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Abstract 

 

PURPOSE: This study examined the effects of sodium chloride and potassium 

chloride supplementation during 48 h severe energy restriction on exercise capacity in 

the heat.  

METHODS: Nine males completed three 48 h trials: adequate energy intake (100% 

requirement), adequate electrolyte intake (CON); restricted energy intake (33% 

requirement), adequate electrolyte intake (ER-E); and restricted energy intake (33% 

requirement), restricted electrolyte intake (ER-P). At 48 h, cycling exercise capacity 

at 60% V O 2 peak was determined in the heat (35.2°C; 61.5% relative humidity).  

RESULTS: Body mass loss during the 48 h was greater during ER-P (2.16 (0.36) kg) 

than ER-E (1.43 (0.47) kg; P<0.01) and CON (0.39 (0.68) kg; P<0.001), as well as 

greater during ER-E than CON (P<0.01). Plasma volume decreased during ER-P 

(P<0.001), but not ER-E or CON. Exercise capacity was greater during CON (73.6 

(13.5) min) and ER-E (67.0 (17.2) min) than ER-P (56.5 (13.1) min; P<0.01), but was 

not different between CON and ER-E (P=0.237). Heart rate during exercise, was 

lower during CON and ER-E than ER-P (P<0.05).  

CONCLUSIONS: These results demonstrate that supplementation of sodium 

chloride and potassium chloride during energy restriction attenuated the reduction in 

exercise capacity that occurred with energy restriction alone. Supplementation 

maintained plasma volume at pre-trial levels and consequently prevented the 

increased heart rate observed with energy restriction alone. These results suggest that 

water and electrolyte imbalances associated with dietary energy and electrolyte 

restriction might contribute to reduced exercise capacity in the heat. 

 

Key words: Hydration; Fluid Balance; Dehydration; Hypohydration; Fasting 

 

List of abbreviations:  

ER: Energy restriction 

RPE: Rating of perceived exertion 

Trec: Rectal temperature 

Tsk: Skin temperature 

TC: Thermal comfort 
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CON: Control trial 

ER-E: Energy restriction with electrolyte supplementation trial 

ER-P: Energy restriction with placebo supplementation trial 
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Introduction 

Severe energy restriction (ER) might be encountered in a number of athletic, 

occupational and everyday settings. For example, military personnel in the field, as 

well as both athletes and dieters aiming to reduce body mass might all encounter short 

term periods of severely restricted energy intake. 

 

Military personnel, undergoing military training or sustained operations where they 

have to carry their own rations, might have limited access to food and consequently 

be forced to restrict their energy intake (Booth et al. 2003). This type of dietary 

practice has been shown to impair performance in a number of military relevant tasks 

(Nindl et al. 2002; Montain and Young 2003). Additionally, athletes and dieters might 

voluntarily restrict their energy intake to induce a reduction in body mass and/ or 

body fat. Among athletes, severe ER is particularly prevalent in weight categorised 

athletes (Horswill 1992) and jockeys (Moore et al. 2002), where it is used to help 

facilitate weight loss in the days leading up to weigh-in/ competition. Among those 

dieting for weight management or weight loss, intermittent severe ER for 1-2 days a 

week, with adequate energy intake on other days has been shown to lead to successful 

weight loss (Harvie et al. 2011). 

 

Maintenance of exercise capabilities is an important consideration in all these settings 

to ensure completion of military exercise tasks in military personnel; effective 

adaptation to training programmes in athletes; and maximisation of energy deficits in 

dieters. Short periods of severe or complete ER have been shown to reduce exercise 

capacity (Loy et al. 1986; Nieman et al. 1987; Gleeson et al. 1988; Maughan and 

Gleeson 1988; Zinker et al. 1990) and performance (Oliver et al. 2007), and thus 

strategies to enhance endurance during severe ER are warranted. What accounts for 

this impaired endurance following severe or complete ER is not fully understood, but 

is likely related to reduced substrate (glycogen) availability. In the absence of 

exercise, 24-48 h severe ER is unlikely to cause muscle glycogen depletion (Dohm et 

al. 1986; Maughan and Williams 1981), but liver glycogen is likely to be depleted 

(Nilsson and Hultman 1973). Fatigue during exercise in the heat often occurs due to 

mechanisms unrelated to depletion of endogenous substrate (Nybo, 2010) and it is 

unknown whether severe ER impairs endurance in the heat. 
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Severe ER, even with adequate water intake, results in a large reduction in body water 

stores (hypohydration), and particularly a reduction in plasma volume (James and 

Shirreffs 2013; Oliver et al. 2007; Consolazio et al. 1968). This hypohydration 

appears to be caused by the continued excretion of electrolytes in urine, despite little 

or no intake (James and Shirreffs 2013), and might be offset by electrolyte 

supplementation during severe ER (Consolazio et al. 1968a). Hypohydration reduces 

endurance capacity and performance (Cheuvront and Kenefick 2014), an effect that is 

exacerbated as environmental temperature increases (Kenefick et al. 2010). Therefore, 

the hypohydration, and particularly plasma volume reduction, that accompanies 

severe ER might negatively impact on exercise capacity (Cheuvront and Kenefick 

2014), particularly if exercise is undertaken in a hot environment.  

 

Manipulation of plasma volume by pre-exercise electrolyte ingestion has been shown 

to prolong exercise capacity in the heat (Sims et al. 2007; Hamouti et al. 2014). If the 

hypohydration and plasma volume reduction that accompanies severe ER is involved 

in fatigue during exercise, then preventing or attenuating this reduction might prolong 

exercise. Therefore, the aims of this study were to examine the effect of acute severe 

ER on exercise capacity in the heat, and to determine whether electrolyte 

supplementation during severe ER attenuates the reduction in plasma volume and 

prolongs exercise capacity. It was hypothesised that severe ER would reduce exercise 

capacity in the heat, and that electrolyte supplementation would attenuate this 

reduction. 

 

Methods 

Subjects 

Nine healthy males (mean (SD) age 25 (4) y, body mass 76.98 (4.45) kg, height 1.76 

(0.08) m, V O2 peak 56.3 (6.7) ml∙kg-1∙min-1) volunteered for this study, which was 

approved by the University’s Ethical Advisory Committee (Reference number R08-

P127). All subjects were physically active and participated in a variety of different 

sports, but were not trained cyclists or heat acclimated at the time of the study. 

 

Experimental protocol 



 

6 
 

Subjects completed a preliminary trial, a familiarisation trial and three experimental 

trials, which were completed in a randomised counterbalanced order. Experimental 

trials were conducted on the same day of the week and separated by at least 1 week. 

Trials were undertaken during the months of April, May, June, July and August in 

Loughborough, UK, with mean daily temperatures of 14.9 (3.6) °C. 

 

During the preliminary trial, V O2 peak was determined using a discontinuous test on 

a cycle ergometer (Gould Corival 300, Groningen, Holland). After an initial 5 min 

stage at 100 W, subjects completed 4 min stages at increasing workloads until 

volitional fatigue. Stages were separated by ~5 min rest. Heart rate and rating of 

perceived exertion (RPE) were recorded at the end of each stage, whilst expired air 

was collected into a Douglas bag for the final min of each stage. Oxygen and carbon 

dioxide content (Servomex 1400, Crawley, East Sussex, United Kingdom), volume 

(Harvard Dry Gas Meter, Harvard Apparatus Ltd, Kent, United Kingdom) and 

temperature (Edale digital thermometer) of each expired air sample was determined. 

V O2 peak was defined as the highest V O2 obtained and was used together with the 

relationship between V O2 and workload to determine the work load required to elicit 

60% V O2 peak during the exercise capacity tests. During the familiarisation trial, 

subjects were familiarised with the exercise capacity test, as well as blood and urine 

sampling procedures. 

 

Each experimental trial consisted of 48 h dietary control and manipulation, before 

completing an exercise capacity test on a cycle ergometer. Subjects visited the 

laboratory in the morning at the same time of day (7-9 am) on 3 consecutive days (0 

h, 24 h and 48 h). On each of these visits, subjects arrived after a 10 h overnight fast 

and voided their bladder, before nude body mass was measured. A venous blood 

sample was then obtained by venepuncture of an antecubital vein. At 0 h and 24 h, 

subjects were provided with their food and drink for the next 24 h, instructions of 

when to consume each item, and 24 h urine collection equipment. At 48 h, 

immediately after nude body mass measurement, subjects positioned a rectal 

thermistor (YSI 400 series, YSI Ltd., Farnborough, UK) 10 cm beyond the anal 

sphincter, for measurement of rectal temperature (Trec). Skin thermistors (YSI 400 

series) were then attached at 4 sites (chest, triceps, thigh and calf) and were used to 
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determine weighted mean skin temperature (Tsk) (Ramanathan 1964). A heart rate 

telemetry band (Polar Beat, Kempele, Finland) was positioned on the subject’s chest. 

Resting core temperature, skin temperature and heart rate measurements, as well as 

perceived thermal comfort (TC) were taken after 15 min seated rest at room 

temperature (23.5 (1.3) °C, 44.6 (8.2) % relative humidity). The area of skin over the 

subject’s right scapula was cleaned with distilled water and thoroughly dried using 

sterile gauze, before a small absorbent gauze patch (Tergaderm +Pad, 3M Healthcare, 

Loughborough, UK) was attached for the collection of sweat secreted during exercise. 

Subjects then entered a temperature (35.2 (0.2) °C) and humidity (61.5 (3.6) %) 

controlled environmental chamber (Weiss Gallenkamp, Loughborough, UK) and 

exercised at a workload intended to illicit 60% V O2 peak. Exercise continued until 

subjects could no longer maintain a pedal cadence of 60 revolutions per minute, 

despite verbal encouragement. One min expired air samples were collected every 15 

min. RPE and TC were recorded every 10 min, whilst core temperature, skin 

temperature and heart rate were recorded every 10 min and at the point of fatigue. 

After exercise, the absorbent gauze patch was removed and the sweat collected was 

aspirated using a syringe. After thoroughly towel drying, nude body mass was 

measured. The same investigator supervised all exercise trials.  

 

Dietary conditions 

Three different dietary conditions of varying energy and electrolyte content were 

applied during the experimental trials (Table 1). Subjects were provided with their 

food and drink for each 24 h during their morning visit to the laboratory (0 h and 24 

h). During each 24 h period, subjects consumed a meal at 0 h, 4 h, 8 h and 12 h (i.e. 

8am, 12pm, 4pm and 8pm for a subject starting at 8am), whilst they ingested a 

volume of drink equivalent to 5 ml∙kg-1 body mass at 0 h, 0-4 h, 4 h, 4-8 h, 8 h, 8-12 

h, 12 h and 14 h. The drinks provided between meals were tap water, whilst drinks 

provided with meals contained a small amount of sugar-free blackcurrant squash. 

Daily energy requirements were estimated from subjects’ resting energy expenditure 

(Mifflin et al. 1990) multiplied by a physical activity level of 1.5. The diet provided to 

subjects was designed to contain a high proportion of carbohydrate (55-60%) and 

consisted of jam sandwiches for breakfast (0 h), cheese sandwiches for lunch (4 h) 

and pasta for dinner (12 h), with other carbohydrate based snacks provided at 8 h and 
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with all meals. During the control trial (CON) subjects were provided with their 

estimated energy requirement, whilst during energy restricted trials (ER-E and ER-P) 

subjects were provided ~33% of their estimated energy requirement. Sodium and 

potassium intake was also manipulated so that subjects consumed 2.2 mmol∙kg-1 body 

mass∙d-1 sodium and 0.8 mmol∙kg-1 body mass∙d-1 potassium during CON and ER-E. 

This intake of electrolytes was provided in foods consumed during each trial, with 

additional sodium chloride in capsules consumed at 0 h, 4 h, 8 h and 12 h and 

additional potassium chloride added to drinks and capsules consumed at 0 h, 4 h, 8 h 

and 12 h. During ER-P, placebo capsules containing a small amount of maltodextrin 

were provided with meals. To determine the electrolyte content of each food item 

used in the study, a sample of each food was weighed and homogenised with a known 

amount of distilled water, with a sample of each homogenate analysed for sodium and 

potassium content before the start of the study. ER trials were administered in a single 

blind manner so that subjects were unaware of which trial they were undertaking. At 

24 h and 48 h subjects confirmed their compliance with the dietary intervention 

verbally upon arrival to the laboratory. 
 

 

Analytical methods 

All blood samples were taken after 15 min upright seated rest. One ml of blood was 

mixed with K2 EDTA (1.75 mg·ml-1) and analysed for haematocrit by 

microcentrifugation, haemoglobin concentration by the cyanmethaemoglobin method 

and, after 10:1 dilution in perchloric acid, glucose concentration by the GOD-PAP 

method. One ml of each blood sample was mixed with lithium heparin in a pre-chilled 

tube and used for the determination of blood pH (ABL5 blood gas analyser, 

Radiometer Ltd, Crawley, UK).  The remaining blood was allowed to clot and serum 

was separated by centrifugation. Serum and urine samples were analyzed for 

osmolality by freezing point depression (Gonotec Osmomat 030 Cryoscopic 

Osmometer; Gonotec, Berlin, Germany) and sodium and potassium concentration by 

flame photometry (Corning Clinical Flame Photometry 410C; Corning Ltd., Halstead, 

Essex, UK). Sweat samples were analysed for sodium and potassium concentration by 

flame photometry. Urine was also analysed for creatinine concentration by a 

modification of the Jaffe reaction (Owen et al. 1954). 
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Statistical analysis and calculations 

All data were checked for normality of distribution using a Shapiro-Wilk test. Data 

sets containing two factors were analysed using two-way repeated measures ANOVA 

and if the assumption of sphericity was violated, the degrees of freedom were 

corrected using the Greenhouse-Geisser estimate. Data sets containing one factor 

were analysed using one-way repeated measures ANOVA or Friedman’s ANOVA, as 

appropriate. Post-hoc Bonferroni-adjusted t-tests or Bonferroni-adjusted Wilcoxon 

signed rank tests were used where appropriate. Normally distributed data are 

presented as mean (SD), whilst non-normally distributed data are presented as median 

(range). Data were accepted as being significantly different when P≤0.05. 

 

Haemoglobin and haematocrit values were used to estimate changes in plasma 

volume, relative to pre-exercise (Dill and Costill 1974). Change in body mass during 

exercise was used to determine sweat loss. 

 

Results 

Pre-trial measurements 

Pre-trial body mass (CON: 76.47 (3.76) kg; ER-E: 76.53 (4.31) kg; ER-P: 76.67 

(4.29) kg; P=0.855) and serum osmolality (P=0.342; Table 3a) were not different 

between trials indicating subjects started each trial in a similar state of hydration. 

There was no difference between trials for mean 24 h urine creatinine excretion 

(P=0.250) and over all trials it was 0.23 (0.03) mmol∙kg body mass-1∙24 h-1, which is 

indicative of a complete 24 h urine collection (Bingham and Cummings, 1985). 

 

Body mass, urine output and electrolyte balance 

There was an interaction effect (P<0.001) for body mass change over the 48 h dietary 

intervention period (Figure 1), with all trials resulting in a net loss of body mass, 

equating to 0.54 (0.91) %, -1.89 (0.72) % and -2.83 (0.56) % of initial body mass 

during the CON, ER-E and ER-P trials, respectively. Body mass loss over the 48 h 

was greater during ER-E and ER-P than CON, as well as greater during ER-P than 

ER-E (P<0.01). 

 

Urine output (Table 2a) over the 48 h was greater during ER-P compared to CON 

(P<0.01) and ER-E (P<0.05). Urine sodium excretion (Table 2b) was greater during 
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CON and ER-E compared to ER-P (P<0.01), but the greater sodium intake during 

CON and ER-E meant that sodium balance (Table 2d) over the 48 h was more 

positive during CON and ER-E than during ER-P (P<0.05). Potassium excretion 

(Table 2c) over the 48 h was lower for ER-P compared to CON and ER-E (P<0.01), 

but potassium balance (Table 2e) was not different between trials (P=0.250). For 

morning urine osmolality there was a time effect (P<0.05), but no trial (P=0.311) or 

interaction effect (P=0.855) and over all trials, urine osmolality decreased from ~730 

mosmol∙kg-1 at 0 h to ~570 mosmol∙kg-1 at 24 h and ~580 mosmol∙kg-1 at 48 h. 

 

Blood markers 

There were no time, trial or interaction effects (P>0.05) for serum osmolality (Table 

3a), serum sodium concentration (Table 3b), serum potassium concentration (Table 

3c), blood glucose concentration (Table 3d) or blood pH (data not shown). There was 

an interaction effect (P<0.001) for change in plasma volume (Figure 2), with a 

reduction in plasma volume during ER-P (P<0.001), but not CON or ER-E. This 

meant that plasma volume was lower at 24 h and 48 h during ER-P compared to both 

CON and ER-E (P<0.001).  

 

Exercise capacity test 

Exercise capacity (Table 4) was greater during CON and ER-E compared to ER-P 

(P<0.01), but was not different between trials CON and ER-E (P=0.237). There was 

no trial order effect over the three trials (P=0.735), with mean exercise times of 63.8 

(17.3) min, 67.8 (18.2) min and 65.4 (13.2) min, during the first, second and third 

trials, respectively.  

 

There was no time (P=0.541), trial (P=0.334) or interaction effect (P=0.584) for RER, 

and over all trials RER was 0.94 (0.04). Consequently, there was no time, trial  or 

interaction effect for carbohydrate or fat oxidation (P>0.504), with mean values over 

all trials of 2.78 (0.51) g·min-1 and 0.28 (0.19) g·min-1, respectively. Sweat rate 

(P=0.944), sweat sodium concentration (P=0.384) and sweat potassium concentration 

(P=0.160) were not different between trials, and over all trials were 1.35 (0.19) l·h-1, 

56 (16) mmol·l-1 and 5.5 (0.9) mmol·l-1, respectively. 
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There was a main effect of trial (P<0.001), and a tendency for an interaction effect 

(P=0.084) for heart rate (Table 5a). Heart rate was greater during ER-P compared  to 

ER-E at rest (P<0.01), and compared to both CON and ER-E at 10 min, 20 min and 

30 min of exercise (P<0.01). Whilst there were main effects of time for both rectal 

temperature (Table 5b) and weighted mean skin temperature (Table 5c), there were no 

trial (P=0.135; P=0.468, respectively) or interaction (P=0.070; P=0.323, 

respectively) effects. There was a main effect of trial (P<0.001) for RPE, but no 

interaction effect (P<0.552) and compared to CON, RPE was greater at 10 min and 

20 min during ER-E and ER-P, as well as at 30 min during ER-P. There were no trial 

(P=0.173) or interaction (P=0.496) effect for thermal comfort (Table 3e). 

 

Discussion 

The aim of this study was to determine the effect of severe ER on exercise capacity in 

the heat, as well as determine the impact of sodium chloride and potassium chloride 

supplementation during severe ER on fluid balance and exercise capacity. The main 

finding was that 48 h severe ER reduced exercise capacity in the heat compared to an 

adequate energy control trial, and that supplementation of sodium chloride and 

potassium chloride during ER attenuated the reduction in exercise capacity. 

 

Severe ER results in a large reduction in body mass that appears to be greatest over 

the initial 2 days of ER (Consolazio et al. 1968a) and is accompanied by a large 

reduction in plasma volume during this time (Consolazio et al. 1968a; Oliver et al. 

2007; James and Shirreffs 2013). As observed here, and previously (James and 

Shirreffs 2013) the excretion of the electrolytes sodium and potassium in urine 

continues during severe ER, despite a greatly reduced intake. Although large over the 

first 2 days of severe ER, the body mass loss becomes smaller and more consistent 

thereafter (Consolazio et al., 1968a). Similarly, sodium excretion in urine is large over 

the initial stages of ER and falls to minimal levels by 2-4 days of severe ER 

(Consolazio et al. 1968b). It is likely that the larger reduction in body mass observed 

during the first few days of severe ER is mostly explained by a rapid reduction in 

body water stores (Consolazio et al. 1968a), whilst the smaller, more consistent losses 

thereafter are likely reflective of a loss of body fat and muscle. The present results 

demonstrate that whilst supplementing with sodium chloride and potassium chloride 

during severe ER increased sodium and potassium losses in urine, the increased loss 
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was not sufficient to account for the additional intake, at least for sodium. Therefore a 

more positive electrolyte balance was achieved. Electrolyte supplementation during 

severe ER attenuated the body mass loss and prevented the loss of plasma volume 

observed during severe ER. 

 

These results suggest that water and electrolyte imbalances contribute to the large loss 

of body mass observed during severe ER. This is supported by the data for urine 

output, which over the 48 h intervention was increased during ER-P, but not ER-E, 

compared to CON. Therefore, severe ER accompanied by severe electrolyte 

restriction leads to increased urine production and the loss of water stores (i.e. plasma 

volume), even with adequate water intake. The effect of sodium intake on fluid 

balance is well documented, and the retention of fluid ingested when hypohydrated is 

directly related to the sodium concentration of the drink (Shirreffs and Maughan 

1998). In contrast, potassium addition to drinks ingested after either exercise-induced 

hypohydration (Shirreffs et al. 2007) or fluid and ER (James and Shirreffs 2015) does 

not appear to increase drink retention. Given that sodium, but not potassium balance 

was significantly greater during CON and ER-E than ER-P, it seems likely that 

sodium played a more important role in the reduction in urine output observed. If 

sodium intake is maintained, electrolyte balance is also maintained and the diuresis 

associated with severe ER is attenuated. Sodium and potassium are the main cations 

in the extracellular and intracellular spaces, respectively, and are responsible for the 

regulation of the volume of fluid compartments. Whilst serum osmolality and 

electrolyte concentrations were not different between trials, it is likely that electrolyte 

supplementation during ER attenuated the transient decrease in serum osmolality that 

occurs after drinking and thus reduced urine output (Nose et al. 1988). 

 

Previous research has reported a reduction in exercise capacity (Loy et al., 1986; 

Nieman et al. 1987; Gleeson et al. 1988; Zinker et al. 1990) and performance (Oliver 

et al. 2007) following 24-48 h severe ER. These reductions in exercise capacity have 

been observed during running and cycling, and over a range of exercise intensities 

(50-100% V O2max). The reason for a reduction in endurance following short term 

periods of severe or complete ER is not fully understood, but is likely to be 

multifactorial in nature. Severe ER results in reductions in liver glycogen (Nilsson 
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and Hultman 1973) and alterations in substrate utilisation at rest and during exercise 

(Dohm et al. 1986; Nieman et al. 1987; Knapik et al. 1988; Maughan and Gleeson 

1988), as well as an increase in heart rate (Dohm et al. 1986; Knapik et al. 1987; 

Nieman et al. 1987) and perceived exertion (Nieman et al. 1987) during exercise.  

 

All previous studies looking at ER and endurance exercise have examined exercise in 

a temperate environment. Thus the present study extends these previous findings by 

demonstrating that exercise capacity is also reduced in a hot environment. In 

temperate environments fatigue during prolonged endurance exercise can mainly be 

attributed to depletion of muscle and liver glycogen (Coyle 2004). However, in the 

heat, fatigue often occurs before glycogen stores have become sufficiently depleted to 

limit endurance (Coyle 2004). The majority of previous studies have examined the 

effects of complete ER, whilst in the present study, subjects consumed 3693 (219) 

kJ∙d-1 and 129 (13) g∙d-1 carbohydrate. During the 48 h restriction period, subjects 

performed no exercise and thus carbohydrate consumed was likely sufficient to meet 

subjects’ obligate requirement (Maughan et al. 2010). Therefore, the ER imposed in 

the present study was unlikely to influence muscle glycogen (Dohm et al. 1986; 

Maughan and Williams 1981) and the provision of some carbohydrate during ER 

would have reduced the impact on liver glycogen compared to complete ER (Nilsson 

and Hultman 1973). This hypothesis is supported by the finding that there was no 

difference in carbohydrate or fat oxidation during exercise. 

 

It is well known that the effects of hypohydration on exercise performance are more 

profound in hot than temperate environments (Kenefick et al. 2010). The present 

study implicates the hypohydration and reduced plasma volume observed during 

severe ER with fatigue during exercise, at least in the heat. It remains to be seen, 

however, if supplemention of electrolytes during ER can maintain exercise capacity in 

temperate/ cool environments. Ingestion of sodium in the immediate pre-exercise 

period has been shown to increase exercise capacity (Sims et al. 2007) and exercise 

performance (Hamouti et al. 2014) in the heat. In these studies, pre-exercise sodium 

ingestion increased plasma volume (Sims et al., 2007; Hamouti et al. 2014) relative to 

a low/ no sodium control trial. Sims et al. (2007) reported that heart rate during 

exercise was lower following pre-exercise sodium ingestion, whilst Hamouti et al. 

(2014) reported greater stroke volume and cardiac output following pre-exercise 
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sodium ingestion. In the present study, ER resulted in an increased heart rate during 

exercise compared to the control trial, an effect that was prevented by electrolyte 

supplementation during ER. Therefore it seems likely that the most plausible 

explanation for the reduction in exercise capacity with ER in the present study might 

be related to an increased cardiovascular strain brought about by the reduced plasma 

volume during ER (Nybo 2010). In the present study, the severe ER induced an 

isotonic hypovolaemia, which induces a larger relative plasma volume reduction per 

unit body water lost compared to hypertonic hypovolaemia (Cheuvront and Kennefick 

2014). As the reduced plasma volume and increased cardiovascular strain observed 

during hypohydration might be responsible for the impairment of endurance 

performance/ capacity, the larger relative loss of plasma volume with severe ER 

might have a larger effect on endurance.     

 

The maintenance of exercise capacity during periods of ER might be of importance in 

a number of settings. Intermittent, severe ER creates a large energy deficit and from a 

weight loss perspective has been shown to be comparable to moderate daily ER 

(Harvie et al. 2011). This type of dietary strategy might therefore offer a method of 

weight loss that doesn’t require daily adherence to a diet. A recent meta-analysis 

suggested that for long term sustainable weight loss, interventions that combine 

exercise regimens with dietary restriction offer the best chance of success (Franz et al. 

2007). Thus maintenance of exercise capabilities in this population might be of great 

importance. Similarly, military personal might encounter periods or severe ER during 

field exercise or sustained operations (Nindle et al. 2002), whilst athletes might 

voluntarily restrict their energy intake to induce body mass/ fat mass loss (Moore et 

al. 2002). As such, supplementation of sodium chloride and potassium chloride during 

severe ER might enhance energy expenditure through exercise during weight 

management programmes, ensure adequate completion of military related tasks or 

ensure appropriate training volume and adaptation in athletes. 

 

Although there was no statistically significant difference for exercise capacity 

between CON and ER-E, subjects exercised for ~6.5 min longer during CON than 

ER-E, with 6 of the 9 subjects exercising longer during CON. Using the data for these 

trials, a β of 0.8, it was estimated that 22 subjects would be required to reject the null 

hypothesis in the present study design. Therefore care should be taken with the 
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interpretation of the present results, which suggest that electrolyte supplementation 

attenuates, but does not prevent the reduction in exercise capacity induced by severe 

ER. Exercise capacity tests have generally been shown to be less reliable and less 

sensitive than time trial type exercise protocols (Currell and Jeukendrup 2008). 

Exercise capacity tests similar to that used in the present study have been shown to 

have a coefficient of variation of 5-26%, compared to <5% for time trial type 

protocols (Currell and Jeukendrup 2008). Therefore, use of a time trial in future 

studies might help elucidate whether there is a difference between CON and ER-E. 

 

In conclusion the present study demonstrates that the supplementation of sodium 

chloride and potassium chloride during a 48 h period of severe ER (33% energy 

requirement) prevented the reduction in plasma volume and negative sodium balance 

that occurred without electrolyte supplementation. During severe ER, electrolyte 

supplementation also resulted in a lower heart rate during exercise and increased 

exercise capacity compared to severe ER alone. 
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Table 1. 24 h dietary intake during the 48 h dietary intervention period. Values are 

mean (SD). 

 

  CON ER-E ER-P 

Energy (kJ) 11258 (673) 3726 (206) 3721 (203) 

Protein (g) 68 (2) 21 (1) 21 (1) 

Carbohydrate (g) 375 (25) 130 (12) 130 (13) 

Fat (g) 98 (8) 31 (2) 31 (2) 

Fibre (g)  13 (2) 4 (1) 4 (1) 

Water (ml)  3070 (171) 3085 (164) 3085 (164) 

Sodium (mmol) 171 (9) 173 (11) 17 (1) 

Potassium (mmol) 62 (6) 61 (7) 12 (1) 
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Table 2. a) Urine volume (ml); b) urine sodium excretion (mmol); c) urine potassium 

excretion (mmol); d) sodium balance (mmol); and e) potassium balance (mmol) 

during the 48 h dietary intervention period. Values are mean (SD). * Significantly 

different from 0-24 h. † Significantly different from CON. ‡ Significantly different 

from ER-E. 

 

 0-24 h 24-48 h 0-48 h 

a) Urine volume (l) 

CON 2052 (657) 2162 (370) 4214 (975) 

ER-E 2488 (245) 2320 (298)* 4808 (471) 

ER-P 3103 (402)† 2724 (349)† 5828 (242)†‡ 

    

b) Urine sodium excretion (mmol) 

CON 156 (49) 166 (24) 323 (51) 

ER-E 197 (33) 169 (34) 366 (50) 

ER-P 112 (44)‡ 73 (47)*†‡ 185 (82)†‡ 

    

c) Urine potassium excretion (mmol) 

CON 96 (26) 80 (16)* 176 (38) 

ER-E 98 (28) 84 (22) 181 (45) 

ER-P 57 (17)†‡ 52 (21)‡ 109 (35)†‡ 

    

d) Sodium balance (mmol) 

CON 15 (54) 3 (30) 19 (64) 

ER-E -24 (39) 3 (37) -21 (61) 

ER-P -94 (44)†‡ -56 (46)*†‡ -150 (81) †‡ 

    

e) Potassium balance (mmol) 

CON -34 (23) -18 (15)* -52 (33) 

ER-E -36 (32) -22 (26) -56 (54) 

ER-P -45 (17) -39 (21) -84 (35) 
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Table 3. a) serum osmolality (mosmol∙kg-1); b) serum sodium concentration (mmol∙l-

1);  c) serum potassium concentration (mmol∙l-1); d) blood glucose concentration 

(mmol∙l-1); during the 48 h dietary intervention period. Values are mean (SD). 

 

 0 h 24 h 48 h 

a) Serum osmolality (mosmol∙kg-1 H2O) 

CON 287 (5) 286 (4) 286 (6) 

ER-E 286 (3) 284 (4) 285 (2) 

ER-P 286 (4) 284 (4) 284 (4) 

    

b) Serum sodium concentration (mmol∙l-1) 

CON 142 (3) 143 (1) 142 (2) 

ER-E 143 (2) 142 (2) 143 (3) 

ER-P 142 (2) 143 (2) 143 (1) 

    

c) Serum potassium concentration (mmol∙l-1) 

CON 4.4 (0.3) 4.6 (0.3) 4.6 (0.3) 

ER-E 4.5 (0.2) 4.5 (0.4) 4.5 (0.3) 

ER-P 4.6 (0.4) 4.8 (0.6) 4.6 (0.3) 

    

d) Blood glucose concentration (mmol∙l-1) 

CON 4.62 (0.45) 4.73 (0.40) 4.80 (0.29) 

ER-E 4.70 (0.34) 4.86 (0.44) 4.52 (0.39) 

ER-P 4.43 (0.34) 4.56 (0.51) 4.62 (0.37) 
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Table 4. Exercise capacity time (min) during trials. Individual times and group mean 

(SD) presented. † Significantly different from CON. ‡ Significantly different from 

ER-E. 

 CON ER-E ER-P 

1 78.37 84.12 76.00 

2 68.48 58.80 50.12 

3 90.98 85.38 73.27 

4 85.68 89.87 68.62 

5 71.67 51.25 45.25 

6 80.00 70.35 52.77 

7 60.68 65.25 53.37 

8 47.00 37.85 38.37 

9 79.32 60.40 50.53 

Mean 73.58 67.03 56.48†‡ 

SD 13.46 17.24 13.06 
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Table 5. a) heart rate (beats∙min-1); b) rectal temperature (°C); c) weighted mean skin 

temperature (°C); d) rating of perceived exertion; and e) thermal comfort before and 

during the exercise capacity test. Values are mean (SD). † Significantly different from 

CON. ‡ Significantly different from ER-E. For all variables, all values after baseline 

values were significantly increased from baseline.  

 

 0 min 10 min 20 min 30 min Exhaustion 

a) Heart rate (beats∙min-1) 

CON 66 (7) 140 (11) 150 (10) 155 (12) 173 (11) 

ER-E 62 (8) 141 (11) 151 (11) 157 (11) 174 (10) 

ER-P 70 (9) ‡ 151 (10) †‡ 158 (11) †‡ 165 (11) †‡ 176 (9) 

      

b) Rectal temperature (°C) 

CON 37.1 (0.2) 37.3 (0.1) 37.7 (0.1) 38.0 (0.2) 39.0 (0.4) 

ER-E 37.1 (0.2) 37.3 (0.2) 37.7 (0.1) 38.0 (0.1) 38.9 (0.4) 

ER-P 37.2 (0.2) 37.4 (0.2) 37.8 (0.1) 38.0 (0.1) 39.0 (0.4) 

      

c) Weighted mean skin temperature (°C) 

CON 32.6 (0.6) 35.6 (0.4) 36.0 (0.3) 36.2 (0.3) 36.6 (0.5) 

ER-E 32.6 (0.8) 35.5 (0.4) 35.9 (0.3) 36.0 (0.3) 36.3 (0.4) 

ER-P 32.8 (0.8) 35.5 (0.5) 35.9 (0.5) 36.0 (0.5) 36.4 (0.6) 

      

d) Rating of perceived exertion  

CON - 11.2 (1.9) 12.7 (2.1) 14.0 (2.2) - 

ER-E - 12.9 (1.8)† 14.3 (1.6)† 15.6 (1.6)† - 

ER-P - 12.4 (1.7)† 13.8 (1.7)† 15.7 (1.7) - 

      

e) Thermal comfort  

CON 1.6 (0.5) 3.0 (0.7) 4.2 (1.3) 4.9 (1.5) - 

ER-E 1.8 (0.8) 3.6 (0.9) 4.8 (1.1) 5.6 (1.4) - 

ER-P 1.2 (1.2) 3.2 (1.2) 4.3 (1.1) 5.4 (1.7) - 
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Figure 1. Change in body mass relative to 0 h (kg) during the 48 h dietary intervention 

period. Points are mean values. Error bars are SD. * Significantly different from 0 h. † 

Significantly different from CON. ‡ Significantly different from ER-E.  
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Figure 2. Change in plasma volume relative to 0 h (%) during the 48 h dietary 

intervention period. Points are mean values. Error bars are SD. * Significantly 

different from 0 h. † Significantly different from CON. ‡ Significantly different from 

ER-E.  

 

 


