equation for the rate

of adiabatic invariance destruction DJ (33, 37) for magnetic

billiards. We have shown that DJ does not depend on the

boundary curvature k(s) as well as on the magnetic field

inhomogeneity across the boundary @B/@r. The scaling of

DJ� e3=2 and dependence of DJ on n are similar with the

scaling and dependence DJ(n) derived before for a potential

system with impacts.17 Thus, there is a certain universality

of the process of adiabaticity destructions in the system with

impacts. However, in contrast to the system,17 in the billiard

with the inhomogeneous magnetic field, many takes off from

the boundary (i.e., many jumps of the adiabatic invariant)

result in a stochastization of motion in large phase space

domain.34
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