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Abstract

Multiple edge-disjoint Hamilton cycles have been obtained in labelled
star graphs Stn of degree n-1, using number-theoretic means, as images
of a known base 2-labelled Hamilton cycle under label-mapping auto-
morphisms of Stn. However, no optimum bounds for producing such
edge-disjoint Hamilton cycles have been given, and no positive or nega-
tive results exist on whether Hamilton decompositions can be produced
by such constructions other than a positive result for St5. We show that
for all even n there exist such collections, here called symmetric collec-
tions, of φ(n)/2 edge-disjoint Hamilton cycles, where φ is Euler’s totient
function, and that this bound cannot be improved for any even or odd n.
Thus, Stn is not symmetrically Hamilton decomposable if n is not prime.
Our method improves on the known bounds for numbers of any kind of
edge-disjoint Hamilton cycles in star graphs.

Keywords: Star graph, Hamilton cycle, Hamilton decomposition, Auto-
morphism.

1 Introduction

In this paper, we are interested in general symmetric properties of edge-disjoint
Hamilton cycles in star graphs Stn [1] for the purposes of designing better fault
tolerant interconnection network topologies. Star graphs are Cayley graphs over
the symmetric group and not much was known about disjoint Hamilton cycles in
star graphs until recently, with much of the work on Hamilton decompositions
of Cayley graphs revolving around Alspach’s longstanding conjecture for Cay-
ley graphs over Abelian groups [2]. The breakthrough came when a Hamilton
decomposition for the star graph St5 of dimension 5 was constructed in [4] and
multiple edge-disjoint Hamilton cycles for the n-dimensional star graph Stn in
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[6]. Surprisingly, the constructions were symmetric in the sense that (the edges
of) any two Hamilton cycles were images of each other under automorphisms
of labelled versions of Stn, mapping labels consistently, and all of them were
automorphic to a base 2-labelled Hamilton cycle constructed in [6]. Although
asymptotic bounds for the number of disjoint Hamilton cycles in Stn are given
in [6], and the stated φ(n)/10 bounds for all n in [6] have been improved to
φ(n)/5 for odd n in [3], it was not known what the optimum bounds are for ob-
taining Hamilton cycles in this way and, indeed, whether or not Stn is Hamilton
decomposable by these means for any n other than 5. In this paper, we define
symmetric collections of disjoint Hamilton cycles for labelled versions Stn to be
those for which, given a Hamilton cycle in the collection, there is an automor-
phism mapping labels consistently such that the chosen Hamilton cycle is the
image of the base 2-labelled Hamilton cycle in [6]. We show in the remainder of
the report that there are at most φ(n)/2 symmetric disjoint Hamilton cycles,
where φ is Euler’s totient function, and that this bound is sharp for all even n.

Throughout this report, whenever we refer to ‘disjoint’ Hamilton cycles, we
will mean edge-disjoint Hamilton cycles. If G is a graph, H is a subgraph of G,
and Φ an automorphism of G, Φ(H) will refer to the subgraph of G that is the
image of the vertices and edges of H under Φ. Equality of subgraphs H and
H ′, H = H ′, will mean equality of both the sets of vertices and edges.

2 Symmetry

In this section we work with edge-labelled undirected star graphs. We define
an edge labelling for star graphs Stn and label automorphisms which are auto-
morphisms that map these labels consistently. We show that Stn cannot have
symmetric collections of greater than φ(n)/2 disjoint Hamilton cycles in Theo-
rem 2.16 and that therefore Stn is not symmetrically Hamilton decomposable
for non-prime n (Corollary 2.17). If n is even, we show that Stn does have a
symmetric collection of φ(n)/2 Hamilton cycles in Theorem 2.20 and that such a
collection cannot be enlarged to include further non-symmetric 2-labelled edge-
disjoint Hamilton cycles (Theorem 2.21).

2.1 Labelled star graphs and label automorphisms

Definition 2.1 The n-dimensional labelled star graph Stn = (V,E, L) is the (n-
1)-regular graph of order |Sn|, where Sn is the symmetric group of permutations
of order n, with a set V of vertices, E of edges and a mapping of edges to integer
labels L : E 7→ {1, . . . , ⌊n/2⌋}, given by:

V (Stn) = {aρ(1) · · · aρ(n) | ρ ∈ Sn},
E(Stn) = {e | e = {aρ(1) · · · aρ(i−1)aρ(i)aρ(i+1) · · · aρ(n),

aρ(i) · · · aρ(i−1)aρ(1)aρ(i+1) · · · aρ(n)}, ρ ∈ Sn}

L({aρ(1) · · · aρ(i−1)aρ(i)aρ(i+1) · · · aρ(n), aρ(i) · · · aρ(i−1)aρ(1)aρ(i+1) · · · aρ(n)})
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= δ(aρ(1), aρ(i))

where
δ(ai, aj) = min{|i− j|, n− |i− j|} (1 ≤ i, j ≤ n)

is the distance between ai and aj on the cyclic graph whose vertices are a1, . . . , an
in which an is adjacent to an−1 and a1.

Definition 2.2 A Hamilton cycle in a spanning subgraph G of Stn with a set
of edges E(G), is a pair of sequences (v, e) of vertices v = v1...vn!+1 and edges
e = e1...en! such that:

(i) ei = {vi, vi+1} ∈ E(G) (1 ≤ i ≤ n!),

(ii) {v1, . . . , vn!+1} = V (Stn),

(iii) v1 = vn!+1.

The class of automorphisms of Stn of interest are those which map labels con-
sistently.

Definition 2.3 A label map for Stn is a bijection

ϕl : {1, . . . , ⌊n/2⌋} 7→ {1, . . . , ⌊n/2⌋}

of labels. An automorphism is a mapping

Φ : V (Stn) 7→ V (Stn)

such that:

(i) Φ is bijective

(ii) for all v1, v2 ∈ V (Stn), {v1, v2} ∈ E(Stn) if and only if {Φ(v1),Φ(v2)} ∈
E(Stn)

It is a label automorphism if, in addition, there exists a label map ϕl such that:

(iii) for all v1, v2 ∈ V (Stn), L({Φ(v1),Φ(v2)}) = ϕl(L{v1, v2})

2.2 Pointwise maps and distance maps

We will generate automorphism ‘pointwise’ by means of a bijection of the ele-
ments {a1, . . . , an}.

Lemma 2.4 ([3]) Let ϕ : {a1, ..., an} 7→ {a1, ..., an} be a bijection. Then:

(i) Φ : V (Stn) 7→ V (Stn), given by Φ(aρ(1) . . . aρ(n)) = ϕ(aρ(1)) . . . ϕ(aρ(n)),
is an automorphism of the graph Stn,

3



(ii) if v = v1, . . . , vn!+1, e = {v1, v2}, . . . , {vn!, vn!+1}and (v, e) is a Hamilton
cycle in Stn, then the pair of sequences of vertices and edges ΦH(v, e)
defined by

ΦH(v, e) = (Φ(v1), . . . ,Φ(vn!+1), {Φ(v1),Φ(v2)}, . . . , {Φ(vn!),Φ(vn!+1)})

is also a Hamilton cycle,

(iii) if a spanning subgraph G of Stn is a Hamilton graph, then so is the span-
ning subgraph that is its image Φ(G).

Definition 2.5 A pointwise map for Stn is a bijection ϕ as in Lemma 2.4. The
corresponding automorphism is the automorphism Φ as defined in Lemma 2.4.
If ϕ is such that there exists a bijection

ϕd : {1, . . . , ⌊n/2⌋} 7→ {1, . . . , ⌊n/2⌋}

satisfying, for all ai, aj ∈ {a1, . . . , an},

δ(ϕ(ai), ϕ(aj)) = ϕd(δ(ai, aj)) (1)

then Φ is trivially a label automorphism with ϕl = ϕd in Definition 2.3 (iii).
We shall call ϕd the corresponding distance map.

Distance maps allude to distances in the cyclic graph of the elements {a1, ..., an},
and not to distances in Stn. The class of label automorphisms generated by a
pointwise map and with a distance map as in Definition 2.5 will be denoted by
An.

2.3 Symmetry

Our definition of symmetry is with respect to this class of automorphisms and
the Hamilton cycle with edge labels 1 and 2 constructed in [6] as the base
Hamilton cycle with which all Hamilton cycles have to be symmetric via an
automorphism Φ ∈ An. First of all, we introduce some notation.

Definition 2.6 A vertex v ∈ V (Stn) of the form ai . . . (respectively . . . ai),
where ai ∈ {a1, . . . an} will be denoted by −→a i (respectively ←−a i) or −→a k

i (respec-
tively ←−a k

i ) for some subscript k if several such vertices are under considera-
tion. For a vertex v = −→a i = ←−a j we define head(v) = head(−→a i) = ai and
last(v) = last(←−a j) = aj.

Definition 2.7 The base Hamilton cycle H12(n) in Stn is the Hamilton cycle
constructed in [6] consisting of alternate paths of n(n − 1) − 1 edges with label
1 and single edges with label 2:

. . . • 1 • . . . . . . . . . • 1 •︸ ︷︷ ︸
n(n−1)−1 edges

2 • 1 • . . . . . . . . . • 1 •︸ ︷︷ ︸
n(n−1)−1 edges

2 • . . .
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where the total number of edges with label 1 in H12(n) is n!− (n− 2)! which is
greater than the number of remaining edges with label 1 (= n!-(n!-(n-2)!)=(n-
2)!) in Stn, and such that

last(v) = an

for all vertices v in H12(n) of edges with label 2.

A collection of edge-disjoint Hamilton cycles in Stn are ‘symmetric’ if any Hamil-
ton cycle in the collection is the image of H12(n) under an automorphism in An.

Definition 2.8 A collection H̃ of edge-disjoint Hamilton cycles in Stn is sym-
metric if H12(n) ∈ H̃ and if, for all He, Hf ∈ H̃, there is a label automorphism
Φef ∈ An such that

Φef (H
e) = Hf (2)

Hamilton cycles that are the image of automorphisms in An have a similar
structure.

Lemma 2.9 Let Φ ∈ An be a label automorphism with corresponding distance
map ϕd. Then, Φ(H12(n)) is a Hamilton cycle consisting of alternate paths of
n(n− 1)− 1 edges with label ϕd(1) and single edges with label ϕd(2):

. . . • ϕd(1) • . . . . . . . . . • ϕd(1) •︸ ︷︷ ︸
n(n−1)−1 edges

ϕd(2) • ϕd(1) • . . . . . . . . . • ϕd(1) •︸ ︷︷ ︸
n(n−1)−1 edges

ϕd(2) • . . .

Proof Follows from Definitions 2.5 and 2.7.

From Lemma 2.9, we see that a Hamilton cycle which is the image of H12(n)
under a label automorphism in An, is a succession of edges the majority of
which share the same label and the remaining minority of which share the same
second label. This leads to the following definition.

Definition 2.10 A Hamilton cycle which is the image of H12(n) under an au-
tomorphism as in Lemma 2.9, will be denoted by Hij(n) (or just Hij if n is clear
from the context) where the subscript i = ϕd(1) is the label for the majority of
the edges and the subscript j = ϕd(2) is the label for the minority of the edges.
We shall call these two sets of edges the majority and minority edges of Hij and
shall denote them by Emaj(Hij) and Emin(Hij) respectively.

2.4 Upper bounds for symmetric collections

Not all labels can be majority or minority labels of images of H12 under label
automorphisms from An. The underlying reason for this is the difference in the
length of cycles of different labels.

Definition 2.11 The spanning subgraph of Stn comprising edges with labels i
and j where i, j ∈ {1, . . . , ⌊n/2⌋} will be denoted by Cij(n) and the spanning
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subgraph comprising only edges with label i will be denoted Ci(n). Each Ci(n)
is a union of disjoint cycles Bx

i (n) of edges with label i

E(Ci(n)) =
∪
x∈X

E(Bx
i (n)) (X is some index set)

We shall call a cycle Bx
i (n) an i-ball. Again, we will abbreviate our notation

to Cij, Ci and Bx
i when n is clear from the context and will drop the x index

in Bx
i when only one i-ball is under consideration. For an i-ball Bi, |Bi| will

denote the number of edges in Bi.

Lemma 2.12 Let Bi be an i-ball in Stn, where i ∈ {1, . . . , ⌊n/2⌋}. Then,

(i) |Bi| = n(n− 1) if i is coprime to n, and

(ii) |Bi| < n(n− 1) if i is not coprime to n.

Proof Let n = dq1 and i = dq2 where d = gcd(n, i) and gcd(q1, q2) = 1.
Without loss of generality, assume that the vertex

a1 . . . an ∈ Bi

Now, the elements
a1, a1+i, . . . , a1+(q1−1)i

are distinct (else, for some r, s such that 0 ≤ r < s ≤ (q1 − 1) and K ∈ N,
Kn + (1 + ri) = (1 + si) and so Kdq1 = (s − r)dq2 and as gcd(q1, q2) = 1, q1
divides (s − r) which is a contradiction as (s − r) ≤ (q1 − 1)). The path in Bi

of the form
−→a 1,−→a 1+i, . . . ,−→a 1+(q1−1)i,

where −→a 1 = a1 . . . an, rotates the elements a1, . . . , a1+(q1−1)i within the vertex
a1 . . . an thus:

a1 → a1+i → . . . a1+(q1−1)i → a1

After q1 − 1 such rotations, the starting vertex a1 . . . an is reached again, i.e.
there is a path in Bi of (q1 − 1) sets of q1 vertices

−→a 1,−→a 1+i, . . .−→a 1+(q1−1)i︸ ︷︷ ︸
q1 vertices

, . . . . . . . . .︸ ︷︷ ︸
q1 vertices

, . . . , . . . . . . . . .︸ ︷︷ ︸
q1 vertices

,−→a 1

separated by edges with label i, and returning to −→a 1 after q1(q1 − 1) steps. If
i is coprime to n, q1 = n and (i) follows. If i is not coprime to n, then q1 < n
and (ii) follows.

Lemma 2.13 Let Φ ∈ An and let Bx
i be an i-ball in Stn, where 1 ≤ i ≤ ⌊n/2⌋.

Then, there exists an i′-ball Bx′

i′ in Stn, for some i′ with 1 ≤ i′ ≤ ⌊n/2⌋, such
that

Φ(Bx
i ) = Bx′

i′ and gcd(i, n) = 1 iff gcd(i′, n) = 1
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Proof As Φ is an automorphism, Φ(Bx
i ) is a cycle such that |Φ(Bx

i )| equals
|Bx

i |. Also, as Φ is a label automorphism all edges of Φ(Bx
i ) must have the

same label, and thus Φ(Bx
i ) must be an i′-ball, Bx′

i′ say, for some i′ where
1 ≤ i′ ≤ ⌊n/2⌋. Then, by Lemma 2.12,

gcd(i, n) = 1 iff |Bx
i | = n(n− 1) = |Bx′

i′ | iff gcd(i′, n) = 1

As a result of Lemma 2.13, we are able to give constraints on how automorphisms
Φ ∈ An map labels. Indeed, we can characterize the pointwise maps ϕ that
generate label automorphisms Φ ∈ An.

Lemma 2.14 Let Φ ∈ An be a label automorphism with corresponding point-
wise and distance maps ϕ and ϕd respectively, as in Definition 2.5. Then:

(i) for all labels l ∈ {1, . . . , ⌊n/2⌋},

gcd(l, n) = 1 iff gcd(ϕd(l), n) = 1

(ii) there exist i0, j ∈ {1, . . . , n}, where j is coprime to n, such that

ϕ(ai) = ai0+ji (1 ≤ i ≤ n)

Proof For (i), let Bx
l be a l-ball in Stn. As Φ is a label automorphism

with distance map ϕd, Φ(Bx
l ) is a ϕd(l)-ball, Bx′

ϕd(l) in Stn. By Lemma 2.13,

gcd(l, n) = 1 iff gcd(ϕd(l), n) = 1.
For (ii), let i0, i1 ∈ {1, . . . , n} be such that

ϕ(an) = ai0 and ϕ(a1) = ai1

where ϕ is the pointwise map of Φ. Put

jp = δ(ϕ(an), ϕ(a1)) = min{|i0 − i1|, n− |i0 − i1|}

As δ(an, a1) = 1 and δ(ϕ(an), ϕ(a1)) = jp, it follows that

ϕd(1) = jp (3)

Let ai ∈ {a1, . . . , an} and consider the ag, ah ∈ {a1, . . . , an} such that

ϕ(ai) = ag and ϕ(ai+1) = ah

As δ(ai, ai+1) = 1, by (1) of Definition 2.5 and (4) we have that

δ(ag, ah) = jp

Therefore,
g − h = jp mod n or g − h = −jp mod n

7



and so
h = g − jp mod n or h = g + jp mod n

As Φ(an) = ai0 and ϕ is injective it is clear that either

Φ(an) = ai0 ,Φ(a1) = ai0−jp , . . . ,Φ(an−1) = ai0−(n−1)jp (4)

or
Φ(an) = ai0 ,Φ(a1) = ai0+jp , . . . ,Φ(an−1) = ai0+(n−1)jp (5)

hold. If (5) is the case put j = −jp and if (6) is the case put j = jp and the
proof of (ii) is complete.

Definition 2.15 Given a label automorphism Φ ∈ An and corresponding point-
wise map ϕ(ai) = ai0+ji, i0 is called the offset and j the generator of ϕ.

The constraints of label automorphisms in turn impose limits on the number
of edge-disjoint Hamilton cycles in symmetric collections.

Theorem 2.16 Let H̃ be a symmetric collection of disjoint Hamilton cycles in
Stn. Then |H̃| ≤ φ(n)/2, where |H̃| is the number of Hamilton cycles in H̃.

Proof By Definition 2.8, as H̃ is symmetric, any Hamilton cycle in H̃ is
the image of H12 under a label automorphism and thus, by Lemma 2.9 and
Definition 2.10, is of the form Hij with majority edge labels i and minority
edge labels j. By Lemma 2.14 (i) with l = 1, gcd(i, n) = 1. Thus, the disjoint

Hamilton cycles in H̃ can be listed as

Hi1j1 ,Hi2j2 , . . . ,Hisjs

with majority edges with labels i1, . . . , is respectively and minority edges with
labels j1, . . . , js respectively, and

gcd(ir, n) = 1 (for all r with 1 ≤ r ≤ s)

Therefore, {i1, . . . , is} ⊆ {1, . . . , ⌊n/2⌋} is a set of edge labels coprime to n, and
there are at most φ(n)/2 such integer labels.

An important corollary to Theorem 2.16 is that, if n is not a prime number,
Stn is not symmetrically Hamilton decomposable.

Corollary 2.17 If n ≥ 5 is not a prime number, then there is no symmetric
collection of disjoint Hamilton cycles H̃ such that

E(Stn) =
∪

H∈H̃

E(H),

where E(H) denotes the set of edges in Hamilton cycle H.

Proof If the edges E(Stn) of Stn are partitioned into a collection H̃ of disjoint

Hamilton cycles, H̃ will have ⌊n/2⌋ such cycles if n is odd and n/2 − 1 such
cycles if n is even. However, if the non-prime n is odd then φ(n) < n − 1 and

if n is even φ(n) ≤ n/2. By Theorem 2.16, H̃ cannot be symmetric.
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2.5 Lower bounds in even dimensions

Although Stn is not symmetrically Hamilton decomposable for any even integer
n, we will find an optimal symmetric collection of disjoint Hamilton cycles, i.e. a
collection with φ(n)/2 Hamilton cycles, in Theorem 2.20 below. Constructing a
symmetric collection involves finding a collection of label automorphisms which,
when applied to H12, generate disjoint Hamilton cycles as the images of H12.
Lemma 2.14 (ii) characterizes the pointwise maps of label automorphisms to be
of the form ϕ(ai) = ai0+ji. In the following Lemma 2.18 (i) and (ii), the converse
is given, i.e. that any pointwise map of the form ϕ(ai) = ai0+ji consistently
defines a distance map of edge labels

ϕd : {1, ..., ⌊n/2⌋} 7→ {1, ..., ⌊n/2⌋}

and therefore a label automorphism.

Lemma 2.18 Let n be odd or even and i0, j ∈ {1, . . . , n} be such that j is
coprime to n. If the bijection ϕj : {a1, ..., an} 7→ {a1, ..., an} is defined by

ϕj(ai) = ai0+ji (1 ≤ i ≤ n)

then the following hold:

(i) for all ag, ah ∈ {a1, ..., an},

δ(ϕj(ag), ϕj(ah)) = min{|j(g − h) mod n|, n− |j(g − h) mod n|},

(ii) there exists a bijection ϕd
j : {1, ..., ⌊n/2⌋} 7→ {1, ..., ⌊n/2⌋} such that, for

all ag, ah ∈ {a1, ..., an},

δ(ϕj(ag), ϕj(ah)) = ϕd
j (δ(ag), δ(ah)),

(iii) if i0 = n, i.e. ϕj(ai) = aji, then for the label automorphism Φj corre-
sponding to ϕj as in Definition 2.5, we have that, for all ←−a n ∈ V (Stn),
there exists ←−a ′

n ∈ V (Stn) such that

Φj(←−a n) =←−a ′
n,

i.e. vertices ending in an are mapped to vertices ending in an by Φj.

Proof For (i), we have that (arithmetic expressions are evaluated modulo n):

δ(ϕj(ag), ϕj(ah)) = min{|(i0 + jg)− (i0 + jh)|, n− |(i0 + jg)− (i0 + jh)|}
= min{|j(g − h)|, n− |j(g − h)|}

To prove (ii), we need to show that if ag, ah, ag′ , ah′ ∈ {a1, . . . , an}, then
δ(ag, ah) = δ(ag′ , ah′) implies that δ(ϕj(ag), ϕj(ah)) = δ(ϕj(ag′), ϕj(ah′)). We
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have that:

δ(ag, ah) = δ(ag′ , ah′) ⇒ min{|g − h|, n− |g − h|}
= min{|g′ − h′|, n− |g′ − h′|}
⇒ |g − h| = |g′ − h′| or |g′ − h′| = n− |g − h|
⇒ {|g − h|, n− |g − h|} = {|g′ − h′|, n− |g′ − h′|}
⇒ {|j(g − h)|, n− |j(g − h)|}
= {|j(g′ − h′)|, n− |j(g′ − h′)|}
⇒ δ(ϕj(ag), ϕj(ah)) = δ(ϕj(ag′), ϕj(ah′)) (by (i))

Condition (iii) follows immediately from the definition of the corresponding label
automorphism Φj , Lemma 2.4, and the fact that ϕj(an) = an if i0 = n.

The offset i0 in pointwise maps ϕ(ai) = ai0+ji is important for ensuring that
there is no clash of minority edges. Lemma 2.18 (iii) above shows that, if i0 is
not used, then vertices ending in an are mapped to vertices ending in an. As,
by Definition 2.7, minority edges have vertices ending in an, any collection of
disjoint Hamilton cycles which use exclusively pointwise maps without i0, would
have all minority edges in the collection with vertices ending in an. This would
lead to the possibility of the same edges belonging to different Hamilton cycles
in the collection, as a clash of edge labels of minority edges in unavoidable for all
even n. By use of i0, we can ensure that even though different Hamilton cycles
may share the same minority edge labels, different Hamilton cycles will not
share the same edges as their vertices will end in a different ai ∈ {a1, . . . , an}.
The next lemma, Lemma 2.19, introduces the pointwise map ϕ+1 which just
replaces ai by ai+1.

Lemma 2.19 Let ϕ+1 : {a1, ..., an} 7→ {a1, ..., an} be the pointwise map defined
by:

ϕ+1(ai) = ai+1 (1 ≤ i ≤ n)

Then:

(i) ϕ+1 defines a corresponding distance map

ϕd
+1 : {1, . . . , ⌊n/2⌋} 7→ {1, . . . , ⌊n/2⌋},

such that, for all l ∈ {1, . . . , ⌊n/2⌋},

ϕd
+1(l) = l

(ii) if Φ+1 is the label automorphism corresponding to ϕ+1 then, for all
←−a n ∈ V (Stn), there exists ←−a 1 ∈ V (Stn) such that

Φ+1(←−a n) =←−a 1

i.e. vertices ending in an are mapped to vertices ending in a1 by Φ+1.
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Proof If ag, ah ∈ {a1, ..., an} then (with arithmetic being modulo n)

δ(ϕ+1(ag), ϕ+1(ah)) = min{|(g + 1)− (h+ 1)|, n− |(g + 1)− (h+ 1)|}
= min{|g − h|, n− |g − h|}
= δ(ag, ah)

Thus, ϕ+1 defines the identity distance map ϕd
+1 : L 7→ L. For (ii), we have

that:
Φ+1(ag1 . . . agn−1an) = ϕ+1(ag1) . . . ϕ+1(agn−1)ϕ+1(an)

= ag1+1 . . . agn−1+1a1

We now prove that, for all even n, there are ϕ(n)/2 symmetric disjoint Hamil-
ton cycles. The Hamilton cycles are generated by the label automorphisms of
chosen pointwise maps, and make additional use of the pointwise map ϕ+1 of
Lemma 2.19 to resolve any possible clashes of minority edges.

Theorem 2.20 For all even n, Stn has a symmetric collection of φ(n)/2 dis-

joint Hamilton cycles H̃.

Proof Let
i1, . . . , iφ(n)/2

be the φ(n)/2 integers less than n/2 which are coprime to n. First of all, for all
j ∈ {i1, . . . , iφ(n)/2} define ϕj : {a1, ..., an} 7→ {a1, ..., an} by

ϕj(ai) = aji

Then, by Lemma 2.18 (ii), ϕj defines a distance map ϕd
j and corresponding label

automorphism Φj as in Definition 2.5. Consider the image of H12 under Φj .
From Lemma 2.18 (i) and as j < n/2, we have that:

δ(a2, a1) = 1 and δ(ϕj(a2), ϕj(a1)) = min{|j|, n− |j|} = j

and
δ(a3, a1) = 2 and δ(ϕj(a3), ϕj(a1)) = min{|2j|, n− |2j|}

Thus, ϕd
j (1) = j and ϕd

j (2) = ±2j mod n. Taking the image Φj(H12) for each
j ∈ {i1, . . . , iφ(n)/2} we produce a list of Hamilton cycles (with the majority and
minority edge labels indicated in the subscripts):

Hi1±2i1 , . . . , Hiφ(n/2)±2iφ(n/2)
(6)

as in Definition 2.10. As i1, . . . , iφ(n)/2 are distinct odd integers coprime to n,
each majority edge in any Hamilton cycle in (7) only occurs in that Hamilton
cycle as no other Hamilton cycle has the same edge label. However, it is possible
that different Hamilton cycles in (7) share the same minority edge labels. We
may have, for some distinct ir, is ∈ {i1, . . . , iφ(n)/2},

min{|2ir mod n|, n− |2ir mod n|} = min{|2is mod n|, n− |2is mod n|}
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when 2ir = −2is mod n, i.e.

2is = n− 2ir and so is = n/2− ir (7)

From (8), it is clear that any minority edge label may be common to at most two
Hamilton cycles in (7). To resolve this clash of minority edge labels, we replace
one of the Hamilton cycles involved by one with the same labels but different
vertices for minority edges. Suppose that the minority edges of Hir±2ir and
His±2is clash, so that is = n/2− ir. Consider the Hamilton cycles:

H ′
ir±2ir = Φir (H12) and H ′

is±2is = Φ+1(His±2is) = Φ+1(Φis(H12)) (8)

By Definitions 2.7 and 2.10, all vertices of minority edges of H12 are of the form
←−a n, and so, by Lemma 2.18 (iii), all vertices of minority edges of Φir (H12) and
Φis(H12) are also of the form ←−a n. From the latter it follows, by Lemma 2.19
(ii), that all vertices of minority edges of Φ+1(Φis(H12)) are of the form ←−a 1.
Thus, as the vertices of minority edges of Hir±2ir are of the form←−a n and those
of H ′

is±2is
are of the form ←−a 1, Hir±2ir and His±2is are edge disjoint despite

having the same minority edge labels. By resolving all pairs of clashes in this
way in (7) we produce a collection of φ(n)/2 symmetric and edge-disjoint cycles
as required.

Theorem 2.20 shows that, for all even n, there is a symmetric collection of
φ(n)/2 disjoint Hamilton cycles H̃ and Theorem 2.16 shows that this is the
best that can be achieved for symmetric collections. Can this φ(n)/2 bound be

improved by adding non-symmetric disjoint Hamilton cycles to the collection H̃
in Theorem 2.20? The answer is negative for 2-labelled Hamilton cycles sharing
labels with Hamilton cycles in H̃. If an extra disjoint Hamilton cycle H ′

ji could

be added, such that there is some Hamilton cycle Hij ∈ H̃, then the label
automorphism that maps H12 to Hij would also map H ′

21 to H ′
ji, where

H ′
21 = C12 −H12,

is the spanning subgraph of Stn comprising the edges with labels 1 and 2 that
are not in H12, and H ′

21 would be also be hamiltonian. If H ′
21 is hamiltonian

then, even though it is not symmetric to H12 (as there is no distance map of
{a1, ..., an} mapping distances 1 to distances 2 and distances 2 to distances 1
for all n greater than 5) the symmetric collection of φ(n)/2 disjoint Hamilton
cycles in Theorem 2.20 could be doubled in size to produce a non-symmetric
collection of φ(n) Hamilton cycles that are still edge-disjoint. Unfortunately,
H ′

21 is not hamiltonian as the following theorem shows.

Theorem 2.21 The spanning subgraph H ′
21 of Stn, comprising the edges of

labels 1 and 2 that are not in H12, is not a Hamilton cycle if n is even.

Proof It is clear from Definition 2.7 that the number of edges with label 2 in
H12 is (n-2)!. Therefore, H12 meets at most (n-2)! 2-balls. The total number

12



of 2-balls in C12 is the number of vertices in C12 (= n!) divided by the number
of vertices in a 2-ball:

|C12|/|B2| (9)

As n is even and hence 2 is not coprime to n, by Lemma 2.12(ii) the number
of vertices in a 2-ball is less than n(n-1) and so, by (10), the number of 2-
balls exceeds (n-2)!. Hence, there is some 2-ball Bk

2 which H12 does not meet.
Clearly, the edges of this 2-ball Bk

2 must belong to H ′
21 which then cannot be

hamiltonian as it contains a cycle with fewer than n! vertices.

2.6 Symmetric collections in odd dimensions

Whilst the φ(n)/2 upper bound, on the number of Hamilton cycles in a sym-
metric collection also holds for Stn if n is odd, it is not clear that this bound
can be achieved for any odd n other than n equals 5 [4]. In the case of even n,

the number of Hamilton cycles in a symmetric collection H̃ is limited to φ(n)/2

because every majority edge label in H̃ has to be coprime to n as the majority
edge label 1 of the base Hamilton cycle H12 is coprime to n. However, in the
case of odd n, both the majority and minority edge labels of Hamilton cycles
in symmetric collections have to be coprime to n as both the majority and mi-
nority edge labels of H12, i.e. 1 and 2, are coprime to n. For this reason, it
would appear that the upper bound for symmetric collections in the case of odd
n should be φ(n)/4. To exceed this bound would require a symmetric collection

of Hamilton cycles H̃ containing Hamilton cycles

Hil,Hlj ∈ H̃

such that the minority edges ofHil are exactly the edges with label l that are not
present as majority edges inHlj . This is a very tight restriction which is satisfied
for n equals 5 [4] where there is a distance map which maps labels 1 to 2, and
therefore 2 to 1 as there are no other labels, such that the 2 Hamilton cycles
produced automorphically map minority edges with label 2 in one Hamilton
cycle to the unused edges with label 1 as minority edges in the second Hamilton
cycle. It seems unlikely that the same majority and minority edge labels can
occur in symmetric collections for odd n if n is greater than 5 and labels 1 and
2 cannot map to each other, though this remains an open problem. However,
if φ(n)/4 is the true bound, this is nearly achieved for all but one odd n by the
construction in [3].

Theorem 2.22 For all odd n ̸= 127, Stn has a symmetric collection of 2φ(n)/9

disjoint Hamilton cycles H̃.

Proof See [3].
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