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Abstract 
In this paper, cyclic plasticity in a single crystal nickel-based superalloy CMSX4 at elevated 
temperature was modelled using crystal plasticity (CP) and discrete dislocation dynamics 
(DDD). The CP modelling was carried out at the continuum level based on shear deformation 
along the octahedral slip systems. The DDD approach was implemented for a representative 
volume element with periodical boundary conditions. The DDD model parameters were 
calibrated using the predicted response by the CP model. The obtained numerical results by 
the two models compared with each other under strain-controlled monotonic and cyclic 
loading conditions in both <001> and <111> orientations. The CP model was further applied 
to study crack-tip deformation under fatigue loading. Stress-strain responses, as well as stress 
and strain distributions, near the crack tip were particularly monitored to assess the role of 
cyclic plasticity in controlling fatigue-crack propagation. The work has applications in life 
assessment of nickel-based superalloy components for high-temperature applications. 

 

Keywords: Crystal plasticity; Discrete dislocation dynamics; Representative volume element; 
Finite element; Cyclic deformation. 

 

1. Introduction 
 

Nickel-based γ γ′⁄  superalloys are commonly used for rotating turbine blades and discs in 
the hot section of gas turbine engines due to their exceptional high temperature mechanical 
properties, which are attributed to their characteristic two-phase composite microstructure: a 
ductile disordered face centred cubic (FCC) Ni-matrix (the γ phase) and coherent L12-ordered 
Ni3Al precipitates (the γ′  phase). Most of Nickel-based superalloys have a Ni3Al phase 
content that ranges between 40~70%. Nickel-based superalloys are usually exposed to high 
static or cyclic loads in non-ambient environments, so a reliable prediction of the thermo-
mechanical characteristics of the materials is essential for safe life and damage tolerance 
assessment for fracture critical applications. Therefore, modelling of the mechanical 
behaviour of Nickel-based superalloys has been the subject of numerous studies.  

The mechanical behaviour of engineering alloys can be studied at different scales ranging 
from atomic (dislocation cores) to macroscopic scale.1 At grain level, polycrystalline metals 
possess anisotropic plastic response during deformation due to the random orientation of grain 
lattices. The physically-based crystal-plasticity theory has been successful for description of 
anisotropic deformation of single crystals and polycrystals, including body-centered-cubic, 
face-centered-cubic and highly-closed-packed lattice structures. With the assistance of finite 
element method, the theory is able to predict the global and local stress-strain response the 
evolution of crystallographic grain texture and micro-structural crack nucleation in 



polycrystalline materials under monotonic, creep and fatigue loading conditions. The inelastic 
deformation in polycrystalline engineering metallic alloys at room temperature and quasi-
static loading rates occurs largely due to dislocation dynamics. Discrete dislocation mechanics 
(DDD) method2 has been developed to compute the plastic deformation directly from the 
evolution of a large number of dislocation segments, particularly in the three-dimensional 
(3D) dislocation models. The DDD models can explicitly capture the interactions between 
dislocations on different slip systems, the interactions between dislocations and internal 
microstructure as well as the formation of different heterogeneous dislocation microstructure 
such as slip band under both monotonic and cyclic loadings. 

Both crystal plasticity theory and DDD method have been employed to investigate the 
mechanical behaviour of nickel-based superalloys. The crystal plasticity theory has been 
applied to study creep, fatigue, thermal-mechanical fatigue, indentation deformation and 
gradient-dependent deformation of single crystal nickel superalloys. Application of the theory 
has also been extended to model stress-strain response and fatigue crack nucleation for 
polycrystalline nickel superalloy where microstructure was considered as one of the major 
factors influencing the fatigue and creep properties of the material. The DDD method has 
been applied for calculation of yield stress of a nickel-based superalloy, simulation of the 
cutting of dislocation pairs into the the precipitate phase, prediction of the critical resolved 
shear stress (CRSS) for precipitate shearing and simulation of the anisotropic mechanical 
response of a single-crystal nickel-based superalloy.     

In this paper, we present CP and DDD models to study cyclic plasticity in a single crystal 
nickel-based superalloy CMSX4 under monotonic and cyclic loading conditions at 850ºC. 
The work aims to provide micromechanics based understanding of cyclic deformation 
behaviour for the material. Furthermore, the CP model was applied to study crack-tip 
deformation under fatigue loading. Stress-strain responses, as well as stress and strain 
distributions, near the crack tip were particularly monitored to assess the role of cyclic 
plasticity in controlling fatigue-crack propagation. 

 

2. Crystal plasticity method 

 
2.1 Crystal plasticity constitutive model 

The framework of crystal plasticity theory relies on the multiplicative decomposition of the 
total deformation gradient F into an elastic (Fe) part and a plastic (Fp) part:3 

𝑭𝑭 = 𝑭𝑭𝑒𝑒𝑭𝑭𝑝𝑝                                                                       (1) 
where Fe represents the elastic stretching and rigid-body rotation of the crystal and Fp 
describes crystallographic slip along slip planes due to dislocation motion.  

The component Fp is calculated from the inelastic velocity gradient:3 

𝑳𝑳𝑃𝑃 = �̇�𝑭𝑃𝑃𝑭𝑭𝑃𝑃−1 = ∑ �̇�𝛾𝛼𝛼(𝒎𝒎𝛼𝛼⨂𝒏𝒏𝛼𝛼)𝑛𝑛
𝛼𝛼=1                                              (2) 

where �̇�𝛾𝛼𝛼 is the shear strain rate on the slip system α, 𝒎𝒎𝛼𝛼 and 𝒏𝒏𝛼𝛼 are the slip direction and the 
slip plane normal, respectively. 

The flow rule is expressed in terms of two scalar state variables per slip system, slip 
resistance (Sα) and back stress (Bα):4 



�̇�𝛾𝛼𝛼 = �̇�𝛾0𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐹𝐹0
𝜅𝜅𝜅𝜅
�1 − �|𝜏𝜏𝛼𝛼−𝐵𝐵𝛼𝛼|−𝑆𝑆𝛼𝛼𝜇𝜇 𝜇𝜇0⁄

𝜏𝜏�0𝜇𝜇 𝜇𝜇0⁄ �
𝑝𝑝
�
𝑞𝑞
� 𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏𝛼𝛼 − 𝐵𝐵𝛼𝛼)                       (3) 

where κ is the Boltzmann constant, τα is the resolved shear stress on the slip system α, θ the 
absolute temperature, µ and µ0 the shear moduli at θ and 0 Kelvin, respectively, and F0, �̂�𝜏0, p, 
q and �̇�𝛾0 are material constants. The brackets imply that 〈x〉 = x for x > 0 and 〈x〉 = 0 for x ≤ 0. 

The slip resistance Sα on a generic slip system is assumed to evolve according to the 
following relation, starting at an initial value of So :5 

�̇�𝑆𝛼𝛼 = [ℎ𝑆𝑆 − 𝑑𝑑𝐷𝐷(𝑆𝑆𝛼𝛼 − 𝑆𝑆0𝛼𝛼)]|�̇�𝛾𝛼𝛼|                                                   (4) 

where the first and second terms are static and dynamic recovery terms associated with the 
material constants hS and dD, respectively. 

The back stress Bα evolves according to a standard hardening-dynamic recovery format:21 

�̇�𝐵𝛼𝛼 = ℎ𝐵𝐵�̇�𝛾𝛼𝛼 − 𝑟𝑟𝐷𝐷𝐵𝐵𝛼𝛼|�̇�𝛾𝛼𝛼|                                                       (5) 

where hB is a hardening constant, and rD is a dynamic recovery function which introduces the 
inherent dependency between the slip resistance and back stress and may be expressed as:4 
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where fc is a coupling parameter between the internal slip variables and 𝜇𝜇0′  the local slip shear 
modulus at 0 Kelvin.  

The crystallographic formulation was implemented numerically into the finite element 
(FE) code ABAQUS within the framework of large strain kinematics via a user-defined 
material subroutine (UMAT), where the fully implicit (Euler backward) integration algorithm 
was adopted. 

 

2.2 Finite element model 
 

A single 3D element, C3D8 in ABAQUS, was used to model the stress-strain response of 
CMSX4. The element was subjected to a displacement in the z-direction while constrained in 
the x and y directions. 

A three-point bending specimen with dimensions shown in Fig. 1a was considered for 
crack tip deformation analysis for both <001> and <111> orientations. The finite element 
mesh near the crack tip, as shown in Fig. 1b, consists of four-node first-order plane-strain 
elements with full integration. Two dimensional elements were chosen due to the prevailing 
plane-strain deformation of the specimen. Cyclic load with a triangular waveform and a 
frequency of 0.5Hz was applied to the middle node on the bottom side of the specimen (Fig. 
1a), which is also constrained in the x-direction to avoid the rigid body motion. While the two 
supports on the top side of the specimen are constrained in the y-direction The total crack 
length was chosen to be a = 4 mm, i.e., a/W = 0.4, which includes the notch with a depth of 
2.5 mm and a precrack with a length of 1.5 mm.  A maximum load of 4 kN with 0.1 load 
ration was applied at the middle of the bottom surface. This load corresponds to a stress 
intensity factor (SIF) of ΔK = 31.6 MPa√m, which was verified using analytical solutions. 
The same level of load was applied to the finite element model in both <001> and <111> 
orientations.   



 
  

Fig. 1. FE model for crack tip deformation analysis: (a) mesh for the SENB sample; (b) 
refined mesh near the crack tip 

 

3. Discrete dislocation dynamics method 
 

3.1 Simulation model 
 

A representative volume element (RVE) with periodic boundary condition (PBC), 
containing a γ′ cubic precipitate and γ channels, was built to represent nickel-based single 
crystal superalloy – CMSX4 (Fig. 2).  

 

 
Fig. 2. RVE model with  γ′ precipitate and γ  matrix. 

 

To simulate the dislocation multiplication, Frank-Read sources with an initial dislocation 
density were randomly distributed on the 12 octahedral slip systems in the FCC matrix 
channel. A uniaxial load was applied to the RVE in both the <001> and <111> orientations 
under strain-controlled condition. Both the γ and γ′ phases were assumed to be isotropic with 
the same shear modulus G and Poisson’s ratio v. As the PBC condition is applied to the RVE, 
artificial self-annihilation of dislocation loops occurs. To avoid this, the RVE needs to have a 



non-perfect cubic shape. At a channel with d = 95b and a precipitate volume fraction f = 70%, 
the dimensions of the RVE and the precipitates are 1610b x 1690b x 1770b and 1420b x 
1500b x 1580b, respectively.  

 
3.2 Peach-Koehler (PK) force, Equations of motion and Short range reactions 
 

Dislocations are represented by a set of nodes connected to each other by straight segments 
and the evolution of each dislocation segment is determined by the motion of dislocation 
nodes. The Peach–Koehler force exerted by the long-range stress (𝜎𝜎𝑛𝑛𝑒𝑒𝑛𝑛) and the external 
applied stress (𝜎𝜎𝑎𝑎𝑝𝑝𝑝𝑝) can be calculated using the Peach–Koehler equation: 

𝐹𝐹𝑖𝑖 = (𝜎𝜎𝑛𝑛𝑒𝑒𝑛𝑛 + 𝜎𝜎𝑎𝑎𝑝𝑝𝑝𝑝) ∙ 𝑏𝑏𝑖𝑖 × 𝜉𝜉𝑖𝑖                                                    (7) 

where 𝑏𝑏𝑖𝑖 and 𝜉𝜉𝑖𝑖 are the Burgers vector and line sense vector of segment i, respectively. 

For each dislocation segment, the free glide velocity of dislocation 𝑣𝑣𝑖𝑖
𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑒𝑒  during a 

simulation time step may be determined as: 
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                       (8) 

where 𝐹𝐹𝑖𝑖
𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑒𝑒  is the glide component of the Peach-Koehler force 𝐹𝐹𝑖𝑖  on the slip plane, 𝜏𝜏𝐹𝐹  a 

constant friction stress and B the viscous drag coefficient. 

A back force model6 was introduced to simulate 𝛾𝛾′  precipitate shearing by a series of 
superdislocations. The leading and trailing dislocations form a superdislocation, separated by 
an antiphase boundary (APB). To determine whether the dislocation segment entering into the 
𝛾𝛾′ precipitate is a leading dislocation or a trailing dislocation, the following method is applied 
in the DDD simulations: If 𝐹𝐹𝑎𝑎𝑝𝑝𝑝𝑝 ∙ 𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛 < 0 and 𝑎𝑎𝑏𝑏𝑠𝑠(𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛) > 0.25𝜒𝜒𝐴𝐴𝑃𝑃𝐵𝐵, a trailing dislocation 
enters the 𝛾𝛾′  precipitate; If 𝐹𝐹𝑎𝑎𝑝𝑝𝑝𝑝 ∙ 𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛 ≥ 0 and 𝑎𝑎𝑏𝑏𝑠𝑠(𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛) > 0.25𝜒𝜒𝐴𝐴𝑃𝑃𝐵𝐵,  a leading dislocation 
enters the 𝛾𝛾′ precipitate. Here, 𝐹𝐹𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛 are the glide forces induced by the external loads 
and the stress at the centre of dislocation segment i, respectively. 𝜒𝜒𝐴𝐴𝑃𝑃𝐵𝐵 is the inherent APB 
energy per unit area.  

Besides gliding under the PK force, dislocations interact with each other by short-range 
interactions under mechanical loading. Short-range interactions considered in the DDD model 
include annihilation and formation of jogs and junctions. A complete list of the short-range 
interaction rules for dislocation dynamics was given by Rhee et al.7 

 

3.3 Dislocation-induced plastic strain and Computation of the external stress 
 

In the DDD model, assuming that the model is subjected to a homogeneous macroscopic 
stress state, as shown in Fig. 3, a macroscopic plastic strain 𝜀𝜀𝑖𝑖𝑖𝑖

𝑝𝑝  is produced by:8 

𝜀𝜀𝑖𝑖𝑖𝑖
𝑝𝑝 = 1

𝑉𝑉 ∫
1
2
�𝑠𝑠𝑖𝑖𝑏𝑏𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑏𝑏𝑖𝑖�𝑑𝑑𝑑𝑑𝐴𝐴𝑠𝑠𝑔𝑔𝑖𝑖𝑠𝑠

                                                (9) 



where bi is the Burgers vector, dA is the incremental area swept out by the segment, ni is the 
normal vector of the glide plane, V is the simulation volume, and Aslip is the collection of 
surfaces active in deformation. 

 
Fig. 3. Plastic strain increment produced by the motion of a single dislocation segment. 

 

If the RVE is loaded along the z-axis at a fixed strain rate 𝜀𝜀̇, the total strain 𝜀𝜀𝑧𝑧𝑛𝑛𝑡𝑡𝑛𝑛 along the 
loading direction should be: 

𝜀𝜀𝑧𝑧𝑛𝑛𝑡𝑡𝑛𝑛 = 𝜀𝜀̇ ∗ 𝑡𝑡                                                                      (10) 

 By considering equations (9) and (10), we get the elastic strain 𝜀𝜀𝑧𝑧𝑒𝑒(𝑡𝑡) is: 

𝜀𝜀𝑧𝑧𝑒𝑒(𝑡𝑡) = 𝜀𝜀𝑧𝑧𝑛𝑛𝑡𝑡𝑛𝑛(𝑡𝑡) − 𝜀𝜀𝑧𝑧
𝑝𝑝(𝑡𝑡)                                                          (11) 

So the time-dependent external stress 𝜎𝜎𝑧𝑧𝑒𝑒𝑒𝑒𝑛𝑛(𝑡𝑡) is: 

𝜎𝜎𝑧𝑧𝑒𝑒𝑒𝑒𝑛𝑛(𝑡𝑡) = 𝐸𝐸𝜀𝜀𝑧𝑧𝑒𝑒(𝑡𝑡) = 𝐸𝐸(𝜀𝜀𝑧𝑧𝑛𝑛𝑡𝑡𝑛𝑛(𝑡𝑡) − 𝜀𝜀𝑧𝑧
𝑝𝑝(𝑡𝑡))                                             (12) 

where E is the Young’s modulus. 

 

4. Numerical results and discussion 
 

4.1 Determination of model parameters 
 

The full model parameters in the CP model are already available at 850ºC for CMSX4 
nickel single crystals.5 Numerical predictions of the monotonic and steady cyclic responses 
with different strain rates and loading orientations have been presented by Dennis.5 It was 
shown that the CP model captured both the strain rate sensitivity and the effects of material 
orientation very well. Applying the same model parameters, the monotonic and first-cyclic 
responses of the material are predicted by the CP model at strain rate  𝜀𝜀̇ = 1𝑠𝑠−1 and shown in 
Figs. 4 and 5.  

The model parameters used in the DDD model were calibrated by fitting the monotonic 
stress-strain curves and the first cyclic loop obtained by the CP model at strain rate 𝜀𝜀̇ = 1𝑠𝑠−1 
for the <001> and <111> orientations. Prior to the fitting process, some material constants, 
such as: APB energy, drag coefficient and initial dislocation density were estimated from the 
literature.9 Following each simulation, the resulting stress values were compared with the 
experimental data. The material constants were ‘‘tuned’’ untill a good match was obtained. 
The fitted material constants for the DDD model are shown in Table 1.    

 



Table 1  
Material parameters in DDD model at 850ºC 

Orientation E (GPa) G (GPa) v b (nm) B (Pa s) 𝜏𝜏𝐹𝐹 (MPa) 𝜒𝜒𝐴𝐴𝑃𝑃𝐵𝐵  
(mJ/m2) 

Initial dislocation 
density (m-2) 

<001> 91.92 103.5 0.379 
0.25 8.3e-6 200 162.5 2.5e+13 

<111> 244.55 43.06 0.179 

 

        
(a)                                                                                (b) 

Fig. 4. Monotonic response by CP and DDD models at 𝜀𝜀̇ = 1/s and for: (a) <001>; (b) <111>. 
 

 

     
(a)                                                                            (b) 

Fig. 5. Cyclic response by CP and DDD models at 𝜀𝜀̇ = 1/s and for: (a) <001>; (b) <111>. 
 

 
4.2 Stress-strain response by CP and DDD models 

 



The simulated stress-strain response for monotonic and cyclic loading by CP and DDD 
models are shown in Figs. 4 and 5. Clearly, the predicted stress-strain responses by the two 
models have a good agreement. It can be seen from the monotonic response in Fig. 4 that 
three-stage deformation: the initial elastic stage I, the hardening stage II and the softening 
stage III are observed, but the amount of hardening is shown to be varying with crystal 
orientation and material constitutive model. Especially, in the CP modelling for <111> 
orientation, the hardening amount is very limited so the stress-strain behaviour of the material 
is characterized by elastic-perfectly plastic behaviour. Moreover, the CP model predicts a 
smoother softening stage than the DDD model. The first cyclic loop for both <001> and 
<111> orientations are shown in Fig. 5. For the < 001 > orientation, the amount of inelastic 
deformation is very small, as revealed by the thin hysteresis loop in Fig. 5a. The stress-strain 
loop (Fig. 5b) is much wider for the <111> orientation than that for the <001> orientation, 
indicating more inelastic deformation in the material for the <111> orientation. It can also be 
seen from Figs. 4 and 5 that the monotonic and cyclic responses are strongly dependent on the 
crystal orientation. 

 

4.3 Modelling of crack-tip deformation 
 

Crack tip deformation was studied by applying cyclic load to the 3-point bend stationary 
crack model (Fig. 1). A total of five cycles was simulated by considering a triangular loading 
waveform with a load ratio of R = 0.1, a maximum load of 4kN and a frequency of 0.5Hz. 
The load corresponds to a stress intensity factor range of ΔK = 31.6 MPa√m. Fig. 6 shows the 
stress distribution near the crack tip in both <001> and <111> direction which exhibits the 
high orientation dependency of stress-strain behaviour of CMSX4. This is also observed from 
the normal (in x-direction) stress-strain loops averaged over the element just ahead of the 
crack tip (see Fig. 7). It is noted that the stress-strain loops in the <111> orientation exhibit 
more ratchetting than those in the <001> direction.  

The stress-strain response at the crack tip were predicted using CP model, without 
considering the dislocation sources. Simulation based on DDD model, considering the 
presence of dislocations, was shown to produce higher level of stress concentration near the 
crack tip as mentioned in Šiška et al.10  Additionally, it was observed that CP model did not 
predict accurately the hardening behaviour of the material for the <111> orientation. The 
analysis of crack tip deformation using DDD will be conducted in our future studies.  

                  
(a) (b) 

Fig. 6. Contour plot of Mises stress near the crack tip along (a) <001> and (b) <111> 
directions for a triangular loading waveform (ΔK = 36.1 MPa√m, R = 0.1 and f = 0.25Hz). 



 

 
Fig. 7 Stress-strain loops just ahead of the crack tip obtained by the CP model. 

 

5. Conclusions 
 

Both CP and DDD models have been used to simulate macroscopic responses of a single 
crystal nickel-based superalloy CMSX4 subjected to monotonic and cyclic loadings at 
elevated temperature, respectively. The predictions of the two micromechanical models have 
a good agreement with each other in both <001> and <111> orientations and the orientation-
dependent stress-strain behaviour of CMSX4 has been well predicted. 

The CP model was further applied to study crack-tip deformation under fatigue loading for 
both <001> and <111> directions, which also confirmed the high orientation dependency of 
stress-strain behaviour near the crack tip. 
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