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 Abstract 

Benthic foraging by fish can modify the nature and rates of fine sediment accrual and 

the structure and topography of coarse-grained fluvial substrates, with the potential 

to alter bed material characteristics, particle entrainment thresholds, and bedload 

transport fluxes. However, knowledge of what controls the nature, extent, and 

intensity of benthic foraging and the consequent influence of these controls on 

geomorphic impact remains rudimentary. An ex-situ experiment utilising Barbel 

Barbus barbus and Chub Leuciscus cephalus extended previous work by 

considering the role of fish size and species as controls of sediment disturbance by 

foraging and the implications for bed material characteristics and bedload transport. 

In a laboratory flume, changes in bed microtopography and structure were measured 

when a water-worked bed of 5.6-22.6 mm gravels was exposed to four size classes 

of Barbel (4-5”, 5-6”, 6-8”, 8-10” in length) and a single size class of Chub (8-10”). In 

line with other studies that have investigated animal size as a control of 

zoogeomorphic agency, increasing the size of Barbel had a significant effect on 

measured disturbance and transport metrics. Specifically, the area of disturbed 

substrate, foraging depth, and the fish’s impact on microtopographic roughness and 

imbrication all increased as a function of fish size. In a comparison of the foraging 

effects of like-sized Barbel and Chub, 8-10” in length, Barbel foraged a larger area of 

the test bed and had a greater impact on microtopographic roughness and sediment 

structure. Relative to water-worked beds that were not foraged, bed conditioning by 

both species was associated with increased bedload transport during the 

subsequent application of high flows. However, the bedload flux after foraging by 

Barbel, which is a specialist benthivore, was 150% higher than that following 

foraging by Chub, which feed opportunistically from the bed, and the total 

transported mass of sediment was 98% greater. An interesting implication of these 

results, given the abundance and widespread distribution of foraging fish, is that 

numerous fish species belonging to a variety of functional groups may be acting as 

zoogeomorphic agents in rivers, directly affecting bed material conditions and 

sediment transport fluxes in proportion to their body size and feeding traits.  

Keywords: ecosystem engineering; Barbel; Chub; imbrication; bedload transport; 

zoogeomorphology 



  



1. Introduction 
Our understanding is growing of how animals, plants, fungi, and microorganisms can 

affect the nature and rates of geomorphological processes (Viles, 1988; Butler, 1995; 

Naiman et al., 2000; Reinhardt et al., 2010) and in doing so, act as ecosystem 

engineers (Jones et al., 1994). With regard to fluvial systems, reviews by Statzner 

(2011), Rice et al. (2012), and Albertson and Allen (2014) highlight the geomorphic 

capabilities of fish and macroinvertebrate fauna; but the number of studies is small 

and limited to a few species and impact mechanisms. The majority of research has 

focused on bed bioturbation during spawning by Salmonids (Field-Dodgson, 1987; 

Kondolf et al., 1993; Montgomery et al., 1996; Hassan et al., 2008), bed and bank 

bioturbation by crayfish (Statzner et al., 2003a; Zhang et al., 2004; Johnson et al., 

2011; Harvey et al., 2014; Rice et al., 2014) and substrate consolidation through silk 

secretion by hydropsychid caddisflies (Cardinale et al., 2004; Johnson et al., 2009; 

Albertson et al., 2014). 

Rice et al. (2012, their Figure 19.6) highlight a range of additional mechanisms by 

which fish and invertebrates might affect bed material conditions and thence 

sediment transport in gravel-bed rivers. Amongst these, foraging by fish is a 

potentially widespread and effective zoogeomorphic activity, but very little work has 

explored this possibility. Some work has considered the impact of detrivorous, 

tropical fish on fine sediment accrual within lotic systems (Flecker, 1996; 1997; 

Flecker and Taylor, 2004), finding that foraging reduced sediment accrual (Bowen et 

al., 1984; Lopez and Levington, 1987; Vari, 1989; Flecker, 1992) and that the effect 

increased with species density (Bowen, 1983; Goulding et al.,1988). European 

Cyprinid species reduce fine sediment accrual within lotic and lentic environments. 

Specifically, Carp Cyprinus carpio have been found to resuspend fine sediment 

when foraging for food (Breukelaar et al., 1994; Parkos et al., 2003; Chumchal et al., 

2005; Miller and Crowl, 2006; Roozen et al., 2007; Matsuzaki et al., 2009); and other 

benthic feeders such as Bream Abramis brama, Tench Tinca tinca, and Ruffe 

Gymnocephalus cernus modify fine sediment accrual rates and increase turbidity 

(Persson and Svensson, 2006) whilst foraging.  

Three further studies have considered the zoogeomorphic impact of benthic foraging 

fish on coarse fluvial sediments. First, Statzner et al. (2003b) used ex-situ 

experiments in small (0.2-m–wide) outdoor channels to investigate the impact of 



juvenile Barbel Barbus barbus on unstructured, fine gravel beds. They measured a 

decrease in the critical shear stress (for gravel entrainment) of ~45% as the number 

of fish that were allowed to forage the bed was increased from zero to eight 

(Statzner et al., 2003b). Significant increases in mean bed elevation and the authors’ 

observation that the fish heaped gravel into piles led them to suggest that increased 

mobility was caused by the fish loosening the bed and increasing particle elevations. 

Second, Statzner and Sagnes (2008) investigated the joint effects of Barbel, 

Gudgeon (Gobio gobio), and the spiny-cheek Crayfish (Orconectes limosus) and 

found that their net joint effects on sediment mobility were generally less than the 

sum of the impacts of the individual species. These findings emphasise the role of 

biotic factors in controlling geomorphic impact. Third, Pledger et al. (2014) found that 

foraging juvenile Barbel modified water-worked surface gravels, undoing stable 

imbricate structures and increasing microtopographic roughness. These changes 

coincided with an average increase in initial bedload flux and overall sediment yield 

of 60% and 82%, respectively, under entrainment flows. Collectively, results from 

these three studies suggest that benthic foraging can have a significant impact on 

fluvial sediment characteristics, thereby influencing sediment transport processes 

under laboratory conditions and justifying the need for further study to gain greater 

understanding of benthic foraging as a geomorphic activity.  

Understanding the geomorphological importance of animals requires an 

understanding of how abiotic and biotic factors mediate zoogeomorphic impact (e.g., 

Figure 7b in Johnson et al., 2011). With regard to foraging, Statzner et al. (2003b) 

and Statzner and Sagnes (2008) have shown that biotic controls (specifically 

between-species interactions and shoaling, respectively) are relevant in this regard. 

Many other potentially important factors (biotic or abiotic), however, could influence 

foraging behaviour and therefore geomorphic impact in rivers. Temperature (Lemons 

and Crawshaw, 1985; Nerici et al., 2012), predator presence (Fraser and 

Huntingford, 1986; Ibrahim and Huntingford, 1989), and shoal feeding (Pitcher and 

Parrish, 1993), for example, have been shown to significantly influence the nature, 

duration, and frequency of feeding; but their effect on foraging behaviour, and thence 

geomorphic impact, is poorly understood. 

An additional, potentially important, factor is body size because large animals could 

have a greater impact and modify sediment composition differently relative to smaller 



specimens. Indeed, Moore (2006) proposed that the most effective ecosystem 

engineers are likely to be those that have greater body mass. This is supported by 

studies showing that (i) the geomorphic effects of spawning fish increase with the 

size of individuals (cf. Burner, 1951) and (ii) physiological and anatomical differences 

associated with fish size could explain differences in their geomorphic impact when 

spawning (cf. Barber et al., 2001). Another, potentially important, factor that might 

control geomorphic impact whilst foraging is feeding habit, which varies between 

species and reflects a multitude of biological, physiological, and behavioural 

differences and adaptations.  

The effects of fish size and species on bed disturbance by benthic foraging fish and 

the consequent impacts on bedload transport under subsequent high flows are 

therefore the focus of this paper. An ex-situ flume experiment was undertaken with 

two components. To investigate the role of fish size, the foraging effects of four size 

classes of a single species, Barbel (4-5”, 5-6”, 6-8” and 8-10” in length), on bed 

material disturbance and subsequent transport were compared (component 1). To 

investigate the role of species, the foraging effects of like-sized Barbel and Chub, 8-

10” in length, on bed material disturbance and subsequent transport were compared 

(component 2). Barbel and Chub were chosen for comparison in component 2 

because they are two common, benthic-feeding fish that occupy similar habitats but 

have different physiologies and specific feeding habits, as illustrated by Pledger et al. 

(2014; their Table IV), and therefore potentially different zoogeomorphic capabilities 

and impacts. Expectations are that larger fish will have a greater impact and that 

Barbel being a benthic foraging specialist will have a greater geomorphic impact than 

Chub, a renowned opportunistic forager. The specific aim of this experiment was to 

test the following hypotheses: 

 

Hypotheses pertaining to component 1: 

(1) Foraging Barbel alter the arrangement and organisation of gravel-bed 

substrates as measured by imbrication and microtopography, and this effect 

increases with fish size. 

(2) Structural and compositional changes to the bed as a function of foraging by 

Barbel significantly increase (a) grain entrainment, (b) bedload flux, and (c) 



total transported mass during subsequent high flows. The magnitude of this 

effect increases with fish size.  

  

Hypotheses pertaining to component 2: 

(3) Foraging Barbel and Chub alter the arrangement and organisation of gravel-

bed substrates as measured by imbrication and microtopography. Because of 

their preference for benthic foraging and unique physiology, the impact of 

Barbel is greater than that of Chub. 

(4) Structural and compositional changes to the bed as a function of foraging by 

Barbel and Chub significantly increase (a) grain entrainment, (b) bedload flux 

and (c) total transported mass during subsequent high flows. Because of their 

preference for benthic foraging and unique physiology, the impact of Barbel is 

greater than that of Chub. 

 

2. Methodology 

2.1. Fish husbandry 

The experiment utilised four size classes of Barbel and a single size class of Chub 

(Table 1) that were hatchery-raised and born of captivity-reared broodstock at 

Hampshire Carp Hatcheries, UK. Fish lengths in meters are provided in Table 1 for 

the reader but are presented hereafter in imperial units to be consistent with those 

supplied by the hatchery. 

The protocol pertaining to fish husbandry was consistent with that described in 

Pledger et al. (2014, p. 1501), with two modifications. First, water in two 1000-l 

holding tanks was cooled and maintained at a constant temperature of 16.70°C ± 

0.003 (±1 standard deviation). Second, during experiments and the intervening 

periods between experimental runs, a Teco TR120 water cooler was permanently 

installed to cool the water in the flume storage tanks. Given that fish metabolism and 

the amount a fish is required to eat to sustain body mass is sensitive to temperature, 

limiting the effect of temperature during the experiment was appropriate.  



Water quality parameters were monitored throughout each experimental period to 

ensure environmental conditions remained within fish tolerances, using a YSI 6600 

V2 probe (pH, dissolved oxygen, conductivity) and a Tinytag PLUS 2 temperature 

sensor: temperature = 14.68 ± 0.14°C; pH = 8.39 ± 0.026, conductivity = 397.20 ± 

2.11 µS/l, dissolved oxygen = 10.39 ± 0.076 mg/l, dissolved oxygen = 102.46 ± 

0.66% (mean ±1 standard deviation).  

 

2.2. Flume setup 

Experiments were conducted in a glass-sided, tilting flume, 0.3 m wide and with a 

10-m–long working section. The flume setup (Fig. 1) was almost identical to that 

used and described by Pledger et al. (2014), where additional details can be found. 

In brief, a central part of the working section (5.75 m long) was fenced off to contain 

fish and partitioned into two subsections: an observation area filled with a mobile 

sediment mixture and a downstream acclimatisation area, separated from the 

observation area by a removable fence (Fig. 1A). Adjacent to this fence, at the 

downstream end of the observation area, was a bedload slot sampler (0.275 x 0.125 

x 0.1 m) that could be covered when transport measurements were not being made. 

In the centre of the observation area was a smaller patch, the test bed, that was 

used to evaluate changes in microtopography using repeat laser scanning (Fig. 1B). 

The sediment mixture in the observation area was slightly coarser than the mixture 

used in Pledger et al. (2014) and consisted of a log-normal grain-size distribution of 

5.6-22.6 mm gravels (D5 = 6.1 mm, D50 = 10.0 mm, D95 = 19.3 mm). Marine gravels 

were used that were predominantly bladed (Sneed and Folk, 1958) and well rounded 

(Krumbein, 1941). 

 

2.3. Experimental procedure 

In 72 separate flume runs, bedload transport was measured during the application of 

an identical high flow following conditioning of the bed in two distinct ways: in 12 

replicates the bed was screeded flat to produce a level sediment surface and then 

water-worked to produce a stable natural texture and fabric similar to that expected 

 



in the field (no foraging control); and in 60 runs, fish from each of five groups (four 

Barbel size classes and the single Chub size class) were allowed to forage across 

the bed after water-working and prior to application of the high entrainment flow 

(foraging treatment). Twelve fish were obtained in each size class, but individuals 

grew during the experimental period, so replicate numbers (i.e., number of runs) 

varied from 4 to 16 between the five with-Barbel and with-Chub foraging treatments 

(Table 1). Comparisons between no foraging controls and foraging treatments 

isolated the impact of feeding on a stable, natural, water-worked substrate. 

In an additional set of 12 replicate screeded runs, the bed was screeded flat but not 

water-worked or exposed to fish prior to application of the same entrainment flow. 

These runs provided an estimate of maximum transport rate for the unstable 

sediment mixture. Knowing this is useful in order to demonstrate the important 

impact of water-working on bed stability, which has not been a feature of previous 

experiments of this kind.  

In the no foraging control and foraging treatment runs, there were three sequential 

elements (Fig. 2): phase 1, in which a moderate flow water-worked the gravel bed; 

phase 2, in which a low flow was imposed and the bed was either left untouched 

(control runs) or foraged by fish (treatment runs); and phase 3, in which a high flow 

capable of entraining sediment and generating bedload transport was applied.  

Phases 1 and 3 were identical in all runs, but the procedure in phase 2 differed 

between control and treatment runs as explained below. In the screeded set, phase 

1 was omitted and phase 2 was treated as in the control runs (Fig. 2B). 

Hydraulic conditions during the three phases are described in Table 2. Hydraulic 

measurements were obtained from velocity profiles collected with either a Nixon 

Streamflo velocity meter V1.3 with a high-speed probe, averaging over 60 seconds 

or a Vectrino ADV (20Hz sample rate; 60–second sample period). Two instruments 

were necessary to manage the large variation in flow velocity between phases, and 

direct comparisons confirmed consistency in their time-averaged measurements 

(Pledger et al., 2014). Velocity profiles were collected above the centre of the test 

bed at 2.5–mm intervals through the bottom 20% of the flow and at increasing 

vertical increments above and typically consisted of 22 to 26 points. Twenty-five 

profiles were collected during the 84 runs to check consistency between runs. These 



profiles were used to estimate near-bed shear stresses (𝜏𝜏0) using the law of the wall 

(Biron et al., 1998; Robert, 2003), corrected for sidewall drag using Williams’ (1970) 

empirical approach. Dimensionless Shields’ parameters (𝜃𝜃) were calculated using 

the median grain size 𝐷𝐷50 = 10 mm.  

 

2.3.1. Phase 1: Moderate water-working flow 

During phase 1, a flow was generated with bed shear stress slightly above the 

critical threshold required for particle mobility (Shields number = 0.020; Table 2). The 

unstructured, screeded bed was water-worked for one hour during which time 

sediment that collected in the bedload slot sampler (Fig. 1B) was reintroduced 

upstream of the observation area to encourage the development of a natural, 

dynamic bed structure. At the end of this phase, in all runs, the test section was then 

laser scanned to obtain bed elevation data for characterising microtopography and 

bed structure (Fig. 2).  

 

2.3.2. Phase 2: Low flow, with or without fish foraging 

During this phase, different procedures were adopted in the control and treatment 

runs. In the 60 treatment runs involving fish, the protocol was similar to that 

described by Pledger et al. (2014). In brief, the observation area was seeded with 

larval Chironomidae (hereafter bloodworm) at the average prey density (3548 m-2) 

measured in a Barbel-rich reach of the River Idle, UK. The flume was slowly filled, 

which washed the bloodworms into interstitial gaps. Flow conditions were designed 

to ensure a low-stress environment for all size classes and both fish species and 

were insufficient to mobilise bed sediments (Table 2). A single fish was then placed 

in the acclimatisation area for one hour, after which the temporary fence was 

removed, allowing fish access to the observation area. Access began at sunset and 

lasted four hours because in rivers, Barbel are crepuscular foragers (Baras, 1995; 

Lucas and Batley, 1996). At the end of this period, the fish was carefully corralled 

back into the acclimatisation area and removed from the flume. Each treatment run 

used a different individual fish. Given that runs were performed at dusk and into the 

hours of darkness, video recording was precluded by ambient light conditions. 



However, visual observations were made throughout each run to ensure the 

behaviours of foraging fish were consistent with those observed within the River Idle 

and described by Pledger et al. (2014) in that (i) fish foraged facing upstream into the 

flow and (ii) the specific feeding mechanisms adopted by Barbel and Chub in the 

flume were similar to those utilised by fish in the field. 

The flow condition during phase 2 was insufficient to affect bed sediments with a 

Shields number of 0.00042, well below the threshold for motion or entrainment. No 

evidence of particle movements, vibration, or rearrangement was observed at this 

flow, confirming that the flow had no impact on bed condition. Therefore, during the 

12 no foraging control runs, it was unnecessary to expose the bed to the entire five-

hour duration used in the runs with fish. However, it was important to run the flow for 

some period so that the draining and refilling operations between phases 1-2 and 2-3 

in the treatment runs were duplicated in the control runs too, in case these 

operations had any impact on bed sediment characteristics. Therefore, the flume 

was carefully filled in the usual way and the phase 2 flow was run for 10 minutes, 

after which the flume pump rate was gradually reduced until discharge reached zero 

and the flume was allowed to drain slowly to preserve bed structures (Table 2). 

At the end of phase 2 in foraging treatment and no foraging control runs, the test 

section was again laser scanned to obtain bed elevation data for characterising 

microtopography and bed structure (Fig. 2). Collection of scans during control runs 

provided data for establishing minimum discernible differences in surface elevation 

data, required for DEM analysis (see section 3.1). 

 

2.3.3. Phase 3: Entrainment flow 

In all runs, flume slope, pump speed, and tailgate height were then altered and the 

flume was filled carefully for the final time. In this phase, the flow had the highest bed 

shear stress, which exceeded the critical level for particle mobility (Shields number = 

0.025; Table 2) such that there was moderate entrainment. Phase 3 lasted for one 

hour (Fig. 2). 

 



2.4. Measurements of bed surface microtopography and bedload characteristics 

2.4.1. Bed elevations and bed structures 

Surface elevations across the test bed were measured using a Konica-Minolta non 

contact 3D Digitiser Vivid 910, mounted above the flume. The scanning procedure 

and data processing necessary to derive DEMs of each surface was standard and is 

described in detail in Pledger et al. (2014). The DEMs had an x-y spacing of 1 mm 

and were used to address hypotheses (1) and (3). 

 

2.4.2. Bedload flux 

During the entrainment phase, bedload measurements were made every five 

minutes by emptying the pit trap and weighing the trapped sediment. Sediment flux 

and unit cumulative mass for the one-hour period were obtained from the bedload 

measurements. Trap width (0.275 m) rather than flume width (0.3 m) was used to 

calculate per unit width values. Bedload measurements contributed to the 

assessment of hypotheses (2) and (4). 

 

3. Data analysis 

3.1. The effect of foraging on bed surface microtopography and surface structures 

Topographic changes due to foraging were quantified by creating DEMs of 

Difference (DoDs) from DEMs of the test bed before and after exposure to fish.  

Minimum discernible difference DoDs were calculated from DEMs obtained in the 12 

pairs of scans collected at the end of phases 1 and 2 during no foraging control runs 

(Fig. 2). In each case, DEMs collected at the end of phase 1 were subtracted from 

those obtained at the end of phase 2, providing a measure of the influence of 

draining and filling operations on bed surface topography, and of the errors 

associated with the capture, rectification, and interpolation of DEMs from laser 

scanner point clouds. During controls, the maximum calculated elevation difference 

was 0.6 mm and an error factor of ±1 mm was therefore applied as a liberal estimate 

of the minimum discernible difference in surface elevation. Topographic differences 

exceeding the ±1 mm threshold were considered to be the result of fish foraging. 



Data derived from the DoDs were used during three analyses: first, an analysis was 

performed of the total area of the test bed disturbed (i.e., area of DoD where value 

exceeded ±1 mm) to assess how this varied with fish size (component 1) and 

species (component 2). The four Barbel size classes and the single Chub size class 

were combined as a single factor, with five treatments (four size classes of Barbel 

and one size class of Chub) in a univariate general linear model (GLM). This is 

equivalent to a one-way ANOVA but allows analysis of the uneven numbers of 

replicates in our study. The GLM was used to assess whether fish size class 

(comparing the four size classes of Barbel) and species (comparing 8-10” Barbel and 

Chub), had significant effects on disturbance area (%). Within the model, the 

treatment (fish size class and species) was specified as a fixed effect. If the GLM 

reported a significant effect, differences between treatments were tested using a 

protected Fisher’s least significant difference (Fisher’s LSD hereafter) post-hoc test.  

Second, an analysis identified how maximum foraged depth (i.e., the highest 

negative value on the DoD) varied with fish size (component 1) and species 

(component 2). The same analyses described above (GLM + Fisher’s LSD post-hoc 

tests) were applied to data pertaining to maximum depth rather than total area 

foraged.  

Third, an analysis investigated the nature of foraging within disturbed areas for each 

species and size class of fish. Foraging disturbance was partitioned into four discrete 

categories: surface rearrangement (positive and negative) was defined as a 

topographic change greater than the minimum discernible difference (±1 mm) but 

less than ±10 mm, the median diameter of the bed material. Topographic changes 

>10 mm may reflect displacement of individual grains rather than their in-situ 

rearrangement and were categorised as surface gain if the elevation difference was 

positive or as surface retreat if the difference was negative. Simple summary 

statistics were used to analyse these data.  

For each scanned test bed, several surface properties were extracted and compared 

between experimental groups. Standard deviations of surface elevations (σz) were 

used as a surrogate for microtopographic roughness (Aberle and Smart, 2003). In 

addition, the degree of particle structuring or imbrication in the stream wise direction 

was quantified and compared using Smart et al.’s (2004) inclination index 𝐼𝐼𝑙𝑙. Data 



were tested for normality using Shapiro-Wilkes tests, and paired t-tests were used to 

compare pre- and post-foraging mean values for all size classes and species of fish. 

To supplement these data, differences between pre- and post-foraging values were 

also calculated (Δσz and Δ𝐼𝐼𝑙𝑙) for each size class. Data were analysed using the 

same approach described above (GLM + Fisher’s LSD post-hoc tests) such that two 

discrete sets of analyses were performed: one set on microtopographic roughness 

data (Δσz) and the other on inclination index data (Δ𝐼𝐼𝑙𝑙). These were important tests 

to identify whether fish size (component 1) and species (component 2) had 

significant effects on the magnitude of change to microtopographic roughness and 

sediment structure.   

 

3.2. The effect of foraging on entrainment and bedload  

Direct comparisons were made between screeded and no foraging and between no 

foraging and foraging runs to quantify the effects of water-working and feeding, 

respectively, on sediment transport. Of particular interest was an assessment of the 

impact of foraging using the first measurement of average bedload flux, between t = 

0 and t = 300 seconds, during phase 3. This was an important test of fish impact 

because bed restructuring and a consequent decline in transport was expected (and 

observed) as phase 3 progressed. The impact of fish on the unit cumulative mass 

deposited in the bedload trap was also assessed. Once again, GLM + Fisher’s LSD 

post-hoc tests were applied to these data to identify whether fish size (component 1) 

and feeding habit (component 2) had significant effects. 

To determine the temporal persistence of any impact on sediment flux, the role of 

fish across the entire measurement time series (to t = 3600 seconds) was tested 

using a Linear mixed model (LMM). Autocorrelation between time points was 

accounted for with a first-order autoregressive (AR(1) hereafter) covariance 

structure. A compound symmetry structure was also tested, but the model using an 

AR(1) structure was more appropriate, as determined by Akaike’s information 

criterion (AIC). Within the model, experimental runs were subjects and time was the 

repeated measure. Time and treatment (4-5”, 5-6”, 6-8”, and 8-10” Barbel; 8-10” 

Chub; water-worked; screeded) were specified as fixed factors. All data analysis was 

carried out using IBM SPSS Statistics v21.0.  



 

4. Results  

4.1. The effect of fish size and species on the spatial and vertical extent of bed 

disturbance 

The total proportion of the test bed area disturbed by foraging fish, during the four-

hour exposure period, varied between fish treatments (GLM; F4,55 = 37.08, P < 

0.001; Fig. 3A). The percentage disturbed area (i.e., elevation change > ±1 mm) 

increased with Barbel size (hypothesis 1) from 26% to 69% for 4-5” and 8-10” fish, 

respectively. Only the two smallest classes showed no statistically significant 

difference in their impact (Fig. 3A: Fisher’s LSD; P = 0.34). In relation to species 

effects, 8-10” Chub disturbed 32% of the test bed area, significantly less than the 

same size Barbel and, indeed, smaller 6-8” Barbel (Fig. 3A: Fisher’s LSD; P < 0.001) 

(hypothesis 3). Within the disturbed portion of the test bed, the majority of the 

disturbance fell within the surface rearrangement categories (Fig. 3B): 97%, 97%, 

94%, and 92% for 4-5”, 5-6”, 6-8”, and 8-10” size classes of Barbel, respectively, and 

97% for the 8-10” size class of Chub. 

On average, the maximum depth that fish foraged varied between fish treatments 

(GLM; F4,55 = 5.43, P = 0.001; Fig. 4). Maximum foraging depths increased with fish 

size when comparing the four size classes of Barbel (hypothesis 1). Specifically, 

significant differences were observed between the largest size class of Barbel (8-

10”) and the three smallest: 4-5” (Fisher’s LSD; P = 0.001), 5-6” (Fisher’s LSD; P = 

0.001), and 6-8” (Fisher’s LSD; P = 0.01). In relation to species effects, no significant 

difference was found in maximum disturbance depth when comparing results from 8-

10” Chub and Barbel (Fisher’s LSD; P = 0.50) (hypothesis 3). 

 

4.2. The effect of fish size and species on gravel-bed microtopography and 

imbrication 

Measurements of σz before and after foraging showed significant increases in bed 

microtopography after the test section was exposed to 5-6”, 6-8”, and 8-10” Barbel 

and 8-10” Chub (paired t-tests; α = 0.05; Table 3). The change in σz following 

foraging by 4-5” Barbel was not statistically significant (paired t-tests; α = 0.05; Table 



3). Water-worked gravels that were not exposed to fish, but which were subject to 

the same flume refilling and draw down operations between scans, did not show a 

significant change in σz (paired t-test: t11 = 0.60, P = 0.56), with a small average 

difference, Δσz of 0.023, equivalent to 38% of the average change recorded for the 

smallest Barbel treatment. 

Differences in elevation standard deviation Δσz before and after foraging were 

significantly different between fish treatments (GLM: F4, 55 = 28.81, P < 0.001) with 

larger increases in Δσz associated with larger fish (Fig. 5A). Between species, 8-10” 

Chub generated smaller increases in Δσz than 8-10” Barbel, and this difference was 

statistically significant (Fig. 5A; Fisher’s LSD; P < 0.001) (hypothesis 3).     

Foraging also affected the structure of the gravel bed. The initial water-working 

created imbricated surface texture with an asymmetric distribution of inclinations 

consistent with values observed in natural, gravel-bed rivers (0.03 < 𝐼𝐼𝑙𝑙 < 0.18; 

Millane et al., 2006). In water-worked control runs without fish, but subject to the 

same flume refilling and draw down operations between scans, changes in 𝐼𝐼𝑙𝑙 

between scans were extremely small and not significant (paired t-test: t11 = 0.09 , P = 

0.92). For the fish treatment runs, significant reductions in 𝐼𝐼𝑙𝑙 were measured after 

foraging by all sizes of Barbel and 8-10” Chub (Table 3). 

The magnitude of the change in imbrication before and after foraging, Δ𝐼𝐼𝑙𝑙 varied 

significantly between fish treatments (GLM: F4 = 8.15, P < 0.001; Fig. 5B). The 

largest size class of Barbel (8-10”) was associated with a significantly larger 

reduction in imbrication than the three smaller sizes, which all recorded a similar 

reduction in 𝐼𝐼𝑙𝑙 (Fig. 5B) (hypothesis 1). Between species, Chub produced a reduction 

in inclination comparable with the 4-5”, 5-6”, and 6-8” Barbel, which was significantly 

less than the 8-10” Barbel (Fig. 5B; Fisher’s LSD; P < 0.001) (hypothesis 3). 

 

4.3. The effect of foraging on bedload transport during a subsequent high flow 

Over the hour-long entrainment period, mean bedload transport rates declined 

during all runs. During fish runs when 4-5”, 5-6”, 6-8”, and 8-10” Barbel had been 

present in the flume, values declined from 0.00076 to 0.00028, 0.00076 to 0.00073, 

0.0015 to 0.00068, and 0.0026 to 0.00081 kg m-1 s-1, respectively (Fig. 6). For 8-10” 



Chub, average sediment flux declined from 0.001 to 0.00054 kg m-1 s-1. During 

water-worked and screeded control runs, flux values declined from 0.00059 to 

0.00032 and from 0.0043 to 0.00068 kg m-1 s-1, respectively. This general pattern of 

declining bedload flux was expected as less stable particles were quickly entrained, 

and the bed became increasingly structured under the entrainment flow. The foraged 

beds adjusted toward the same transport condition as the control beds because the 

flow and bed sediment mixtures were identical in both cases. Of much greater 

interest is the difference in transport rate and cumulative transported mass between 

the foraged and control beds, which demonstrates the impact of bed preconditioning 

by foraging fish on the impact of a high flow.   

Considering the full-time series out to the final 5-minute measurement between 3300 

and 3600 seconds (Fig. 6), the impact of foraging was persistent: there were 

significant effects of time (LMM: F11 = 15.36, P = < 0.001), treatment (LMM: F6 = 

15.86, P < 0.001), and a significant interaction between the two (LMM: F66 = 3.50, P 

< 0.001). The relatively gross measurements of flux (integrated over 5-minute 

intervals) almost certainly lead to an underestimation of the fish effect. Extrapolation 

of the data toward time = 0 suggests a much greater initial difference in bedload 

transport rates between fish treatments (with-Barbel and with-Chub) and water-

worked control runs, such that these results are conservative. 

Initial bedload flux measurements made between 0 and 300 seconds varied 

significantly between treatments (GLM: F6, 77 = 34.56, P < 0.001; Fig. 7). As 

expected, water-working significantly reduced sediment flux during the first 300 

seconds of entrainment relative to screeded runs (Fig. 7; Fisher’s LSD; P < 0.001), 

which emphasises the effect of water-working and bed structure on sediment 

mobility. Relative to the transport rate from water-worked beds, sediment fluxes were 

higher after foraging. However, these differences were significant only for the 

treatments involving 6-8” and 8-10” Barbel (Fisher’s LSD; P = 0.005 and <0.001, 

respectively). Sediment flux increased with Barbel size such that there were 

significant increases in the 0-300 second transport rate between the two smallest 

size classes and the 6-8” class and, in turn, between the 6-8” and 8-10” classes  

(Fisher’s LSD; 1.8 x 10-9 ≤ P ≤ 0.01 ) (hypothesis 2). Species also had a clear effect 

(Fig. 7) in that the 0-300 second sediment flux from substrates disturbed by Chub 

was not significantly different from the water-worked control runs and was 



significantly lower than the flux from beds disturbed by 6-8” and 8-10” Barbel 

(Fisher’s LSD; P = 0.005 and P < 0.001, respectively) (hypothesis 4).   

Over the one-hour entrainment phase, the cumulative mass of transported bedload 

varied significantly between treatments (GLM: F6,77 = 14.94, P = <0.001; Fig. 8). As 

expected, water-working significantly reduced total transported mass relative to 

screeded beds (Fisher’s LSD; P <0.001; Fig. 8). Some fish treatments were also 

significant with increases in transported mass after exposure to 6-8” and 8-10” 

Barbel that were significantly greater than the cumulative mass measured in water-

worked runs (Fisher’s LSD; P = 0.009 and <0.001, respectively; Fig. 8). The amount 

of transported sediment was significantly greater from beds foraged by 6-8” Barbel 

than from beds foraged by the two smallest classes and was greater still from beds 

foraged by the largest 8-10” fish (hypothesis 2). Notably, there was no significant 

difference in the cumulative mass moved off beds disturbed by 8-10” Barbel and 

screeded beds (Fisher’s LSD; P = 0.16). Species was also significant; beds 

disturbed by 8-10” Barbel yielded more sediment than those foraged by Chub of the 

same size (Fisher’s LSD; P < 0.001) (hypothesis 4).  

 

5. Discussion 
Foraging Barbel and Chub modified the microtopography and structure of water-

worked gravel substrates, increasing microtopographic roughness while reducing the 

degree of imbrication imparted to the river bed by water-working flows. As 

hypothesised, these impacts were greater for larger fish (hypothesis 1) and for 

Barbel relative to Chub (hypothesis 3). Significant impacts were observed between 

both species and across all size classes, with the exception of 4-5” Barbel. The 

majority of microtopographic alterations fell within the ±10- to ±1-mm disturbance 

categories, with only a relatively small proportion of all elevation changes exceeding 

the diameter of the D50 (10 mm). This suggests that feeding Barbel and Chub, 

irrespective of size, predominantly foraged within the surface layer and modified 

microtopography and structure by moving individual grains and altering their attitude 

and position rather than by digging pits or creating mounds of multiple grains.  

The disturbances to water-worked bed materials caused by foraging were associated 

with measureable differences in sediment transport when entrainment flows were 



subsequently applied to the experimental beds (hypotheses 2 and 4). Bedload flux 

during the first 5 minutes of the entrainment flow was significantly higher (α = 0.05) 

by 161% and 340% for beds that had been foraged by 6-8” and 8-10” Barbel, 

respectively, relative to fluxes from water-worked control runs. Over the same period, 

smaller Barbel (4-5” and 5-6”) and 8-10” Chub were also associated with measured 

increases in bedload of 30%, 30%, and 76%, relative to water-worked runs, but 

these increases were not statistically significant (α = 0.05). Increases in sediment 

flux as a function of foraging also manifested as significant increases in total 

transported bedload for 6-8” and 8-10” Barbel. The cumulative impact of smaller size 

classes of Barbel and of Chub on total transported mass were not statistically 

different to the yield from water-worked control surfaces that had not been exposed 

to fish.  

 

5.1. Fish size and species as controls of a fishes’ zoogeomorphic impact  

5.1.1. Fish size effects 

Feeding primarily disturbed the surface layer. For Barbel, however, there was a 

noticeable increase in the proportion of the scanned surface, which fell into the 

elevation gain and retreat categories in experiments using larger specimens (Fig. 

3B). This implies that larger Barbel consistently foraged at greater depths within the 

substrate, which is confirmed by the clear relationship between fish size and 

maximum foraging depth (hypothesis 1). The total proportion of the scanned surface 

that was disturbed also increased with fish size (hypothesis 1; Fig. 3A).  

It is possible that these and the other size effects measured in this study reflect 

physiological and anatomical differences between size classes. For example, it is 

reasonable to propose that Barbel size is a proxy for stomach capacity such that 

larger fish were relatively unconstrained by stomach size and could therefore feed 

for longer and disturb a greater surface area (Fig. 3A). Similarly, it is likely that 

increases in size and strength are responsible for observed increases in foraged 

depth (Fig. 4) and area (Fig. 3A) because large fish found it easier to forage deeper 

and move more bed material relative to smaller conspecifics. Qualitative 

observations of foraging behaviour support these hypotheses in that larger Barbel 

were observed displacing grains by distances that exceeded their diameter, while 



subtle adjustments to the orientations of grains were predominately associated with 

smaller size classes of fish. In turn, these size-related differences in the spatial 

extent and the mechanical rigour of foraging activity can explain the fish size impacts 

on topographic roughness (Fig. 5A) and sediment structure (Fig. 5B).  

Results from this experiment therefore extend and support those from previous 

studies that have shown size to be an important control of a fishes’ zoogeomorphic 

impact (e.g., Burner, 1951; Barber et al., 2001). To extend laboratory findings into 

field situations, future research could investigate the nature of relations between 

animal size and geomorphic impact and whether ex-situ relations can usefully predict 

in-situ impacts. In this context, allometric relations between fish size and the spatial 

and vertical extents of foraging have been developed for the Barbel data reported 

here (Fig. 9). These are nondimensionalised by the bed material grain size and mass 

to facilitate comparisons across alternative animal-substrate interactions.  

 

5.1.2. Species effects 

Species was found to be an important control of foraging extent (hypothesis 3): when 

comparing 8-10” Barbel and Chub, Barbel consistently disturbed a larger surface 

area. The geomorphic impacts of Barbel <8” in length were found to be similar or 

greater than those of the larger 8-10” Chub. For example: 6-8” Barbel disturbed more 

substrate while foraging, and the area disturbed by 4-6” and 5-6” Barbel was not 

significantly different from 8-10” Chub; in relation to their impacts on grain inclination 

and microtopographic roughness, Chub had a similar or significantly lower impact 

than smaller 4-5”, 5-6”, and 6-8” Barbel. These results imply that Barbel were more 

effective than Chub at benthic foraging, from a geomorphological perspective, such 

that smaller specimens of Barbel had similar or greater geomorphic impacts than 

larger Chub. 

There are four possible reasons for the reduced substrate impact of Chub relative to 

Barbel. First, between-species anatomical differences, e.g., stomach size, might 

have meant that Barbel were required to feed more. Second, Barbel might have 

maintained a higher metabolic rate than Chub, meaning they were required to feed 

and forage more to sustain or increase body mass. Third, Chub might have been 

physically less effective at disturbing the river bed whilst foraging by displaying 



different foraging behaviours to and maintaining a lower size-to-strength ratio than 

Barbel. Fourth, Chub have developed a number of adaptive traits and feeding 

behaviours that mean they are not reliant on the bed for food (Pledger et al., 2014). 

Differences in adaptive traits between the species could mean that Chub utilised bed 

sediments less than Barbel in their search for food during the experiment, which 

might explain relative differences in their geomorphic impacts. Although there is no 

explicit evidence to prove or disprove these different hypotheses, qualitative 

observations suggest that Barbel were more effective foragers in terms of their 

zoogeomorphic capabilities due to their unique physiology and preference for 

specialised benthic feeding behaviours, e.g., push + gulping, in accordance with 

Pledger et al.’s (2014) classification scheme.  

 

5.1.3. Changes in bed sediment characteristics caused changes in bedload flux  

Two arguments strongly suggest that the measured changes in bed sediment 

characteristics explain the observed increase in bedload flux during fish runs. First, 

the degree of stabilising particle imbrication was reduced by foraging fish, and the 

magnitude of that impact varied as a function of fish size and species type 

(hypotheses 1 and 3). Imbrication is regarded as a stabilising phenomenon because 

individual particles are in attitudes that minimise drag and because grain-on-grain 

interaction demands that individual grains have to be pried loose from the constraints 

of neighbouring particles (Komar and Li, 1986; Church et al., 1998; Church, 2010). 

During the experiment, feeding essentially undid water-worked imbricate structures, 

reducing the degree of inclination, with significant differences recorded before and 

after foraging for Chub and all but the smallest size class of Barbel (Table 3). 

Qualitative observations confirmed effective reversal of inclinations during runs using 

5-6”, 6-8”, and 8-10” Barbel, as fish utilised the push + gulping behaviour so that 

after foraging, bed particles showed a propensity to dip downstream rather than 

upstream.  However, this did not manifest as changes in the sign of inclination index 

values, turning mean positive to mean negative values, as observed by Pledger et al. 

(2014), probably because inclination indices were calculated for the entire test bed in 

this experiment but only for the disturbed portions of the test bed in the earlier work. 

Fish of both species predominantly foraged whilst facing upstream into the flow, 

which allowed them to easily penetrate the interstices between upstream dipping, 



imbricated grains to force them apart and rotate them into vertical positions or turn 

them through their pivot angles into obtuse positions. Increased total transported 

mass (hypothesis 2), particularly for the 6-8” and 8-10” size classes, suggest that this 

rendered particles relatively more mobile, probably by increasing the drag on them, 

by increasing their protrusion and by freeing them from the constraints of their 

neighbours. Interestingly, there was no significant difference between the total 

transported bedload in 8-10” Barbel and screeded runs (Fisher’s LSD; P = 0.16). 

This implies that fish disturbed bed sediment structures to such an extent that the 

gravel particles in foraged beds were as unstable and prone to movement as if 

deposited randomly, unaffected by any water-working. 

Second, significant increases in the standard deviation of surface elevations after 

exposure to fish (significant for all size classes and species of fish with the exception 

of the 4-5” size class of Barbel), imply the production of a less-packed surface fabric, 

in which some grains became more exposed to the flow— for example, by 

displacement of neighbours or by direct elevation gain. It is reasonable to 

hypothesise that this increased the mobility of individual grains by increasing the 

drag upon them and by increasing protrusion. Modest increases in protrusion can be 

important because grain entrainment is sensitive to protrusion (Fenton and Abbott, 

1977).   

 

5.1.4. Implications of fish foraging behaviour for sediment transport in rivers: 

influence of biotic and abiotic factors  

This experiment extends previous work on the zoogeomorphic effects of benthic 

foraging (Stazner et al., 2003b; Statzner and Sagnes, 2008; Pledger et al., 2014) by 

showing that fish size and species are important controls of bed conditioning by 

feeding and of subsequent bedload transport during high flows. Assuming that these 

ex-situ results have relevance in the field, then the implication is that benthic foraging 

has the potential to affect coarse sediment transport in streams and rivers, especially 

at places or times where feeding fish interact with and therefore destabilise water-

worked bed materials. 

Scaling up experimental results in time and space to natural situations in rivers is a 

key challenge in freshwater ecology (e.g., Peckarsky et al., 1997, Peckarsky, 1998), 



in fluvial geomorphology (e.g., Ashmore, 1982; Paola et al., 2009), and in 

ecogeomorphological studies (e.g., Rice et al., 2010; Johnson et al., 2011, their 

Figure 7b). However, it is reasonable to anticipate that what was observed in the 

flume is, at some level, representative of foraging effects in the field; and there are 

several good reasons to hypothesise that benthic feeding is a prolific and effective 

bed disturbance mechanism in rivers. First, in natural settings, the two species 

examined here and other benthic feeders grow large. For instance, adult Barbel in 

the UK can achieve weights of 9.3kg, 664 and 98 times heavier (respectively) than 

the smallest and largest size classes of the fish used in these experiments. If the 

size-dependent effects on disturbance extent and bedload transport continue to 

scale with fish size, it is reasonable to hypothesise that natural populations that 

include large adults can have a substantial impact on bed material condition. 

However, we must acknowledge that ontogenetic shifts in the feeding behaviour of 

Chub, whereby fish become increasingly piscivorous with age, might cause mature 

fish to disturb the bed less and have a smaller impact on bed material stability, 

relative to juvenile specimens. Equally, an increase in food requirements of mature 

relative to juvenile fish might have the opposite effect, with mature fish foraging the 

river bed more to sustain or increase body mass. Further work is therefore required 

to investigate bed utilisation whilst feeding and how this varies between species and 

as a function of fish size. Second, benthic foraging is a common feeding behaviour 

and the demonstration here that specialist (Barbel) and opportunistic (Chub) foragers 

can have a geomorphic impact implies that many species belonging to different 

functional groups are capable of acting as zoogeomorphic agents. Third, it is likely 

that foraging occurs where and whenever benthic feeding fish are present, albeit 

within seasonal constraints imposed by differences in food availability and 

metabolism, via water temperature. This suggests that foraging may have a 

persistent and spatially extensive impact on bed materials, perhaps extending the 

zoogeomorphic potential of fish across large portions of river networks and beyond 

the relatively more constrained impacts of lithophilic spawning (cf, Hassan et al., 

2008).  

It is also important to note that in natural settings there is a trade-off between the 

size and abundance of organisms in a population (White et al., 2007). For example, 

the majority of fish within healthy systems are small, with only a small proportion 



being large adults. Whilst the individual impact of larger fish may be greater, it is 

reasonable to assume that smaller fish might still have important impacts due to their 

abundance within natural systems.  

In the absence of in-situ experiments and large-scale field observations, these ideas 

remain hypothetical but justify the continued investigation of foraging impacts. 

Laboratory experiments do not account for the numerous biotic and abiotic factors 

that might influence the location, frequency, and nature of foraging under natural 

conditions. For example, riverine fish have access to and gain sustenance from a 

wide variety of  environments, and differences in habitat and thence food utilisation 

will likely occur as functions of fish size and type (e.g., for Barbel, cf. Bischoff and 

Freyhof, 1999). Therefore, it is reasonable to assume that the relationship between 

fish size, species, and geomorphic impact via foraging will be more complex than in 

experimental systems where hydrological, ecological, and geomorphological 

conditions are stringently controlled. A number of key issues, in addition to the need 

for work in natural settings, will therefore improve understanding of the foraging 

effect, including fuller understanding of how feeding behaviour and fish-sediment 

interactions vary with fish maturity across species and functional groups; the spatial 

and temporal footprint of benthic feeding across different species, sizes of fish, and 

functional groups; and the role of conspecific and interspecific interactions, including 

shoaling behaviour, in moderating fish-sediment interactions (cf. Statzner and 

Sagnes, 2008). 

 

6. Conclusion  
Foraging Barbel and Chub modified water-worked surface gravels, reducing the 

degree of imbrication and increasing microtopographic roughness. This conditioning 

increased bedload flux during a subsequent high flow, with transport rates up to 

340% higher from beds that had been foraged compared with beds that had been 

water-worked but not exposed to fish. These findings support and extend the 

observations of Stazner et al. (2003b) and Statzner and Sagnes (2008) and the 

quantitative findings of Pledger et al. (2014) regarding the zoogeomorphic 

importance of benthic foraging. In particular, this work is novel in demonstrating that 

fish species and size are important controls of a fishes’ foraging effect, with larger 



fish and the species that is a specialist benthic feeder (Barbel) having the greatest 

impacts. This result is consistent with other studies that have investigated the effects 

of organism size on geomorphology (e.g., spawning and nest-building behaviour cf. 

Burner, 1951; Kondolf et al., 1993; Barber et al., 2001). While it is not unexpected 

that Barbel are more effective geomorphic agents given their physiology and 

behavioural adaptations to foraging, it is notable that Chub also had an impact, 

despite being opportunistic rather than specialist benthic feeders. At river-scale, 

foraging specialists and foraging opportunists are abundant, often grow large, are 

widely distributed, and feed perennially, albeit at a rate that reflects seasonal 

variations in metabolism. It is therefore possible to hypothesise that benthic foraging 

is a powerful zoogeomorphic activity in natural settings, with the potential to affect 

river-bed stability and sediment transport across large portions of river networks.  
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Fig. 1. (A) A three-dimensional (3D) model of the flume setup whilst fish were in the 
channel during the acclimatization period. Removal of the central, temporary fence 
allowed fish free access to the 5–m–long experimental enclosure during 
experiments. (B) A 3D model of the flume setup during phases 1 and 3. Model 
shows the spatial locations of the bedload slot sampler, laser scanner, and test bed. 
Note: flow from right to left in all images. 



 

 

  

 

 

Fig. 2. Schematic diagram presenting the experimental procedure for (A) with Barbel 
and with Chub foraging treatment; and (B) no foraging control runs. 



  

 

 

Fig. 3. (A) Total proportion of the river bed disturbed by foraging fish during the four 
hours of fish activity in a low-velocity flow (0.01 m s-1). (B) Mean surface elevation 
change as a percentage of the DEM surface area (5.6-22.63 mm gravel surfaces, 
0.48 x 0.28 m) before and after 4 hours of fish activity in a low-velocity flow (0.01 m 
s-1). In each case, values represent treatment means (±SE) and replicate numbers 
included within x-axis labels. In (A), letters above bars indicate homogeneous 
groups.  



 

  

 

 

Fig. 4. The maximum depth foraged to by Barbel during the experimental period for 
each of the four size classes of Barbel and one size class of Chub. Values represent 
means (±SE). Replicate numbers displayed as part of x-axis label. Letters above 
bars indicate homogeneous groups.   



 

  

 

 

Fig. 5. The mean difference between (A) microtopgraphic roughness values (Δσz) 
and (B) inclination index values (Δ𝐼𝐼𝑙𝑙), comparing values before and after foraging for 
each of the four size classes of Barbel and one size class of Chub. Values represent 
means (±SE). Replicate numbers displayed as part of x-axis label. Letters above 
bars indicate homogeneous groups.   



 

  

 

Fig. 6. Mean bedload flux (measured averages for 5-minute periods) during phase 3 
(entrainment flow) for foraging treatment, no foraging control, and screeded runs. 
Replicate numbers included within legend. 



 

 

  

 

 

Fig. 7. The impact of foraging fish on the stability of water-worked, gravel-bed 
textures. Sediment flux after 300 seconds of the steady entrainment flow for 
screeded, water-worked control, and with-fish treatment runs. Values represent 
means (±SE). Replicate numbers displayed as part of x-axis label. Letters above 
bars indicate homogeneous groups. 



 

  

 

 

Fig. 8. The impact of foraging fish on the stability of water-worked, gravel-bed 
textures. Total transported mass after 3600 seconds of the steady entrainment flow 
for screeded, water-worked control and with-fish treatment runs. Values represent 
means (±SE). Replicate numbers displayed as part of x-axis label. Letters above bars 
indicate homogeneous groups. 



 

  

 

 

Fig. 9. Allometric relations between (A) total foraged area and Barbel size and (B) 
maximum foraged depth and Barbel size. Foraged area (m2), foraged depth (m), and 
fish mass (kg) have been nondimensionalised against estimated area (m2), diameter 
(m), and estimated mass (kg) of the D50, respectively. In (A), estimated D50 surface 
area pertains to planview surface area, i.e., area of a circle. 



Table 1.  Mean total length and mass values (±SD) of fish, utilised during the 
experiment 

   

Species Size 

(inch) 

Age 

(years) 

Mean total length 

(m) 

Mean mass 

(kg) 

Replicates 

Barbel 4 - 5 2 - 2.5 0.124 ± 0.0006 0.014 ± 0 4 

Barbel 5 - 6 2.5 - 3 0.135 ± 0.002 0.019 ± 0.001 16 

Barbel 6 - 8 3 - 3.5 0.179 ± 0.004 0.044 ± 0.004 13 

Barbel 8 - 10 3.5 - 4 0.233 ± 0.008 0.095 ± 0.008 15 

Chub 8 - 10 3.5 - 4 0.233 ± 0.049 0.13 ± 0.008 12 



Table 2.  Flow characteristics during the three phases of each run 

 

Local bed shear stress was corrected for sidewall effects using Williams’ (1970) 
empirical function and the corrected value was used to estimate Shields parameter 
values. During phase 2, bed slope was set to zero; but pumping water into the top of 
the flume and allowing it to overfall the tailgate weir generated a water surface slope 
and desired velocity that was extremely low, but nevertheless measureable. 

  

Flow parameters Phase 1: 

water working 

flow 

Phase 2: low 

flow 

(with or 

without 

foraging) 

Phase 3: entrainment 

flow 

Slope; % 1.05 0 1.75 

Average velocity (0.6 

depth); m s-1 
0.36 0.01 0.37 

Local bed shear stress; 

N m-2 
4.25 0.01 4.98 

Bed shear stress 

corrected for sidewall; 

N m-2 

3.31 0.01 4.03 

Shields’ dimensionless 

shear stress parameter 
0.020 0.00042 0.025 

Reynolds number 21529 817 20086 



Table 3. Microtopographic roughness (SD of surface elevations), inclination index, 

and t-test (paired) statistics for the difference between substrates before and after 

exposure to Barbel and Chub during phase 2 of fish runs (values represent means 

±SE) 

 

     
Test statistics 

 
Treatment After phase 1 After phase 2 df t value P-value 

s.
d 

of
 s

ur
fa

ce
 e

le
va

tio
ns

 

(m
m

) 

4-5" Barbel 4.65 ± 0.08 4.71 ± 0.14 3 -1.01 0.39 

5-6" Barbel 4.85 ± 0.08 4.95 ± 0.09 15 3.40 0.004 

6-8" Barbel 4.90 ± 0.08 5.20 ± 0.10 12 -5.08 <0.001 

8-10" Barbel 4.83 ± 0.08 5.50 ± 0.09 14 -13.44 <0.001 

8-10" Chub 4.87 ± 0.10 5.00 ± 0.12 11 -3.52 0.005 

In
cl

in
at

io
n 

in
de

x 

4-5" Barbel 0.16 ± 0.01 0.15 ± 0.01 3 3.18 0.05 

5-6" Barbel 0.17 ± 0 0.15 ± 0 15 6.36 <0.001 

6-8" Barbel 0.16 ± 0 0.15 ± 0 12 3.74 0.003 

8-10" Barbel 0.17 ± 0 0.13 ± 0 14 7.43 <0.001 

8-10" Chub 0.17 ± 0 0.15 ± 0.01 11 4.99 <0.001 

 


	1. Introduction
	2. Methodology
	2.1. Fish husbandry
	2.2. Flume setup
	2.3. Experimental procedure
	2.3.1. Phase 1: Moderate water-working flow
	2.3.2. Phase 2: Low flow, with or without fish foraging
	2.3.3. Phase 3: Entrainment flow

	2.4. Measurements of bed surface microtopography and bedload characteristics
	2.4.1. Bed elevations and bed structures
	2.4.2. Bedload flux


	3. Data analysis
	3.1. The effect of foraging on bed surface microtopography and surface structures
	3.2. The effect of foraging on entrainment and bedload

	4. Results
	4.1. The effect of fish size and species on the spatial and vertical extent of bed disturbance
	4.2. The effect of fish size and species on gravel-bed microtopography and imbrication
	4.3. The effect of foraging on bedload transport during a subsequent high flow

	5. Discussion
	5.1. Fish size and species as controls of a fishes’ zoogeomorphic impact
	5.1.1. Fish size effects
	5.1.2. Species effects

	5.1.3. Changes in bed sediment characteristics caused changes in bedload flux
	5.1.4. Implications of fish foraging behaviour for sediment transport in rivers: influence of biotic and abiotic factors

	6. Conclusion
	ACKNOWLEDGEMENTS
	The authors would like to thank Loughborough University and The Barbel Society for providing financial support; Matthew Johnson, Alan Henshaw, and Ian Wellby for general help and advice; Stuart Ashby, Richard Hartland, and Barry Kenny for help with eq...
	References

