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Abstract

A Galerkin-type approach is presented and numerically validated for the vibration analysis of non-local slender beams

with multiple cracks, in which a hybrid gradient elasticity (HGE) model accounts for the microstructural effects. It

is shown that: i) a smoother and more realistic profile of beam’s rotations is obtained at the damaged locations; ii)

independently of support restraints and damage scenarios, only four boundary conditions are required, meaning that

the computational effort does not increase with the number of cracks; iii) the microstructural effects become significant

when the modal wave lengths are less then about forty times the HGE length-scale parameters.

Keywords: Aifantis’ strain gradient, Eringen’s stress gradient, Euler-Bernoulli beam, Galerkin method, Hybrid

gradient elasticity (HGE), Non-local elasticity

1. Introduction1

Damage often occurs during the service life of structures, and accurate computational models are required to2

analyse the resulting changes in their performance. Introducing a discrete spring (DS) at the damage position is one of3

the preferred options for cracked beams and columns, particularly for problems of damage identification, where some4

iterative processes are required and any little time saving at each iteration corresponds to a significant computational5

advantage, e.g. when compared to a more detailed 2D/3D finite element (FE) model.6

In the traditional application of DSs, a cracked beam or column is ideally split at the damage position, using7

linear or non-linear springs to transfer the relevant internal forces [1–3], and results into a finite discontinuity in the8

associated kinematic quantities (rotations and/or axial/transverse displacements). This oversimplifies the smoother9

behaviour experienced by actual beams at the damaged sections, motivating a recent study by the same authors [4], in10

which higher-order elasticity theories have been used for the static analysis of non-local slender beams in bending. In11

this model, a hybrid gradient elasticity (HGE) theory, where both stress gradient and strain gradient enrich the elastic12

∗Corresponding author
Email address: A.Palmeri@Lboro.ac.uk, Dynamics.Structures@Gmail.com (Alessandro Palmeri)

Preprint submitted to Computers & Structures 13th August 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288375132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


constitutive law, has been combined with the multi-cracked flexibility model, originally introduced by Palmeri and13

Cicirello [5] for the classical elasticity. As a result, not only the rotations of the beam’s cross section appear smoothed14

in the neighbourhood of the DS, but size-dependent effects related to the microstructural arrangement of the materials15

can also be captured, without the higher computational cost of a detailed microstructural model.16

Higher-order elasticity theories have been pioneered by Mindlin in the middle of the 20th century [6], but only17

few decades later they have found two efficient formulations with the work of Eringen [7–9] and Aifantis [10–12].18

Applications were initially focused on 2D shell elements or to study wave propagations and crack singularities, and19

only at the beginning of the 21st century non-local elasticity theories have found application to 1D beam elements,20

mainly because of the interest in the development of CNT (carbon nanotube) systems [13]. Noticeably, similar gov-21

erning equations can also be used to study composite beams with interlayer slip [14], beams resting on two-parameter22

elastic foundations [15] and discrete systems [16].23

Several papers have been published on the vibration of beams using gradient elasticity theories, for both Euler-24

Bernoulli (EB) and Timoshenko beams. Amongst others, Wang and Varadan [17] have developed a gradient-elastic25

model to study the vibration of both single-walled and double-walled CNTs; Wang et al. [18] have investigated26

the dynamics of non-local Timoshenko beams, using the Hamilton’s principle in conjunction with Eringen’s non-27

local (stress-gradient) elasticity theory; Murmu and Adhikari [19, 20] have studied the transverse and longitudinal28

vibration of nanobeams and nanorods double-systems with distributed longitudinal/transverse springs, employing29

once again the Eringen’s model and highlighting the strong influence of the length-scale parameters on their dynamics.30

Further work has also been done on different structural configurations, e.g. CNTs with attached buckyballs at tip31

[21, 22], where the additional mass appendix appears to significantly influence both torsional and axial vibrations. The32

importance of the non-local effects in such circumstances has also been validated with molecular dynamic simulations.33

In comparison, limited attention has been paid to the two-parameter HGE model. Zhang et al. [23] have studied the34

free transverse vibration of slender beams with this constitutive law, providing the analytical solution for simply sup-35

ported beams, as in this case the sixth-order differential equation of motion can be converted into three second-order36

differential equations, while for different boundary conditions (BCs) they suggested to resort to numerical methods.37

Only a few authors have tackled the problem of gradient-elastic beams with concentrated damage. Loya et al. [24]38

have used the differential equations governing the dynamics of stress-gradient EB beams for the undamaged segments39

obtained by splitting the beam at the crack position. The method requires applying four BCs and the four compatibility40

conditions at the crack location, therefore increasing the size of the problem. Torabi and Dastgerdi [25] have used the41

same approach for the free vibrations of Timoshenko beams.42

Even though effective for stress-gradient elasticity, this solution is not directly applicable to the more general43
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HGE theory. Indeed, the problem is ruled in this case by a sixth-order differential equation (not fourth-order, as for44

the stress-gradient elasticity), therefore additional continuity conditions have to be enforced. The larger size of the45

problem and the more complicated analytical expressions make this approach unappealing for the HGE theory. The46

same difficulties hinder the development of a beam-type HGE FE, as two additional degrees of freedom (DoFs) at47

each node would be required in comparison to the classical elasticity.48

In order to overcome these problems, a Galerkin-type approximation is proposed for the transverse vibration ana-49

lysis of non-local (HGE) multi-cracked slender beams. The assumed shape functions are some closed-form solutions50

available for conveniently selected static problems, which allow limiting the computational effort, as no additional51

continuity conditions are required at the crack positions. The proposed approach has been validated against published52

results for undamaged gradient-elastic beams [23] and multi-cracked beams with classical (local) elasticity [26], and53

the numerical examples have been used to quantify the effects of the two length-scale parameters (stress-gradient and54

strain gradient) on the dynamic response of cracked beams.55

2. Multi-damaged Euler-Bernoulli (EB) beam with hybrid gradient elasticity (HGE)56

2.1. Governing equations57

Let us consider a straight slender beam with bending flexibility Γ(x) = 1/EI(x), where the function EI(x) > 0 is58

the flexural stiffness and x is the spatial coordinate, ranging from 0 to the length L of the beam.59

Resorting to the model recently proposed by the same authors for the static analysis of beams with HGE [4], the

constitutive law can be expressed as:


Γ(x) M(x) = χ̃(x) − ` 2

ε
χ̃ ′′(x) ;

χ(x) = χ̃(x) − ` 2
σ
χ̃ ′′(x) ,

(1)

where the prime (′) represents the derivative with respect to x; M(x) is the bending moment (positive if sagging);60

`ε > 0 and `σ > 0 are the strain-gradient and stress-gradient length-scale parameters, related to the microstructure of61

the beam; χ̃(x) is the effective non-local curvature, defined as the spatial weight average of the local curvature χ(x)62

[15, 23]. Interestingly, if the two length-scale parameters take the same value, i.e. `σ = `ε, the governing equation63

for the classical elasticity is recovered, while Eringen’s stress-gradient model is obtained for `ε = 0 and Aifaintis’64

stress-gradient model for `σ = 0.65

Using the discrete-spring (DS) model for concentrated damage, the flexibility function Γ(x) in Eq. (1) can be

written as:

Γ(x) = Γ0 [1 + Fb(x)] , (2)
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where Γ0 is the bending flexibility of the undamaged section; while the function Fb(x) includes the effects of the n

cracks through Dirac’s delta functions δ(x − x̄i) centred at each damage position x̄i:

Fb(x) =

n∑
i=1

βi δ(x − x̄i) , (3)

in which the dimensionless parameter βi quantifies the severity of the crack and can be related to the rotational stiffness

Ki of the DS as [5]:

Ki =
E I0

βi L
. (4)

Eq. (1) can be solved by imposing two boundary conditions (BCs) on the first derivative of the non-local curvature,66

which are usually assumed to be zero at the two ends of the beam, i.e. χ̃ ′(0) = χ̃ ′(L) = 0; and four BCs on the67

displacement u, rotation ϕ, bending moment M and shear force V , which arise when considering the compatibility68

equations, χ(x) = ϕ′(x) = −u′′(x), and the equilibrium equations, q(x) = −V ′(x) = −M′′(x), where both u(x) and the69

distributed load q(x) are positive when downward [4].70

2.2. Proposed approach71

The availability of closed-form exact solutions for the static problem [4] is exploited in this study to develop a novel72

computational method for the dynamic analysis of EB beams with HGE. Resorting to a Galerkin-type approximation,73

the main idea here is to use as shape functions the deformed shapes of the beam obtained for a convenient set of point74

loads, i.e. considering the transverse load as q(x) = Pr δ(x− xr) for the rth loading case (see Figure 1), which therefore75

allows the closed-form calculation of the shape functions (see Appendix A). The procedure requires three main steps:76

1. Definition of the shape functions (in closed-form);77

2. Evaluation of stiffness matrix and mass matrix;78

3. Solution of the eigenvalue problem,79

which are detailed in the following.80

2.2.1. Definition of the shape functions81

The domain [0, L] is initially split into equal intervals ∆x, defined by the number N of different positions (dummy82

point-load positions) along the beam. Depending on the BCs:83

• ∆x = xr+1 − xr = L
N+1 , if transverse displacements are prevented at both ends (simply-supported, clamped-84

clamped or propped beams);85
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Figure 1: Displacement shape functions for the dynamic analysis

• ∆x = xr+1 − xr = L
N , for the cantilever beam.86

The approximate expressions for the time-dependent bending moment M∗(x, t), curvature χ∗(x, t) and displacement

u∗(x, t) can then be represented as linear combinations of a set of N shape functions:

M∗(x, t) =

N∑
r=1

θ (r)(t) m (r)(x) ; (5a)

χ∗(x, t) =

N∑
r=1

θ (r)(t) c (r)(x) ; (5b)

u∗(x, t) =

N∑
r=1

θ (r)(t) d (r)(x) , (5c)

where θ (r)(t) are N time-dependent variables; while m (r)(x), c (r)(x) and d (r)(x) are the assumed shape functions. In87

detail, the rth transverse displacement function d (r)(x) is the closed-form solution of the beam under a unit point load88

P(r) = 1 applied at the dummy point-load position xr (see Figure 1), and c (r)(x) and m (r)(x) are the corresponding89

curvature and bending moment, respectively (and m (r)(x) , EI0 c (r)(x), unless `ε = `σ).90

It is worth noting here that using these shape functions leads to similar shear force and bending moment diagrams91

(piecewise constant and piecewise linear, respectively) as in the classical EB beam finite element (FE), where the92

cubic shape functions for the displacements, differentiated two and three times, correspond to linear M and constant93

V diagrams in each FE, without compromising the accuracy in terms of modal frequencies and modal shapes.94
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2.2.2. Definition of stiffness matrix and mass matrix95

For an ideal elastic system without energy dissipation, the N Lagrange’s equation of motion can be written as

(r = 1, · · · , N):
d
dt

[
∂

∂θ̇ (r)(t)
L(t)

]
− ∂

∂θ (r)(t)
L(t) =

∂

∂θ (r)W(t) , (6)

where θ (r)(t) and θ̇ (r)(t) are the generalised displacements and velocities, respectively; while L(t) is the so-called

Lagrangian function, defined as the difference between the kinetic energy T (t) and the potential energyV(t):

L(t) = T (t) −V(t) , (7)

which can be evaluated as:

V(t) =
1
2

∫ L

0
M(x, t) χ(x, t) dx ; (8a)

T (t) =
1
2
ρA

∫ L

0
u̇ 2(x, t) dx , (8b)

where ρ is the mass density of the material and A is the cross sectional area; while the external work is:

W(t) =
1
2

∫ L

0
q(x, t) u(x, t) dx . (9)

By using the approximate expressions of the field variables of Eqs. (5), the different forms of energy can be

rewritten as:

V(t) =
1
2

N∑
r=1

N∑
s=1

θ (r)(t) θ (s)(t)
∫ L

0
m(r)(x) c (s)(x) dx ; (10a)

T (t) =
1
2
ρA

N∑
r=1

N∑
s=1

θ̇ (r)(t) θ̇ (s)(t)
∫ L

0
d (r)(x) d (s)(x) dx ; (10b)

W(t) =
1
2

N∑
r=1

θ (r)(t)
∫ L

0
q(x) d (r)(x) dx . (10c)

After some algebra, substitution of Eqs. (10) into Eq. (6) yields to a system of ordinary differential equations,

which can be posed in a compact matrix form as:

M · θ̈(t) + K · θ(t) = F(t) , (11)

where θ(t) = {θ(1)(t), · · · , θ(N)(t)}> is the array of the Lagrange variables (the superscripted symbol > being the

transpose operator); F(t) = {F(1)(t), · · · , F(N)(t)}> is the array of the equivalent external loads, where the rth element
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is given by:

F(r)(t) =

∫ L

0
q(x, t) d (r)(x) dx ; (12)

while K and M are the stiffness and mass matrices respectively, whose elements (rth row and sth column) are so

defined:

Krs =

∫ L

0
m (r)(x) c(s)(x) dx ; (13)

Mrs = ρA
∫ L

0
d (r)(x) d (s)(x)dx . (14)

2.3. Eigenvalue problem96

In order to investigate the free vibration of multi-cracked HGE beams, Eq. (11) is studied without any external

force, i.e. with F(t) = 0:

M · θ̈(t) + K · θ(t) = 0 , (15)

whose ith harmonic solution θi(t) depends on the natural circular frequencyωi and the associated array ai =
{
a(1)

i , · · · , a(N)
i

}>,

containing the generalised coordinates of the ith modal shape of the beam (i = 1, · · · , N):

θi(t) = ai sin(ωi t) . (16)

Substituting Eq. (16) into Eq. (15) leads to the generalised eigenproblem:

K · ai = ω 2
i M · ai . (17)

Once the eigenvector ai is known, the ith modal shape can be expressed as:

φi(x) = a>i d(x) , (18)

where d(x) =
{
d(1)(x), · · · , d(N)(x)

}> is the N-dimensional array of the shape functions introduced to approximate the97

solution. Table 1 summarises the key steps needed for the implementation of the proposed approach.98

3. Numerical examples99

The dynamic analysis of three cracked non-local beams with different BCs has been carried out with the compu-100

tational software Mathematica [27]. To the authors’ best knowledge, the exact analytical solution is not yet available101
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Table 1: Solution procedure for the dynamic problem

1. Collect all the data for the beam (namely, E, I0, L, n, x̄i, βi, classical BCs) including the micro-
structural parameters (`ε, `σ)

2. Choose the N positions of the point loads (N = number of shape functions)
3. For each position xr of the point load, evaluate:

(a) displacement function d (r)(x)
(b) curvature function c (r)(x)
(c) bending moment function m (r)(x)

4. Evaluate:
(a) each term Krs of the stiffness matrix (see Eq. (13))
(b) each term Mrs of the mass matrix (see Eq. (14))

5. Solve the eigenproblem
[
K − ω 2

i M
]
· ai = 0

in the literature, and so the two cases of undamaged gradient-elastic beams [23] and of multi-damaged local-elastic102

beams [26] have been used when possible for validation purposes.103

As discussed in Ref. [13], length-scale parameters can be related to constitutive or geometrical properties of the104

material [28, 29] or quantified using experimental techniques [30]. In line with the idea that length-scale parameters105

capture key features of the material at sub-scale, the effects of `ε and `σ on the dynamic response of the damaged beams106

have been also quantified. The case of `ε = `σ has been considered to retrieve the classical elasticity solution. For107

completeness, the analysis has been extended to the range `ε < `σ, which has been defined as physically inconsistent108

due to the counter-load deformations observed in the static analysis of the beams [4]. In any case, since these two109

parameters are linked to the beam’s microstructure, their values cannot exceed the beam’s length, i.e. 0 ≤ `ε < L and110

0 ≤ `σ < L. The convergence for an increasing number of shape functions has also been investigated.111

For the sake of generality, the results are presented as much as possible in terms of dimensionless quantities, e.g.112

the ratio ωi/ωi,loc between the ith frequency of the non-local beam and the ith frequency of the classical (local) one.113

3.1. First example – Cantilever beam with a single damage114

A cantilever beam of length L is studied in the first example (see Figure 2). The beam is clamped at x = 0 and has115

a single crack at the position x1 = L/3, in which the dimensionless parameters of the rotational spring is β1 = 0.1 (see116

Eqs. (3) and (4)).117

Figure 2: Example one – Cantilever beam with a concentrated single damage
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ω1,loc ω2,loc ω3,loc ω4,loc

0.528 3.398 9.2015 19.214

Table 2: Example one – First four natural frequencies for the local elasticity model

1/51/101/201/501/100

1

1.5

2

`ε/L

ω
i/
ω

i,l
oc

(a)

{i = 4; `σ = 0}
{i = 3; `σ = 0}
{i = 2, `σ = 0}
{i = 1, `σ = 0}
`σ = `ε

1/51/101/201/501/100
0.8

1

1.2

1.4

1.6

1.8

2

`ε/L

ω
i/
ω

i,l
oc

(b)

{i = 4; `σ = L/20}
{i = 3; `σ = L/20}
{i = 2, `σ = L/20}
{i = 1, `σ = L/20}
`σ = `ε

Figure 3: Example one – Normalised natural frequencies ωi/ωi,loc of the cracked cantilever beam for `σ = 0 (a) and `σ = L/20 (b), computed with
N = 16

Following the procedure summarised in Table 1, a set of N different concentrated loads Pr = 1 pointing downward118

is applied along the beam, each one giving a different shape function for the displacement d (r)(x), the local curvature119

c (r)(x) = −d ′′(r)(x) and the bending moment m (r)(x). The integration constants C (r)
0 , C (r)

1 , C (r)
2 and C (r)

3 are evaluated120

by solving the four equations that result from applying the BCs for the internal forces at the free end (m (r)(L) =121

m′ (r)(L) = 0) and the kinematic quantities at the fixed end (d (r)(0) = d ′(r)(0) = 0); the other two constants C (r)
4122

and C (r)
5 are evaluated by assuming the stationarity of the effective non-local curvature at both ends of the beam123

(c̃ ′ (r)(0) = c̃ ′ (r)(L) = 0).124

3.1.1. Effects of the length-scale parameters125

Modal frequencies ωi and modal shapes φi(x) obtained with the proposed formulation for different combinations126

of the length-scale parameters `ε and `σ have been compared with those of the classical elasticity theory. The lin-log127

plots of Figure 3(a) show how the first four normalised modal frequencies ωi/ωi,loc vary with the normalised strain-128

gradient parameter `ε/L (between 1/100 and 1/5), while the stress-gradient parameter is `σ = 0 (Aifantis’ model).129

Table 2 collects the reference values of the modal frequencies ωi,loc, which in all the numerical examples have been130

computed using the exact closed-form expressions derived by Caddemi and Caliò [26].131

Independently of the value of the strain-gradient parameter, the higher the modal frequencies, the larger the relative132

effect of the gradient elasticity; in particular, for the fourth frequency ω4, the increment with respect to ω4,loc is larger133
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1/51/101/201/501/100

0.95

1

1.05

`ε/L

ω
1/
ω

1,
lo

c

(a)

`σ = 0
`σ = L/50
`σ = L/20
`σ = L/10
`σ = `ε

1/51/101/201/501/100

1

1.5

2

`ε/L

ω
4/
ω

4,
lo

c

(b)

`σ = 0
`σ = L/50
`σ = L/20
`σ = L/10
`σ = `ε

Figure 4: Example one – Ratio ωi/ωi,loc for the first (i = 1) (a) and fourth (i = 4) (b) natural frequencies for four different values of the stress-
gradient parameter `σ, computed with N = 16

1/51/101/201/501/100

0.6

0.8

1

`σ/L

ω
i/
ω

i,l
oc

{i = 4; `ε = L/20}
{i = 3; `ε = L/20}
{i = 2, `ε = L/20}
{i = 1, `ε = L/20}
`ε = `σ

Figure 5: Example one – First four normalised frequencies ωi/ωi,loc for `ε = L/20, computed with N = 16

than 100% at `ε/L = 1/5. A similar trend can be seen within Figure 3(b), in which the stress gradient parameter is134

`σ = L/20. In this case all the curves intersect at `ε/L = 1/20, where the two length-scale parameters take the same135

values, as at this point the solution coincides with the classical elasticity theory, i.e. ωi/ωi,loc = 1. The maximum ratio136

for the fourth frequency is obtained again at `ε/L = 1/5, where ω4/ω4,loc this time is slightly less than 2, i.e. less than137

the maximum value observed for `σ = 0. This phenomenon can be better understood looking at Figure 4, where the138

normalised values of the first and fourth frequencies are plotted for different values of `σ = {0, L/50, L/20, L/10} and139

for 1/100 ≤ `ε/L ≤ 1/5. All the different curves intersect the classical elasticity solution (solid horizontal line) when140

`ε = `σ, and increasing `σ reduces the frequencies.141

Interestingly, one can observe that for `ε < `σ the modal frequencies reduce, i.e. ωi < ωi,loc, meaning that the HGE142

beam is less stiff than the local counterpart; the opposite happens for `ε > `σ, as in this case the modal frequencies143

increase, i.e. ωi > ωi,loc. More generally, for a given value of the stress-gradient length-scale parameter `σ, the larger144

|`ε − `σ|, the more significant tends to be the variation in the modal frequencies.145
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Additionally, for a given set of length-scale parameters {`ε, `σ}, the higher the mode of vibration, the larger tends146

to be the variation in the modal frequency. For the cantilever beam under consideration and the range of selected147

parameters, there is a maximum reduction in first modal frequency ω1 of about 6% for `ε = L/100 and `σ = L/10,148

while the maximum increase of about 5% is seen for `ε = L/5 and `σ = 0 (see Figure 4(a)). Larger variation are149

observed for the fourth modal frequency (see Figure 4(b)), in which for the same values of length-scale parameters ω4150

reduces to about 30% less than ω4,loc (for `ε = L/100 and `σ = L/10) and increases to about 120% more than ω4,loc151

(for `ε = L/5 and `σ = 0).152

Figure 5 shows the variation of the first four natural frequencies when the strain-gradient parameter takes the153

constant value `ε = L/20 and `σ varies between L/100 and L/5. As usual, the intersection point represents the154

solution for `ε = `σ = L/20 and is equivalent to the classical elasticity solution. For both left and right side of the plot155

(corresponding to `σ < `ε and `σ > `ε, respectively), the higher the frequency, the larger are the non-local effects. For156

instance, for `ε = L/20 and `σ = L/5, the fourth modal frequency of the non-local beam is about 50% lower than the157

corresponding local one.158

The effects of the damage parameter β1 on the first four natural frequencies are illustrated within Figure 6, assum-159

ing `σ = L/20 and five different values of the strain-gradient parameter, `ε = {L/40, L/30, L/20, L/10, L/5}. When160

compared with the local-elastic case (`σ = `ε = L/20), the numerical results show the material to soften for `ε < `σ,161

leading to lower frequencies; on the contrary, the material becomes stiffer for `ε > `σ. Furthermore, independently of162

the microstructural parameters `ε and `σ, a significant reduction of the frequencies ω1, ω2 and ω3 is observed when163

β1 increases. A less pronounced reduction is seen in the fourth modal frequency ω4 (Figure 6(d)), as the associated164

modal shape has a small value of the bending moment at the cracked cross section (x = L/3), and for this reason the165

concentrated damage has very little effect on the fourth mode.166

3.1.2. Modal shapes167

The above analysis of the modal frequencies proceeds with studying the effects of the microstructural parameters168

`ε and `σ on the modal shapes of the cracked cantilever beam. Figure 7 shows the first four modal shapes for four169

different combinations of the length-scale parameters `σ = L/20 and `ε = {L/40, L/20, L/10, L/5}. As usual, the170

solid line represents the local case, retrieved for `ε = `σ = L/20. The first observation is that the first modal shape171

φ1(x) is scarcely affected by the microstructural parameters, while their effects become increasingly more significant172

in the higher modes of vibration. Interestingly, Figures 7(b), (c) and (d) reveal that the ith modal shape (with i ≥ 2) has173

i−1 nodes, i.e. points (other than the fixed end at x = 0) where the family of curves φi(x) tends to pass, independently174

of the strain gradient parameter `ε.175
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`ε = L/40; `ε = L/30; `ε = `σ; `ε = L/10 ; `ε = L/5
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Figure 6: Example one – First four modal frequencies ωi against the damage parameter β1 for `σ = L/20 and four different values of the strain-
gradient parameter `ε = {L/40; L/30; L/20; L/10; L/5}, computed with N = 16

`ε = L/40; `ε = L/20; `ε = L/10; `ε = L/5

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3
x/L

φ
1

(a)
0 0.2 0.4 0.6 0.8 1

−2

0

2
x/L

φ
2

(b)

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

x/L

φ
3

(c)
0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2 x/L

φ
4

(d)

Figure 7: Example one – First four modal shapes for `σ = L/20 and four different values of the strain-gradient parameter `ε = {L/40; L/20; L/10;
L/5}, computed withN = 8
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3.1.3. Convergence176

In order to check the efficiency of the proposed method, the convergence of the frequency error against the number

of shape functions has been investigated. Since the exact dynamic solution of the cracked hybrid non-local beam

model is not available, the frequency obtained using a higher number of shape functions (N = 64) has been assumed

as a reference value for this study. The dimensionless measure of frequency error for the ith mode has been defined

as:

εi(N) =
|ωi(N) − ωi,ref|

ωi,ref
, (19)

where ωi,ref = ωi(N = 64), and the trend of εi(N) is shown for the first four modal frequency as part of Figure 8.177

First of all, one can observe that the relative error assumes values lower than 2% for all the cases investigated,178

where the number of elements range from 6 to 64 elements, and this can then be considered as highly acceptable179

in most engineering simulations. Furthermore, all the graphs show the convergence to the reference solution for an180

increasing number of shape functions. In particular, the relative error of the first three modal frequencies is already181

lower than 1% when six shape functions are adopted, whereas for the fourth frequency it reduces from 2% to 1% with182

N = 16. Interestingly, the error does not decreases monotonically for the third and fourth modal frequency, due to183

the fact that increasing the number of dummy point loads N generally results in different shape functions being used,184

rather than to an enlargement of the set of shape functions, unless the interval ∆x is consecutively split into an integer185

number of smaller intervals (e.g. ∆x/2, ∆x/4, etcetera). However, for this example it is clear that using 16 points (i.e.186

∆x = L/16) ensures that accurate results are obtained for the first four natural frequencies.187

3.2. Second example – Simply-supported beam with two cracks188

For the second numerical example, a simply supported beam of length L pinned at x = 0 and x = L has been189

considered (see Figure 9). The beam has two cracks at x1/L = 3/10 and x2/L = 4/7, modelled with two rotational190

springs with the same dimensionless damage parameter β1 = β2 = 0.1.191

ω1,loc ω2,loc ω3,loc ω4,loc

1.366 5.685 13.327 23.451

Table 3: Example two – First four natural frequencies for the local elasticity model ωi,loc

3.2.1. Effects of the length-scale parameters192

As in the previous example, the first four modal frequencies of the HGE beam have been computed and compared193

with those of the classical elasticity, whose values are given in Table 3.194
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Figure 8: Example one – Convergence diagram of the normalised frequency error εi for `σ = 0 and four different values of the strain length-scale
parameter `ε = {0; L/50; L/20; L/10}

Figure 9: Example two – Simply supported beam with two cracks

The effects of `ε on the Aifantis’ model (with `σ = 0) is shown within Figure 10(a), revealing that, also in this195

case, the higher the mode, the larger the effects on the modal frequencies, e.g. more than 100% of increase for the196

fourth modal frequency when the ratio `ε passes from L/100 to L/5. Figure 10(b) displays the results of the same197

analysis with the HGE model, with stress-gradient parameter taken as `σ = L/20. Once again, higher frequencies198

are more affected by the variation in strain length-scale; furthermore for `ε = `σ = L/20 the frequencies are equal to199

those of the local beam; for `ε < `σ the frequencies of the non-local beam are lower; whereas the opposite happens200

for `ε > `σ.201

Aimed at quantifying when the non-local effects become dynamically significant, i.e. when they can be important202

from an engineering point of view, the magnified plot of Figure 11 shows that for `ε > L/20 the first modal frequency203

of the Aifantis’ model (`σ = 0) is more than 1% higher than the value obtained with the classical elasticity theory;204

interestingly, a smaller microstructural parameter, i.e. `ε ' L/45, is enough to increase by 1% the second modal205

frequency; even smaller length-scale parameters, namely `ε ' L/65 and `ε ' L/85, produce an increase of about206

1% in the third and fourth modal frequencies. Moving from these observations, Table 4 compares the ratio between207
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Figure 11: Example two – Magnified view of Figure 10(a) for L/100 ≤ `ε ≤ L/20 and ωi ≤ 1.01ωi,loc

the average wave length in the first four modes of vibration, λi = L/i (i = 1, 2, 3, 4), against the value of the strain208

length-scale parameter ` ∗ε for which an effect of about 1% is seen when comparing the Aifantis’ model (`σ = 0)209

with the classical elasticity (`ε = `σ). Interestingly the table reveals that, independently of the particular mode being210

considered, the microstructural parameters start to be noticeable (with effects higher than 1%) when the ratio λi/`
∗
ε is211

less than about 40. This explains why higher modes of vibration are more affected by the gradient-elastic constitutive212

law, as they tend to have wave lengths more comparable with the microstructural length-scales.213

3.2.2. Modal shapes214

The dynamic analysis of the cracked beam of Figure 9 proceeds with studying the modal shapes, looking at215

the effects of different microstructural parameters. Figures 12 to 15 display the first four modal shapes in terms of216

transverse displacement (a), rotation ϕi (b), bending moment Mi (c) and shear force Vi (d). All the results are obtained217

in this case using N = 7 dummy load points (i.e. ∆x = L/8). In particular, the rotations’ profiles for the different218

microstructural parameters highlight the smoothing effect due to the inclusion of the HGE theory when `ε > `σ, while219
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λi ` ∗ε λi/`
∗
ε

1st mode 2L L/20 40
2nd mode L L/45 45
3rd mode (2/3) L L/65 43.3
4th mode L/2 L/85 42

Table 4: Example two – Modal wave lengths λi and strain-gradient parameters ` ∗ε showing a 1% increase in the first four modal frequencies with
the Aifaintis’s model (`σ = 0)

the opposite happens when `ε < `σ, as the finite jump of rotations at the cracked sections is amplified in comparison220

with the classical elasticity, leading to angular points in the deformation profiles.221

Figures 12 to 15 allow also showing that, as a direct consequence of the proposed computational approach, the222

shear force diagrams of the modal shapes are piecewise constant functions, while the bending moment are piecewise223

linear functions. This is consistent with the application of dummy point loads at xr = r ∆x (r = 1, 2, · · · , N), which224

induces finite jumps in the shear force diagram and sudden changes in the slope of the bending moment diagram.225

It is worth stressing here that these diagrams are qualitatively similar to those that are typically obtained when the226

FE method is used for the dynamic analysis of slender beams with classical (local) elasticity, where cubic shapes in227

terms of displacements lead to quadratic rotations, linear curvatures and bending moments and constant shear forces228

within each beam element. The proposed method has then the advantage to ensure the same level of approximation229

as the classical FE method does for classical (local) beams, with inevitably a better level of approximation in terms of230

displacements rather than internal forces. Furthermore, a recommendation can be made to take ∆x ≤ λi/8 to achieve231

a satisfactory representation of bending and shear stresses in the beam.232

3.2.3. Validation of the model233

In order to validate the proposed model, the theoretical solution for the undamaged HGE beam as presented by234

Zhang et al. [23], has been compared with the results of the proposed Galerkin-type approach. As already noted in235

Ref. [4], the behaviour of the hybrid non-local model can be considered physically inconsistent for `ε < `σ because of236

cusps centred at the crack position, as can be observed in the rotation diagrams shown in the top-right graphs within237

Figures 12 to 15. In particular, Table 5 reports the first four frequencies of a simply supported undamaged HGE with238

two different combinations of length-scale parameters, namely {`ε = 1/20, `σ = L/5} and {`ε = 1/20, `σ = L/10},239

as computed with the analytical expression by Zhang et al. [23] and with the proposed procedure with N = 31 shape240

functions. The comparison shows that the two methods are in excellent agreement, the maximum inaccuracy being241

less than 0.3%, which therefore contributes to further validate the proposed approach.242
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Figure 12: Example two – Deflections, rotations, shear force and bending moment diagrams of the first mode for `σ = L/20 and four different
values of the strain length-scale parameter `ε = {L/40; L/20; L/10; L/5}, computed with N = 7
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Figure 13: Example two – Deflections, rotations, shear force and bending moment diagrams of the second mode for `σ = L/20 and four different
values of the strain length-scale parameter `ε = {L/40; L/20; L/10; L/5}, computed with N = 7
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`ε = L/40; `ε = L/20; `ε = L/10; `ε = L/5
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Figure 14: Example two – Deflections, rotations, shear force and bending moment diagrams of the third mode for `σ = L/20 and four different
values of the strain length-scale parameter `ε = {L/40; L/20; L/10; L/5}, computed with N = 7

`ε = L/40; `ε = L/20; `ε = L/10; `ε = L/5

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

x/L

φ
4

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

x/L

ϕ
4

0 0.2 0.4 0.6 0.8 1

−5

0

5
x/L

M
4

0 0.2 0.4 0.6 0.8 1

−50

0

50

x/L

V
4

Figure 15: Example two – Deflections, rotations, shear force and bending moment diagrams of the fourth mode for `σ = L/20 and four different
values of the strain length-scale parameter `ε = {L/40; L/20; L/10; L/5}, computed with N = 7
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`σ ω1 ω2 ω3 ω4

Zhang et al. [23] L/5 1.382 4.337 7.808 11.714
Proposed L/5 1.383 (+0.07%) 4.322 (+0.09%) 7.824 (+0.20%) 11.745 (+0.26%)

Zhang et al. [23] L/10 1.527 5.686 11.714 19.129
Proposed L/10 1.527 5.690 (+0.07%) 11.729 (+0.13%) 19.165 (+0.19%)

Table 5: First four natural frequencies ωi,loc for the undamaged simply supported HGE beam with {`ε = 1/20} and two different values of
`σ = {L/5, L/10}, using Zhang et al. solution and the proposed approach

3.3. Third example – Clamped-clamped beam with three cracks243

A beam of length L clamped at x = 0 and x = L is studied in the third example of Figure 16. Three cracks244

are present at x1/L = 1/3, x2/L = 3/7 and x3/L = 5/7, which are modelled with rotational springs with the same245

dimensionless parameter β1 = β2 = β3 = 0.1. This example has been included to demonstrate the applicability of246

the proposed approach to study the dynamics of statically undetermined non-local beams with multiple concentrated247

cracks, which is the most general case for the problem in hand.248

Figure 16: Example three – Clamped-clamped beam beam with three cracks

ω1,loc ω2,loc ω3,loc ω4,loc

3.305 8.440 17.658 29.725

Table 6: Example three – First four natural frequencies for the local elasticity model

For illustration purposes, a relatively coarse discretisation interval ∆x = L/8 (i.e. N = 7) has been chosen to plot249

within Figure 17 the three sets of shape functions d(r)(x), c(r)(x) and m(r)(x) required by the proposed Galerkin-type250

approximation, along with the set of dummy point loads Pr consecutively applied to the objective beam.251

3.3.1. Effects of the length-scale parameters252

The same type of investigations as for the previous two examples have been carried out on the beam of Figure 16,253

showing similar effects for the two length-scale parameters. In particular, Figures 18 and 19 display the variations254

of the modal frequencies with respect to the reference values of the local elasticity theory (Table 6), while Figure 20255
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Figure 17: Example three – Transverse displacement (a), curvature (b) and bending moment (c) shape functions for `ε = L/20, `σ = 0 and N = 7
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Figure 18: Example three – Normalised natural frequencies for `σ = 0 (a) and `σ = L/20 (b), computed with N = 15
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Figure 19: Example three – Normalised natural frequency ωi/ωi,loc for the first (a) and fourth (b) natural frequencies of the clamped-clamped beam
for several combinations of the stress length-scale `σ (the horizontal solid line represents the local case solution `ε = `σ)(N = 15)

plots the the first four modal shapes for selected microstructural parameters. As in the previous cases, it is evident256

the unrealistic behaviour of the cracks obtained for `ε < `σ (dashed lines), while more regularised modal shapes are257

obtained for `ε > `σ (dotted and dash-dotted lines).258

4. Concluding remarks259

In this paper, a new meshless method has been proposed for the computational dynamic analysis of multi-damaged260

Euler-Bernoulli (EB) beams with hybrid-gradient-elastic (HGE) constitutive law. In detail, a Galerkin-type approx-261

imation has been used, in which the shape functions are conveniently chosen as the closed-form solutions of the beam262

under static point loads applied at equally spaced positions along the beam. Importantly: i) the continuity of all the263

field variables is automatically satisfied, and there is no need to enforce any additional equilibrium/compatibility con-264

dition; ii) the same level of approximation in terms of internal forces is achieved as in the traditional finite element265
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Figure 20: Example three – First four mode shapes for the clamped-clamped beam for `σ = L/20 and four combination of the length-scale
parameters `ε = {L/40; L/20; L/10; L/5}(N = 7)

(FE) modelling of slender beams with classical (i.e. local) elasticity; iii) due to the adopted flexibility model, which266

treats the cracks as concentrated inhomogeneities, the size of the computational problem is independent of the number267

n of cracks, and only depends on the number N of shape functions being used.268

The adopted HGE beam model includes two length-scale parameters for the strain (`ε) and the stress (`σ), which269

enables one to mathematically represent a variety of microstructured materials. Three numerical examples have been270

presented and discussed, with several combinations of the two microstructural parameters `ε and `σ including the271

reference case where `ε = `σ > 0, which corresponds to the classical (i.e. local) elasticity theory solution.272

The results have highlighted how the microstructural effects are more relevant at higher frequencies and how273

these effects are related to the modal shape’s wave length over length-scale ratio, i.e. they start to be significant274

from an engineering point of view when the modal wave lengths are less than about 40 times the microstructural275

parameters. Furthermore, the numerical findings have confirmed that physically-consistent predictions are obtained276

for 0 ≤ `σ ≤ `ε < L, where L is the length of the beam.277

Appendix A. Close-form solution for the assumed shape functions278

Aim of this appendix is to provide the close-form expressions for the displacement d (r)(x), curvature c (r)(x) and279

bending moment m (r)(x) when a downward unit point load is applied at the position x = xr, as these functions are280
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needed to evaluate the stiffness and mass coefficients of the discretised beam.281

The generic displacement shape function d (r)(x) can be expressed as the sum of an undamaged term d (r)
0 (x) and

the summation of the n increments d (r)
i (x) due to the n cracks:

d (r)(x) = d (r)
0 (x) +

n∑
i=1

∆d (r)
i (x) , (A.1)

where:

d (r)
0 (x) = C(r)
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(A.2b)

in which C (r)
0 = d (r)(0), C (r)

1 = −d′ (r)(0), C (r)
2 = m (r)(0) and C (r)

3 = m′ (r)(0) are the four integration constants for the282

rth point load, whose values depend on the BCs.283

Analogously, the rth curvature shape function c (r)(x) can be expressed as:

c (r)(x) = c (r)
0 (x) +

n∑
i=1

∆c (r)
i (x) , (A.3)
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where:
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Finally, the bending moment shape function m (r)(x) can simply be expressed as:

m (r)(x) = C (r)
2 + C (r)

3 + (x − xr)H(x − xr) . (A.5)
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