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Abstract

This thesis describes the work of three research projects, the background

research that motivated the work, and the resultant project findings. The three

projects concerned: (i) Geometric stochastic resonance in a double cavity, (ii)

Synchronisation of geometric stochastic resonance by a bi-harmonic drive, and

(iii) Rectification of Brownian particles with oscillating radii in asymmetric

corrugated channels. In the project ’Geometric stochastic resonance in a double

cavity’, we investigated synchronisation processes for the geometric stochastic

resonance of particles diffusing across a porous membrane and subject to a

periodic driving force. Non-interacting particle currents were driven through a

symmetric membrane pore either parallel or perpendicular to the membrane.

Then, harmonic mixing spectral current components were generated by the

combined action of parallel and perpendicular drives. The role of the repulsive

interaction of particles as a controlling factor with potential applications to the

transport of colloids and biological molecules through narrow pores was also

investigated.[1]

In ’Synchronisation of geometric stochastic resonance by a bi-harmonic drive’,

we simulated the stochastic dynamics of an elliptical particle using the Langevin

equation. The particle was simultaneously driven by low and high frequency

harmonic drives across a porous inter-cavity membrane. It was observed that

the particle oscillated out of phase with the low frequency drive. This effect

was due to the absolute negative mobility the particle would have exhibited if

the low frequency drive had been replaced by a dc static force. It was also

observed that the magnitude of this out-of-phase stochastic resonance depends

on how the combined action of the driving forces and noise fluctuations affect

the particle orientation, and as such was shown to be sensitive to the particle

shape. This emphasises the importance of particle geometry, in addition to

chamber geometry, to the realisation and optimisation of geometric stochastic

resonance.[2]

In the project ’Rectification of Brownian particles with oscillating radii in

asymmetric corrugated channels’, we simulated the transport of a Brownian

i



ii

particle with an oscillating radius freely diffusing in an asymmetric corrugated

channel over a range of driving forces for a series of temperatures and angular

frequencies of radial oscillation. It was observed that there was a strong influence

of self-oscillation frequency upon the average particle velocity. This effect can

be used to control rectification of biologically active particles as well as for their

separation according to their activity, for instance in the separation of living

and dead cells.[3]

The background research is described in Chapter One and the research find-

ings are described along with their related projects in Chapters Two and Three.
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Chapter 1

Stochastic Transport

In this first chapter, we introduce stochastic transport in several of its forms

including: stochastic resonance, rectification and absolute negative mobility. We

define and describe these phenomena, with particular emphasis upon rectifica-

tion and a form of stochastic resonance called geometric stochastic resonance.

We describe some models of stochastic transport and discuss their inherent lim-

itations. We also consider some of the applications of stochastic transport to

superconductivity, nanotechnology and biological systems.

The purpose of this introductory chapter therefore is to review the back-

ground material necessary to the understanding of the research undertaken and

to review the research that motivated that work. Here we wish to set geometric

stochastic resonance and rectification in the context of stochastic transport. We

wish to justify the use of the overdamped Langevin equation. We also wish to

highlight the limitations of modelling stochastic transport in one dimension and

the irreducible dynamics of geometric stochastic resonance. Finally we wish to

summarise some of the practical applications of the control of stochastic trans-

port.

Throughout this work noise serves as the common characteristic that joins

all these apparently disparate topics together. Noise in one form or another is

responsible for all the stochastic transport mechanisms we shall have cause to

discuss herein: stochastic resonance, geometric stochastic resonance, absolute

negative mobility, rectification and more besides. It is the most important pre-

requisite ingredient for directed transport on the nanoscale and consequently

motivates an increasing amount of research as our technologies arrive on the

nanoscale and are forced to confront the challenge of achieving directed trans-

port in a noisy environment. Noise and its utility in achieving directed transport

on the nanoscale is the common motivator behind the works we present here.

viii



CHAPTER 1. STOCHASTIC TRANSPORT 1

Stochastic transport is defined as the transport of particles by consequence

of the constructive interaction of random noise with a system. If the noise was

absent the directed transport would cease. Stochastic transport encompasses

phenomena such as stochastic resonance, rectification and absolute negative

mobility amongst others, all of which we shall define in turn.

To begin our discussion of stochastic transport we will describe a model

thereof. The model that we describe here is based upon Burada et al and is

included for illustrative purposes.[4] Later we will depart from this sample model

to more specific models to either illustrate our point or in the case of Chapters

Two and Three to describe the models used in our simulations.

Burada et al considered some rigid spherical particles confined in a two or

three dimensional channel.1 For ease of modelling they made some simplify-

ing assumptions. The channel extends along the x axis and has a periodically

varying cross-section as shown in Figure 1.1.[4]. The channel has smooth rigid

walls and is reflection symmetric about the x axis in two dimensions and ax-

ially symmetric about it in three. The channel half-width is described by the

well behaved boundary function W (x). The boundaries confine the particles

to the channel in such a way that no energy is exchanged in particle-boundary

interactions. The possibility of particle adsorption on the boundary walls is also

neglected for ease of modelling. Burada et al also neglected particle rotations

about their centre of mass and the consequent particle-boundary contact forces.

The spherical particle’s radius is less than the minimum channel half-width such

that the particles can move unhindered throughout. This latter consideration is

often relaxed in our own models, where particle radius or semi-major axis may

exceed the channel half-width at times during the simulation.

In the Burada et al model the non-extensive point-like particles are assumed

to be in the laminar flow regime whereby they cause little disturbance to the

fluid medium through which they pass. Therefore the force on a particle at

position ~x = (x, y, z) due to the surrounding fluid medium is given by Stokes’

law:
~FStokes = −γ[~̇x− ~v(~x, t)], (1.1)

where ~v(~x, t) is the instantaneous fluid velocity in the absence of the particles,

~̇x is the instantaneous velocity of the particles and the friction constant is given

by:

γ = 6πηR, (1.2)

where η is the shear viscosity of the medium and R is the particle radius.[4, 5]

1The model presented here and in sections 1.1.1 and 1.2.1 is taken with little alteration
from: Burada, P.S. Hänggi, P. Marchesoni, F. Schmid, G. and Talkner, P. (2009), ’Diffusion
in Confined Geometries’, ChemPhysChem, 10, pp. 45 - 54.
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Figure 1.1: Stochastic transport in a confined geometry. Here we present an example
model of stochastic transport in a confined geometry. The channel extends along the
x axis. It is axially symmetric about the x axis in two and three dimensions. The
particles are solid spheres suspended in a fluid medium and no energy is exchanged in
particle-boundary interactions.[4].

This is specific to the spherical particles but differs with particle shape.

The fluid medium also exerts a random thermal force Fth on the spherical

particles. For simplicity of modelling, Burada et al assume a homogeneous

temperature T throughout the medium and a velocity field that is approximately

constant on the scale of the particles R. Therefore to insure thermalization at

temperature T, it is only necessary to describe the thermal force as follows:

~Fth(t) =
√

2γkBT ~ξ(t), (1.3)

where kB is the Boltzmann constant and ~ξ(t) is a standard Gaussian white

noise with 〈~ξ(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δijδ(t− t′) for i, j = x, y, z. It is also

assumed that other forces acting on the spherical particles can be neglected,

such as the force of hydrodynamic interaction between particles and between

particles and the boundary. For this latter assumption to hold it is necessary

that a low particle number density be considered.[4, 7, 8]

An external force Fext may also act on the particles. For simplicity, Burada

et al assume that the only external force acting on the particles is a constant

external driving force acting along the symmetry axis of the channel, though for

stochastic resonance to occur one would require that Fext = A cosωt instead of

a constant. The motion of the centre of mass x(t) of a single particle of mass
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m is then given by the following equation of motion:

m~̈x = ~Fext + ~FStokes + ~Fth(t), (1.4)

m~̈x = ~Fext − γ[~̇x− ~v(~x, t)] +
√

2γkBT ~ξ(t), (1.5)

where ~v(~x, t) is the fluid velocity field which may be time dependent. For par-

ticles on the scale of 1µm moving with speeds on the order of 1cms−1, the

inertial term m~̈x(t) in equations 1.4, 1.5 is negligibly small compared to the

other forces acting on the particle.[4] Therefore, provided that the fluid velocity

field does not change too rapidly, the particle mass can be set to zero, giving

the overdamped limit to the Langevin equation or the so called Smoluchowski

approximation. Under these conditions, equation 1.5 simplifies to equation 1.6

after rearrangement.[4, 38]

~̇x = ~v(~x, t) +
1

γ
~Fext +

√
2kBT

γ
~ξ(t). (1.6)

This Langevin equation is equivalent to a Fokker-Planck equation for the

probability density P (~x, t) of a particle to be found at the position x at time t,

given by equation 1.7.[4]

∂P (~x, t)

∂t
= −~∇ · ~J(~x, t). (1.7)

Here ~J(~x, t) is the probability current density given by equation 1.8.[4]

~J(~x, t) = −

[
~v(~x, t) +

~Fext
γ

]
P (~x, t) +

kBT

γ
~∇P (~x, t). (1.8)

In addition to the equation of motion an appropriate set of boundary condi-

tions is also required for a full implementation of a stochastic transport model.

These boundary conditions are channel dependent, but in general are made up of

two components namely transverse and longitudinal boundary conditions. The

longitudinal boundary conditions describe how the particle ’enters’ and ’leaves’

the channel segment under study, while the transverse boundary conditions de-

scribe how the particle interacts with the surrounding walls.

The transverse boundary conditions require that the particle does not pene-

trate the boundary or adhere to it. This is achieved by implementing a boundary

condition such as:

~n(~x) · ~J(~x, t) = 0 ~x ∈ wall, (1.9)

where ~n(~x) is the unit vector normal to the boundary.[4] Since the particles
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are almost point-like solid spheres, this boundary condition is implemented at

a radial distance R parallel to the boundary.[4]

The longitudinal boundary conditions in an infinitely long periodic channel

such as that depicted in Figure 1.1 are implemented by a boundary rule such

as:

P (x, y, z, t) = P (x+ L, y, z, t), (1.10)

where L is the chamber length.[4]

Collectively the equation of motion and the boundary conditions allow the

modelling of any stochastic transport through a channel. For this reason we

have described the Burada et al model. It is from sample models such as this

that we depart to specific models in Chapters Two and Three.

1.1 Stochastic Transport in One Dimension

We now consider stochastic transport in one dimension: its success and

failures.

At first it may seem that stochastic transport was modelled in one dimen-

sion for reasons of simplification of simulation, whilst this may have been a

consideration it was not the motivating factor. Stochastic transport came to

be modelled in one dimension because it was realised that Brownian motors

achieved directed transport on the nanoscale by means of confining particles

to constrained geometries of effectively one dimension wherein their Brownian

motion was used to assist directed transport. Therefore, the study of stochas-

tic transport in confined geometries sought to reproduce the physical reality

by using one-dimensional models. It should be added that Brownian motion is

the continual random motion of small particles suspended in a liquid or gas by

consequence of their being bombarded by still smaller particles of the medium

namely atoms or molecules. Furthermore, Brownian motors are microscale to

nanoscale devices that use thermal noise to assist directed motion by overcoming

intervening energy barriers.[26]

Here therefore, we will begin with a description of a one dimensional model of

stochastic transport developed from its two and three dimensional counterparts.

We will then consider its successes and failures. The latter have led to the

need for the description of some stochastic transport phenomena, for example,

geometric stochastic resonance, in higher dimensions rather than the customary

one dimensional models described here.
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1.1.1 Stochastic Transport in One Dimension

To model the stochastic transport of spherical particles in a two or three di-

mensional periodically constrained geometry in one dimension, we begin with an

ideal case, namely the stochastic transport of a single point-like particle on a one

dimensional energetic potential V (x) with period L, such that, V (x) = V (x+L).

The potential V (x) may also be reflection symmetric, such that V (x) = V (−x),

if we happen to be considering a ratchet potential. The particle’s stochastic

dynamics can then be modelled by the Langevin equation:

mẍ = −V ′(x)− γẋ+ F +
√

2γkBTξ(t), (1.11)

where m is the particle mass, x is the particle position, γ is the coefficient of

friction, F is an external driving force, kB is the Boltzmann constant, T is

the temperature and ξ(t) is a Gaussian white noise. This is consistent with

equation 1.5, if we let Fext = −V ′(x) + F and v(x, t) ≡ 0.[4, 6]

As mentioned previously, for systems on the scale of 1µm or less, particle

dynamics can be described to a good approximation by the overdamped limit

to equation 1.11, wherein the inertia term mẍ can be dropped owing to its

negligible contribution to particle dynamics. This leads to the Smoluchowski

approximation to the Langevin equation.[4]

γẋ = −V ′(x) + F +
√

2γkBTξ(t). (1.12)

The overdamped particle remains trapped at a minimum of the tilted ener-

getic potential as long as the driving force F is less than the depinning thresh-

old Fp, (F ≤ Fp), where Fp = max(V ′(x)). Drift results only from noise-

induced hopping between adjacent minima. When the driving force F exceeds

Fp, (F > Fp), there are no such minima and the particle moves in the direction

of the driving force with an average speed approaching F/γ.[4] This behaviour

is described by the mobility formula:[4]

µ(F ) ≡ 〈ẋ〉
F
, (1.13)

where 〈ẋ〉 is given by:

〈ẋ〉 ≡ 〈x(t)〉
t

. (1.14)

As the particle moves due to the driving force F , the random hops cause

a spatial dispersion of the particle about its average position 〈x(t)〉.[4] This is
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described by the normal diffusion coefficient:[4]

D(F ) ≡ lim
t→∞

〈x(t)2〉 − 〈x(t)〉2

2t
. (1.15)

These formulas for the nonlinear mobility 1.13 and the normal diffusion

coefficient 1.15 can be reformulated to describe stochastic dynamics on a 1D

substrate.[4] However, as we shall see in subsection 1.2.1, they fail to reproduce

the experimental results for large driving forces or sharp confining geometries,

thus limiting the applicability of the 1D reductionist approach.

For the spherical particles that we are considering moving in the static fluid

medium of a two or three dimensional confining geometry, as the particle ra-

dius approaches zero, elastic contact particle-particle interaction forces can be

neglected. Moreover, the particle interactions with the boundary walls can be

modelled by equation 1.9, as long as particle-boundary interactions caused by

the fluid medium can also be neglected.[4, 7, 8]

If we assume that these particles are suspended in a static medium and

are subjected to an external driving force F (x, t) along the channel axis, then

their overdamped Brownian dynamics can be modelled by either the Langevin

equation 1.6, 1.12 above, or by the corresponding Fokker-Planck equation 1.7,

both with ~v(~x, t) ≡ 0. Unfortunately for the generic periodic channel W (x),

represented in Figure 1.1, no exact analytical solution to the Fokker-Planck

equation with the boundary conditions of equation 1.9 is known. Consequently

an approximate solution has to be found by reducing the problem to that of

driven Brownian motion on an effectively one dimensional periodic potential. In

the process of reduction, the confining geometries of the two or three dimensional

model are replaced by the entropic barriers of the one dimensional model.[4]

When F = 0, the Brownian dynamics of these particles in two or three

dimensions is approximated by a Fick-Jacobs kinetic equation in the one di-

mensional model with a spatially dependent diffusion coefficient:

∂P (x, t)

∂t
=

∂

∂x

[
D(x)σ(x)

∂

∂x

P

σ(x)

]
, (1.16)

where σ(x) is a dimensionless channel cross-section parameter best fitted by

σ(x) = 2W (x)/L in two dimensions and σ(x) = πW 2(x)/L2 in three dimen-

sions. [4, 11, 79, 80] The x-dependent diffusion coefficient improves the accuracy

of the Fick-Jacobs kinetic equation and extends its validity to larger amplitudes

of W (x):

D(x) =
D0

[1 +W ′(x)2]α
, (1.17)

where values of α = 1/3 in two dimensions and α = 1/2 in three dimensions, give
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the best results for wall curvature effects in the one dimensional model.[4, 12, 80]

However, as already mentioned, the x-dependent diffusion coefficient retains its

attendant problems of accuracy at larger values of amplitude and driving force,

as shall be seen in section 1.2.1.

For a weak driving force F along the channel axis, the Fick-Jacobs kinetic

equation can be expressed as:

∂P

∂t
=

∂

∂x
D(x)

[
∂P

∂x
+
A′(x)

kBT
P

]
, (1.18)

where A(x) = E(x) − TS(x) is the free energy made up of an energy term

E(x) = −Fx, and an entropic term, S(x) = kB lnσ(x) [4, 13, 80] For a periodic

confining geometry, A(x) takes the form of a periodic tilted energetic potential.

For a straight channel, W (x) = 0, the entropic term vanishes and the particle is

subject only to the external driving force. When F = 0 the free energy is purely

entropic and equation 1.18 reduces to the Fick-Jacobs kinetic equation 1.16.[4]

1.2 Stochastic Transport in Two Dimensions

1.2.1 Two Dimensional to One Dimensional - When Ef-

fective

Two key parameters that measure the stochastic dynamics of the reduced

2D to 1D model described by the Fick-Jacobs equation 1.18 are the nonlinear

mobility 1.13 and the effective diffusion coefficient 1.15.2[4, 15, 16, 17] In the

model, the variable f is a dimensionless force defined as the ratio between the

work done by the force F on the particle to drag it a distance L and the ther-

mal energy kBT , f = FL/kBT .[4] An important difference between a strictly

energetic 1D model and one containing an entropic component, such as the one

considered here in Figure 1.1, is that for a particle moving in a one dimen-

sional periodic potential V (x), the barrier 4V separating the potential minima

provides an additional energy scale to that of FL and kBT . Consequently,

the particle’s dynamics is determined by two dimensionless energy parameters:

4V/kBT and FL/kBT . However, Brownian transport in a two or three dimen-

sional periodically corrugated channel is controlled only by the dimensionless

force f .[4, 13]

To test the agreement of the one dimensional model with its two and three

2As stated previously, the model presented here and in section 1.1.1 is reproduced with
little alteration from: Burada, P.S. Hänggi, P. Marchesoni, F. Schmid, G. and Talkner, P.
(2009), ’Diffusion in Confined Geometries’, ChemPhysChem, 10, pp. 45 - 54.



CHAPTER 1. STOCHASTIC TRANSPORT 8

dimensional counterparts, the f -dependence of the nonlinear mobility and the

effective diffusion coefficient were compared with the results from numerical

integration of the two dimensional Langevin equation 1.6.[4, 12] The particles

were confined in a geometry whose channel walls were described by the sinusoidal

boundary function W (x).[4]

It was found that in contrast to a purely energetic one dimensional model,

the nonlinear mobility decreases for increasing magnitude of the thermal noise.

Moreover, the effective diffusion coefficient increases, with maximum exceeding

the free diffusion constant D0.[4, 12, 18]

For low values of the control parameter f , it was found that the predicted

values of the nonlinear mobility and the effective diffusion coefficient matched

the predictions of the two dimensional Langevin equation. However at higher

values of the control parameter f deviations arise. Most importantly, the curves

for the effective diffusion coefficient and the nonlinear mobility fail to reach

the correct asymptotic limit, (1 as f → ∞). The reason for this is that the

assumption of a transversally uniform density distribution, introduced in the

formulation of the Fick-Jacobs 1D model to eliminate transverse coordinates

is no longer valid in the presence of a strong driving force.[4] The agreement

between the 1D model and the 2D alternative improve for smooth modulations

of the boundary wall, that is, for small boundary slopes |W ′(x)|.[4, 12, 18]

A method of assessing the validity of the stationary state solutions of the

Fick-Jacobs model 1.18 can be formulated by comparing the characteristic time

scales associated with the model, namely the diffusion time in the transverse

direction, the longitudinal direction and the drift time required for the driving

force F to drag the particle one channel length.[4] The assumption of a uniform

probability distribution in the transverse direction required by the Fick-Jacobs

model is valid only if the transverse diffusion is sufficiently fast relative to both

the diffusive and the drift longitudinal motions.[4, 18] The value of the critical

force parameter fc above which the Fick-Jacobs model fails, depends upon the

remaining free parameters of the specific model.[4]

Thus the Fick-Jacobs model fails to agree with the two-dimensional Langevin

model for large modulations of the boundary wall or large driving forces. In

this regime a different method of modelling to that of the one dimensional

reductionist approach is required.

1.2.2 Irreducable 2D Problems in Rectification

The inadequacy of the Fick-Jacobs model to correctly approximate stochastic

dynamics as described in Section 1.2.1 is further illustrated by the case of two-

dimensional rectification effects in artificial channels. Both the particle current
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pumped by a transverse ac bias and the gating mechanism caused by a transverse

ac bias on a driven longitudinal particle current cannot be explained by the

Fick-Jacobs approach, and this is described by Marchesoni et al.3[19]

In this example, the stochastic dynamics was modelled in the two dimen-

sional channel shown inset in Figure 1.2. The channel had periodic boundaries

such that W (x+ xL) = W (x). The Fick-Jacobs model was based upon the as-

sumption of a uniform probability density in the y direction. This necessitated

narrow channel boundaries W (x)� xL and small amplitude boundary modula-

tions |W ′(x)| � 1. If these assumptions were satisfied, the reduced probability

density P (x, t) was described by the following Fick-Jacobs equation.[19, 79]

∂

∂t
P (x, t) =

∂

∂x
D(x)

[
∂

∂x
+
V ′L(x)

kT
.

]
P (x, t). (1.19)

Note: this is the same as equation 1.18. The effective potential VL(x) was

described by equation 1.20, where it was assumed that |W ′(x)| � kT/FxL and

|W ′(x)| � kT/GyL.[19, 21]

VL(x) = −Fx− kT ln

[
2
kT

G
sinh

GW (x)

kT

]
. (1.20)

Here F was a longitudinal driving force and G was a transverse driving force.[19,

20]

In the alternative approach, the stochastic dynamics of the overdamped

Brownian particle were modelled in the two dimensional channel by the 2D

Langevin equation 1.21.[19]

d~r

dt
= −F~ex −G~ey +

√
kT ~ξ(t). (1.21)

As before, ~ex,~ey were the unit vectors along the x and y axes respectively and
~ξ(t) = [ξx(t), ξy(t)] was a zero mean Gaussian white noise with autocorrelation

function given by equation 1.22.[19]

〈ξi(t), ξj(t′)〉 = 2δi,jδ(t− t′). (1.22)

Here i, j = x, y. The longitudinal driving force F was kept constant and the

transverse driving force G had a sinusoidal modulation G(t) = G cos(Ωt). The

boundaries were perfectly reflecting and the channel bottlenecks were kept to

∆� yL. The channel asymmetry was controlled by the variation of the param-

eter x0/xL ∈ [0, 0.5]. With the introduction of dimensionless units x → x/xL,

3The results described here are from: Marchesoni, F. and Savel’ev, S. (2009), ’Rectification
currents in two-dimensional artificial channels’, Physical Review E, 80, 011120.
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y → y/yL and t → (kT/xLyL)t, it could be shown that for any given geome-

try, the stochastic dynamics described by equation 1.21 could be controlled by

the rescaled forces FxL/kT,GyL/kT and possibly xLyLΩ/kT . The chamber

geometry was such that yL/xL = 1, thus neither Fick-Jacobs condition was

satisfied.[19]

In this environment it was found that in the presence of a longitudinal dc

driving force F and in the absence of a transverse driving force G, the particle

underwent behaviour that could not be explained by the Fick-Jacobs approach.

In particular, as shown in Figure 1.2, the graphs for µ(F ) against F/kT were

determined by the channel geometry. Furthermore, the mobilities µ±(0) were

weakly dependent upon x0 contrary to the predictions of the Fick-Jacobs model

in equation 1.19.[19, 22] This result also emphasised the impact of chamber

geometry upon stochastic transport and informed our own work.

Figure 1.2: Mobilities µ± versus F/kT for the periodic channel shown inset with
G = 0, T = 0.1 and various x0 (given). The mobilities µ+ are represented by open
symbols and µ− by solid symbols. The asymptote µ−(∞) = 0.1 is represented by
the dotted line. The inset shows a particle beam corresponding to the µ− mobility
encircled in the main panel with x0 = 0.[19] For further details see reference [19].

In the case of a transverse ac driving force G(t) with frequency νΩ = Ω/2π

and in the absence of a longitudinal driving force (F = 0), the Fick-Jacobs model

predicted a ratchet potential VL(x) given by equation 1.20, subject to a time

pulsation with frequency 2νΩ. According to the Fick-Jacobs model rectification
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would then occur in the hard direction (µ−(F )) and disappear for G→∞.[19,

95] However, the 2D Langevin equation 1.21 showed that in the case of the

most asymmetric channel geometry (x0 = 0), the graphs for the net current

v versus G were negative for all pulsation frequencies. This behaviour was the

result of an interplay between the transverse and longitudinal diffusions.[19] The

disagreement with the Fick-Jacobs predictions was due to their assumption of

uniform diffusion in the transverse direction.[19]

Finally, in the case of a combination of a dc driving force F and a transverse

periodic driving force G(t) in a channel with x0 = 0, it was found that the

Fick-Jacobs model proved inadequate once more. According to the Fick-Jacobs

formalism of equations 1.19 and 1.20, optimal gating would have occurred when

the particle crossed the unit cell with ballistic time approximately equal to

an integer number of half G periods. However results from the 2D Langevin

model showed that the peaks corresponding to odd integer values were strongly

suppressed.[19] The reason for this suppression could only be understood in

terms of the 2D Langevin model and was due to the fact that an unbiased

particle beam entering the unit cell from the right was split into two parallel

beams. The periodic drive G(t) deviated the two beams across the channel axis

to opposite sides of the chamber. They met again in the centre of the channel

every full G(t) cycle. Consequently, they met in the centre of the channel at

the left bottleneck for n even and were more likely to hit the walls for n odd,

with follow on consequences for their respective mobilities. This could not be

discerned from the Fick-Jacobs formalism wherein a uniform transverse diffusion

was assumed.[19]

These deficiencies in the analysis of stochastic dynamics and boundary effects

in a 2D channel as modelled by the Fick-Jacobs formalism highlight once more

the short comings of the method and the benefits of adopting a 2D Langevin

approach such as we have in our models presented in Chapters Two and Three.

1.3 Stochastic Resonance

1.3.1 Stochastic Resonance

Stochastic resonance is the phenomenon whereby noise, formerly thought

to be a hindrance to signal uptake, can actually help a nonlinear system by

enhancing its sensitivity to a weak external signal or driving force, and amplify

and optimise that signal. It requires three prerequisites: (i) an energy activation

barrier or threshold, (ii) a weak coherent input, such as a periodic signal or

driving force and (iii) a source of noise that is either part of the system or

that adds to the input signal. With these three requirements met, the system
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Figure 1.3: Frequency of stochastic resonance papers by year between 1981 and 2007.
The labels indicate some significant milestones in stochastic resonance research. Here
ASR denotes aperiodic stochastic resonance, see reference [77].[14]

manifests a resonant-like behaviour that is a function of the noise intensity. This

behaviour gives rise to its name stochastic resonance.[77]

The generic nature of this definition attests to the pervasive nature of the

phenomenon. Stochastic resonance has been demonstrated in fields as diverse

from one another as the earth’s glaciation cycle, (where it was first demon-

strated), and neurosensory systems in biophysics, as bistable chemical reactions

and the dynamics of vortices in type II superconductors. An adequate descrip-

tion of the range of stochastic resonance phenomena is beyond the scope of this

work. For more the reader is referred to two review papers a decade apart which

treat of its growing importance and diversity, [77] and [26]. Here we can only

hint at its pervasive nature using Figure 1.3.[77]

To further illustrate our definition of stochastic resonance, we consider the

following sample model.4 The stochastic dynamics of an overdamped Brownian

particle in a bistable potential and in the presence of noise and a periodic driving

force can be modelled by the following Langevin equation.[77]

ẋ(t) = −V ′(x) +A0 cos(Ωt+ φ) + ξ(t). (1.23)

Here V (x) is the bistable potential, see Figure 1.4. It is reflection symmetric

4The model described here is from Gammaitoni, L. Hänggi, P. Jung, P. and Marchesoni,
F. (1998), ’Stochastic Resonance’, Reviews of Modern Physics, 70, pp. 223 - 287.
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Figure 1.4: A bistable potential V (x) with minima at ±xm and intervening threshold
∆V . In the presence of a sub-threshold periodic driving force and noise a Brownian
particle confined in this system can undergo stochastic resonance.[77]

and represented by the following quartic equation.

V (x) = −a
2
x2 +

b

4
x4. (1.24)

This can be re-expressed as a dimensionless equation by means of an appropriate

scale transformation.

V (x) = −1

2
x2 +

1

4
x4 (1.25)

The zero mean Gaussian white noise ξ(t) in equation 1.23 is given by the auto-

correlation function:

〈ξ(t)ξ(0)〉 = 2Dδ(t). (1.26)

Here and in equation 1.23 D is the noise intensity. The potential V (x) is bistable

with minima located at ±xm, with xm = 1. The height of the potential barrier

between the minima is given by ∆V = 1
4 .[77] As we shall see later this potential

can be energetic, entropic, a mixture of both, or replaced by a constrained

geometry.[77]

It should be added that in the aftermath of the original papers on stochastic

resonance by Benzi et al a slow but inevitable paradigm shift in the way we think

about noise occurred: no longer did we exclusively seek to exclude noise from

our systems but began to consider instead how it might be constructively used

within them.[131] This shift in thinking was timely as more of our technological

systems began to arrive at the nanoscale where noise is inescapable.
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1.3.2 Entropic Stochastic Resonance

Entropic stochastic resonance is a form of stochastic resonance that may

occur when a Brownian particle is confined in a constrained geometry. The

uneven boundaries lend an entropic contribution to the normally energetic po-

tential V (x). In the presence of a periodic driving force, the Brownian particle

may undergo a resonant behaviour that can be optimised by an appropriate

noise intensity. This form of stochastic resonance may be at work in soft con-

densed matter and biological systems where Brownian particles move through

cavities, pores and other narrow channels whose size and shape can affect the

stochastic resonance mechanism. Entropic stochastic resonance may assist the

transport of molecules across cell membranes. Consequently, this phenomenon

is of interest to nanotechnologists who can potentially use it to assist in the

transport of nanodevices.[20, 110, 111]

Figure 1.5: A confining geometry with smooth boundaries in which a particle may
experience entropic stochastic resonance. The Brownian particle is driven by a sinu-
soidal driving force ~F (t) along the x axis for some cases and a constant transverse
driving force ~G is applied along the y axis. Lx, Ly and b are geometrical parameters
of the boundary function W .[20]

To distinguish it from energetic stochastic resonance, we briefly consider the

2D Langevin model of entropic stochastic resonance. For a Brownian particle

confined in a constrained geometry, as shown in Figure 1.5 and subject to a

sinusoidal force F (t) along the x axis and a constant force G along the y axis,
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the resultant 2D dynamics can be described by the following Langevin equation

in the overdamped limit:

γ
d~r

dt
= −G~ey − F (t)~ex +

√
γkBT ~ξ(t).[20] (1.27)

Here, ~r is the position vector of the particle, γ is the friction coefficient, ~ex, ~ey

are the unit vectors along the x and y directions respectively and ~ξ(t) is the

Gaussian white noise with auto-correlation function 〈ξi(t)ξj(t′)〉 = 2δijδ(t− t′)
for i, j = x, y. Equation 1.27 can be re-expressed in the dimensionless form

below.
d~r

dt
= −G~ey − F (t)~ex +

√
Dξ(t).[20] (1.28)

In this equation, the bistable potential energy term is absent unlike in equa-

tion 1.23. This is because the Brownian dynamics is instead constrained by

the entropic restrictions associated with the confining geometry. There is good

agreement between this 2D Langevin model and a 1D reductionist approach for

smooth modulations of the potential function, that is |W ′| � 1, where W is the

function describing the channel boundaries.[20]

1.3.3 Geometric Stochastic Resonance

Geometric stochastic resonance is a from of stochastic resonance that can

occur when a Brownian particle is moving between two cavities connected by a

porous membrane, such as in Figure 1.6, when subjected to a periodic driving

force and causes it to exhibit a resonant behaviour with properties that strongly

depend upon the confining geometry. This form of stochastic resonance does

not require an energetic or an entropic barrier to occur but can be considered as

a purely geometric effect. The magnitude of this form of stochastic resonance is

sensitive to the geometry of the cavities and the pores through which it passes

and has its own optimal synchronisation conditions. This form of stochastic

resonance was explored by Ghosh et al and is described below.[66]

In this model the overdamped dynamics of a Brownian particle freely dif-

fusing in a two dimensional suspension fluid contained in the two symmetric

cavities shown in Figure 1.6 and connected by a narrow pore in the partition

membrane was modelled by the following 2D Langevin equation:

d~r

dt
= −A(t)~ex +

√
D~ξ(t). (1.29)

As before, ~ex, ~ey were the unit vectors along the x and y axes respectively,
~ξ(t) = (ξx(t), ξy(t)), were zero mean Gaussian white noises with autocorrelation

functions 〈ξi(t)ξj(t′)〉 = 2δijδ(t − t′) with i, j = x, y. The ac drive was given
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Figure 1.6: A Brownian particle freely diffusing in a suspension fluid contained in
the two dimensional symmetric cavities. The cavities were separated by a partition
membrane perforated by a pore. The dimensions of the cavity were such that xL =
yL = 1 and ∆ = 0.1 was the pore width. However, the values of xL and ∆ could be
varied.[66]

by A(t) = A0 cos(Ωt) consequently the resultant Brownian trajectories had a

harmonic component x̄(D) cos[Ωt−φ(D)] whose amplitude x̄ is plotted against

D in Figure 1.7.[66, 1]

Different pore geometries were tested for their affect upon stochastic res-

onance including a funnel, spout and a simple perforation, see [66]. In the

presence of the latter this form of stochastic resonance showed some distinctive

characteristics. Firstly, the amplitude of the Brownian particle x̄(D) peaked

for a noise intensity Dmax, where Dmax itself was an increasing function of Ω.

Secondly, stochastic resonance was restricted to A0 > Ac and Ω < Ωc. This is

different from ordinary stochastic resonance where no critical value of the drive

parameters is required. Thirdly, in the graphs of x̄(D) versus D, x̄(D) decayed

in accordance with D−1. This is faster than in any 1D bistable potential and

indicates the irreducible nature of geometric stochastic resonance and the need

for a discrete 2D model.[66, 1]

As can be seen in Figure 1.7, optimal stochastic resonance is sensitive to

both the geometry of the cavities and the pore width. Consequently, geometric

stochastic resonance can be affected and controlled by cavity and pore geom-
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Figure 1.7: The classic graph demonstrating stochastic resonance, x̄(D) versus D.
Graph (a) shows how optimal stochastic resonance is affected by the pore width ∆,
values inset. Graph (b) shows how optimal stochastic resonance Is affected by the
chamber width xL. The other parameters used were yL = 1, A0 = 0.045, Ω = 0.005
and in (a) xL = 1 and in (b) ∆ = 0.1.[66]

etry, this motivated our investigation of particle geometry and the variation

thereof. The peaks of the x̄(D) versus D graph occur for certain values of the

noise strength Dmax which weakly depend upon A0 and increase with Ω. Ge-

ometric stochastic resonance is different from ordinary stochastic resonance in

that particle transitions between the stable states of the cavities do not depend

upon an activation rate or an intervening energy barrier. This form of stochastic

resonance is due to the effect of the 2D geometry upon the stochastic dynamics

and is irreducible to a 1D model with an entropic potential. Consequently, the

1D Fick-Jacobs approximation is inapplicable here.[66, 1]

Geometric stochastic resonance has practical applications in the control of

vortex dynamics in type II superconductor devices. These devices include flux

qubits in a potential quantum computers, superconducting quantum interfer-

ence devices (SQUIDs) and superconducting rf filters. Ion beam lithography can

be used to construct sharp confining geometries such as required for geometric

stochastic resonance on the surface of type II superconductors. Consequently,

vortices can be trapped in vortex boxes connected by a membrane pore with

binding energies on the order of Φ2
0Lt/λ

2, where Φ0 is the magnetic flux quan-
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tum, λ is the London penetration depth and Lt is the vortex trap depth. The

density of vortices n = H/Φ0 can be controlled by the magnetic field intensity

H. At low vortex densities, H ≤ Φ/λ2, the vortex dynamics is not dictated

by vortex-vortex interactions. In this regime AC drives and noise sources gen-

erated from independent currents can be used to manipulate vortices through

Lorentz forces and control their dynamics in the confined geometries of these

superconducting devices. Geometric stochastic resonance offers a very practical

way of controlling vortex dynamics in the vicinity of delicate operations on type

II superconducting devices.[66, 112, 113]

1.4 Rectification

Rectification is the process of turning the unbiased fluctuations in a system

into the directed transport of particles. One way in which this is accomplished

is by the use of ratchets. These are devices that are capable of transporting

particles in a periodic structure with non-zero macroscopic velocity, although

on average no macroscopic force is acting. This is achieved through the breaking

of temporal and/or spatial symmetry.[94, 95, 96, 97] Here we consider vortex

rectification using spatial asymmetry, as an example. Later in Section 1.6.1, we

consider vortex rectification by means of temporal asymmetry.

One obstacle retarding the application of type II superconductor devices is

the presence of trapped vortices within the superconductor. These can penetrate

the superconductor from sources as weak as the Earth’s magnetic field. Once

present they cause the dissipation of energy from the superconductor by causing

electrical resistance and generation of thermal noise. This in turn limits the

lower sensitivity of these devices such as is the case with SQUID magnetometers.

Consequently, much effort has been expended in either pinning the vortices in

place or flushing them out. Ratchets offer the possibility of achieving the latter

through vortex rectification. Here we briefly consider an example of vortex

rectification achieved through the breaking of spatial asymmetry in two back to

back ratchets.[53, 114]

However, while ratchets have achieved rectification through the breaking of

time and or spatial asymmetry, the focus has been on the ratchet structure or

drive, little attention has been focused on the particle itself: its geometry and

variation in time. Yet vortices are not point like particles, but extensive, and

their size can be varied by variation of the magnetic field intensity or temper-

ature. Consequently, their impact upon rectification must also be considered

as they offer an additional means of external control and optimisation of the

process.

For a thin film of a type II superconductor in a magnetic field H, as shown in
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Figure 1.8: A diagram illustrating vortex rectification. Left top: A thin film of
type II superconductor penetrated by a magnetic field H. A current density J in-
duces a Lorentz force fL that moves the vortex in the x direction. Left middle: The
superconductor is covered with an array of pinning centres, whose pinning potential
U(x, y) = U(x) is shown here. The potential is periodic and asymmetric along the x
direction and translationally invariant along the y direction. Right top: The cross-
section shows the pinning potential along the x axis as seen by a vortex travelling
in that direction. The solid arrows show the vortex velocity v+ induced by a direct
current +J and v− induced by a reversed current −J . The average of the two is
the vortex ratchet velocity resulting from an alternating current. Right middle: Pa-
rameters characterising a single tooth of the asymmetric potential, see reference [53].
Bottom centre: Two back to back vortices can flush vortices out of a the centre region.

Figure 1.8, and patterned with an asymmetric pinning potential, U(x, y) = U(x)

with period l along the x direction and translationally invariant along the y

direction, in the presence of a current J along the y direction the vortices move

with velocity:

v = (fL + fvv + fu)/η. (1.30)

Here, fL is the Lorentz force, fvv is the repulsive vortex-vortex interaction,

fu(dU/dx)ẋ is the force due to the periodic potential and η is the viscous drag

coefficient.[53]
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When a current flows along the positive y direction, the resultant Lorentz

force moves the vortices along the positive x direction |v+|. When the current

is reversed the direction of the vortices is also reversed |v−|. However, due to

the asymmetric pinning potential v+ > |v−|. Consequently, when an ac drive

is applied to the spatially asymmetric ratchet a net vortex velocity is achieved

v = (v+ + |v−|)/2. Therefore, if two back to back ratchets of this kind are placed

about a type II superconductor device, see Figure 1.8 bottom, they can flush

vortices away from a site of sensitive measurements.[53]

In section 1.6.1, we describe how a time asymmetric drive can also be used

to achieve vortex rectification. These have the advantage of not requiring the

construction of an asymmetric spatial geometry. In our own work we investi-

gated how particle size affects rectification by variation of the particle radius.

In Chapter Three, we show how this variation affects rectification.

1.5 Absolute Negative Mobility

Another noise induced transport mechanism that we shall have cause to

mention in Chapter Two is absolute negative mobility. This is the phenomenon

whereby a formerly unperturbed system, in thermal equilibrium, upon applica-

tion of an external static force F , in a particular direction a, responds with an

average particle motion in the opposite direction −a if in addition an ac zero

averaged drive is applied. It arises when the magnitude of F is not too large.

Moreover, when F = 0 no average particle current is present.[115, 116, 117]

Formerly, it was thought that in order to achieve absolute negative mobility

finely tailored spatial asymmetry of either the chamber geometry or the nonlin-

ear particle-particle interactions was required.[117] However, a more practical

way of achieving absolute negative mobility has been proposed whereby spa-

tial asymmetry has been embedded within the transported particle rather than

the confining chamber.[117] This has the advantage of not requiring finely con-

structed chamber geometries in nanotechnology thus reducing fabrication costs.

It also means that this form of absolute negative mobility is more likely to be

found in biological systems where cylindrically symmetric channels and elon-

gated particles may be encountered.

With this in mind an overdamped Brownian particle in the shape of an

elliptical disk was modelled in the two dimensional channel shown in the inset

of Figure 1.9, by a 2D Langevin equation. Both the particle displacement and

orientation were noise dependent. The particle was subject to a direct drive

Fdc and an alternating force Fac, such that its amplitude was characterised by

max|Fac| = Fdc and its period was given by TΩ. The chamber geometry was

such that xL = yL = 1 and ∆/y � 1. The elliptical particle had semi-major
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Figure 1.9: The dependence of particle net velocity 〈v〉 versus semi-major axis b
for different values of the Fac drive period TΩ. Fac had a square waveform with
amplitude strength Fac = 2, Fdc = 1, other parameters were a = 0.05, xL = yL = 1
and ∆ = 0.1 Inset: The channel where the elliptical particle was confined. The
chamber had dimensions xL = yL = 1 and ∆ = 0.1, as we have said. The particle
has semi-major axis b and semi-minor axis a. φ was the angle between the major axis
of the particle and the channel axis as shown. φ∗ was the values of φ such that the
elliptical particle could escape the chamber.[117]

axis b and semi-minor axis a, such that a < ∆ < b. It had angle φ between

the major axis and the channel axis. In this regime, it was found in Figure 1.9

main panel, that the net current 〈v〉 depended on the particle elongation. The

net velocity 〈v〉 changed from positive to negative at a threshold value of b

denoted b∗ that itself increased with increasing noise intensity D or decreasing

TΩ. This was explained in terms of the value of b relative to the pore width

∆ and its angular orientation, see reference [117]. But of relevance here is that

this demonstrates once again the importance of the extensive nature of particles

in stochastic dynamics and the need to consider the same in the phenomena of

geometric stochastic resonance and rectification.

1.6 Stochastic Transport: Applications

Finally in this introductory chapter, we consider some of the many applica-

tions of stochastic transport. We limit ourselves to a consideration of the con-
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trol of vortices in type II superconductors, bacterial motion and self-propelled

particles, and the directed transport of colloids and Janus particles in nanotech-

nology.

1.6.1 Vortices

Vortices arise when a magnetic field penetrates a type II superconductor

film with intensity H between the lower critical field Hc1 and the upper critical

field Hc2 and produces entities called Abrikosov vortices. Vortex density can

be controlled by varying the magnetic field intensity H. Due to vortex-vortex

repulsion, the vortices arrange themselves into a vortex lattice with density

ρ ≈ H/Φ0, where Φ0 is the flux quantum. The lattice is usually triangular

in arrangement but may include defects or dislocations like crystalline lattices.

A local electrical current density I can exert on each fluxon a Lorentz force

FL = Φ0I ×H/(cH) by means of which the vortex motion can be controlled,

see Figure 1.10.[26]

Magnetic vortices in type II superconductors can provide experimental ver-

ification of stochastic transport models. Moreover the control of vortices in

type II superconductors can lead to a new range of technologies referred to as

fluxtronics.[26] Abrikosov vortices are inherently quantum entities. However,

under most experimental conditions they behave like massless point-like objects

and as such they can be modelled by the overdamped Langevin equation.

Vortices can interact with natural inhomogeneities in the crystalline struc-

ture of the superconductor or with artificially introduced ones. The arrangement

and composition of these pinning centres can affect the thermodynamics and

vortex transport properties of the superconductor. Pinning centres oppose vor-

tex motion and consequently determine the critical current below which vortex

motion ceases. Pinning centres were initially the result of crystalline defects or

impurities in the superconductor, but they were later purposefully introduced to

increase the critical current. Ion beam lithography later allowed the construction

of sharp confining geometries over a large surface of the superconductor.[26, 51]

Matching effects can arise between these pinning centres and the Abrikosov vor-

tex lattice. These arise when the number of vortices and pinning centres are

m/n where m and n are integers. The resultant commensuration effects are

responsible for a variety of dynamical superconducting states of importance to

vortex rectification.[26, 52]

Vortex rectification in a type II superconductor was first demonstrated the-

oretically when it was shown that an ac electric current applied to a supercon-

ductor with an asymmetric array of pinning centres resulted in vortex transport,

with a direction determined solely by the asymmetry of the pinning centre pat-
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Figure 1.10: Left: Vortices seen from above in a type II superconductor with the
magnetic field intensity H passing out of the page towards us. Middle: Cross-section
of same showing the structure of a single vortex. λ is the London penetration depth, ξ
is the coherence length, B is the magnitude of the magnetic field and Ψ is the modulus
of the superconducting order parameter. The labels ’normal’ and ’super’ identify the
normal and superconducting regions of the material. The vortex has a normal core.
Right: A representation of how the vortices in a type II superconductor can be directed
by means of an applied current. An applied current in the vertical (red arrows) causes
the vortices to move in the horizontal direction due to the Lorentz force upon them,
(yellow arrows). The purple dots represent the vortex cores and green arrows represent
the superconducting current encircling the vortex. Photograph inset left: STM of an
Abrikosov flux lattice produced by a 1T magnetic field in NbSe2 at 1.8k, the image is
6000Å across, see reference [130].[50]

tern, see Figure 1.11. The fluxons were treated like massless point-like particles

moving along a sawtooth potential. In this setup, it was found that for an

appropriate choice of the pinning potential, a rocked ratchet could be used to

manipulate single vortices in a superconducting sample under experimentally

realisable conditions. This mechanism of fluxon rectification on a ratchet po-

tential had been anticipated by Marchesoni, Savel’ev and Nori.[26, 53, 54, 55]

Fluxon lattice rectification is an inherently 2D process. Devices have been

developed that have experimentally demonstrated the control of vortex ratchet-

ing both in the direction parallel (longitudinal rectification) and perpendicular

to the applied ac Lorentz force (transverse rectification).[26, 56, 57, 58]

Longitudinal rectification in a 2D array of asymmetric pinning centres was
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Figure 1.11: A vortex moving through an asymmetric potential and subject to an
ac drive achieves net motion in the easy direction, see also Figure 1.8.[50]

experimentally demonstrated when it was shown that under appropriate op-

erating conditions, fluxon rectification was enhanced for Lorentz force ampli-

tudes between the lower and upper critical pinning forces determined by the

underlying asymmetric substrate.[26, 59] These lower and upper critical forces

were the repinning and depinning forces respectively. Harmonic mixing on a

symmetric substrate has also been experimentally demonstrated. A symmetric

fluxon lattice was trapped in a triangular array of circular holes playing the role

of pinning centres that had been photolithographed onto a Bi2Sr2CaCu2O8+δ

single-crystal thin film by setting the applied magnetic field to the lowest mul-

tiple of H1, where H1 was the first matching field equal to H1 = Φ0/a
2 and

Φ0 was the flux quantum and a was the lattice cell period. This fluxon lattice

was then subjected to a biharmonic Lorentz force orientated along the crystal-

lographic axes of the pinning centre lattice. However, the resultant biharmonic

mixing could be explained in terms of the 1D reductionist approach.[26, 60]

Transverse fluxon rectification however requires irreducible 2D modelling.

Experimental devices capable of transverse rectification can be realised by ei-

ther varying the orientation of the pinning lattice axes, the symmetry axes of

the individual traps (if any) or the direction of the driving current.[26] By these

means transverse fluxon rectification has been realised and can be consigned

to two main categories, either (i) symmetric arrays of asymmetric traps or (ii)

asymmetric arrays of symmetric traps. In the case of (i) symmetric arrays of

asymmetric traps, an experimental setup confirmed the numerical simulations

by Savel’ev and coworkers, who had predicted that the same device could exhibit

either longitudinal or transverse output current depending on the orientation of
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Figure 1.12: Left: A symmetric array of asymmetric triangular pinning centres on
the surface of a type II superconductor. The red and blue dots represent pinned and
interstitial vortices respectively, while the arrows represent their respective motion
due to the Lorentz force upon them from the injected current. Each panel shows the
situation for different values of the magnetic field intensityH(n), where n is the number
of vortices per unit cell of the device. With increasing H(n) reversible rectification
could be achieved. Right: Net velocity 〈v〉 of vortices versus the amplitude of the
ac Lorentz force FL for different magnetic field intensities H(n). Again the red and
blue arrows indicate the region where the net motion is dominated by the pinned or
interstitial vortices and again we see reversible rectification. For more information
see [26, 62]

the ac drive with respect to the pinning lattice axes.[63, 26] In the longitudinal

ratchet configuration a sinusoidal driving current was applied perpendicular to

the axis of reflection symmetry of the pinning centres, (x axis), and the output

voltage was recorded in the same direction. The resulting Lorentz force induced

vortex motion parallel to the y axis corresponding to a voltage drop along the

x axis. For transverse rectification the axes of the current injection and volt-

age drop were reversed. More interesting still in this experimental set up was

the reversible rectification achievable upon changing the magnetic field inten-

sity H and due to the behaviour of the pinned vortices (inside nano-fabricated

triangles) and interstitial vortices (between triangles) under the influence of the

injected current, see Figure 1.12 and references [61, 62].[26, 61, 62, 63]

Rectification has also been demonstrated in the absence of a ratchet sub-

strate in a layered superconductor. In such materials an externally applied
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Figure 1.13: A crossing vortex lattice is constructed by two magnetic field pen-
etrating the layered superconductor at right angles to one another. The resulting
Josephson vortices (JVs) are weakly pinned and can be driven along by an in-plane
magnetic field H‖ or an applied electric current Ix along the c axis, (vertical axis here).
A time asymmetric oscillation of in-plane magnetic field drives the JVs along which
drag the pancake vortices (PVs) after them, resulting in a net motion of the PVs.
The cycle can be repeated resulting in vortex lensing. Vortex antilensing can also be
achieved. The device acts like a ratchet but without an asymmetric substrate. Conse-
quently the technique can be used to enhance the sensitivity of SQUID magnetometers
and other superconductor based devices.[26, 50, 64, 108, 109]

magnetic field created Josephson vortices confined along the ab plane and pan-

cake vortices along the c axes. These two types of vortices attract one another

and by externally moving the Josephson vortices the pancake vortices can be

dragged along after them. A time asymmetric ac drive produces rectification

of both components of the binary mixture which can be controlled by means

of the ac drive parameters, see Figure 1.13. Cole and coworkers experimentally

demonstrated that the asymmetrical dragging of the Josephson vortices resulted

in lensing and antilensing of the pancake vortices.[26, 50, 108, 109] This type of

rectification has the advantage of simplicity, it requires no spatial asymmetry of

pinning centres just the tuning of vortex motion by changing the parameters of

the injection current and so it lends itself to experimental setup and fabrication

alike.[26, 50, 64]
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1.6.2 Colloids

A colloid, or colloidal suspension, consists of a dispersed phase of insoluble

particles on the range of 1nm - 1 µm suspended in a continuous phase the

medium.[24] Colloids are characterised by a dispersed phase that does not settle

out of the continuous phase in an appreciable length of time, unlike a solute in

a solvent. Colloids include gels, sols and emulsions. Their uses range from dyes,

detergents and polymers, to drugs and drug delivery systems such as the Janus

particles we shall consider shortly.[24]

Colloids are subject to stochastic dynamics and as such offer an additional

method of experimental verification of simulations in confined geometries such

as corrugated channels. Many of the forces that control the structure and dy-

namics of molecules, such as electrostatic forces also control the structure and

dynamics of colloidal suspensions.[25, 26] On the micrometer scale colloids are

large enough to be studied by optical microscopy. Colloidal systems have rel-

atively slow dynamics, consequently they can be tracked at the single particle

level by video microscopy.[25, 27] External magnetic fields or optical tweezers

can also be applied to colloidal systems to confine the particles in a regular

lattice akin to Brownian particles in a corrugated channel. An array of optical

tweezers, each acting as an optical trap on the diffusing colloidal particles has

been used to study hydrodynamic drag, enhancement of diffusion under an ex-

ternal force and the sorting of particles based on size difference.[25, 28, 29, 30]

Phase transitions in soft matter has also been studied in real time using optical

techniques.[25]

Colloidal suspensions have been used to study barrier-crossing as occurs in

cell membranes and interstitial spaces. The system allows the simultaneous

tracking of particle motion and measurement of the energy landscape. This has

enabled the study of diffusion over energy landscapes under a constant force and

anomalous diffusion in random fields with heterogeneous energy barriers.[25]

In a recent experiment a tilted two-layer colloidal system was set up to study

the dynamics of force-assisted barrier-crossing over a periodic potential.[25, 31]

The apparatus consisted of a bottom layer of colloidal spheres forming a fixed

crystalline pattern on a glass substrate. This served as a periodic potential.

The corrugated surface provided a gravitational potential field for the top layer

of diffusing particles. The apparatus was tilted at an angle with respect to the

vertical and so a tangential component of the gravitational force F was applied

to the diffusing particles. The mean drift velocity and diffusion coefficient of

the particles were then measured as a function of the tangential component of

the gravitational force and energy barrier height for comparison with stochastic

dynamics models of forced barrier crossing.
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Figure 1.14: Twitching motility: Pili (black cords) are extended from the periphery
of the bacterium and adhere to the surface. The bacterium then draws itself over the
surface by pili retraction, (right pointing arrows indicate pili extension, left pointing
arrows indicate pili retraction). This cycle of pili extension, adherence and retraction
is repeated to draw the bacterium over the surface. From reference [36] with slight
modification.

Colloidal systems have also been used to demonstrate rectification in ratchet

potentials. A colloidal suspension was exposed to a sawtooth dielectric potential

which was turned on and off periodically. It was known that particles subjected

to an asymmetric periodic potential would display net directional motion even

if the space averaged force was zero. The particles exhibited a net motion

with a velocity that depended on their size. This had applications for particle

separation processes for objects on the size range 0.1 − 5.0µm. This includes

biological molecules, viruses, cells and chromosomes.[32]

1.6.3 Intermission: Bacteria

For inspiration on methods of self-propulsion on the nanoscale researchers

have turned to the bacterial world (approximate scale 10−5m) where several

mechanisms of self-propulsion are in evidence including: flagellar motion, tum-

bling, screwing, gliding motility and twitching.[34] The latter involves the ex-

tension of pili from the bacterium followed by their retraction as the bacterium

draws itself through the medium see Figure 1.14.[33, 34, 35, 36, 37] This is not

unlike the radial oscillation of the self-propelled biological particles we consider

in Chapter Three, where the particle radius was composed of a fixed internal

component of radius R1 = a and an oscillating external component of radius

R2 = b| cosωt|, as the oscillation in particle radius affected particle-boundary

interactions and passage times.

Bacterial motion is governed by the scallop theorem which affects self-

propulsion at low Reynolds number.[33, 38] The Reynolds number is a dimen-

sionless number that compares the inertial and viscous forces in a medium and
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is given by: R = avρ/η, where a is the body length of the bacterium, v its

speed, ρ the density of the surrounding medium and η its viscosity. The scallop

theorem states that any sequence of body configurations intended to produce

motion that retraces itself to complete a cycle results in no net motion.[38] Thus

bacteria must break spatial symmetry of motion in order to produce a net dis-

placement. Two means by which they accomplish this using the flagellar motion

mentioned above involve either a corkscrew or flexible oar motion.[33] It is to

be expected therefore that self-propelled particles must also contend with the

proscriptions of the scallop theorem in order to achieve net motion.[38]

However, when one attempts to implement these methods of bacterial self-

propulsion on the molecular level (approximately 10−8m and smaller), one en-

counters an additional problem: diffusion caused by thermal noise (Brownian

motion) swamps self-propelled motion.[33] In biology this is solved by constrain-

ing molecular motion to a one-dimensional track composed of a periodic series

of wells and barriers. The energy barriers restrict the diffusion and the thermal

noise then plays a constructive role by enabling the molecules to escape from

one well to the next. The energy barriers or wells can be periodically raised

and lowered via an energy input such as from an external time-dependent mod-

ulation or a non-equilibrium source. Thus directed motion of molecules can

still be achieved on the molecular level even in the presence of thermal noise.

Indeed, as we shall show in Chapter Three it can be enhanced still further if

these molecules have an element of self-propulsion.

1.6.4 Microswimmers

Interest in particle shape and its effect upon stochastic transport is increasing

in part due to the potential applications of Janus particles. These particles

are nano-particles composed of two or more different surfaces whose individual

physical and/or chemical properties are distinct and in consequence interact

differently with their surrounding medium.[39] Their asymmetry of design gives

Janus particles unique properties of interaction and a wide variety of potential

future applications. These applications include: stabilisation of liquid/liquid

and liquid/gas interfaces, nano-probes,[40, 41] biosensors,[42] drug delivery, ’lab

on a chip’ devices, tailored substrate wettability,[43] and programmable nano-

structures capable of self-assembly and reconfiguration, to name but a few.[39]

Not content with prospects for directed transport on the nanoscale by means

of rectification, ANM or gSR however, researchers are investigating the addi-

tional possibility of self-propelled particles or micro swimmers, as they have

become known, which have lately come to include self propelled Janus parti-

cles. These particles could fulfil the same role of cargo transport and delivery in
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’lab on chip’ and drug delivery systems as played by some proteins in biological

systems.[39, 44] One means by which this self-propulsion has been achieved is

the catalytic degradation of H2O2, asymmetrically distributed over the Janus

particle surface to release O2 and propel the particle forward.[45, 46, 47, 48, 49]

However, some propulsion is lost to simple particle rotation. Propulsion by such

means is further limited by reactant concentrations and an improved method

would require reactant replenishment or an external energy source. Neverthe-

less, self-propelled Janus particles would have an additional means of control-

lability, further enhancing their utility. Finally, it should be mentioned that in

the context of the present work we use the term active particles to refer to those

particles that actively participate in their own motion.

In this introductory chapter to the thesis, we have defined and described

stochastic transport phenomena necessary to the understanding of the research

conducted in Chapters Two and Three. These stochastic phenomena included:

stochastic resonance, both energetic, entropic and geometric, rectification and

absolute negative mobility. We have described a model of stochastic transport

using the overdamped Langevin equation. Furthermore, we have dealt with the

modelling of stochastic transport in both 1D and higher. With regard to the 1D

model, we have considered its limitations and the consequent irreducible nature

of some stochastic transport phenomena particularly geometric stochastic reso-

nance. Finally, we have considered some of the many applications of stochastic

transport to vortices in type II superconductors, colloids and microswimmers.

Having thus reviewed the background material necessary to the understand-

ing of the research conducted and described in Chapters Two and Three and

reviewed the research that motivated that work, we hope that we have set geo-

metric stochastic resonance and rectification in the broader context of stochas-

tic transport. We hope that we have highlighted the limitations of modelling

stochastic transport in one dimension and summarised some of the practical

applications of the control of stochastic transport. We also hope that we have

shown how noise is integral to stochastic transport and that much effort is be-

ing expended in understanding how it can be put to constructive use within

systems.



Chapter 2

Geometric Stochastic

Resonance

In Chapter Two we describe our research related to the geometric stochastic

resonance of Brownian particles in a double cavity in Section 2.1 and that related

to the synchronisation of geometric stochastic resonance by a bi-harmonic drive

in Section 2.2.

In our first project, described in Section 2.1, the geometric stochastic reso-

nance of particles diffusing across a porous inter-cavity membrane and subject

to periodic driving forces was investigated and characterised as a synchronisa-

tion process. Non-interacting particle currents were driven through a symmetric

membrane pore either parallel or perpendicular to the membrane. Subsequently,

harmonic mixing spectral current components were generated by the combined

action of parallel and perpendicular drives. The role of particle repulsion in

controlling the stochastic dynamics was also investigated with potential appli-

cations to the transport of colloids and biological molecules through narrow

pores.[1]

In our second project, described in Section 2.2, the stochastic dynamics of

an elliptical particle were simulated using the Langevin equation. The particle

was driven by both a low and high frequency harmonic drive across the porous

membrane that divided the chamber. It was observed that the particle oscillates

out of phase with the low frequency drive. This effect was attributed to the

absolute negative particle mobility. It was also observed that the magnitude of

this out-of-phase stochastic resonance depended upon how the combined action

of the driving forces and noise fluctuations affected the particle orientation,

and was thereby shown to be sensitive to the particle shape. This emphasises

31
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the importance of particle geometry, in addition to chamber geometry, to the

mechanism of geometric stochastic resonance.[2]

2.1 Geometric Stochastic Resonance in a Dou-

ble Cavity

As we pointed out in Chapter One, stochastic resonance research initially

focused on systems with purely energetic potentials either continuous or dis-

crete in nature.1[1, 77, 78] However, it was later realised that in soft condensed

matter and many biological systems, particles are often confined to constrained

geometries, such as cavities, pores, interstices, or channels, whose size and shape

can affect the mechanism of stochastic resonance.[1, 13, 20, 26, 81] We pointed

out in Section 1.3.2 that such smooth confining geometries can be modelled as

entropic, noise or temperature dependent, potentials which are as capable of

influencing the system response as an external driving force.[1, 4, 11, 79, 80]

A different situation arises however in the case of more sharply confining ge-

ometries. Research has shown that a Brownian particle confined to two distinct

cavities separated by a porous membrane underwent stochastic resonance in the

presence of an ac driving force perpendicular to the membrane.[1, 66] In contrast

to ordinary stochastic resonance, optimal synchronisation between the driving

force and the particle oscillations occurred even in the absence of a bistable en-

ergetic or entropic effective potential for an appropriate noise level.[1, 20, 77, 78]

However, this form of stochastic resonance requires extremely sharp confining

geometries, in higher dimensions, to separate the two cavities. Moreover, the

magnitude and conditions of this form of stochastic resonance effect are sensitive

to both the geometry of the cavities and the structure of the pores.[1]

Geometric stochastic resonance is distinct from entropic stochastic resonance

where the Brownian particle can switch between cavities only by overcoming

the entropic barrier determined by the geometric constraint associated with

the smooth pore.[1, 20] In the absence of an energetic barrier, the entropic

barrier can determine the magnitude of the stochastic resonance effect that

occurs when the periodic driving force drives the particle across the pore. Al-

though, in the original research on entropic stochastic resonance, an interplay

between the entropic and energetic barriers rather than a mere entropic effect

was suggested.[1, 20]

Geometric stochastic resonance is a unique form of driven Brownian mo-

tion in septate channels.[1, 19, 82, 83, 84, 85, 117] In these septate channels,

1The research described here in Section 2.1 is published in: Ghosh, P.K. Glavey, R. March-
esoni, F. Savel’ev, S.E. Nori, F. (2011) ’Geometric stochastic resonance in a double cavity’,
Physical Review E, 84, 011109.
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the chambers are separated by partition walls of zero thickness and conse-

quently the pores piercing the centre of these partitions can be modelled as

structureless holes. These septate channels cannot be analysed in terms of the

1D reductionist approach of Chapter One as entropic channels, because the ge-

ometry of the pores is too sharp to be accurately modelled by the Fick-Jacobs

approximation.[1, 4, 11, 13, 79, 80] Instead, they must be modelled and analysed

by an integration of the relevant Langevin equation in two or higher dimensions.

However these sharp pore geometries do enhance most noise controlled transport

mechanisms, making them suitable to experimental verification.[1, 26, 81]

In the model presented here, we considered a two dimensional geometry.

This was based upon the ongoing research in vortex superconductor devices.

As we mentioned in Chapter One, these devices have numerous technological

applications, including flux qubits in potential quantum computers, supercon-

ducting quantum interference devices and (SQUIDs).[1, 60, 64, 119, 120, 121,

122, 123, 124] Ion beam lithography has enabled the construction of almost

any geometry upon the surface of a type II superconductor. Consequently, su-

perconducting samples with two vortex containing boxes connected by a thin

pore of almost any geometry can easily be fabricated. Vortices can be trapped

within these boxes with binding energies on the order of Φ2
0Lt/λ

2, where Φ0 is

the magnetic flux quantum, λ is the London penetration depth, and Lt is the

depth of the vortex traps. These vortices repel one another via a logarithmic

pair potential. The vortex density, n = H/Φ0, is controlled by the intensity, H,

of the applied magnetic field. In the dilute limit, H . Φ0/λ
2, the vortex-vortex

interactions become negligible and the transport properties of an individual

trapped vortex are not hidden by many body effects. In terms of experimental

setup, periodic driving forces and noise sources can be implemented as Lorentz

forces generated by independent electric currents injected into the sample par-

allel and perpendicular to the pore axis. In this way stochastic resonance can be

detected under experimental conditions using only the applied current sources.

In particular, the noise parameter can be varied independently of the constant

operating sample temperature.[1]

2.1.1 Model

In this model, we simulated overdamped Brownian particles freely diffusing

in a two dimensional suspension fluid contained in two symmetric chambers

with reflecting walls connected by a narrow pore of width ∆, as shown in Fig-

ure 2.1(a). The overdamped dynamics of the particles were modelled by the

Langevin equation 2.1.
d~r

dt
= − ~A(t) +

√
D~ξ(t). (2.1)
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Here ~A = (Ax, Ay) were the x, y components of the driving force and ~ξ(t) =

[ξx(t), ξy(t)] were zero mean Gaussian white noises with autocorrelation func-

tions 〈ξi(t), ξj(t′)〉 = 2δijδ(t− t′) with i, j = x, y. Equation 2.1 was numerically

integrated by a Milstein algorithm. Stochastic averages were taken as ensemble

averages over 106 trajectories with random initial conditions. Transient effects

were estimated and subtracted.[1]

Figure 2.1: (a) A Brownian particle confined in a two dimensional box consisting
of two chambers separated by a partition wall with a pore of width ∆ at its centre.
The chamber had dimensions xL = yL = 1. (b) A graph demonstrating geometric
stochastic resonance showing x̄(D) versus D for different values of Ω at Ax = 0.045,
(main panel), and different values of Ax at Ω = 0.01, (inset). The other parameters
were xL = yL = 1 and ∆ = 0.1. The inset shows predictions for the stochastic
resonance peak position Dmax (vertical arrows) and height x̄(Dmax) (top line). The
dashed line in both graphs represents the decay law x̄(D →∞).[1]

In the presence of a longitudinal ac driving force directed along the x axis

Ax(t) = Ax cos(Ωt), the Brownian particle trajectories embedded a persistent

harmonic component x̄(D)cos[Ωt−φ(D)]. The resultant amplitude, x̄ was plot-

ted versus D in Figure 2.1(b).[1, 66]

The three main characteristics of geometric stochastic resonance are: (i)
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x̄(D) reaches a maximum for an appropriate noise intensity Dmax with an upper

bound determined by the inequality 2.2.

x̄(Dmax) ≤ 4

π
xL. (2.2)

An estimate of this Dmax was obtained by matching the half drive period with

the mean first escape time from one chamber to the next at Ax = 0, τ∆(D), that

is:

τ∆(Dmax) =
TΩ

2
≡ π

Ω
(2.3)

The first exit time, τ∆(D) was inversely proportional to the noise intensity

D and strongly depended upon the pore width ∆. For narrow pore widths,

τ∆(D) diverged with yL/∆, that is, proportional to ln(yL/∆), where yL was the

chamber width, see Figure 2.1. Therefore, Dmax was proportional to Ω.[1, 2,

66, 84, 85]

(ii) Stochastic resonance is restricted to Ax > Ac or Ω < Ωc as a result of

the geometric condition that,

Ax
Ω
≥ 4

π
xL, (2.4)

requiring that, in the absence of noise, the ac driven particle should hit the walls

of the chamber twice per period of the driving force. Here xL is the chamber

length along the x axis, see Figure 2.1. This is an important distinction from

ordinary stochastic resonance, where no such onset thresholds exists in the drive

parameters space.[1, 77, 78]

(iii) The amplitude x̄(D) obeys the approximate stochastic resonance curve,

x̄(D) =
x̄0(D)√

1 + [Ωτ∆(D)]2
, (2.5)

where

x̄0(D) =
AxxL/D

tanh(AxxL/D)
(2.6)

is the amplitude of the 〈x(t)〉 oscillations in the adiabatic limit Ω → 0. As a

consequence of this, for large noise, x̄(D) ∝ 1/D.[1]

Equation 2.3 is the geometric stochastic resonance equivalent of the standard

stochastic resonance condition, where in the absence of an energetic barrier, the

Arrhenius time is replaced by an appropriate diffusion time across the inter-

cavity pore.[1, 77, 78, 87, 88] From equation 2.6, it can be seen that for weak

noise and low drive frequencies, Ax(t) presses the particle against the walls of

the chamber opposite the partition wall, and, as a result, the average particle

displacement 〈x(t)〉 approaches a square wave form with amplitude xL. Then



CHAPTER 2. GEOMETRIC STOCHASTIC RESONANCE 36

the amplitude of the Fourier component of 〈x(t)〉 with angular frequency Ω is

4xL/π. This explains the inequalities of equations 2.2, 2.4, where Ax/W is

the driven oscillation amplitude of an unconstrained Brownian particle. The

upper bound of equation 2.2 holds for vanishingly low Ω, see Figure 2.1(b).

For stronger noise but low drive frequencies, x̄0(D) tends to Axτx, where τx =

x2
L/3D is the longitudinal diffusion time across a cavity compartment. The pore

effectively suppresses the particle oscillations with damping constant τ∆(D)−1

only at relatively high drive frequencies as can be seen from equation 2.5. These

analytical results agree well with the simulations.[1, 66]

2.1.2 Synchronisation Mechanisms

The evidence for geometric stochastic resonance presented in Section 2.1.1

focused on the D dependence of the harmonic component of the 〈x(t)〉 with

driving frequency Ω.[1, 66]

However, an alternative description of the resonance mechanism can be

based upon the synchronisation characterisation of the stochastic resonance

phenomenon.[1, 92, 93] In this description, one considers the residence times

T of the Brownian particle in either cavity, due to the mirror symmetry of the

process with respect to the cavity partition either cavity will do. Their dis-

tribution densities N(T ) exhibit a prominent peak structure and a resonating

dependence upon D and T .[1]

Longitudinal Drive

We first considered the case of longitudinal drives Ay = 0. In Figure 2.2(a),

we plotted N(T ) for different values of Ω at constant D. From the graph it

could be seen that the N(T ) peaks were centred around

Tn =

(
n− 1

2

)
TΩ, n = 1, 2, 3, ... . (2.7)

This was due to the fact that the left to right pore crossings were more likely to

occur when the longitudinal ac force Ax(t) pointed from the right to the left and

vice versa. This synchronisation mechanism has been discussed in the stochastic

resonance literature.[77, 78] The numerical analysis, shown in Figure 2.2(a) for

n = 1, proves that the area enclosed beneath, the nth distribution peak increases

with Ω up to an optimal value Ω = Ωn, and then decreases for higher Ω. The

optimal value Ωn is determined by the optimal synchronisation condition.[1, 92,

93] (
n− 1

2

)
TΩ = τ∆(D), n = 1, 2, 3, ... . (2.8)
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For n = 1, this equality coincides with the spectral stochastic resonance con-

dition of equation 2.3. This proves that the first peak can be enhanced to a

maximum by acting either upon TΩ or upon τ∆, this conclusion actually ap-

plies to all the peaks. This proves that geometric stochastic resonance is itself

a genuine form of resonance.[1, 92, 93]

Figure 2.2: The distribution density of residence times for different periods TΩ =
2π/Ω (in the legends) of the (a) longitudinal drive with Ax = 0.05 and (b) transverse
drive with Ay = 0.5. The cavity dimensions were as in Figure 2.1 and D = 0.015.
The inset in (a) shows the height of the first peak n = 1 versus Ω. The vertical arrow
denotes the resonant Ω value predicted in equation 2.8 with τ∆ given in references
[84, 85].[1]

Transverse Drive

We then considered the case of transverse drives Ax = 0. A drive parallel to

the wall of the cavity in Figure 2.1(a) cannot break the mirror symmetry of the

system in the x direction. However, the transverse drive affects the diffusion

through the pore because it presses the Brownian particle against the horizontal

walls, twice per driving period. When the particle is pressed against the top
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and bottom walls of the cavity which are symmetrically placed with respect

to the pore, the particle is less likely to escape the side of the cavity into the

adjoining chamber. It is more likely to do so however as Ay reverses sign, twice

per period. Therefore, it is to be expected that N(T ) develops a denser peak

structure with

Tn =
n

2
TΩ, n = 1, 2, 3, ..., (2.9)

as shown in Figure 2.2(b). Similar to Figure 2.2(a). the distribution peaks

become sharper for an optimal value of Ω. Numerical analysis shows that such

an optimal synchronisation also occurs under the resonance condition of equa-

tion 2.8, but with the difference that τ∆(D) stays for the transverse diffusion

time τy = y2
L/3D. Although the right and left flows through the pore are

modulated in time, in the presence of a transverse drive Ay(t), no geometric

stochastic resonance can occur because of the mirror symmetry of the longitu-

dinal motion.[1]

2.1.3 Harmonic Mixing

The spectral characterisation of geometric stochastic resonance, as described

in Section 2.1.1, can provide more insight into the resonant transport mecha-

nism in a partitioned cavity. The power spectral density of x(t), S(ω), can be

taken and the δ-like spike (π/2)x̄2(D)δ(ω − Ω)) can be evaluated, correspond-

ing to the harmonic component of 〈x(t)〉 with frequency Ω.[1, 66] As shown in

Figure 2.3(a), S(ω) developed a series of spectral spikes at

ωn = (2n− 1)Ω, n = 1, 2, 3, ... . (2.10)

From previous research on stochastic resonance, it is known that the even har-

monics of the driving frequency are absent due to the x → −x symmetry of

the 2D Langevin equation 2.1.[1, 77, 78] However, as mentioned in Section 2.1.2

stochastic resonance does not occur in the presence of transverse drives. The

power spectral density for Ax = 0 and Ay 6= 0 displayed in Figure 2.3(a), showed

no resonance spike.[1]

In Figure 2.3(b) the Brownian particle was subjected to both longitudinal

and transverse drives simultaneously. The nonlinearity of the longitudinal and

transverse drives causes a mixing between them, a phenomenon called harmonic

mixing.[1]

The three key ingredients for harmonic mixing to occur in a one dimensional

nonlinear system are (i) nonlinearity of the driven process, (ii) a combination

of at least two harmonic drives with angular frequencies Ω1 and Ω2 respectively,

and (iii), commensuration of the driving frequencies, that is, Ω1/Ω2 = p/q
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Figure 2.3: The graph shows the spectral density of the coordinate x(t) for two
different noise intensities D and (a) either a longitudinal or a transverse drive, (b)
a combination of longitudinal and transverse drives. The drive parameters were
Ax = 0.05, Ay = 0.5,Ω = 0.01 and Ω = Ω/

√
2. The harmonic mixing resonances

are indicated by down pointing arrows with the relevant indices (m,n).[1]

where p and q are relative prime numbers. With these key ingredients present,

the system response to the combination of external drives develops a hierarchy

of harmonics at

ωm,n = mΩ1 + nΩ2 m,n = 0,±1,±2, ... . (2.11)

Dynamical symmetries particular to the system under study can lead to the

suppression of subsets of these harmonics ωm,n.[1, 125, 126, 127, 128]

However, the system modelled here was two dimensional, so harmonic mix-

ing could occur for any ratio of the driving frequencies. In our simulations,

we employed orthogonal harmonic drives Ax(t) andAy(t) with incommensurate

frequencies Ωx andΩy respectively. From Section 2.1.2, it is known that the lon-

gitudinal flows driven solely by the transverse drive can only resonate at the even

harmonics of Ωy, namely, for ω = 2nΩy, n = 1, 2, 3, ... . This is an effect caused

by the mirror symmetry of the cavity with respect to the horizontal axis passing

through the centre of the pore. Moreover, the mirror symmetry of the cavity

with respect to the walls of the chamber restricts the periodic components of

〈x(t)〉 to the odd harmonics of Ax(t), that is to, ω = (2n−1)Ωx, n = 1, 2, 3, ... .[1]
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In conclusion, the harmonic mixing spectrum of the longitudinal flow through

the cavity pore was expected to be

ωm,n = mΩx + 2nΩy, (2.12)

with m = ±1,±3,±5, ...(odd) and n=0,±1,±2, ... and with no commensuration

condition of the ratio Ωx/Ωy. This is confirmed by the power spectral distribu-

tion curves plotted in Figure 2.3(b). Ωx/Ωy is an irrational number, however, all

spectral peaks detected could be identified by a pair of indices (m,n) according

to equation 2.12.[1]

The practical application of the harmonic mixing of longitudinal and trans-

verse drives is that, while the time modulation introduced by the harmonic

signal Ay(t) alone could not be picked up by the longitudinal current across

the pore, the addition of a small longitudinal signal made Ay(t) detectable.

Moreover, the mixing spikes with n,m 6= 0 is not necessarily small with respect

to the harmonics of the longitudinal signal n = 0. In fact, all power spectral

distributions spikes S(ωm,n) show a unique stochastic resonance dependence on

the noise intensity. For example, in Figure 2.4, the harmonic mixing harmonics

(−1, 1) overshoots the fundamental component (1, 0), for an appropriate range

of D.

Figure 2.4: The graph shows the resonant behaviour of the two lowest order har-
monic mixing components (1, 0), (−1, 1). For comparison, S(ω1,0) is shown also for
(Ax, Ay) = (0.005, 0). All other simulation parameters were as in Figure 2.3(b).[1]
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2.1.4 Particle Interaction

To better understand the effect of the confining geometry upon the pore

crossing mechanism, we also investigated the role of particle interactions. In

our simulations, we assumed that the N Brownian particles were randomly

distributed between the two chambers of the system and that they repelled one

another through the standard vortex-vortex interaction:

fi,j =
α

|~ri − ~rj |
, (2.13)

where i, j = 1, 2, ...,N i 6= j. The situation modelled here is common in biological

systems, where constrained geometries may accommodate controllable popula-

tions of suspended particles. The exact form of vortex-vortex interaction fi,j

is not relevant. What is important however is the dependence of the geometric

stochastic resonance upon the parameters of particle concentration N and cou-

pling α of the system of interacting particles.[1, 4, 11, 66, 79, 80, 82, 83, 89, 129]

We considered the geometric stochastic resonance model described in Sec-

tion 2.1.1, with a longitudinal harmonic drive Ax(t) of fixed angular frequency

Ωx. To account for interactions, we calculated x̄(D) numerically as x̄(D) =√
x̄2
C + x̄2

S , where

x̄C(D) =
1

Ntmax

∑
i

∫ tmax

0

xi(t) cos(Ωxt)dt, (2.14)

x̄S(D) =
1

Ntmax

∑
i

∫ tmax

0

xi(t) sin(Ωxt)dt, (2.15)

integrations were carried out over the time interval (0, tmax) and summations

were taken over all the particles. This was equivalent to determining the am-

plitude of the Ωx component for the ensemble mean trajectories.[1]

In Figure 2.5 we plotted the graphs x̄(D) for low α in panel (a) and for high α

in panel (b), increasing particle concentrations. For low α, increasing the value

of N was equivalent to reducing the cavity volume available to the individual

Brownian particles. Furthermore, when the particle coupling was relatively

weak, the particle interactions exerted only a mean field on the pore crossing.

Consequently, in the low coupling regime, it was expected that the stochastic

resonance noise intensity Dmax of equation 2.3 weakly depended on N , whereas,

the height of the stochastic resonance peak, equation 2.2, decreased with rising

N . This is in good qualitative agreement with the results of Figure 2.5(a). The

curve with N = 1 is an exception, as it lies beneath the curve for N = 2 and

peaks at a higher D. All the other curves are centred around the same Dmax,

with their maxima slowly decreasing for increasing N for N > 2. In fact, when
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passing from N = 1 to N = 2, pair repulsion actually makes pore crossing more

effective than for a single particle. However, this effect becomes negligible when

adding one particle for larger N values.[1]

As shown in Figure 2.5, for large α, the vortex-vortex repulsion became so

strong that pair crossings were rare. Particles could then only switch cavity by

pumping more noise into the system. This meant that the stochastic resonance

peaks shifted to higher Dmax for larger particle concentrations. However, for

very large N , the harmonic component of 〈x(t)〉 was suppressed independent of

the value of α.[1]

Figure 2.5: The graph shows geometric stochastic resonance for interacting particles,
x̄(D) versus D for the double cavity shown in Figure 2.1 for N identical particles
repelling one another via the pair interaction force of equation 2.13 with α = 1 (a),
and α = 6 (b). The drive parameters were Ax = 1, Ay = 0 and Ω = 0.01.[1]

The α dependence of the driven particle flow across the pore was further

illustrated by Figure 2.6 for N = 2 and N = 3. The curves for low noise,

D < Dmax for α = 0, show that, in the absence of interactions, pore crossing

happened with a time constant much larger than the half drive period, see

equation 2.3. When the particle interaction was switched on the free volume
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Figure 2.6: The graph of x̄(D) versus α for the same situation as in Figure 2.5 with
fixed values of N and D, see the legend. The parameter α was the magnitude of the
particle-particle interaction. x̄(D) peaked for the relatively small values of α and then
slowly decreased for larger values of α.

accessible to individual particles shrinks. This facilitates the escape of single

particles through the pore. This, in turn, explains the rising branch of the

curves x̄ versus α. As the particle coupling α increases, the particles tend to

form deformable clusters and exhibit plastic flow. At very large α, the switching

between cavities stops, and x̄ decays to zero. In this description the resonant

dependence of x̄ on α is less appreciable for higher noise levels.[1, 90, 91]

In summary, in this project we demonstrated how particles suspended in

a double cavity with a separating membrane can diffuse across the inter-cavity

pore subject to the combined actions of thermal fluctuations and periodic drives.

The inter-cavity particle flow was modulated in time at the drives’ frequencies

with amplitudes that could be optimised by controlling the temperature of the

system. This is a geometric effect: the stochastic resonance condition depends

upon the shape of the cavity and the particle-particle interactions.[1]

These results may also be of interest to those who study colloidal systems.

This mechanism of stochastic resonance does not depend upon the dimension-

ality of the system, therefore, it may lend itself to experimental verification

upon colloidal systems in three dimensional geometries. However, the mecha-
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nism could be affected by other effects such as pore structure and microfluidic

effects. For finite size particles like translocating molecules, the crossing time

varies with the wall structure inside the pores and in the vicinity of its opening.

Moreover the flow of an electrolytic suspension fluid through the inter-cavity

pore could cause inhomogeneous velocity and electrical fields which could affect

the driven particle drift and orientation. Nevertheless, these systems specific

effects could be incorporated into a reformulated Langevin equation to allow

the modelling of the system.[1]

2.2 Synchronisation of geometric stochastic res-

onance by a bi-harmonic drive

In Chapter One, we described a simple system demonstrating stochastic

resonance namely a Brownian particle jumping between the minima of a one

dimensional bistable energetic potential.2 However, as we also pointed out there,

in a variety of biological systems particles move in the constrained geometries

of interstices, pores or cavities, which act as particle traps.[26, 65] A particle

diffusing between two such cavities, which have smooth boundaries and are

connected by a narrow pore is confined theirin by a bistable entropic potential

rather than an energetic one.[20] For two and three dimensional geometries, it

is possible to describe the stochastic dynamics of the system in terms of the

1D reductionist approach, described in Chapter One, with a bistable potential

subject to a spatially modulated diffusion function.[4] However, the reductionist

approach fails to correctly approximate the stochastic dynamics of a system

with sharp confining geometries. This is the case with geometric stochastic

resonance in the rectangular cavities separated by a porous membrane shown

in Figure 2.7.[1, 2, 66]

As we stated in Chapter One, the finite size and shape of a particle can affect

its stochastic dynamics. When an elliptical particle was simultaneously driven

by a constant dc and an ac driving force through a system of stacked porous

membranes, it exhibited absolute negative mobility.[117] For a sufficiently small

dc drive, the time averaged net velocity of the particle across the membranes

was opposite in direction to that of the mean total driving force. The elongated

shape of the particle was responsible for this absolute negative mobility. More-

over, it could not have occurred for non-extensive point like particles except in

the presence of channels with specially tailored walls.[2, 102, 103]

With these considerations in mind, we investigated stochastic resonance

2The research described here in Section 2.2 is published in; Read, M. Glavey, R. Marchesoni,
F. and Savel’ev, S. (2013), ’Synchronisation of geometric stochastic resonance by a bi-harmonic
drive’, European Physical Journal B, 87, pp. 206 - 211.
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Figure 2.7: The double chamber used to demonstrate out-of-phase geometric stochas-
tic resonance. The chamber length, width and pore width were denoted by L,Wand ∆
respectively. The semiminor and semimajor axes of the elliptical particle were denoted
by a and b respectively.[2]

when an elliptical particle was driven across the two dimensional narrow pore

of the confining geometry shown in Figure 2.7 by a bi-harmonic ac drive with

one frequency much lower than the other. As we describe below, it was found

that the low frequency component of the system response reached a maximum

amplitude when it oscillates out of phase with the low frequency driving force

component. This effect is distinct from the harmonic mixing of two commen-

surate frequencies through a nonlinear device investigated in both stochastic

resonance and ratchet devices.[2, 69, 70, 71, 72, 73, 74] The form of stochastic

resonance described here is more robust. It does not require the two driving

frequencies to be commensurate and the output signal is not sensitive to the rel-

ative phase of the two harmonic components of the driving force. We also show

that with increasing amplitude of the low frequency driving force, the phase lag

between the system response and the driving force suddenly dropped to zero.

This was taken to indicate the sharp transition from out-of-phase stochastic

resonance to ordinary in-phase stochastic resonance. In addition, at larger am-

plitudes of the low frequency driving force, it was found that the high frequency

system response underwent stochastic resonance with the opposite phase shift

than in the absence of the low frequency drive.[2]
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2.2.1 Model

The Brownian motion of an elliptical particle with semi-minor axis a and

semi-major axis b, can be described by the position given by its centre and the

orientation given by the angle θ between its semi-major axes and the pore axis,

see Figure 2.7. The dynamics of this particle was simulated in two dimensions

by the overdamped Langevin equations 2.16, 2.17.

d~r

dt
= F (t)~ex +

√
Dr
~ξ(t). (2.16)

dθ

dt
=
√
Dθξθ. (2.17)

Here ~r(t) = (x(t), y(t)) was the particle position at time t. F (t) was the modulus

of the driving force oscillating in time and directed along the pore axis. The vec-

tor ~ex was the unit vector along the x axis. The fluctuating variables ~ξ = (ξx, ξy)

and ξθ were independent Gaussian white noises with zero means 〈~ξr〉 = 0, 〈ξθ〉 =

0 and delta-like autocorrelation functions, 〈ξi(t), ξj(0)〉 = δi,jδ(t) with i, j = x, y

and 〈ξθ(t), ξθ(0)〉 = δ(t). The spatial and angular diffusion coefficients, Dr and

Dθ were assumed to coincide Dr = Dθ = D for simplicity. Inertial and hydro-

dynamic effects were neglected to simplify the modelling.[2, 75, 117]

In the previous work on absolute negative mobility, which we described

briefly in Section 1.5 of Chapter One, it was found that the most pronounced re-

sults were achieved for a square-wave ac drive, instead of a sinusoidal drive.[117]

Consequently, a square-wave drive was used in this simulation as given by equa-

tion 2.18

F (t) = A1sign[cos(ω1t+ φ)] +A2sign[cos(ω2t)], (2.18)

where A1 and A2 were the amplitudes of the two distinct drive components

with frequencies chosen to be far apart ω1 � ω2, so as to avoid the occurrence

of commensurability effects upon the resultant stochastic resonance and φ was

their relative phase. The phase φ was set to zero everywhere except in the

curve with open circles in Figure 2.10. The sign(...) of equation 2.18 denoted

the sign function wherein sign(x) = 1 for x > 0, sign(x) = −1 for x < 0 and

sign(x) = 0 for x = 0. Equations 2.16 and 2.17 were numerically integrated

with the assumption that the system had perfectly reflecting boundary walls

and elastic particle-boundary collisions.[2, 19]

In the presence of the bi-harmonic drive, the Brownian trajectories x(t)

of the elliptical particle embedded two persistent oscillating components re-

sulting from the low and high frequency drives, x̄1(D) cos(ω1t + α1(D)) and

x̄2(D) cos(ω2t + α2(D)), whose amplitudes, x̄1(D) and x̄2(D), and respective
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delay phases, α1(D) and α2(D), can be estimated numerically by calculating

x̄k(D) cosαk(D) =
1

T

∫ tmax

0

x(t) cos(ωkt)dt, (2.19)

x̄k(D) sinαk(D) =
1

T

∫ tmax

0

x(t) sin(ωkt)dt, (2.20)

where k = 1, 2, were the low and high frequency drive components respectively

and tmax was the simulation time. This asymptotic estimation of αk held as

long as the system response to both harmonic components of the drive did not

mix. In the case where ω1 and ω2 were commensurate and insufficiently spaced,

a more accurate spectral analysis would have been required.[2, 76]

When the second component of the drive was switched off, A2 = 0, the

system response showed standard geometric stochastic resonance, with x̄1(D)

passing through a maximum for an increased noise intensity D, as shown in

Figure 2.8(a). The delay angle, α1(D), also showed a maximum at a different

value of the noise intensity. This is a typical feature of geometric stochastic

resonance for point like particles in a double cavity.[1, 2] However, the optimal

noise levels which maximised x̄1(D) and α1(D), depended upon the shape of the

particle and thus provided an additional way of controlling geometric stochastic

resonance. Moreover, it signified a consideration of geometric stochastic res-

onance to include chamber geometry and particle shape. A similar geometric

stochastic resonance behaviour was displayed in Figure 2.8(b), where the system

was driven only by the high frequency drive component with A1 = 0.[2]

2.2.2 bi-Modal Stochastic Resonance

When both harmonic components of the drive were active, A1 6= 0 and

A2 6= 0, the system response could be measured to either the forcing frequency,

ω1 or ω2. This enabled a study of how the drive at frequency ω2 affected the

system response at frequency ω1 and vice versa. The phenomenon of absolute

negative mobility had suggested that under appropriate geometric constraints a

harmonic drive could result in the drift of an elongated particle against a weak

constant bias.[2, 117] In the present setup, the role of the constant bias was

fulfilled by the low frequency drive component.[2]

For the system considered, an effect similar to this absolute negative mo-

bility was observed for weak amplitudes of the low frequency driving force in

equation 2.18, as shown by the red curves in Figure 2.9(a-d). In the red curve

of Figure 2.9(c), the low frequency system response, x̄, increased with the noise

intensity, until it reached a maximum at D ≈ 0.04, and then declined almost to

zero. The drop in the decaying tail of the x̄1(D) curve coincided with the max-
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Figure 2.8: Amplitude of the system response, x̄, versus noise level D = Dr = Dθ,
for a harmonic drive F (t) as in equation 2.18. In the top panel (a) A1 = 1, A2 =
0, and ω1/2π = 0.001, and in the bottom panel (b) A1 = 0, A2 = 2, and ω1/2π = 0.01.
The cavity geometry was such that L = 1,W = 1and∆ = 0.2. The particle semi-minor
axis was a = 0.05 and b was as is given in the panel legends. The insets in each panel
show the delay phase α versus D for the same geometry as in the main panel. The
integration time used for the simulations was dt = 1×10−4, for a runtime T = 5×105.
[2]

imum of stochastic resonance for the x̄2(D) curve. The system response delay

went through a maximum at α = −π at approximately the same low D maxi-

mum of x̄1(D). This occurrence was termed out-of-phase stochastic resonance.

There is a connection therefore between out-of-phase stochastic resonance and

absolute negative mobility, the particle crosses the pore from left to right when

the low frequency drive would have driven it from right to left and the two

signals get anti-synchronised for an appropriate noise level.[2]

In contrast, the system response at high frequency ω2 was almost unaffected

by the low frequency drive, see Figure 2.9 (a) and (b) red curves. The curve

x̄2(D) shows a standard stochastic resonance peak centred around D = 0.2,

where out-of-phase geometric stochastic resonance was completely suppressed.

The delay phase α2, also showed resonant dependence upon D, consistent with

geometric stochastic resonance with 0 < α2 < 0.5.[1, 2, 66]

When A1 was increased with respect to A2, the out-of-phase stochastic res-

onance of the low frequency response was replaced by standard stochastic res-
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Figure 2.9: Graphs of noise dependence of system response parameters x̄2 (a), α2 (b),
x̄1 (c) and α1 (d), on D for weak (A1 = 1 red curves) and strong (A1 = 4 blue curves)
low frequency drive components. The drive F (t), refer to equation 2.18, was such that
A2 = 2, ω1/2π = 0.001 and ω2/2π = 0.01. Out-of-phase stochastic resonance occurred
for x̄1 at low A1, where α1 ' −π (red curve in panel (d)). Stochastic resonance for x̄2

at high A1 was signalled by the dip α2 ' −π/2 of the blue curve in panel (b). [2]

onance with x̄1(D) exhibiting a broad peak centred around D ≈ 0.1, see Fig-

ure 2.9(c) blue curve. The phase shift, α1, was always positive with 0 < α1 < 0.5

and reached a maximum at D ≈ 0.5, see Figure 2.9(d) blue curve. The affect

of the drive component increased with the low frequency, ω1, on the system

response at the high frequency, ω2. This mode interplay resulted in a small side

peak on the broad curve for x̄2(D), which became discernable at D ≈ 0.1, see

Figure 2.9(a) blue curve. This secondary x̄2 peak corresponded to a negative

dip of the related phase shift with |α2| never exceeding π/2. This meant that

the system response at high frequency never undergoes anti-sychronisation, or

out-of-phase stochastic resonance. The resonance condition, α2 ≈ −π/2, could

be due to the elliptical particle tending to cross the membrane pore from left

to right only when the high frequency component of F (t) dropped to zero and

turned from negative to positive and visa versa, (or in other words the particle

crosses the membrane when its drive was switched off). This is the opposite of

the phase shift observed in standard stochastic resonance.[2]

Figure 2.10 shows that large delay phases α1 were only possible upon elon-

gating the elliptical particle so that its major axes was greater than the pore



CHAPTER 2. GEOMETRIC STOCHASTIC RESONANCE 50

width, 2b > ∆. To investigate how the particle shape affected the out-of-phase

stochastic resonance of x̄1(D), the Langevin equations 2.16, 2.17 were integrated

for different values of the elongation aspect ratio b/a. For weak low frequency

amplitudes of F (t), the out-of-phase stochastic resonance was the strongest at

large values of b/a. The drive phase α1 approached −π, see Figure 2.10(d),

which coincide with a large peak of x̄1 at low noise intensity D. As shown in

Figure 2.9, the out-of-phase peak was followed by a sharp dip and slowly rising

recovery branch. This dip was related to the stochastic resonance maximum

of x̄2. As the length of the semi-major axes of the elliptical particle decreased

below the pore width, 2b ≤ ∆, out-of-phase stochastic resonance was totally

suppressed. To investigate the possible dependence of this phenomenon on the

relative phase of the drive component in equation 2.18, the system response

for different values of φ were simulated. The results for φ = π/2 are shown in

Figure 2.10 with circles. They coincide with the blue curves obtained for the

same simulation parameters but with φ = 0. This indicates the absence of the

response on the relative phase of low and high drives.[2]

The system response at high frequency, showed little sensitivity to the vari-

ation of b/a for either x̄2(D) or α2(D). The only noticeable change with de-

creasing b/a was the disappearance of the small minima of x̄2 at low D. This

was already known to occur from Figure 2.8(b) at large b/a even in the absence

of a low frequency drive.[2]

To investigate the possible effects due to the harmonic mixing of the two

response components with frequencies ω1 and ω2 respectively, we plotted in

Figure 2.11 the power spectral densities of x(t) for the simulation parameters

corresponding to the blue curves in Figure 2.10. The noise level was chosen

so as to have one spectrum for D below the out-of-phase stochastic resonance

condition (a1,a2), one spectrum at out-of-phase stochastic resonance (b1,b2),

one spectrum between the out-of-phase stochastic resonance peak and the min-

imum response for ω1 (c1,c2), one spectrum at the minimum of the ω1 response

(d1,d2), and one above this minimum (e1,e2). The full range spectra are shown

in the left hand panels, (a1,b1,c1,d1,e1) and an enlargement of the low frequency

portion in the right hand side panels (a2,b2,c2,d2,e2). Only odd harmonics of

both driving frequencies were detectable and their amplitude decreased rapidly

with the order number. In conclusion, Figure 2.11 indicated that (i) the gener-

ation of harmonics of either fundamental component of the process x(t) could

be ignored; (ii) for the values of ω1 and ω2 simulated, no significant mixing

occurred between the low and high frequency spectra of x(t), even if commen-

surate. This validates our spectral stochastic resonance analysis based only on

the fundamental response components to drive frequency, ω1 and ω2.[2]
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Figure 2.10: The dependence of out-of-phase stochastic resonance on the particle
elongation ratio b/a, for x̄2 (a), α2 (b), x̄1 (c) and α1 (d), for weak low frequency
drive, ω1/2π = 0.001 and A1 = 1 and a strong high frequency drive, ω2/2π = 0.01 and
A2 = 2. The elongation aspect ratios were: b/a = 3, green curves, 5, blue curves and 7
red curves. The signature of out-of-phase stochastic resonance, a maximum of x̄1(D)
for α1(D) ' −π, was suppressed on decreasing b/a, as can be seen from comparing
curve pairs of different colours in panels (c) and (d). No dependence on the relative
drive phase φ was observed. For example, the open circles were obtained for the same
parameters as the blue curves but with φ = π/2 instead of π = 0.[2]

In summary, the geometric stochastic resonance of an elliptical particle in

a two dimensional double cavity with a pore in the inter-cavity membrane was

affected and could be controlled by the particle shape. Out-of-phase stochas-

tic resonance for the system response at the lower frequency resulted when a

bi-harmonic drive was applied parallel to the pore axis. This out of phase

stochastic resonance occurs under quite general conditions namely:(i) that the

lower frequency was much smaller than the higher frequency, (ii) the lower fre-

quency drive component had a relatively lower amplitude and (iii) the elliptical

particle had a high elongation aspect ratio, with the particle length 2b greater

than the pore width ∆. The effect that particle shape had here upon geometric

stochastic resonance is analogous to the effect it had previously been shown to

have upon absolute negative mobility reviewed in Chapter One. Indeed, the

former work partly motivated the latter. Furthermore, for strong low frequency

drive components, the interplay between the two driving frequencies mostly af-
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Figure 2.11: The normalised power spectrum from the x(t) trajectories of Figure 2.10
for b/a = 5 and noise levels D = 0.01 (a1,a2), D = 0.02 (b1,b2), D = 0.04 (c1,c2), D =
0.06 (d1,d2) and D = 0.12 (e1,e2). The power spectra were proportional to 〈|x̂(ω)2|〉,
with x̂(ω) denoting the Fast Fourier Transform of x(t), and normalised to the spectrum
peak at ω = ω2 in panel (e1). The panels on the left (a1,b1,c1,d1,e1) represent the
spectra over the entire ω domain while panels on the right (a2,b2,c2,d2,e2) show the
spectral details around the low drive frequency ω1.[2]

fected the high frequency system response by inverting the optimal stochastic

resonance phase shift from π/2 to −π/2. Both effects were relatively insensi-

tive to the choice of the frequencies, the relative phase or waveform for the two

drives. This indicated that the robust nature of the phenomenon. Experimental

verification of this out-of-phase stochastic resonance could be demonstrated in

a mixture of charged rodlike colloidal particles driven on a disordered substrate

by a bi-harmonic electric field.[2] This project represented a logical advance

upon earlier work upon geometric stochastic resonance wherein the research fo-

cused on chamber and pore geometry.[2, 115, 117] In our later work, described

in Chapter Three, we have demonstrated how not only particle geometry but

its variation in time also affects stochastic dynamics.



Chapter 3

Rectification

In Chapter Three we describe our research related to the rectification of

Brownian particles with oscillating radii freely diffusing in an asymmetric cor-

rugated channel. The stochastic transport was simulated over a range of driving

forces for a series of temperatures and angular frequencies of radial oscillation.

Here we show that there was a strong influence of self-oscillation frequency upon

the average particle velocity. This effect can be used to control the rectifica-

tion of biologically active particles as well as their separation according to their

activity. For instance, it can be used in the separation of living and dead cells.[3]

3.1 Rectification of Brownian Particles with Os-

cillating Radii in Asymmetric Corrugated

Channels

Rectification is the process of turning the unbiased fluctuations, or oscillating

drives with zero average, in a system into the directed transport of particles.

One means by which this is accomplished is by the use of ratchets. As we said

in Chapter One, a ratchet is a device that is capable of transporting particles in

a periodic structure with non-zero macroscopic velocity, although on average no

macroscopic force is acting. This is achieved through the breaking of temporal

and/or spatial symmetry.[3, 94, 95, 96, 97]

Interest in rectification partly stems from its potential application on the

nano-scale where Brownian motion predominates, yet it can deliver directed

transport of biological probes and nano-devices, as well as, facilitate particle

separation technologies. However for practical implementation to be achieved,

it is apparent that chamber and particle geometry must be considered.[3]

With respect to chamber geometry, it is known that in a many biological sys-
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tems particles move in confined geometries, such as cavities and channels which

act as traps or guide particle motion. When particles diffusing between such

cavities are surrounded by smooth channels connected by narrow pores they are

confined in each cavity by an entropic rather than an energetic potential.[1, 66]

In these cases a Fokker-Plank or Langevin equation can be used to model the

diffusion dynamics of these particles in two and three dimensions. Then at low

values of the driving force, approximate solutions can then be obtained by re-

ducing the problem to Brownian diffusion in an effective 1D periodic potential

using a Fick-Jacobs kinetic equation with a spatially dependent diffusion func-

tion and a 1D entropic barrier replacing the geometric constraints. However, at

higher values of the driving force, the average particle current and the effective

diffusion diverge from the values obtained by the 1D reductionist approach. It

is to be remembered that this occurs because the assumption of a transversely

uniform density distribution introduced in the Fick-Jacobs approximation to

eliminate transverse coordinates, is no longer valid at strong driving forces. Ex-

amples of when the 1D reductionist approach has proved inadequate include

geometric stochastic resonance (gSR) in a double cavity and Brownian motion

in septate channels.[1, 2, 66, 84] There are limits therefore to the applicabil-

ity of the 1D reductionist approach, as we have related in Chapter One. For

sharper boundaries and or larger driving forces, we must directly integrate the

2D Langevin equation by using, for example the Euler method, as we have done

here.[1, 2, 19, 20, 26, 66, 98, 99]

As we mentioned in Chapter One, interest in particle shape and its effect

upon stochastic dynamics is increasing in part due to the potential applications

of Janus particles.[3, 39] Researchers are investigating the additional functional-

ity that can be conferred upon Janus particles by making them active particles,

such as self oscillating or self-propelled particles.[39, 44] Methods of propulsion

might be found at the mesoscopic level where bacteria use various modes of self-

propulsion including: flagellar motion, gliding motility, tumbling, screwing and

twitching.[33, 34, 35] But whatever means of self-propulsion emerges at the nano

level, it must contend with the challenge of Brownian motion and the need for

a non-equilibrium source of energy to achieve directed motion.[33] With these

considerations in mind, we modelled Janus-like particles in a geometric ratchet

composed of an asymmetric corrugated channel, wherein the particles have an

element of self-propulsion by means of oscillating radii.[3]

3.2 Model

In our model we considered an overdamped Brownian circular particle with

an oscillating radius freely diffusing in a 2D suspension fluid confined in an
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Figure 3.1: Brownian particle with oscillating radius freely diffusing in a 2D asym-
metric corrugated channel with reflecting boundaries. The sharp confining geometry
is such that the 1D reductionist approach cannot correctly approximate the stochastic
dynamics and a 2D Langevin model is required. The concentric circles represent the
lower and upper limits of the particle’s oscillating radius, R = R1 +R2 = a+b| cosωt|.
Chamber parameters were: XL = YL = 1, ∆ = 0.1.[3]

asymmetric corrugated channel with reflecting walls as shown in Figure 3.1.

The overdamped dynamics of the particles were modelled by the Langevin

equation:[6, 106]
d~r

dt
= −A(t)~ex +

√
D~ξ(t), (3.1)

where ~r was the position vector of the particle, A(t)~ex was the driving force along

the x axis, ~ex was the unit vector along the x axis, D was the noise intensity and
~ξ(t) = [ξx(t), ξy(t)] was the zero mean Gaussian white noise with autocorrelation

function 〈ξi(t)ξj(t′)〉 = 2δijδ(t − t′) with i, j = x, y. We used a driving force

A(t) = F sign(cos(πt/tmax)) with simulation time tmax and sign(z) = 1 for z > 0

and sign(z) = −1 for z < 0. Thus the ac force A(t) pushed the system to the

left during the first half time of simulation and to the right during the second

half time of simulation resulting in no average dc drive. Therefore, the average

velocities reported in Figures 3.2 and ?? below originated from the rectification

mechanism. The particle had a fixed internal component of radiusR1 = a and an

oscillating external component of radius R2 = b| cosωt|, that is R = R1 +R2 =

a + b| cosωt|, where a and b were constants and max|R2| < R1. Equation 3.1

was numerically integrated using a Euler algorithm. The number of time steps

used was 109 (time step was 10−4 and simulation time was 105).[3, 106, 107]
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3.3 Rectification and Biologically Active Parti-

cles with Oscillating Radii
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Figure 3.2: Average velocity of a single circular particle of constant radius, R(t) = R1

and (R2 = 0) as a function of driving force F for several values of R1/∆ = 0.5 (solid),
0.8 (dash-dot), 0.95 (dash-dash), 0.99 (dot-dot) with pore half-width ∆ = 0.1, and
D = 0.1, see also Figure 3.1.[3]

Figure 3.2 shows rectification of the single circular particle of constant radius

(R(t) = R1, R2 = 0) for several temperatures and a wide range of DC driving

forces. At low driving forces, the rectified velocity increased as F 2 and then

linearly increased. This behaviour is quite different from the usual rectification

peak in 1D.[3]

Figure ?? shows rectification of a self-oscillating particle with a radius com-

posed of a fixed internal component of radius (R1 = 0.09) and an oscillating ex-

ternal component of radius (R2 = 0.03|cosω(t)|) for fixed temperature D = 0.1

and a range of angular speeds of oscillation. Thus the particle had a minimum

radius of (0.09) and a maximum of (0.12), in a corrugated channel where the

pore half-width was ∆ = 0.10. This led to a gating mechanism whereby maxi-

mal rectification could be achieved when there existed an average time te which

the particle needed to pass a channel cell (note that this time was controlled by

driving amplitude F and noise) and the particle’s period of oscillation to, where

to = 2π/ω: that is when te ≈ nto and (n = 1, 2, 3...). The oscillation in each

curve for ω occured because with increased driving force the value of te fell suc-

cessively in and out of commensurability with to leading to varying amplitude

of rectification. When to ≈ te the particle as ’seen” by successive pores most

closely resembled a particle of constant radius and thus its rectification most

closely resembled that of a particle of constant radius too. The time needed for
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Figure 3.3: Average velocity of a self-oscillating particle with an oscillating radius
(R1 = 0.9∆, max|R2| = 0.3∆), diffusion constant D = 0.1 and a range of oscillation
frequencies. As can be seen from the red line, for a given value of the driving force (F =
10), particles have different average velocities according to their angular frequency of
oscillation and can thus be separated.[3]

the particle to traverse the chamber was estimated as ∆T = XL/V = XL/F

where V is the velocity of the particle and F is the amplitude of the driving

force. To pass through to the next chamber, the particle should have the min-

imum size, which occurs at Tn = nπ/ω where (n = 1, 2, 3...), the optimal force

can be estimated as Fn = XLω/nπ. It is apparent therefore that differential

rectification of populations of Brownian particles freely diffusing in asymmetric

corrugated channels can be controlled by means of differing angular frequencies

of oscillations and used to achieve particle separation. This will be of interest

to those seeking to achieve controllable and directed transport of self-oscillating

particles on the nano-scale such as that of self-propelled Janus particles. More-

over, it could also be used for the separation of living and dead cells.[3]

We have demonstrated rectification for a self-ocillating Brownian particle in

a series of asymmetric corrugated channels. Rectification could be optimised for

frequency ω of radial oscillation by matching the mean noise and driving force

induced escape time te with the period of oscillation to. This mechanism can be

used for separation of self-oscillating particles according to their self-frequencies

(for instance living and dead cells or bacteria) on the nano-scale. This rectifi-
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cation behaviour cannot be obtained by the 1D reductionist approach.[3]



Chapter 4

Conclusions and Outlook

In the concluding chapter of my thesis, we summarise our research findings,

draw out the research themes and offer some concluding remarks on the impact

of this work upon the progress of this research area.

In Chapter One, we defined and described in turn stochastic dynamics,

stochastic resonance, geometric stochastic resonance, rectification and absolute

negative mobility. We considered the modelling of stochastic dynamics in one

and higher dimensions and the limitations of the 1D reductionist approach. We

concluded with a consideration of some of the applications of stochastic trans-

port.

In the first part of Chapter Two, we demonstrated how particles suspended

in a double cavity with a separating membrane could diffuse across the inter-

cavity pore subject to the combined actions of thermal fluctuations and periodic

drives. The inter-cavity flow was modulated in time at the drives’ frequencies

with amplitudes that could be optimised by controlling the temperature of the

system. This is a geometric effect, where the stochastic resonance condition

depends upon the shape of the cavity and the particle-particle interactions.[1]

These results may be of interest in the study of colloidal systems. The mecha-

nism of stochastic resonance described does not depend upon the dimensionality

of the system, therefore, it may lend itself to experimental verification upon col-

loidal systems in three dimensional geometries. However, this form of stochastic

resonance could be affected by other competing effects such as pore structure

and microfluidic effects. For translocating molecules in nanoscale systems, the

transit time varies with the internal structure of the pore and the structure in

the vicinity of its opening. For an electrolytic suspension fluid flowing across an

inter-cavity pore, inhomogeneous velocity and electrical fields can affect the drift

and orientation of the driven particles. However, these systems specific effects

can in be assimilated into the Langevin model using an appropriate potential
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term.[1]

In the second part of Chapter Two, we demonstrated that geometric stochas-

tic resonance in a two dimensional double cavity with a pore in the inter-cavity

membrane was affected and could be controlled by particle shape. Out-of-phase

stochastic resonance for the system response at the lower frequency resulted

when a bi-harmonic drive was applied parallel to the pore axis. Onset occurs

under quite general conditions namely: (i) that the lower frequency is much

smaller than the higher frequency, (ii) the lower frequency drive component has

a relatively lower amplitude and (iii) the elliptical particle has a high elongation

aspect ratio, with the particle length 2b greater than the pore width ∆. The

effect that particle shape had upon geometric stochastic resonance is analogous

to the effect it had previously been shown to have upon absolute negative mo-

bility. Furthermore, for strong low frequency drive components, the interplay

between the two driving frequencies mostly affected the high frequency system

response by inverting the optimal stochastic resonance phase shift from π/2 to

−π/2. Both effects are relatively insensitive to the choice of frequencies, rela-

tive phase or waveform for the two drives. This indicates that they are quite

robust phenomena. This work represents a logical advance upon earlier work

on geometric stochastic resonance wherein the research focused on chamber and

pore geometry. Moreover, it expands the spectrum of parameters that lend

controllability to stochastic resonance to include particle size.[2, 117, 115]

In Chapter Three we demonstrated rectification for a self-oscillating Brow-

nian particle in a series of asymmetric corrugated channels. Rectification could

be optimised for frequency ω of radial oscillations by matching the mean noise

and driving force induced escape time te with the period of oscillation to. This

mechanism can be used for separation of self-oscillating particles according to

their self-frequencies on the nanoscale, for instance, for the separation of liv-

ing and dead cells or bacteria. This rectification behaviour cannot be obtained

using the 1D reductionist approach of the Fick-Jacobs formalism but requires

integration of the 2D Langevin equation.[3]

Experimental verification of our results is also possible: ion beam lithogra-

phy has enabled the etching of almost any shape of confining geometry upon

the surface of a type II superconductor. Moreover, effective vortex size can

be indirectly controlled through temperature variation with time T = T (t),

λ = λ0/
√

1− T/Tc. This allows the realisation of effective radial oscillations.

Hence control can be exerted over vortex dynamics through the manipulation

of chamber geometry and vortex size. Our findings upon geometric stochastic

resonance and rectification offer enhanced control of the stochastic dynamics of

vortices in type II superconductors enabling them to be shunted away from sites

of sensitive superconducting electronic devices such as SQUID magnetometers.
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This enables SQUID based technologies such as MRIs to reach an enhanced

level of sensitivity opening up additional diagnostic applications. Moreover sta-

ble SQUIDs have been considered as the basis for quantum computing systems.

Throughout this thesis we have attempted to draw out the research themes

that motivated and informed this work. Here we offer some concluding remarks.

We were at pains in the first chapter to draw the superficially disparate top-

ics of geometric stochastic resonance and rectification together through their

common characteristic of noise. Noise is integral to these and indeed all forms

of stochastic transport. Moreover, noise is the inescapable reality of the phys-

ical world at the nanoscale. Stochastic resonance has enabled us to achieve a

paradigm shift in how we think of noise: where formerly we may have thought

of it as a nuisance within a system, we now see it has a constructive role to play

in achieving directed transport on the nanoscale or the uptake of weak coherent

inputs. What evolution has been taking advantage of for millions of years in

biological systems, we are only beginning to take advantage of ourselves in our

design of systems on the nanoscale.

Our work has contributed to an expansion in research emphasis from a con-

sideration of chamber geometries to particle geometries in the control of stochas-

tic transport. This is a logical and practical extension of the ongoing research.

Until recently research focused on the impact of chamber geometry on stochastic

dynamics but the extensive nature of the particles themselves was not attended

to. However, as our research has shown with respect to geometric stochastic

resonance and rectification, and as earlier research has shown with respect to

absolute negative mobility, when particle size and shape is no longer negligi-

ble with respect to chamber dimensions its geometry must be considered for

its impact upon stochastic transport mechanisms. The extensive nature of the

particle and its geometry adds to the controllability of stochastic transport.

Moreover, it is not always possible to control chamber geometry, such as in

drug delivery systems, but it is possible to exercise some control over particle

geometry. The promising applications of Janus particles and active particles,

e.g. with oscillating size, their extensive nature and asymmetric design ensure

a continued requirement to understand and control the impact of particle ge-

ometry upon stochastic transport. Thus it is envisaged that research upon the

impact of particle geometry on stochastic transport will continue apace.

We have also attempted to draw the reader’s attention to the inadequacy of

the 1D reductionist approach in accurately modelling sharp confining geome-

tries or the stochastic dynamics of extensive particles. Geometric stochastic

resonance and the rectification of extensive particles demands an alternative

approach, such as integration of the 2D Langevin equation, to fully realise the

complex dynamics, as demonstrated by the models and results of Chapters Two
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and Three.

It is also worthwhile remarking once more upon the pervasive nature of

stochastic resonance from the earth’s glaciation cycle, to neurosensory systems,

to vortex dynamics and nanotechnology, it continues to provide us with a very

interesting journey.

We should also acknowledge in passing the power of simple mathematical

modelling of the Langevin equation to tackling problems in areas as apparently

diverse as those of fluxonics and particle transport in biophysics.

Figure 4.1: The figure shows a ’citation map’ for our first paper ’Geometric stochastic
resonance in a double cavity’.[1] The central rectangle represents our paper. The
coloured rectangles to the left represent the individual papers we have referenced
in our work, while the coloured rectangles to the right represent the papers that
have referenced our work since its publication in 2011. For instance, the uppermost
(purple) rectangle on the right represents: Wei, D.Q. Mai, X.H. Chen, H.B. Luo, X.S.
Zhang, B. Zeng, S.Y. Tang, G.N. (2014), ’Transport properties of inertial particles in
networks with random long-range interactions’, Physica A Statistical Mechanics and
its applications, 394, pp. 358 - 364.[118]

As a crude but succinct metric of the impact of our current work we include

Figure 4.1. In one succinct image this shows how we have drawn on the work

of others and how now others draw on this work of ours. This is the web of

knowledge which we weave and we are happy to have woven a strand or two.

Finally, it is expected that research upon the use and control of stochastic

dynamics on the nanoscale will continue to be of increasing importance in the
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years to come in tandem with the nanosystems it attempts to model. This

augurs well for the continuing relevance and impact of our research as well as

the need for its advancement.



Appendix A

Programs and Datasets

The programs and datasets associated with the individual projects that com-

pose this thesis are available upon request.
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