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Abstract—In this study, modeling approaches for poros-
ity in layered media are presented and compared. First, an 
effective-medium model is used to account for the frequency-
dependent attenuation of the elastic waves. The effective-medi-
um model is based on a single-scattering approach, i.e., it ne-
glects multiple-scattering effects. Then, the effective-medium 
model is compared in time-domain finite element simulations. 
The numerical model allows the study of the scattering of the 
elastic waves on randomly distributed spherical cavities and 
also accounts for multiple-scattering effects. The models are 
compared to investigate the validity of the effective-medium 
model approach. The calculated reflected laminate responses 
and transmission spectra from the two models show a good 
agreement.

I. Introduction

The evaluation of bulk-averaged porosity using ultra-
sonic techniques in composites, for example, has been 

pursued since the 1970s. The underlying physical principle 
is that the propagating ultrasonic waves are scattered at 
the randomly distributed pores, which leads to a frequen-
cy-dependent attenuation of the waves [1]. By measuring 
this attenuation and assuming identical, spherical scat-
ters, the average volume fraction of the porosity can be 
evaluated. The measurement principle is independent of 
the investigated material and was successfully applied in 
composites [2] and also in aluminum castings [3]. This 
approach can be further improved by assuming scatterers 
with a particular distribution of radii and by inverting the 
parameters describing the distribution [4]. A slightly mod-
ified technique which assumes linearity in the attenuation 
with frequency was proposed for composites and tested on 
aluminum [5]. Investigations were not limited to metals, 
but were also extended to ceramics, for example [6], [7]. 
These approaches, however, have never been extended to 
layered structures such as glass laminate aluminum re-
inforced epoxy (GLARE). Within such fiber-metal lami-

nates, the composite layers frequently suffer from porosity, 
which reduces the overall strength and performance of the 
laminate. Evidence of porosity is often seen in through-
transmission ultrasonic C-scans, but there is no further 
information about the depth location and volume fraction 
of the porosity. To obtain this information, porosity must 
be modeled and described for each layer independently, 
which will be addressed in the presented paper.

The nature of the underlying physical effect of the at-
tenuation, the scattering of ultrasound, strongly depends 
on the volume fraction of the cavities. In the most general 
case, the rescattering of waves and multiple-scattering ef-
fects are taken into account [8]. For low volume fractions, 
the latter is negligible [9] and the frequency-dependent 
attenuation can be directly calculated using the back-
scattering of a single cavity, neglecting multiple-scatter-
ing events. In the resulting model, an effective complex 
wave number is used to account for the attenuation of 
the waves in a homogenized medium. Similarly, the elastic 
material properties such as density or wave velocities can 
be replaced by their effective counterparts. By using this 
approach, time- and frequency-domain responses of a ho-
mogenized model were compared with a discrete scatterer 
model [10], [11]. Although the homogenized model showed 
a good agreement with the discrete scatterer model, the 
latter neglected multiple scattering and, therefore, com-
parison for high filling fractions was not possible. The 
limits of the applicability of the homogenized model was 
studied in [12], showing that the different acoustic proper-
ties of a homogenized model might lead to reflections at 
the boundaries of the porous region.

Multiple scattering effects can also be treated by nu-
merical simulations, as numerical techniques provide an 
excellent tool to study wave propagation problems in inho-
mogeneous, structured media. The finite element method 
(FEM), for example, allows the direct simulation and vi-
sualization of the scattering of the waves in a periodic 
medium [13]–[15]. The simulation of wave propagation 
through randomly-distributed scatterers, such as porosity, 
is more challenging, because a single configuration of scat-
terers might be insufficient to describe the average field 
[16] requiring a repetition of the simulation with different 
configurations or a spatial averaging of the simulated field. 
Numerical methods are nonetheless necessary tools to val-
idate and compare the different approximations available 
to describe random media [16], [17] or to verify the exis-
tence of complex wave phenomena [18].
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In the presented work, the influence of the porosity 
is studied in layered structures by using analytical and 
numerical tools. The response of the layered structure is 
modeled by using the transfer-matrix method, whereby 
the effect of the porosity in the composite layer is taken 
into account by homogenized effective material properties 
[19]. Reflected laminate spectra and transmission spectra 
are calculated for various porosity levels and distributions. 
The results are compared with 3-D FEM simulations. The 
objective is to validate a rapid effective-medium model for 
use as an inversion tool to determine the depth distribu-
tion of porosity in layered structures.

II. Analytical and Numerical Modeling of Plane 
Wave Propagation in Layered Media

The response is described by a simple frequency-do-
main model. The porosity of the composite is taken into 
account by using a complex wave number for each layer, 
making it a homogenized effective medium. The 3-D time-
domain FEM simulations are carried out by modeling the 
scattering of the ultrasonic waves at a random arrange-
ment of spherical voids as a validation of the effective-
medium model. The results of the two models are com-
pared to verify and to investigate the limitations of the 
frequency-domain homogeneous model.

A. Frequency-Domain Response

For isotropic media, it is convenient to discuss acoustic 
problems by using elastic potentials [20], [21]. This formu-
lism decouples the wave equation into dilatational (scalar) 
and rotational (vector) parts which fulfill the Helmholtz 
equations [(10) and (11) in the appendix]. The solution 
for wave propagation perpendicular to the surface of an 
arbitrary layer j in Cartesian coordinates can be given as 
a sum of forward- and backward-propagating longitudinal 
and shear waves, respectively:
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where the x-axis is the propagation direction and is per-
pendicular to the surface of the layers; the propagation 
constants are given as k x
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zt −  with k jl  and k jt  being the longitudinal and 
shear wave numbers in the jth layer, respectively; and kz is 
the wave number parallel to the surface, which is equal in 
each layer. The general solution in (1) and (2) consists of 
4 unknowns, Aj, Bj, Cj, and Dj, for each layer and 2 un-
knowns for the surrounding fluid on the incident or left-
hand side (C L) and transmitted or right-hand side (AR) 
with BR = DL = 0, which can be evaluated by satisfying 
the continuity conditions between the layers. The system 

of linear equations can be reduced to the two unknown 
amplitudes (AR and C L, the reflected and transmitted 
fields) by using the transfer-matrix method [23]–[27] in 
Cartesian coordinates (intermediate steps are shown in 
the appendix). The rearranged equation is given in the 
following form:
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where R = TK1
0x x= , KN is evaluated at x = xN−1 : KN = 

KN x xN= 1− , and T is given in (18) in the appendix.
The reflected laminate responses of GLARE composite, 

submerged in water, with one and 10 composite layers, 
without porosity, are shown in Fig. 1. The aluminum and 
composite layers have thicknesses of 400 μm and 250 μm, 
respectively. For the calculations, an isotropic medium 
was used for the aluminum layers, and the composite lay-
ers are also approximated as isotropic media (the present-
ed work deals only with normally incident longitudinal 
waves).1 The responses in Fig. 1 can also be interpreted 
as reflection coefficients. In Fig. 1(b), for some frequency 
ranges (~3 to 5 MHz or ~10 to 12 MHz, for example) the 
reflection coefficient is 1, which indicates the presence of 
stop bands, a common effect in periodic media [13].

Next, the effect of the porosity will be taken into ac-
count in the model. It is convenient to describe the influ-
ence of the porosity by using effective-medium theories. 
This approach homogenizes the system by averaging over 
a particle distribution and assumes a complex wave num-
ber [10], [11] which accounts for the attenuation of the 
waves. This effective wave number K is given as

	 K k
R
f2 2

3=
3
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φ
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where ϕ denotes the void volume fraction, k is the wave 
number, and f(0) is the forward-scattered amplitude. For 
simplicity, it is assumed that the pores are spherical scat-
terers with radius R. The scattered amplitude in a direc-
tion θ can be obtained as [11]
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1
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θ θ
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where An are the scattering coefficients from a spherical 
cavity and Pn is the Legendre polynomial of order n. The 
scattering of plane waves from spherical obstacles, such 
as cavities or inhomogeneities, is a well-known problem 
and it is discussed in detail in the literature for dilata-
tional waves [20] and also for transverse waves [22]. For 

1	An isotropic aluminum is assumed with density ρ and bulk wave ve-
locities (cl, cs) given as ρ = 2700 kg·m−3, cl = 6119 m·s−1, and cs = 3103 
m·s−1. Water is modeled as a nonviscous fluid with density ρ and bulk 
wave velocities (cl, cs) given as ρ = 1000 kg·m−3, cl = 1496 m·s−1, and cs 
= 0 m·s−1. The material properties of the composite are given with the 
density ρ and bulk wave velocities (cl, cs) as ρ = 1800 kg·m−3, cl = 3330 
m·s−1, and cs = 1780 m·s−1.
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transverse waves, the definition of the scattering cross-
section in (5) is slightly different because of the presence 
of two transverse waves with different polarization [22]. 
The infinite sum in (5) can be truncated; in the current 
work 15 Bessel components were used, which provides 
sufficient accuracy up to 100 MHz for the current system 
with a pore radius of R ≈ 10 μm and wavelength of λ ≈ 
19 μm.

The presence of spherical voids in the elastic solid also 
reduces the stiffness and density of the material. The ef-
fective density of the medium is obtained as [11]
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and the elastic material properties are also replaced by 
their frequency-dependent effective counterparts as
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where Kl and Kt are the effective longitudinal and shear-
wave numbers from (4), assuming either an incident longi-
tudinal or shear wave, respectively.

In real-life samples, the distribution of the radii of the 
cavities is usually nonuniform and the overall attenuation 
must be evaluated [4]. For an average void volume fraction 
of φ, the overall attenuation is the sum of the imaginary 
parts of the effective wave numbers for each of the ith 
discrete pore sizes:

	 αeff
imag= ,

i
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where the complex wave numbers Ki are calculated for dis-
crete radii ri with the corresponding volume fractions ϕi:
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These relatively simple relationships are used in the 
homogenized layers in the transfer-matrix method for the 
layered material, using (21) in the appendix to account 
for the porosity in the individual composite layers. The 
influence of the porosity on the frequency response of the 
layered medium will be investigated by using this model, 
and compared with 3-D time-domain FEM simulations.

B. Time-Domain Simulations of Wave Propagation  
in a Porous Layer

The time-domain FEM model is used for the direct 
simulation of the scattering of the ultrasonic waves and for 
a qualitative comparison with the analytical effective-me-
dium model. For this purpose, the commercial FEM pack-
age PZFlex (Weidlinger Associates Inc., Mountain View, 
CA) was used and the applied model is shown in Fig. 2(a).

The pores in the composite layer are modeled as ran-
domly-distributed spherical voids, as shown in Fig. 2(a). 
The spherical voids were arranged as follows: a 3-D cuboid 
lattice (87.5 × 87.5 × 50 μm) was created and each pore 
was randomly positioned around one of the centers of 
these cuboid cells; the maximal distance to the center is 
the length of the cell, which also allows the intersection of 
the voids. An incident plane wave was generated in water 
[the corresponding plane is at the height of point A in Fig. 
2(b)], whereby the temporal dependence is given as: f(t) = 
At e t( ) ( )3 4 2 2 2

/ /υ υ−  with υ = 20 ns and A is an arbitrary con-
stant. This shape results in a reasonably flat frequency 
spectrum below 20 MHz which can be straightforwardly 
deconvolved after the simulation. The propagation path of 
the pulse is shown for one lateral position across the layers 
in Fig. 2(b). The figure visualizes the multiple reflections 
at the boundaries (at x = 2.40 mm and at x = 2.65 mm) 
of the layers and the scattering of the pulse in the porous 
composite layer.

At the boundaries in the y- and z-directions, symmetric 
boundary conditions (BCs) were used; along the x-direc-
tion, at both ends, absorbing BCs were applied. The water 
regions at the top and bottom of the model were, however, 
sufficiently large to exclude reflections from these bound-

Fig. 1. Reflected laminate responses of a GLARE composite (a) with 1 
and (b) with 10 composite layers without porosity. The responses can 
be interpreted as reflection coefficients which are 1 within stop bands. 
The inset in (a) shows a diagram of the investigated GLARE compos-
ite; the laminates are composed of alternating layers of aluminum and 
glass-fiber.
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aries within the first 4 μs of the simulation. The efficiency 
of the simulation was increased by successively growing 
the element dimensions in water toward both ends of the 
model (along the x-direction) by ~1% in each row.

The time-domain results of the 3-D FEM simulations 
were converted into frequency-domain responses by pur-
suing two different approaches. Either the frequency re-
sponse—the reflected laminate spectrum—was evaluated, 
or the frequency-dependent attenuation of the waves, rep-
resented by the transmitted spectrum. Because the de-
scription of the random scattering problem requires the 
determination of mean values of the wave propagation, 
the captured responses were averaged across the cross-
section of the models in the y–z plane.

The frequency response—reflected laminate spectrum—
was determined by capturing the reflected and scattered 
waves in the time domain at the height of point A and by 
evaluating its frequency spectrum [Fig. 3(a)]. Simulations 
were carried out for both cases: with porous and with non-
porous composite layers. In the nonporous case, the cross 
section of the investigated region was 0.1875 × 0.1875 
mm. The element dimensions were Δx = 2 μm and Δy 
= Δz = 2.6 μm with a total of 95.8 × 106 elements [cor-
responding to a discretization with 287.4 × 106 degrees 
of freedom (DOF)]. In the calculations, pore radii of R ≈ 
10 to 16 μm are assumed and the wavelength at 50 MHz 
is λ ≈ 137 μm, hence, R ≪ λ. In the elastic, nonporous 
case, a simple 1-D model is sufficient to model normal 
incidence. Nonetheless, to check the overall quality of the 
model (such as numerical dispersion and the evaluation 
of the frequency response), we carried out a simulation 
with discretization and dimensions comparable with the 
porous case.

In the simulation with the porous layer, the modeled 
cross section of the GLARE composite was 0.975 × 0.975 
mm. The element dimensions remained the same with Δx 
= 2 μm and Δy = Δz = 2.6 μm with a total of 181 × 106 

elements (corresponding to a discretization with 542 × 106 
DOF). Because of the larger cross-section, the total length 
of the model was shortened in the x-direction from 6.55 
mm (nonporous case) to 4.55 mm to keep the dimensions 
and the necessary computational resources of the model 
within reasonable limits (i.e., DOF ~ 550 × 106). This 
length allows only 2.5 μs simulation time without reflec-
tion from the ends in the x-direction. Within the com-
posite layer, 726 spherical scatterers with a radius of 16 
μm were randomly distributed, whereby the total volume 
fraction of the pores was 4.7%.

III. Results and Discussion

A. Comparison of the Models

First the frequency response—reflected laminate spec-
trum—was determined. Simulations were carried out for 
both cases: with porous and with nonporous composite 
layers [Figs. 3(b) and 3(c)]. The time-domain responses 
captured at the height of point A (Fig. 2) are shown in 
the top row in Figs. 3(b) and 3(c). The normalized fre-
quency spectra, or reflected laminate responses, in the 
bottom row of Figs. 3(b) and 3(c) are evaluated by the 
Fourier transform of these signals. In the nonporous case, 
the analytical and the numerical responses show an ex-
cellent agreement up to 25 to 30 MHz but deviations in 
the amplitude become visible for higher frequencies. In 
this case, the system did not include damping and the 
analytical solution is dominated by sharp, easily distin-
guishable resonances in the response. For the porous case, 
in the analytical solution, the real wave number was re-
placed by an effective, complex wave number (4). Hence, 
the waves are attenuated, which mimics the effect of the 
scattering of ultrasound. This is visible as the broadening 
of the resonances and as a frequency-dependent decrease 

Fig. 2. (a) 3-D FEM model of the GLARE composite, consisting of two aluminum layers and a porous composite layer (for improved visibility of 
the pores, the image shows the pores as red inclusions in a transparent material; in the simulations, the shown spherical particles are voids in the 
composite material). (b) Multiple reflections of the positive-going half-cycle pulse propagating from the pink dot at A (x = 1.9 mm and t = 0), for 
one lateral position across the layers. Color represents particle velocity, where red is positive and blue is negative. The scattering of the waves at the 
pores in the middle composite layer is clearly visible between x = 2.40 mm and x = 2.65 mm. Note that the positive (red) pulse becomes negative 
(blue) when reflected at a boundary to an increasing impedance because this is a plot of particle velocity, not pressure.
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of the amplitudes. The exact attenuation coefficient cal-
culated from the effective-medium model is discussed and 
shown in the following subsection. The comparison of the 
effective-medium model with the FEM simulation proves, 
however, that the simple homogenized model is capable 
of describing the frequency-dependent attenuation of the 
waves caused by the scattering of the waves.

As an additional verification of the FEM model, sim-
ulations with different random void locations were per-
formed.2 The goal of the simulations was to verify that the 
averaged transmission spectra from the different configu-
rations are comparable—i.e., the averaged responses are 
identical—and, therefore, that the presented method can 
be used to describe the response. From these simulations, 
the transmitted spectrum, or the frequency-dependent 
attenuation of the waves, was calculated. The simulated 
time-domain responses were averaged across the simulated 
cross section, and the resulting input and transmitted sig-
nals are shown in Fig. 4(a). The strong attenuation of the 
pulse is due to the impedance mismatch between alumi-
num and composite, which leads to a strong reflection of 
the waves. The normalized frequency spectra show the 
variation of the frequency spectra between the input and 
the transmitted pulses [Fig. 4(b)], which is the result of 
the scattering of the waves at the voids (porosity) in the 
composite layer. The division of the two spectra results in 

the transmission spectra. The comparison of the spectra 
from the different configurations indicates that the inves-
tigated system contains a sufficient number of scatterers 
to characterize it as a homogenized model.

B. Influence of the Pore Diameter  
and the Volume Fraction

Next, different pore diameters and volume fractions 
were studied.3 The transmission spectra in Fig. 4(c) of 
the three systems with radii R = 10, 16, and 20 μm were 
evaluated from the FEM simulation similarly to the previ-
ous simulations using the spatially averaged time-domain 
responses. The comparison with the effective-medium 
model shows that this model is a good approximation of 
the numerical simulation for the cases with radii R = 10 
and 16 μm (total volume fractions of 1.1%, 4.7%). For the 
largest diameter, R = 20 μm, with a total volume frac-
tion of 9.4%, a deviation starts to become visible as the 
effective-medium model underestimates the attenuation.

In further simulations, the effect of varying the pore di-
ameter was studied. In these simulations two ranges of pore 
diameters were used R = 7.5 to 22.5 μm and R = 0 to 30 
μm both with a uniform distribution of the diameters and 

Fig. 3. (a) Model of the GLARE composite used in the comparison of the FEM simulations and the effective-medium model. (b) Captured time-
domain waveform from the FEM simulation and its Fourier transform for the nonporous case compared with the effective-medium model. (c) Time-
domain waveform (FEM model) and its Fourier transform for the porous layer compared with the effective-medium model.

3	Three simulations were performed, each with 726 randomly arranged 
spherical scatterer with radii R = 10, 16, or 20 μm. The geometric 
arrangements remained identical in all cases—i.e., the location of the 
pores remained the same, only the diameter was increased—leading to 
total volume fractions of 1.1%, 4.7%, and 9.4%, respectively. Similarly 
to the previous simulations, intersection of the spheres was allowed and 
the models consisted of 181 × 106 elements, corresponding to 542 × 106 
DOFs.

2	Three simulations were performed, each with 726 randomly arranged 
spherical scatterer with radii R = 16 μm. The arrangements were differ-
ent in all cases. Similarly to the previous simulation, intersection of the 
spheres was allowed, leading to total volume fractions of 4.66%, 4.40%, 
and 4.54%. The models consisted of 181 × 106 elements, corresponding 
to 542 × 106 DOFs.
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with the same total void volume fraction.4 The attenuation 
coefficients for the effective-medium model were calculated 
with the help of (9), and a comparison with the FEM 
models is shown in Fig. 4(d). The effective-medium model 
is a good approximation of the FEM solution in this case 
as well. By comparing the two curves, it is clearly visible 
that the broader diameter distribution leads to a stronger 
attenuation for lower frequencies but the curve flattens out 
with a higher transmission coefficient. This property might 
allow a unique determination of the volume fraction or the 
diameter distribution from an inverse problem if one of 
these properties is known and measurement data are avail-
able for sufficiently high frequencies. For the first range of 
pore sizes, R = 7.5 to 22.5 μm, the simulations were also 
verified with three different configurations [Fig. 4(e)], jus-
tifying the validity of the simulations. Finally, a simulation 
with high void volume fraction (ϕ = 25.86%, R = 16 μm) 
was also carried out and compared with the prediction of 
the effective-medium model. The transmission spectrum in 
Fig. 4(f) shows the different predictions of the FEM model 
and the approximation using a complex wave number. This 
difference can be explained by the combination of the er-
ror due to neglecting multiple scattering events and the 

intersections of the pores in the FEM model, which leads 
to non-spherical scatterers.

By using the effective-medium model, the reflected 
laminate response was calculated for a single composite 
layer between two aluminum layers with varying the vol-
ume fractions (Fig. 5). In the calculations, single pore ra-
dii (R = 10, 16, and 20 μm) were used with three different 
volume fractions: 1%, 5%, and 10%. The comparison of 
the responses with the effective medium to the response 
without porosity (0% porosity is in green) show that for 
low volume fractions (~1%) the attenuation is rather neg-
ligible but the softening of the material leads to a clear 
shift in the resonance frequencies and the response also 
broadens. The attenuation increases with increasing vol-
ume fractions (5%, 10%) for frequencies above ~20 to 30 
MHz. The position of particular resonance frequencies also 
shifts—such as the resonance frequency around 26 MHz. 
This property might be useful to evaluate the porosity in 
individual layers within a multilayer composite.

IV. Conclusion

In the presented paper, an analytical model and a 
numerical model were utilized to study the influence of 
the porosity in a multilayer composite. Effective material 
properties were applied within a transfer-matrix-based 
approach to take the porosity into account. The attenu-

Fig. 4. (a) Input and transmitted time-domain pulses for the FEM model in the GLARE composite. (b) Frequency spectrum of the input and trans-
mitted pulses in (a) and comparison of the transmission spectra from FEM simulations. (c) Analytical and numerical transmission spectra for three 
different scatterer diameters and volume fractions. (d) Transmission spectra from two FEM simulations with identical volume fractions but different 
scatterer diameter distributions, compared with the effective-medium model (EMM). (e) Comparison of the transmission spectra from three FEM 
simulations with identical pore volume fractions and different geometrical configurations. (f) Transmission spectra from a simulation with large 
volume fraction (25.9%) compared with the effective-medium model.

4	In the first case (R = 7.5 to 22.5 μm), 726 spheres [in the second case 
(R = 0 to 30 μm), 486 spheres] were randomly arranged, leading to total 
volume fractions of 4.62% and 4.59%, respectively. Similarly to the previ-
ous simulations, intersection of the spheres was allowed and the models 
consisted of 181 × 106 elements, corresponding to 542 × 106 DOFs.
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ation of the waves through scattering was also evaluated 
by 3-D FEM simulations. The resulting reflected laminate 
responses and transmission spectra of the two models were 
compared to investigate the limitation of the effective-me-
dium model.

The effective-medium model neglects multiple scatter-
ing effects but these are taken into account in the 3DFEM 
simulations. The calculated reflected laminate responses 
and transmission spectra from the two models show a 
good agreement for porosity values below 20%. The com-
parison of the models included different pore diameters, 
volume fractions, and pore-diameter distributions. The 
comparison of the responses shows the attenuation and 
softening effects of the porosity on the response of the lay-
ered structure. The results show that the effective-medium 
model allows the approximation of the effect of the poros-
ity for reasonable levels of volume fractions, below and 
around 10%.

Appendix 
Transfer-Matrix Method for a Layered 

Structure Submerged in Fluid

For isotropic media, it is convenient to discuss acoustic 
problems by using elastic potentials [20], [21]. This formu-
lism decouples the wave equation into dilatational (scalar) 
and rotational (vector) parts which fulfill the Helmholtz 
equations:

	 ( )∆ + k l
2 = 0,ϕ 	 (10)

	 ( )∆ + k t
2 = 0,Ψ 	 (11)

where Δ denotes the Laplacian and φ and Ψ are the scalar 
and the vector potentials, respectively. The wave numbers 
kl and kt correspond to the longitudinal and shear waves 
represented by these potentials. Because plane waves can 
be reduced to two spatial dimensions, the problem involves 
only the scalar components and one vector component, φ 
and ψy in the investigated case.

In layered media, these equations must be fulfilled in 
each layer. The solution in Cartesian coordinates for an 
arbitrary layer j can be given as a sum of incident and re-
flected longitudinal and shear waves [see (1) and (2)] and 
the corresponding displacements are given as

	 u = .∇ + ∇×ϕ Ψ 	 (12)

The incident wave in the surrounding matrix can also be 
described as a harmonic wave. In the following, a non-
viscous fluid matrix will be considered with an incident 
longitudinal wave with amplitude A0 described as

	 ϕ χinc l= .0A e
i k xx
j( ) 	 (13)

The unknowns Aj through Dj in (1) and (2) can be evalu-
ated by satisfying the boundary conditions between the 
subsequent layers, given as the continuity of the stresses 
and displacements between the jth and (j − 1)th layers:

	 u u u ux
j

x
j

z
j

z
j− −1 1= , = ,	 (14)

	 σ σ σ σxx
j

xx
j

xz
j

xz
j− −1 1= , = .	 (15)

The stresses σij and strains εkl are given by the constitu-
tive equation as

Fig. 5. Influence of the void volume fraction on the reflected laminate response with different pore radii predicted by the effective-medium model: (a) 
R = 10 μm, (b) R = 16 μm, and (c) R = 20 μm. Three different void volume fractions were investigated by using the analytic model, 1%, 5%, and 
10%, plotted as blue solid, red dashed, and magenta dotted curves, respectively. The expanded portions of the frequency range from 18 to 36 MHz 
in the bottom row, including 0% in green, show that the increasing radius of the pores leads also to an increased attenuation with the same void 
volume fraction. This is visible through the broadening of the resonance peaks.
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	 σ εij ijkl kl ijkl
k

l

l

k
c c

u
x

u
x= =

1
2 .

∂
∂
+
∂
∂







 	 (16)

For a multilayered system, (14) and (15) lead to an im-
practically large system of equations. Because the dis-
placements and stresses in the intermediate layers are not 
required, the application of the so-called transfer matrix 
method is appropriate. Besides the classical transfer ma-
trix formalism for isotropic [23] and anisotropic layers 
[24], the stiffness matrix method [25]–[27] has also been 
developed. In the current work, a Cartesian formulism 
of a simple transfer matrix approach will be used based 
on [23]. Correspondingly, the relevant unknown displace-
ments and stresses in the jth layer (xj−1 ≤ x ≤ xj) can be 
collected in a matrix form as

	 [ ] [ ]u u A B C Dx z xx xz
j
j j j j, , , = , , , .σ σ T TK 	 (17)

The components of Kj can be found by substituting (1) 
and (2) into (12)–(16).

The transfer matrix of the jth layer relates the displace-
ments and stresses at the left (xj−1) and right boundaries 
(xj) of the jth layer and it is defined as Tj = 
K Kj

x x
j
x xj j= =

1
1

( ) .
−

−  The total transfer matrix of the lay-
ered media can be found as the product of the transfer 
matrices of the individual layers:

	 T T= ,
=1

2

j

N
N j

−
−∏ 	 (18)

which relates the unknown fields at the boundary x = 0 to 
the fields at the boundary x = xN−1 as

	 [ ] [ ]1,0, , = , ,0,0 ,C D A Bn
L L T R R TS 	 (19)

with S = ( ) .K T KN
x x x x xN=

1 1
=1 0−

−  Because the layered 
plate is submerged in a nonviscous fluid (water), further 
straightforward modifications of the original technique 
can be carried out. For a nonviscous fluid matrix, the 
shear stresses must vanish at the outer boundary and in 
the fluid matrix only the scalar potential with one un-
known constant exists (BR = DL = 0). Because the conti-
nuity of uz at the outer boundary cannot be satisfied, only 
two equations can be applied in (19) to describe the con-
tinuity of the fields:

	 K K
K K

A
C

R
R A

N N

N N
11 13

31 33

0
11

31
= ,



























 [ ]

L
R 	 (20)

where R = TK1
= 0x x  and KN is evaluated at x = xN−1 : 

KN = KN x xN= 1−
. The two remaining unknown amplitudes 

(AR and C L with A0 = 1) can be found by solving the 
rearranged equation:

	 K
K

R K
R K

A
C

N

N

N

N
11

31

11 13

31 33
= .













−
−























R

L 	 (21)
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