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Abstract

The phenomenon of wave propagation through concrete materials is affected by dis-
persion due to its intrinsic heterogeneous microstructure. Previous experiments have
shown an increase of phase velocity at high frequencies. This behaviour cannot be ana-
lytically described by the classical elasticity theory, due to its non-dispersive nature.
Instead, enhanced theories can be adopted. In this work the dynamically consistent
non local model, able to take into account the microstructural effects by two addi-
tional length scale parameters, is retrieved. The main subject of this contribution is
the experimental identification of the dispersive behaviour of cementitious materials
and the validation of the gradient continuum to predict the dispersion of the wave born
out of the heterogeneity of the material. The proposed work extends the applicabil-
ity of non-local theories from a purely theoretical/analytical domain to the laboratory
territory.
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1 Introduction

The propagation of elastic waves is largely used in many inspection techniques to
estimate the quality and the integrity of a material. For example, concrete strength
and Young’s modulus are related through empirical relations to the pulse velocity,
measured as the ratio between the travelled distance and the arrival time of the wave-
form, identified as the first disturbance detected (BS EN 12504-4:2004 (2004); ASTM
C215-14 (2014)). Further, knowledge of how stress waves propagate through a me-
dium is important for non-destructive testing techniques based on ultrasonic testing
and acoustic emissions.

Concrete is a composite material where coarse (3 to 30mm) and fine (0.1 to 3mm)



aggregates are joined together by a cement paste, resulting in a random heterogeneous
microstructure (Aggelis and Polyzos (2004)). When elastic waves propagate through
such material, the internal inhomogeneities cause the generated signal to travel at dif-
ferent velocities and to follow different travel paths before arriving to the receiver,
exhibiting a dispersive behaviour, where waves of different frequencies travel at dif-
ferent speeds. In particular, this behaviour is more noticeable when the wavelengths
are comparable or smaller than the size of the microstructure (the aggregate size in
this particular case).

The ultrasonic pulse velocity (UPV) technique is one of the most popular method
used for the assessment of structural integrity. For accurate characterisation of con-
crete elements, since different variables affect the pulse velocity measurement, the
wave characteristics should be considered to complement the wave velocity inform-
ation. In fact, within the frequency range 10 - 300 kHz, the wave velocity increases
with higher frequencies (Popovics et al. (1990); Aggelis et al. (2004)). This increment
is affected by several factors like moisture content, temperature, path length, shape
and size of the specimen, cracks and voids. (BS EN 12504-4:2004 (2004); Malhotra
and Carino (2004)). The effect of aggregate size has been object of previous research
as for example in (Jacobs and Owino (2000); Molero et al. (2011)) who studied the
attenuation of Rayleigh waves in concrete materials using laser ultrasonics and its
relation to scattering phenomena and absorption, showing as the latter rules the at-
tenuation mechanisms while the aggregate size does not affect it. Attenuation and
propagation of ultrasonic waves have been used to obtain information about the size
distribution of the aggregate in concrete beams (Gaydecki et al. (1992)). It has been
found that the amount and type of aggregate significantly increase the pulse velocity
if compared with cement paste (Malhotra and Carino (2004); Popovics et al. (1990)).
In order to specifically study the effects of the aggregate size on the wave propagation
phenomena, a few researchers (Anugonda et al. (2001); Becker et al. (2003); Molero
et al. (2011)) tested specimens made of Portland cement, water and glass spheres of a
uniform diameter. Among other variables, it is worth mentioning that the pulse velo-
city is also affected by water-cement (w/c) ratio; increasing w/c ratios correspond to
reduced pulse velocities (Aggelis and Polyzos (2004); Aggelis et al. (2004)).

Reliable non-destructive testing therefore requires better interpretation of the ex-
perimental observations and the benefit of analytical predictions is that they facilitates
increased understanding of nascent phenomena. Since in many practical situations the
microstructural features significantly influence the global response, accurate model-
ling of wave propagation in heterogeneous media requires that the microstructure is
accounted for. Discrepancies between experimental observations and theoretical pre-
dictions based on classical theories show that the latter are not adequate to capture
wave dispersion because they do not accommodate information about the microstruc-
ture within the continuum model. Several other formulations have been proposed to fix
this issue; analysis methods based on discrete modelling and on enhanced continuum
theories are the most common technique. In the first case, the heterogeneities are
modelled as a lattice of masses linked together through an energy balance; Iliopoulos
et al. (2015), for example, used a lattice model where the aggregates are simulated



as masses linked together through elastic springs representing the concrete matrix.
Instead, in the enhanced continuum approaches the medium is treated as homogen-
eous equivalent to the heterogeneous one and the microstructure is taken into account
by additional internal variables (Carta and Brun (2012)). Mindlin (Mindlin (1964))
has been one of the first to develop one of these models, followed by many others as
(Chen and Fish (2001); Askes et al. (2007); Bennett et al. (2007a); Askes and Aifantis
(2011)) where the classical continuum theory is enriched with higher order gradients
of the field variables accompanied by length scale parameters.

Many studies available in literature propose new analytical models based on en-
riched theories but only limited research has been devoted to the experimental identi-
fication of the additional characteristic length scale parameters from wave propagation
measurements (Carta et al. (2012)); this paper represents a step forward in this direc-
tion. It focuses on the dynamically consistent gradient elasticity model (Metrikine
and Askes (2002)) where two additional terms related to stiffness and inertia contribu-
tion are introduced. It has been chosen because in its simplicity guarantees physical
consistency and numerical stability. If compared with other methods, it allows the rep-
resentation of the monotonically increasing dispersive behaviour of concrete which is
in good agreement with experimental evidence.

In the proposed work, elastic longitudinal waves have been applied on one end of
a concrete beam and recorded on the opposite one using piezoelectric transducers. In
order to obtain measurements at several distances, the concrete beam has been cut
into shorter beams and the experiment repeated for each part. In particular, in this
contribution, the dispersion behaviour of concrete is experimentally investigated and
compared with the analytical prediction with the aim to demonstrate the potential and
limitations of this type of gradient model, but also to introduce the work that will be
accomplished in future investigations.

This paper is structured in five sections. First, the dynamically consistent gradient
elasticity model is reviewed and its properties briefly discussed. Then, the propagation
of longitudinal waves in concrete material is discussed in relation to the gradient elasti-
city model presented in the previous section. In Section 4 the experimental equipment
and the testing procedure are described. Section 5 reviews the different methods used
to obtain the group velocity and phase velocity. Finally the results of the tests on
different concrete sample and, in particular, the dispersion curves are presented.

2 Wave Dispersion Model

Aim of this section is to investigate the suitability of the so called dynamically con-
sistent gradient elasticity theory to predict wave dispersion in concrete (Metrikine and
Askes (2002)). The derivation of the dispersion curve for a one-dimensional problem
will be briefly recapped and comparison between analytical results and experimental
observations will demonstrate that the elastic wave dispersion in concrete can be cap-
tured with an appropriate selection of the microstructural lengths.
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Figure 1: Dispersion curves for wave propagation in an axial bar with dynamically
consistent gradient elasticity (£;/L = 0.02)

The differential equation of motion for the one-dimensional problem reads:
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where u = u(x) is the axial displacement; p is the mass density; E is the Young’s
modulus; ¢, and ¢,, are the length scale parameters related with the higher-order stiff-
ness and inertia, respectively. In Eq. (1) the superimposed dot denotes time derivative,
while the inverted comma s denotes spatial derivative.

Assuming u as a general harmonic wave of the form u = A exp(i k(x — cp,t)), the
dispersion relation is obtained from Eq. (1) as follows:
-pkcy, —plykic, = -EK - EC K, )
where A is the amplitude, k is the wave number and ¢, is the phase velocity. Eq. (2)
can also be written in terms of the phase velocity and the wave number as:
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where the velocity of classical elasticity ¢, = \/E_/p Eq. (3) is the dispersion relation
for the dynamically consistent model; depending on the values given to the length
scale parameters, it predicts different material behaviours. Fig. 1 shows different dis-
persion curves for a beam of length L = 1m and square cross section (side z = 0.1m).
The properties assigned to the material, Young’s modulus E = 30GPa and the dens-
ity p = 2400kg/m?, are similar to concrete. Five combinations of {£,; £,,} have been
considered: ¢,/L = {0.02}; ¢,,/L = {0.016, 0.018, 0.02, 0.022, 0.024}. It can be ob-
served that when the length scale parameter related with the micro-inertia £, is lower
than ¢,, the phase velocity ¢, is larger than the phase velocity of the classical elasti-
city c,, while the opposite is valid when ¢; < €,. It is worth mentioning here that
when ¢; = ¢, the classical elasticity model with no dispersive behaviour is restored
(continuous line in Fig. 1).
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Figure 2: Experimental dispersion curves for wave propagation in concrete for the
same aggregate-cement ratio (a/c = 3) and four different water-cement ratio (w/c)
(Philippidis and Aggelis (2005)) and corresponding dispersion curve obtained with
the dynamically consistent model.

The dynamically consistent theory has been proposed to model wave dispersion
in discrete lattice (Askes et al. (2007)) or one-dimensional laminate (Bennett et al.
(2007b)) where higher wave numbers propagate slower than the lower wave numbers,
that is when ¢ < €,,. Instead, it has been experimentally proved that concrete exhibits
the opposite behaviour. As it can be observed in Fig. 2, the experimental dispersion
results are in good agreement with the analytical curves obtained from the dynamically
consistent model when the microstiffness length scale £, is higher than the microinertia
contribution ¢,,.

3 Materials and equipments

The aim of this section is to present the preliminary experimental investigation that
has been carried out in concrete samples in order to optimize the procedure of pulse
velocity measurements at different frequencies. The experiments involved two dif-
ferent mixes, the first one made of sand while the second one of sand and aggregate
with average size of 12mm, both mixed together with Portland cement and water (wa-
ter over cement ratio w/c of 0.4). The concrete beam samples have a square section,
with side of 100mm, and length ranging from100mm to Im. These values have been
chosen following the Standard (BS EN 12504-4:2004 (2004)) which suggests a min-
imum length of 100mm to avoid local effects of the aggregate, and a minimum size
of the specimen related to the wavelength of the transducer. In this case the minimum
recommended lateral dimension was 74mm for the 54kHz transducer. Considering the
significant effect of the moisture content on the pulse velocity, the same curing con-
ditions on the hydration of the cement has been adopted for the different specimens.
Figure 3 shows the cross sections for the two investigated samples: Fig. 3a shows the
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Figure 3: Cross sections of the tested concrete beams

beam made of mortar only; Figs. 3b shows the beam’s section made of aggregate with
maximum size of 12mm. In the last case the amount of aggregate and the amount of
sand were 80% and 40% of the total volume, respectively.

The experimental arrangement consists of two piezoelectric transducers coupled to
both end faces of the concrete beams using medium coupling grease (see Fig. 4). One
of the transducer was excited to resonance by a Pundit pulser unit through a voltage
pulse excitation while the second transducer was acting as receiver. The pulse applied
to excite the transducer had width on the range 1us to 10us and the voltage between
125V to 500V. Even though the ultrasonic pulser is mainly used for field inspections,
the repeatability of the generated waves allows to perform the experiment on different
beams assuming that the same wave is applied each time. Similar experimental set-up
has been already used by several researchers for the laboratory experiments (Popovics
et al. (1990); Long (2000)).

In order to study a range of frequencies where the material exhibits dispersive beha-
viour, three pairs of narrow-band resonant transducers with different centre frequency
(54kHz, 150kHz and 250kHz) have been used, covering then the lower end of the
ultrasonic range. For each sample, the test has been repeated several times, showing
good agreement on the measured shape and arrival time of the pulse wave.

3.1 The phase spectrum method - Fourier transform

Several techniques are available to evaluate the phase velocity from wave signals, as
for example the amplitude spectrum method, where the phase velocity is calculated
using the longitudinal resonant frequencies combined with the mode numbers and
the distance between the boundaries of the specimen (Pialucha et al. (1989)); or the
m-point phase method which consists of determining the half-wavelength of an har-
monic wave by varying the distance between transmitter and receiver transducers and
determining the shift required to change the phase of the received signal by ; the
phase velocity is then computed from continuous monochromatic waves or narrow
band pulses (Papadakis (1976)). In this work the phase spectrum approach, as de-



Figure 4: Experimental set-up

scribed by Sachse and Pao (1978), is adopted to determine the dispersion relation of
the phase velocity c,,(w). Given the two signals, y,(f) and y,(?), generated by the same
source type and occurred at different points, the technique consists in first computing
the Fourier transform of the signals, and then unwrapping the phase spectra ¢,,(w)
to obtain a continuous function. The phase velocity c¢,,(w) is finally evaluated as the
difference between the wave angular frequency w times the distance between the path
length z, and the difference in phase between the two unwrapped phase spectra ¢, (w)
and ¢, (w), as follow:

W
¢ph1(w) - ¢ph2(w) .

This method requires two signals with compact support (decay rapidly) to avoid leak-
age of frequency components; furthermore only one wave packet should be present in
the signal to avoid overlapping. Particular attention has to be provided in the unwrap-
ping procedure as an error in the continuous function can affects all the subsequent
phase angle values at higher frequencies and as consequence the phase velocities
(Long (2000)).

4

cph(w) =

4 Results and discussion

In this section, the main experimental results are presented and discussed using differ-
ent plots. In the following, the amplitude is normalised with respect to the maximum
recorded value, based on the assumption that the wave velocity does not depend on
the amplitude of the signal. Fig 5 shows the recorded normalised amplitude response
(Ampl [%]) for the mortar sample, measured with three types of transducers (resonant
frequencies 54kHz, 150kHz and 250kHz). Two different beams’ lengths L; = 195mm
and L, = 300mm, corresponding to two signals S| and S, have been considered. In
order to avoid overlaps, a 160us signal has been used, i.e. shorter than three times its
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Figure 5: Mortar sample — Normalised amplitude response (Ampl [%]) of two sig-
nals S| and S, corresponding to two different lengths of the beam L; = 195mm and
L, = 300mm, for three types of transducers (resonant frequency 54kHz, 150kHz and
250kHz)

arrival time (55us for L; = 195mm).

If we compare the shape of the received signal, for the same couple of transducers,
we can observe that they look similar. The dominant frequency of the signal is the
same as the resonant frequency of the transducer as we can clearly see in the amplitude
spectra shown in Fig. 6 or Fig. 7 for the transducers with resonant frequencies of
54kHz and 150kHz, respectively.

As suggested by Philippidis and Aggelis (2005), in order to obtain a consistent
dispersion curve, the phase spectrum method was performed windowing the signal
to reduced portions. Fig. 6 shows the amplitude spectrum (Ampl [%]) of signal S,
recorded at the positions L; = 195mm, with the transducer with resonant frequency
of 54kHz, as well as two portions of it, S | spks and S | 4pks, corresponding to the signal
truncated at the second and fourth peak, respectively. It can be observed that the
original signal S| has high amplitude in a clear frequency range around the resonance
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Figure 6: Mortar sample — Normalised amplitude response (Ampl [%]) and amplitude
spectrum (JAmpl|) of signal S| and two portions of it S sps and Sy 4pks Tecorded at
the positions L; = 195mm, for the transducer with resonant frequency of 54kHz
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Figure 7: Mortar sample — Normalised amplitude response (Ampl [%]) and amplitude
spectrum (JAmpl|) of signal S| and two portions of it S sps and Sy 4pks Tecorded at
the positions L; = 195mm, for the transducer with resonant frequency of 150kHz

of the transducer, as well as the S| 4 While for the signal S sk , further relevant
frequencies appears. This suggests that the truncated signals have to be carefully used
in the phase spectrum method, where the phase of the signal plays a key role in the
quantification of the phase velocity. Similarly, Fig. 7 shows the same for the transducer
with resonant frequency of 150kHz. Again, the less peaks we consider the smoother
is the Fourier transform, but resulting to erroneously account for frequencies far from
the resonance one.

The second example, shown in Fig. 8, is the signal recorded after propagating
through the concrete samples of two different lengths L; = 600mm and L, = 800mm,
for the three types of transducers used in this work. In this case the time arrival for the
shorter beam is about 150us, so the duration of the signal was chosen to be 400us. It
can be observed that only for the 54kHz transducer the signals are smooth, while for
the remaining two it is more irregular, especially for the length of 800mm. This dis-
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Figure 8: Concrete sample — Normalised amplitude response (Ampl [%]) of two
signals S| and S, corresponding to two different positions L; = 600mm and L, =
800mm of the transducers, for three types of transducers (resonant frequency 54kHz,
150kHz and 250kHz)

turbance can be explained as higher frequencies are strongly attenuated and the noise
over signal ratio increases for increasing length of the beam sample.

Signals truncated at the first peak S i« and third peak S 3p1s have been represen-
ted using the Fourier transform, for the concrete sample of L; = 600mm and trans-
ducer with resonant frequency of 54kHz (Fig. 9); while Fig. 10 shows the original
signal S, the signal truncated at the second peak S| px and the signal truncated at the
fourth peak S| 4 for the transducer with resonant frequency of 150kHz. As for the
mortar specimen, even though the portions of the signal have a smoother frequency
spectrum, they include different frequency content.

An attempt to evaluate the phase velocity starting from the frequency spectrum
of the original signal and the truncated versions has been conducted using the phase
spectrum method presented in section 3.1. The resulting dispersion curves for three
different portions of the signal are shown for the mortar in Fig. 11 and for the concrete
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Figure 9: Concrete sample — Normalised amplitude response (Ampl [%]) and amp-
litude spectrum (JAmpl|) of signal S| and two portions of it S | 15 and S 31 recorded
at the positions L; = 600mm, for the transducer with resonant frequency of 54kHz
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Figure 10: Concrete sample — Normalised amplitude response (Ampl [%]) and amp-
litude spectrum (JAmpl|) of signal S ; and two portions of it § | spks and S | 4pks recorded
at the positions L; = 600mm, for the transducer with resonant frequency of 150kHz

sample in Fig. 12 and compared with the pulse velocity curve obtained with the Pundit
instrument. In both cases, when the whole signal was used in the analysis, an irregu-
lar dispersion curve was obtained. This behaviour can be explained as consequence of
the limitation of the phase spectrum method in the unwrapping of an irregular phase
spectrum. As expected from the frequency spectra in Figs. 6 -10, a smoother repres-
entation is obtained when a truncated signal is used, especially with a truncation at
the second peak. Even though this last representation provides a slightly better ap-
proximation of the expected dispersion curve, it was not taken into consideration for
the identification of the length scale parameters of the dynamically consistent model
because the windowed signals have been considered not representative of the material
behaviour due to the different frequency content included. As consequence, the ana-
lysis focused on the pulse velocity obtained with the pulser-receiver instrument and
on the velocities of different peaks of the signal.

11
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Figure 11: Experimental dispersion curves for wave propagation in mortar using the
phase spectrum method.
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Figure 12: Experimental dispersion curves for wave propagation in concrete using the
phase spectrum method.

The pulse velocities for the mortar beam sample are summarised in Table 1, for the
three different transducers. In details, the table includes the pulse velocities measured
with the Pundit instrument on L; = 195mm, V,,4i.5,; and L, = 300mm, V,,,4ir.5,; the
pulse velocities of the first disturbance Vo measured as the ratio between the length
difference L, — L; = 105mm and the time difference of the first recorded disturbance
of the signals S| and S,; the velocity of the first peak Vi«p, and second peak Voupy. It
can be observed that in all the cases the pulse velocity slightly increases for increasing
resonant frequency of the transducers, with an average increment of about +300m/s.
Interestingly, the velocities of the first and second peaks are lower than those recorded
by the Pundit, with V,.p, being the lowest. Analogously, the pulse velocities for the
concrete beam sample are summarised in Table 2.

The dispersion curves for the pulse velocities measured using the Pundit instrument
on mortar and concrete are compared in Fig. 13. As expected, the velocity for concrete

12



f Voundirs,  Vpunditsy  Vpuiseo  Vistpr  Vonapy
kHz [m/s] [m/s] [m/s]  [m/s] [m/s]
54kHz 3488 3513 3281 3387 3088
150kHz 3686 3597 3500 3387 3387
250kHz 3721 3619 3620 3500 3387

Table 1: Five different evaluation of the pulse velocity [m/s] for the mortar beam
sample: pulse velocity measured with the Pundit on L;, V4.5, ; pulse velocity meas-
ured with the Pundit on L, V45,5 pulse velocity first disturbance V,, o; pulse velo-
city first peak Visp; pulse velocity second peak Voupy

f Voundits,  Vundirs,  Vpuiseo  Vispk  Vonapg
kHz [m/s] [m/s] [m/s] [m/s] [m/s]
54kHz 4228 4191 3975 4016 3997
150kHz 4367 4303 4280 4089 4115
250kHz 4381 4458 4461 4449 4378

Table 2: Five different evaluation of the pulse velocity [m/s] for the concrete beam
sample: pulse velocity measured with the Pundit on L;, V45, ; pulse velocity meas-
ured with the Pundit on L,, V,u.4i.5,; pulse velocity first disturbance V,;,0; pulse velo-
city first peak Vi pi; pulse velocity second peak Voupy

is higher than the one in mortar, in particular the gap is about 1000m/s. This difference
is mainly due to the higher stiffness of the concrete if compared with the stiffness of
the mortar.

5 Conclusions

In the present paper, the experimental ultrasonic wave propagation measurements on
concrete and mortar are presented. Narrow band waves of three different frequencies
(54kHz, 150kHz and 250kHz) corresponding to the resonance of the transducers are
introduced into the mortar and concrete samples. The pulse velocity provided by the
pulse generator has been compared with the velocity of different peaks of the sig-
nal. An attempt to evaluate the phase velocity using the phase spectrum method was
conducted. The results highlighted how the data obtained using the resonance trans-
ducers are not enough accurate to represent the dispersion behaviour in the whole
relevant range of frequencies (OkHz - 500kHz). The signals recorded with the reson-
ant transducers were not able to provide reliable information outside of their reson-
ance frequency. Considering only the three points available in the dispersion curve

13
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Figure 13: Dispersion curve for the pulse velocity of the beam made out of mortar and
the concrete beam with maximum aggregate size of 12mm.

for the pulse velocity, an accurate identification of the length scale parameters of the
dynamically consistent model was not possible. In order to do that, more accurate ex-
periments using broadband transducers connected to a wave generator, which allows
to investigate, for each frequency, the corresponding wave velocity for a more accurate
representation of the dispersion curve, are suggested for these analysis. The proced-
ure can then be repeated for different concrete samples made using a specific range
of aggregate size and the same cement-aggregate ratio and water-cement ratio. Once
these curves will be available, they will be used to identify the length scale parameters
and their variation with the different aggregate sizes.
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