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This paper develops topological methods for qualitative analysis of the behavior of nonholonomic
dynamical systems. Their application is illustrated by considering a new integrable system of
nonholonomic mechanics, called a nonholonomic hinge. Although this system is nonholonomic,
it can be represented in Hamiltonian form with a Lie –Poisson bracket of rank 2. This Lie –
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1. Introduction

The paper deals with a new integrable problem of nonholonomic mechanics. A physical treatment of
the system is given in [Kharlamov & Kharlamov, 1995], and the system itself is called a nonholonomic
hinge, which consists of two coupled rigid bodies connected via a rotating wheel (similar to Wagners
interpretation [Wagner, 1941] of the Suslov problem, in the Suslov problem, one of the bodies is fixed
in space, while in a nonholonomic hinge both bodies are free). More general statements of the problem
of a nonholonomic hinge, as well as other integrable cases, are presented in [Bizyaev et al., 2013], where
possible applied systems for the use of the nonholonomic hinge in engineering are also mentioned.

The problem of a nonholonomic hinge is of great interest for studying the topology of invariant man-
ifolds and the stability of critical trajectories (fixed points). Compared to the classical problems of non-
holonomic mechanics (the Chaplygin ball, the dynamics of a disk), the topology of this system is quite
unusual and requires special consideration. Note that the nonholonomic Suslov problem also differs from
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the standard Liouville situation, and the motion on common level sets of first integrals occurs not in qua-
siperiodic orbits of tori, but on a two-dimensional manifold of genus greater than 1. For a recent analysis
of the Suslov problem, see [Borisov et al., 2010].

This paper develops a series of the authors studies in the topology and stability of integrable sys-
tems [Bolsinov et al., 2010], Poisson geometry, and the hierarchy of dynamical behavior of nonholonomic
systems [Borisov & Mamaev, 2002, 2008; Borisov et al., 2002, 2013]. A peculiarity of the integrable prob-
lem we are considering is that the mechanism of its integrability is not standard. Though this problem is
nonholonomic, it turns out that it can be presented in Hamiltonian form with a Lie –Poisson bracket of
rank two. It is generally accepted that such systems have the following properties:

• Liouville integrability: symplectic leaves are two-dimensional and a single first integral, a Hamiltonian,
is sufficient for integrability;

• after restriction to a symplectic leaf, we get a one-degree-of-freedom Hamiltonian system with its trajec-
tories coinciding with the Hamiltonian level curves, while trajectories of a more complex structure such
as irrational orbits of a torus are absent;

• bounded trajectories of the system are closed except for those that asymptotically approach the equilib-
rium position.

It is well known that the absence of globally defined Casimir functions for rank 2 brackets may lead to
nonintegrability and even to chaos. In the problem that we are considering, the situation is intermediate.
Although such a set of global Casimir functions does not exist, it is first integrated by quadratures. However,
the described behavior pattern of the trajectories is no longer realized. Note that another class of rank 2
brackets that does not lead to integrability is mentioned in [Borisov et al., 2010]. We also define a special
class of rank 2 brackets for which statements about integrability hold. Note that this integration mechanism
has not been considered before, and the classical Liouville theorem is not applicable in this case.

In this paper, we present the general results concerning the stability of fixed points using Poisson
brackets of rank 2 (the general criterion is given in the Appendix). Graphs of stability regions for the
problem under consideration are built. A topological analysis of integral manifolds is performed and a clas-
sification of trajectories on these manifolds is provided. A three-dimensional bifurcation diagram is built
in the space of values of first integrals. The last section of the paper discusses the absolute dynamics of
a hinge associated with the description of the orientation of the inner body and the shell. It is shown that
for some particularly remarkable motions corresponding to fixed points of the reduced system, the bundle
of bodies executes double-period motion in the absolute space, while the nonsingular trajectories in the
phase space are periodic and quasiperiodic orbits of two-dimensional tori.

Despite the fact that the paper deals with a specific problem of a nonholonomic hinge, its research
methods are quite general. This problem-to-method approach is unfortunately rarely seen in the current
literature on nonholonomic systems. Some studies formulate somewhat strange results concerning general
nonholonomic systems, commonly using the simplest problems as examples (such as the rolling of an inho-
mogeneous ball), where everything is quite clear as it is (this comment relates to the issues of reduction, the
existence of linear integrals, nonholonomic integrators, etc.). Nonholonomic mechanics cannot be developed
without considering increasingly complex problems (a special term, “hierarchy of dynamic behavior”, was
introduced for this purpose in [Borisov & Mamaev, 2002, 2008; Borisov et al., 2002, 2013]) and without
refining special methods for investigating such systems while solving them. This problem demonstrates ab-
solutely new topological and dynamic features that have never been encountered before, and the solution
of this problem using the methods of Hamiltonian mechanics and Poisson geometry has given insight into
new aspects of the behavior of nonholonomic systems.

2. Realization of Constraints and Equations of Motion

G. K. Suslov (see [Suslov, 1946, p. 325]) considered a system consisting of two bodies, each of which rotates
about a fixed point, and which are connected with each other in such a way that the (nonholonomic)
constraint is satisfied:

(e,ω) + (E,Ω) = 0, (1)
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where ω, Ω are the angular velocity vectors of the bodies, and e, E are unit vectors rigidly attached to
each of the bodies. He assumed that this constraint can be realized by means of “a very long, elastic,
torsion-free thread”, Fig. 1. Such a realization is incorrect, since it is well known that the rotation of the
thread through a nonzero angle can arise not due to its torsions but due to a change in shape [Borisov et
al., 2010; Fuller, 1971]. A correct (from the theoretical point of view) realization of this type of constraint
for one body with a fixed point was proposed by V.Wagner [Wagner, 1941]. Later, a similar realization
was also pointed out in [Kharlamov & Kharlamov, 1995] and was called by the authors a nonholonomic
hinge.

Fig. 1.

In this paper, we consider the problem of free motion of a bundle of two bodies connected via a non-
holonomic hinge. The outer body is a spherical shell, with a rigid body moving inside and connected with
it by means of sharp wheels in such a manner that relative rotations about the vector e fixed in the inner
body are excluded (Fig. 2):

(ω − Ω,e) = 0, (2)

where Ω, ω are the angular velocities of the shell and the inner body, respectively. In order to prohibit
relative rotations of the bodies only along one direction, the points of contact of the wheels with the inner
surface of the shell must lie on one straight line passing through the center of the sphere C (Fig. 2). The
arising constraint (2) is a particular case of the Suslov constraint (1). Furthermore, we shall assume that
the centers of mass of the shell and the body coincide and are at the geometrical center of the sphere C.

Fig. 2. A dynamically symmetrical spherical shell with a nonholonomic hinge inside.

We choose a moving coordinate system Cx1x2x3, rigidly attached to the inner body in such a manner
that Cx3 ‖ e. Then the constraint equation becomes

f0 = ω3 − Ω3 = 0 (the Suslov constraint). (3)



January 21, 2015 11:49 ws ijbc

4 I. S.Mamaev, A.V. Bolsinov, I.A. Bizyaev

We shall assume that the tensor of inertia of the shell, IsE, is spherical (here and in the sequel, the
index s denotes the shell); moreover, in this paper we shall restrict ourselves to the case where the vector e
coincides with the direction of one of the principal axes of inertia of the inner body. The kinetic energy of
the entire system can be represented as

T =
1
2
(
IsΩ

2 + (ω, Iω)
)
,

where I = diag(I1, I2, I3) is the tensor of inertia of the inner body (the axes Cx1x2x3 are assumed here to
be the principal axes of inertia).

Using the formalism of [Borisov & Mamaev, 2008], the equations of motion in the moving coordinate
system rigidly attached to the inner body can be written explicitly as

IsΩ̇ + Isω × Ω = −λ0e, Iω̇ + ω × Iω = λ0e, (4)

where λ0 is the undetermined multiplier and e = (0, 0, 1). Eliminating λ0 using the constraint equation (3)
and simplifying, we obtain the following closed system:

Ω̇1 = ω3(Ω2 − ω2), Ω̇2 = ω3(ω1 − Ω1),
I1ω̇1 = (I2 − I3)ω2ω3, I2ω̇2 = (I3 − I1)ω1ω3,

(Is + I3)ω̇3 = Is(Ω1ω2 − Ω2ω1) + (I1 − I2)ω1ω2. (5)

These equations need to be supplemented with kinematic relations allowing one to determine the
orientation of the shell and the inner body from given angular velocities ω(t) and Ω(t). For brevity, we
shall refer to it as reconstruction of absolute dynamics. This issue is discussed in more detail in Section 6.
We shall call equations (5) a reduced system and consider them in more detail.

Note that since the entire system is not under the influence of any fields, its center of mass (which
coincides with the geometric center of the shell) can be taken to be fixed relative to a certain inertial
coordinate system.

3. Tensor Invariants of the Reduced System

In order to analyze the dynamics of this system, let us first consider what tensor invariants [Borisov &
Mamaev, 2002, 2008; Borisov et al., 2002, 2013] it possesses. First, the system (5) admits three quadratic
first integrals

E =
1
2
Is(Ω

2
1 + Ω2

2) +
1
2
(I1ω

2
1 + I2ω

2
2 + (I3 + Is)ω

2
3),

C1 = I1(I1 − I3)ω2
1 + I2(I2 − I3)ω2

2 , C2 = (I1ω1 − I3Ω1)2 + (I2ω2 − I3Ω2)2. (6)

Here, the first of the integrals is the kinetic energy of the system and its preservation follows from the
general theorems of dynamics [Borisov & Mamaev, 2008; Kozlov & Kolesnikov, 1978], and the other two
integrals are easy to find if one notices that the first four equations of the system (5), after division by ω3,
form a closed linear system.

Moreover, equations (5) preserve the standard invariant measure:

μ = dΩ1 dΩ2 dω1 dω2 dω3.

It turns out that equations (5) preserve another tensor invariant, a Poisson structure, and can therefore
be written in Hamiltonian form.

Proposition 1. The equations of motion (5) can be represented in the Hamiltonian form

ω̇i = {ωi,H}, Ω̇j = {Ωj ,H},

H =
1
2
ω2

3 +
1
2

I1ω
2
1 + I2ω

2
2 + Is(Ω2

1 + Ω2
2)

Is + I3

, (7)
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with the degenerate Lie –Poisson bracket of rank two

{Ω1, ω3} = Ω2 − ω2, {Ω2, ω3} = ω1 − Ω1,

{ω1, ω3} =
I2 − I3

I1
ω2, {ω2, ω3} =

I3 − I1

I2
ω1. (8)

Proof. Proof is a straightforward calculation of the equations and the Jacobi identity. �

Using the variables z = (Ω1,Ω2, ω1, ω2, ω3), the Poisson structure (8) can be written as a matrix

J =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 Ω2 − ω2
0 0 0 0 −(Ω1 − ω1)
0 0 0 0 I2−I3

I1
ω2

0 0 0 0 − I1−I3
I2

ω1

∗ ∗ ∗ ∗ 0

⎞⎟⎟⎟⎟⎟⎠,

where the asterisks denote the nonzero elements of the matrix obtained from the condition of skew-
symmetry J� = −J.

It is easy to verify that the integrals C1, C2 (6) are Casimir functions of this Poisson structure, and
the third Casimir function in the general case is not globally defined.

As will be shown below, the Hamiltonian representation (7), (8) in this case is a fundamental property
of the reduced system (5) and can be used not only to obtain integrals of motion and an invariant measure
but also to integrate the system by quadratures and to make a substantial progress in its qualitative
analysis.

4. Poisson Structures of Rank Two and Integrability by Quadratures

4.1. General Properties of Poisson Structures of Type (8)

Linear Poisson structures of type (8) are interesting in many respects. They have appeared in various
contexts and studied, for example, in [Bolsinov & Taimanov, 2000a,b; Konyaev, 2014; Butler, 2003]. Their
main property is that they are of rank two1. Thus, their symplectic leaves are two-dimensional, Hamiltonian
systems (after restriction to a symplectic leaf) have one degree of freedom and therefore, at first glance,
should be automatically Liouville integrable for any choice of the Hamiltonian. The problem, however,
lies in the fact that not all Casimir functions of such Poisson brackets can be defined globally. In this
subsection, we discuss this effect in more detail and at the same time point out some general properties of
the brackets (8).

First of all, we give a description of the 5-dimensional Lie algebra g corresponding to the bracket (8)
that will be convenient for further investigation. It is easy to see that g can be written as the semidirect sum
of a one-dimensional Lie algebra and a four-dimensional space R4 which is considered as a commutative
subalgebra. The matrix representation of this Lie algebra is as follows:⎛⎜⎜⎜⎜⎝ A·t

x1

x2

x3

x4

0 0 0 0 0

⎞⎟⎟⎟⎟⎠
where A =

(
aj

i

)
is a certain fixed 4 × 4 matrix and x1, x2, x3, x4, t are considered as independent

parameters. In our particular case, the variables Ω1, Ω2, ω1, ω2, ω3 correspond to (more precisely, are dual

1All Poisson brackets of rank two are described in a recent paper by A.Yu.Konyaev [Konyaev, 2014]. The issue of classification
of such brackets was raised in [Bolsinov et al., 2012], where the following question was also formulated: “Are there any
Hamiltonian systems with brackets that do not admit globally defined independent n − 1 integrals?”. It is the system under
consideration that yields a positive answer to that question.
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to) the parameters x1, x2, x3, x4, t, respectively, and the matrix A has the form

A =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 −1 0 I1−I3

I2
1 0 I3−I2

I1
0

⎞⎟⎟⎠ (9)

Now let us make some general comments about the linear Poisson brackets of this type. In other
words, we assume for now that the matrix A is completely arbitrary, and therefore instead of (x1, . . . , x4)
we consider the n-dimensional vector x ∈ Rn. The following statement summarizes the basic properties
of Lie algebras of the type under consideration and the related Poisson brackets, which can be useful for
applications (see also [Konyaev, 2014]).

Proposition 2. Let A =
(
aj

i

)
be a nonzero n×n matrix. Consider an n+1-dimensional matrix Lie algebra

of the form

g =
{(

A·t x
0 0

)
, t ∈ R, x ∈ Rn

}
.

Let y1, . . . , yn, τ denote the coordinates on the dual space g∗, dual to the coordinates x1, . . . , xn, t on g.

(1) Lie algebras of this type corresponding to the conjugate matrices A and A′ = CAC−1 are isomorphic.
(2) The Poisson – Lie bracket on g∗ is of rank 2.
(3) A Lie algebra g is unimodular if and only if TrA = 0. In this case, any Hamiltonian vector field on

g∗ has a natural invariant measure dy1 . . . dyndτ .
(4) The Poisson tensor J corresponding to a Lie algebra g can be presented as a decomposable bivector

η ∧ ξ′ where η and ξ′ are smooth vector fields on g∗. Namely, η = ∂τ is the constant vector field and ξ
is a natural extension of the linear vector field ξ on Rn(y) to g∗ = Rn(y) × R1(τ). In the coordinates
y1, . . . , yn this vector field has the form of

∑
aj

iyi∂yj . In matrix form:

J =
(

0 A�y
−y�A 0

)
(10)

(5) The Casimir functions of the Poisson structure J depend only on y and are first integrals of the vector
field ξ.

(6) The symplectic leaves (of dimension 2) of the Poisson structure J are direct products of the form
γ × R(τ), where γ ⊂ Rn(y) is the trajectory of the vector field ξ.

This proposition shows that the Casimir functions and thus the structure of symplectic leaves depend
on the properties of solutions of a linear differential equation of the form ẏ = A�y. These properties, in
turn, depend on the Jordan canonical form of the matrix A. We are not going to consider the general case
in more detail and return to our specific matrix (9).

4.2. Application to Analysis of the Reduced System (5)

First of all, note that TrA = 0, therefore any system that is Hamiltonian with respect to the bracket (8)
has a regular invariant measure. This immediately prohibits the existence of attractors and limit cycles
both in the entire 5-dimensional phase space and on any nonsingular level manifolds of first integrals.

Note further that by the first statement of Proposition 2, the initial matrix (9) can be replaced
by its Jordan form. It is easy to verify that the eigenvalues of this matrix have the form ±√−1 and

±
√

− (I1−I3)(I2−I3)
I1I2

. Depending on the sign of the subduplicate, the last two eigenvalues are either purely
imaginary or real. These two cases significantly differ from each other in the properties of symplectic leaves
and Casimir functions. Let k2 denote the absolute value of the subduplicate. Then by a suitable change of
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variables the matrix A can be reduced to one of the following two block diagonal forms

A =

⎛⎜⎜⎝
0 k
−k 0

0 1
−1 0

⎞⎟⎟⎠ or A =

⎛⎜⎜⎝
0 k
k 0

0 1
−1 0

⎞⎟⎟⎠ (11)

The coordinates in which the matrix A has this form will be denoted, as before, by y1, y2, y3, y4.
Let us start with the first case, for which the variables y have the form

y1 = I1ω1 − I3Ω1, y2 = I2ω2 − I3Ω2,

y3 =
√

I1(I1 − I3)ω1, y4 =
√

I2(I2 − I3)ω2. (12)

We begin with a description of the Casimir functions and symplectic leaves. According to statements 5
and 6 of Proposition 2, it is sufficient to analyze the first integrals and integral trajectories of the linear
differential equation ẏ = A�y. In this case, the dynamics of this system are quite simple and can be
understood as a composition of two uniform rotations in the planes (y1, y2) and (y3, y4) with angular
velocities 1 and k, respectively.

It follows immediately that the Poisson bracket has two “good” quadratic Casimir functions:

C1 = y2
1 + y2

2 and C2 = y2
3 + y2

4.

(in the second case, the Casimir function C1 has the form y2
1 − y2

2).
Having fixed their values, we obtain a 2-dimensional torus in the space R4(y). If we further introduce

two angle variables ϕ1 = arctan y2

y1
and ϕ2 = arctan y4

y3
and consider C1, C2, ϕ1, ϕ2 as a system of (polar)

coordinates on R4, then the linear vector field ξ(y) = A�y defined by the operator A will have a very
simple form:

ξ = (0, 0, k, 1).

With an irrational k the trajectory of this vector field is an everywhere dense orbit of a torus and
therefore does not admit another global integral (which, as mentioned above, would be a Casimir function
of the bracket under consideration). However, a local integral exists and can be written as

C3 = ϕ1 − kϕ2.

Remark 1. It is useful to note that the irrational orbit is the same for all tori of the form {C1 = const1, C2 =
const2}. In other words, the number k in the third integral C3 does not depend on the values of the
integrals C1 and C2, but is a constant defined by the Poisson tensor. Its invariant meaning is that k is
the ratio of eigenvalues of the matrix A of the form (9) (or the canonical form (11)). For more general
matrices A, the situation is similar: the ratios of eigenvalues play an important role and are included as
parameters in the explicit formulae for integrals.

The information provided above is quite sufficient to integrate by quadratures any Hamiltonian system
on g∗.

Proposition 3. Consider an arbitrary Hamiltonian system with respect to the Poisson structure (10) that
corresponds to the matrix A of the form (11) (the first case). Then the system is integrable by quadratures.

Proof. There is no doubt about the possibility of integrating the system by quadratures, because we know
the explicit formulae for Casimir functions and, therefore, can restrict the system to a symplectic leaf, after
which it can be integrated as a Hamiltonian system with one degree of freedom.

It only remains to explain exactly how it should be done in this case.
First of all, note that the Poisson bracket has two “good” quadratic Casimir functions:

C1 = y2
1 + y2

2 and C2 = y2
3 + y2

4.

(In the second case, the Casimir function C1 has the form y2
1 − y2

2).
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If we fix their values, we get a 2-dimensional torus in the space R4(y). If we further introduce two angle
variables ϕ1 = arctan y2

y1
and ϕ2 = arctan y4

y3
and consider C1, C2, ϕ1, ϕ2 as a system of (polar) coordinates

on R4, then the linear vector field defined by the operator A will have a very simple form:

ξ = (0, 0, k, 1).

With an irrational k the trajectory of this vector field is an everywhere dense orbit of a torus and therefore
does not admit another global integral (which, as mentioned above, would be a Casimir function of the
bracket under consideration). However, a local integral exists and can be written as

C3 = ϕ1 − kϕ2.

Consider an arbitrary Hamiltonian H on R5. In terms of the variables C1, C2, ϕ1, ϕ2, τ , the corre-
sponding Hamiltonian system can be written as

Ċ1 = 0, Ċ2 = 0, ϕ̇1 = kF, ϕ̇2 = F, τ̇ = G, (13)

where F and G are certain functions. Now if we rescale time as dt = Fdt′, the equations take the form

Ċ1 = 0, Ċ2 = 0, ϕ̇1 = k, ϕ̇2 = 1, τ̇ = G̃,

where G̃ = G
F is a certain function of all the variables. Finally, note that the Hamiltonian of the system

H is a first integral, and this allows us to express the variable τ in terms of H, C1, C2, ϕ1, ϕ2. Thus, the
equations of motion take the form

ϕ̇1 = 1, ϕ̇2 = k, τ̇ = G̃(ϕ1, ϕ2; C1, C2,H), (14)

and are immediately integrated and τ(t′) =
∫

G̃(t′, kt′; C1, C2,H)dt′. �

Remark 2. For the Hamiltonian (7) considered in the following sections

F = τ,

G =
Is
√

c2

I3(Is + I3)

(√
c1

I1(I1 − I3)
sinϕ1 cos ϕ2 −

√
c1

I2(I2 − I3)
cos ϕ1 sin ϕ2

)
+ c1

(I1 − I2)
2k det I

sin(2ϕ1). (15)

In fact, we have used the two-dimensionality of symplectic leaves for this explicit integration. In
the standard situation where symplectic leaves are closed submanifolds explicitly defined by the Casimir
functions, two-dimensionality means that we integrate a Hamiltonian system with one degree of freedom.
Here we have also implicitly used the existence of a local integral C3.

The nonexistence of a global Casimir function, or rather the fact that a symplectic leaf is not a “properly
embedded submanifold” but a direct product of the irrational torus orbit by R, leads to a significant
difference of the global dynamics of the system from what we are used to seeing in systems with one degree
of freedom. One of the “generally accepted” properties of such systems is the following. If the Hamiltonian
of a system is positive definite (or, more generally, its level sets {H = const} are compact), then in the
case of one degree of freedom almost all trajectories of the system are closed. It is not so in this case. The
open region of the phase space turns out to be filled with nonclosed trajectories such as irrational orbits.
A detailed topological analysis of the system is provided in the following subsections.

5. Qualitative Analysis of the Reduced System

5.1. Fixed Points

First of all, let us consider the equilibrium points of system (5) and analyze their stability. In terms of the
original variables z = (Ω1,Ω2, ω1, ω2, ω3), the set of fixed points is defined as

M3
∗ = {ω3 = 0, Is(Ω1ω2 − Ω2ω1) + (I1 − I2)ω1ω2 = 0}. (16)

For a clear and transparent presentation of results it is more convenient to analyze the fixed points of
the system not in the entire phase space but on individual level surfaces where the solution is represented
by quadratures (see the previous section):

Mc,h = {C1(z) = c1, C2(z) = c2, H(z) = h},
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here H, C1, C2 are defined by the relations (6) and (7). The equilibrium points on the manifold Mc,h are
isolated. There are two cases that need to be considered separately. They differ in the properties of the
function C1:

(1) (I1 − I3)(I2 − I3) > 0 the Casimir function C1 is a sign definite function;
(2) (I1 − I3)(I2 − I3) < 0 the Casimir function is either positive or negative definite; in this case it is

indefinite.

We emphasize that such a significant difference between these cases is due to the fact that the corresponding
Poisson brackets are essentially nonisomorphic. That is, the difference in the dynamic behavior of the system
in this case is due to the bracket (or, which is the same, a corresponding 5-dimensional Lie algebra).

In our further analysis of the system we will assume throughout (without loss of generality) that the
axes Cx1 and Cx2 are chosen so that the inequality I2 < I1 holds. As can be easily seen, the function C1

is sign indefinite if the value of I3 satisfies the inequality I2 < I3 < I1.
(I1 − I3)(I2 − I3) > 0. The transformation to polar coordinates on Mc,h from the previous section

is as follows:

ω1 =
√

c1

I1(I1 − I3)
sin ϕ1, ω2 =

√
c1

I2(I2 − I3)
cos ϕ1,

Ω1 =
√

I1c1

I1 − I3

sin ϕ1

I3
−√

c2
sinϕ2

I3
, Ω2 =

√
I2c1

I2 − I3

cos ϕ1

I3
−√

c2
cos ϕ2

I3
, (17)

where ϕ1, ϕ2 ∈ [0, 2π). In this case, the fixed points on Mc,h are defined by the following relations:

G = 0, Q = hI2
3 (I3 + Is),

G =
Is
√

c2

I3(Is + I3)

(√
c1

I1(I1 − I3)
sinϕ1 cos ϕ2 −

√
c1

I2(I2 − I3)
cos ϕ1 sin ϕ2

)
+ c1

(I1 − I2)
2k det I

sin(2ϕ1),

Q =
Isc2

2
+

c1

2

(
IsI1 + I2

3

I1 − I3
sin2 ϕ1 +

IsI2 + I2
3

I2 − I3
cos2 ϕ1

)
−

−Is
√

c2

(√
I1c1

I1 − I3
sin ϕ1 sin ϕ2 +

√
I2c1

I2 − I3
cos ϕ1 cos ϕ2

)
. (18)

The first of these equations can be conveniently rewritten as

2Is

(Is + I3)

√
c2

c1
− g(ϕ1, ϕ2) = 0,

g(ϕ1, ϕ2) =
(I1 − I2) sin 2ϕ1√

I1(I1 − I3) sinϕ2 cos ϕ1 −
√

I2(I2 − I3) sin ϕ1 cos ϕ2

.

Hence, taking into account that the function H(z) is positive definite, we get the following statement:

if the coordinates of the point (ϕ1, ϕ2) satisfy the inequality g(ϕ1, ϕ2) > 0, then there are positive values
of c1, c2, h that satisfy equations (18), i.e., on a given Mc,h the point (ϕ1, ϕ2) defines the equilibrium
point of system (5).

Remark 1. In many cases, the question of the number and stability of fixed points on a given Mc,h (i.e., for
fixed values of the first integrals c1, c2, h) is more essential. We are not going to discuss this issue here.
We only note that in our case, using the well-known formula∑

crit. points
ind = χ(M2

c,h),

where χ is the Euler characteristic of the two-dimensional surface, we obtain∑
st

−
∑
un

= 2 − 2g,
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where
∑
st

,
∑
un

are the sums of stable and unstable fixed points, and g is the number of handles of surface Mc,h

(i.e., its genus).

To investigate the stability of fixed points, we use the Poisson bracket (8). According to the general
criterion obtained in the Appendix, the stability of the fixed point z0 is defined by the sign of the function

μh(z0) = det
∥∥∥∥ξ(ξ(H)) ξ(η(H))
ξ(η(H)) η(η(H))

∥∥∥∥, (19)

where ξ, η are the vector fields (in the neighborhood of fixed point z0) locally defined by the decomposition
of the Poisson tensor J = ξ ∧ η.

In this case, as shown in the previous section, this decomposition exists globally, and the fields ξ, η in
the variables z = (Ω1,Ω2, ω1, ω2, ω3) become

ξ =
(

Ω2 − ω2, ω1 − Ω1,
I2 − I3

I1
ω2,

I3 − I1

I2
ω1, 0

)
, η = (0, 0, 0, 0, 1).

Calculating the value of (19) and restricting it to the manifold Mc,h, we obtain

μ̃h(ϕ1, ϕ2) =
det I

Is
√

c1c2
μh(ϕ1, ϕ2) =

√
I1(I2 sin2 ϕ1 − (I1 − I3) cos2 ϕ1)√

I1 − I3

sin ϕ2

sin ϕ1
+

+
√

I2(I1 cos2 ϕ1 − (I2 − I3) sin2 ϕ1)√
I2 − I3

cos ϕ2

cos ϕ1
.

Theorem 1. Let ϕ∗ = (ϕ∗
1, ϕ

∗
2) be a fixed point of system (5) on the integral surface Mc,h. Then

ϕ∗ is stable (in the sense of Lyapunov) if μ̃h(ϕ∗
1, ϕ

∗
2) > 0,

ϕ∗ is unstable if μ̃h(ϕ∗
1, ϕ

∗
2) < 0.

The issue of stability of fixed points ϕ∗ in which μ̃h(ϕ∗
1, ϕ

∗
2) = 0 requires further investigation.

Remark 2. Here and in the sequel, stability is considered in relation to the perturbation of variables
(Ω1,Ω2, ω1, ω2, ω3).

For fixed moments of inertia, the regions of stable and unstable fixed points are shown in Fig. 3.

Fig. 3. Regions of stable (grey) and unstable (hatched) equilibria (I1 = 5.2, I2 = 4.3, I3 = 3.9, Is = 3.6).

If the inner body is dynamically symmetrical I1 = I2 �= I3, the first of Eqs. (18) greatly simplifies to
give

sin ϕ1 cos ϕ2 − cos ϕ1 sin ϕ2 = 0.
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Hence we have two solutions:

ϕ2 = ϕ1, ϕ2 = ϕ1 + π.

The first solution is always stable (μ̃h > 0), while the second is always unstable (μ̃h < 0).
(I1 − I3)(I2 − I3) < 0. In this case, the transformation to local coordinates has the following form:

if c1 > 0, then ω1 = ±
√

c1

I1(I1 − I3)
cosh ϕ±

1 , ω2 = −
√

c1

I2(I3 − I2)
sinhϕ±

1 ,

Ω1 = ±
√

I1c1

I1 − I3

cosh ϕ±
1

I3
−

√
c2

I3
sin ϕ2, Ω2 = −

√
I2c1

I3 − I2

sinhϕ±
1

I3
−

√
c2

I3
cos ϕ2,

if c1 < 0, then ω1 = −
√

c1

I1(I3 − I1)
sinhϕ±

1 , ω2 = ±
√

c1

I2(I2 − I3)
cosh ϕ±

1 ,

Ω1 = −
√

I1c1

I3 − I1

sinh ϕ±
1

I3
−√

c2
sinϕ2

I3
, Ω2 = ±

√
I2c1

I2 − I3

cosh ϕ±
1

I3
−√

c2
cos ϕ2

I3
, (20)

the sign ± arises from the fact that in each of these two cases, the equation C1 = c1 defines a pair of
hyperbolas, one of which is parameterized by the variable ϕ+

1 , and the other by ϕ−
1 .

As we can see, for stability analysis of the fixed points in this case it is sufficient to substitute in the
above formulas:

for c1 < 0: ϕ±
1 = iϕ1 where ϕ1 ∈ (−∞,∞);

for c1 > 0: ϕ±
1 = π

2 − iϕ1 where ϕ1 ∈ (−∞,∞).

For fixed parameters, the regions of stable and unstable fixed points are shown in Fig. 4.
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Fig. 4. Regions of stable (grey) and unstable (hatched) equilibria, left c1 < 0, and right c1 > 0 (I1 = 3.3, I2 = 5.2, I3 = 4,
Is = 3.6). On each of the planes (ϕ+

1 , ϕ2) and (ϕ−
1 , ϕ2) correspond to different hyperbolas, and these regions are identical.

5.2. Topological Analysis of Integral Manifolds and Classification
of Trajectories

In the previous sections, a solution in terms of quadratures (14) and (15) was found on the level surface Mc,h

and a set of fixed points was studied. In this section, we investigate the structure of the manifold Mc,h

itself and study the behavior of trajectories on it using the methods of topological analysis.



January 21, 2015 11:49 ws ijbc

12 I. S.Mamaev, A.V. Bolsinov, I.A. Bizyaev

We first recall some definitions and notation, following mainly [Bolsinov et al., 2010]. We denote by
Φ = (C1, C2,H) : M5 → R3 the integral map of the system (5):

z �→ Φ(z) = (C1(z), C2(z),H(z)) ∈ R3.

The region of possible motions (RPM) Φ(M5) is the full image of the phase space in the space of first
integrals. To each point (c1, c2, h) ∈ Φ(M5) there corresponds the integral manifold Mc,h of the system,
which, generally speaking, can contain several connected components.

The set of critical points of the integral map in this case is defined as

S = {z ∈ M5 | rank dΦ(z) < 3},
The image of the corresponding set in the space of first integrals will be denoted likewise:

Σ = Φ(S).

We will call the region of possible motions Φ(M5) depicted in the space of first integrals together with
the critical set image Σ a bifurcation diagram.

The critical set. Using undetermined Lagrange multipliers, the set of critical points is defined as
a solution of the system of equations

λ1
∂C1

∂z
+ λ2

∂C2

∂z
+ 2λ3(I3 + Is)

∂H

∂z
= 0, (21)

where z and the relations of the undetermined multipliers λ1, λ2, λ3 are unknown. The system (21) can
be expressed in matrix form⎛⎜⎜⎜⎜⎝

λ2I
2
3 +λ3Is −λ2I1I3 0 0 0

−λ2I1I3 (λ1+λ2)I
2
1 + λ3I1 − λ1I3 0 0 0

0 0 λ2I
2
3 + λ3Is −λ2I2I3 0

0 0 −λ2I2I3 (λ1+λ2)I
2
2 + λ3I2 − λ2I3 0

0 0 0 0 λ3(I3+Is)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

Ω1

ω1

Ω2

ω2

ω3

⎞⎟⎟⎟⎟⎠= 0. (22)

As is well known, the condition for the existence of a nontrivial solution of such a system is the
vanishing of the determinant of the corresponding matrix of coefficients, which is expressed as

Λ1Λ2λ3 = 0,

Λi =
(
λ1(Ii − I3) + λ3

)
(λ2I

2
3 + λ3Is) + λ2λ3IiIs, i = 1, 2. (23)

Depending on the number of multipliers vanishing in this expression, we obtain the following possible
solutions of the original system

1. The case λ1 = λ3 = 0, λ2 �= 0 (in this case, all three multipliers in Eq. (23) vanish). The solutions
of the system (22) form a particular three-parameter family that is defined by

S1 =
{

Ω1 =
I1

I3
ω1, Ω2 =

I2

I3
ω2

}
.

In this case, C2 = 0 and dC2 = 0.
2. The case λ2 = λ3, λ1 �= 0 (all three multipliers in Eq. (23) vanish also). The three-parameter family

of solutions is defined by

S2 = {ω1 = 0, ω2 = 0}.
In this case, C1 = 0 and dC1 = 0.

3. The case Λ1 = Λ2 = 0, λ3 �= 0. In this case,

λ3

λ1
= I3,

λ3

λ2
= −I3

(
1 +

I3

Is

)
,

and the solutions of the system (22) form a two-parameter family defined by

S3 =
{

Ω1 = −I1

Is
ω1, Ω2 = −I2

Is
ω2, ω3 = 0

}
.
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4. The case Λ1 = 0, Λ2λ3 �= 0. In this case, the undefined multipliers satisfy the relation

λ3

λ1
= −(I1 − I3)(I2

3 + Is
λ3
λ2

)

I1Is + I2
3 + Is

λ3
λ2

,

and the two-parameter family of solutions (22) is written as

S4 =

{
Ω1 =

I1I3

I2
3 + Is

λ3
λ2

ω1, Ω2 = 0, ω2 = 0, ω3 = 0

}
,

where one of the parameters is the relation λ3
λ2

.
5. The case Λ2 = 0, Λ1λ3 �= 0. In this case,

λ3

λ1
= −(I2 − I3)(I2

3 + Is
λ3
λ2

)

I2I3 + I2
3 + Is

λ3
λ2

,

and the two-parameter family of solutions (22) is expressed as

S5 =

{
Ω1 = 0, Ω2 =

I2I3

I2
3 + Is

λ3
λ2

ω2, Ω2 = 0, ω1 = 0, ω3 = 0

}
,

where λ3
λ2

is also one of the parameters.
6. The case λ3 = 0, Λ1Λ2 �= 0. Hence, in particular, it follows that λ1λ2 �= 0, and the solutions of the

system (22) form a one-parameter family defined by

S6 = {Ω1 = 0, Ω2 = 0, ω1 = 0, ω2 = 0}.
Remark 3. In the first five cases rank dΦ = 2, while in the last case rank dΦ = 1.

Before describing the possible bifurcation diagrams of the system, we assume throughout (without loss
of generality) that we have fixed I2 < I1, and the cases I3 < I2 < I1 and I2 < I1 < I3 reduce to each other
by replacing the function C1(z) with −C1(z). Therefore, in what follows we restrict ourselves to a detailed
analysis of the two qualitatively different cases

I3 < I2 < I1 and I2 < I3 < I1.

The bifurcation diagram and integral surfaces for the case I3 < I2 < I1. Let us now consider the
images of all the previously found families of critical points Si, i = 1 . . . 6 in the space of values of the
integrals R3 = {(c1, c2, h)}.

Using the parametric representation given above, it can be shown that the image of the first family S1

is a part of the coordinate plane c2 = 0 satisfying the following conditions

Σ1 =
{

(c1, 0, h) | c1 � 0, h � I1Is + I2
3

2I2
3 (I1 − I3)(I3 + Is)

c1

}
.

Similarly, for the family S2 we get a part of the coordinate plane c1 = 0:

Σ2 =
{

(0, c2, h) | c2 � 0, h � Is

2I2
3 (I3 + Is)

c2

}
.

The image of the family S3 is a part of the plane h = Isc2−(I3+Is)c1
2I3(I3+Is)2

, which can naturally be expressed in
parametric form

Σ3 =
{

(c1, c2, h) | c1 = I1(I1 − I3)u + I2(I2 − I3)v, c2 =
(I3 + Is)2

I2
s

(I2
1u + I2

2v),

h =
I1(I1 + Is)
2Is(I3 + Is)

u +
I2(I2 + Is)
2Is(I3 + Is)

v, u � 0, v � 0
}

.
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The families S4 and S5 in the space of integrals correspond to two conical surfaces

Σ4 =

{
(c1, c2, h) |

(
2I2

3 (I3 + Is)
Is

h − (I1Is + I2
3 )

Is(I1 − I3)
c1 − c2

)2

=
4I1

I1 − I3
c1c2, c1, c2, h > 0

}
,

Σ5 =

{
(c1, c2, h) |

(
2I2

3 (I3 + Is)
Is

h − (I2Is + I2
3 )

Is(I2 − I3)
c1 − c2

)2

=
4I2

I2 − I3
c1c2, c1, c2, h > 0

}
.

As can be seen from these relations, both surfaces are tangent to the coordinate planes {c1 = 0} and
{c2 = 0}. Note that they are tangent to the plane c1 = 0 along a common straight line. The typical form
of the bifurcation surfaces Σ3, Σ4, Σ5 in this case is shown in Fig. 5. The family S6 corresponds to the
vertical ray

Σ6 = {(c1, c2, h) | c1 = c2 = 0, h � 0}.
Since the sets Σi, i = 1, . . . , 6 are invariant under the dilation c1 → λc1, c2 → λc2, h → λh, all

sections of the bifurcation diagram formed by the intersection of the diagram with the plane h = const
(except for h = 0) are similar to each other (the similarity is due to the fact that the trajectories (5) are
invariant under the change of variables z → √

λz, z = (Ω1,Ω2, ω1, ω2, ω3)). Therefore, instead of the three-
dimensional diagram we will consider its sections formed by the intersection with the plane h = const. The
corresponding section is shown in Fig. 6.

Fig. 5. The typical form of the bifurcation surfaces Σ3, Σ4, Σ5 for the case I3 < I2 < I1 (I1 = 5.2, I2 = 4.3, I3 = 3.9,
Is = 3.6).

In order to determine the type of the integral surface Mc,h for each of the regions in the bifurcation
diagram, we will construct their projections onto the torus defined by the angle variables (ϕ1, ϕ2) mod 2π,
see Fig. 6. Since

ω3 = ±
√

2h − 2Q
I2
3 (I3 + Is)

,

Q =
Isc2

2
+

c1

2

(
IsI1 + I2

3

I1 − I3
sin2 ϕ1 +

IsI2 + I2
3

I2 − I3
cos2 ϕ1

)
−

− Is
√

c2

(√
I1c1

I1 − I3
sin ϕ1 sin ϕ2 +

√
I2c1

I2 − I3
cos ϕ1 cos ϕ2

)
(24)

each point inside the image corresponds to two points on the integral surface Mc,h, while each boundary
point corresponds to one point. This consideration makes it easy to determine the type of integral surface.
As can be seen in Fig. 6, there are three types of integral surfaces in the reduced system: the torus T2, the
sphere S2 and the 3-handle sphere M2

3 (an orientable two-dimensional surface of genus 3).
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Comment. In this case, when the bifurcation curves are crossed, most of the bifurcations of the
integral manifolds can be easily understood by using their projections on the plane (ϕ1, ϕ2), see Fig. 6.
We will comment only on the bifurcations occurring at the intersection of the curves Σ1 and Σ2. As Σ2

is approached, c1 → 0 and, as follows from Eq. (6), the ellipse on the plane (ω1, ω2) shrinks to a point,
and each torus of the region V shrinks to a circle and then disappears. A similar bifurcation occurs at the
intersection of Σ1.

Classification of trajectories for I3 < I2 < I1. We now proceed to determining the possible types
of trajectories. As we have seen above (see Section 4), when projected on the torus (ϕ1, ϕ2) mod 2π the
trajectories of the system are defined by the straight lines

ϕ1 = kϕ2 + c3, c3 = const, k2 =
(I1 − I3)(I2 − I3)

I1I2
.

Since k does not depend on the constants of the first integrals, projections of the trajectories onto the torus
(ϕ1, ϕ2) are the same for all types of integral manifolds M2

c,h.
Among the integrable manifolds M2

c,h we single out tori that are projected onto the entire square
(more precisely, torus) {(ϕ1, ϕ2)| 0 � ϕi � 2π} and denote them as T2∞.

Proposition 4. If k ∈ Q (rational), then all nonsingular trajectories (i.e., those that do not have any
equilibrium points in their closures) are closed, while if k /∈ Q (irrational), then

• the trajectories are closed for all types of integral surfaces M2
c,h other than the tori T2∞,

• the trajectories on the tori T2∞ in this case are quasiperiodic orbits.

Proof. The first and the last statements in this case are obvious, therefore we consider in more detail the
situation where k is irrational and the connected component M2

c,h is not a torus. Consider the behavior
of the system trajectory whose projection reaches a certain point on the boundary of the projection M2

c,h.
According to Eq. (24), when we move in this orbit in the phase space, the sign of ω3 changes, and the point
on the projection moves along the same trajectory but in the opposite direction. Since k is irrational, the
projection will sooner or later reach the boundary of M2

c,h at exactly two points, that is, we will obtain a
periodic solution. �

The bifurcation diagram and integral surfaces for the case I2 < I3 < I1. In this case, the
images of families of critical points coincide with those found previously, except for the family Σ1:

Σ1 =
{

(c1, 0, h) | I2 − I3

I2Is + I2
3

h � c1

2I2
3 (I3 + Is)

� I1 − I3

I1Is + I2
3

h

}
.

The typical form of the bifurcation surfaces Σ3, Σ4, Σ5 for the case at hand is shown in Fig. 7.

Fig. 7. The typical form of the bifurcation surfaces Σ3, Σ4, Σ5 for the case I2 < I3 < I1 (I1 = 5.2, I2 = 3.3, I3 = 4, Is = 3.6).
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As in the previous case, all sections of the bifurcation diagram formed by the intersection with the
plane h = const are similar to each other. Therefore, in what follows we consider the section of the three-
dimensional diagram formed by the intersection with the plane h = const, the typical form of which is
shown in Fig. 10.

As before, in order to determine the type of the integral surface Mc,h for each of the regions in the
bifurcation diagram, we will construct its projection (Fig. 10). The main difference is that in this case ϕ±

1
is not an angle variable (see Section 4).

Since

ω3 = ±
√

2h − 2Q
I2
3 (I3 + Is)

,

Q =
Isc2

2
+

c1

2

(
IsI1 + I2

3

I1 − I3
cosh2 ϕ±

1 − IsI2 + I2
3

I2 − I3
sinh2 ϕ±

1

)
−

−Is
√

c2

(√
I1c1

I1 − I3
cosh ϕ±

1 sin ϕ2 +
√

I2c1

I3 − I2
sinhϕ±

1 cos ϕ2

) (25)

each point inside the image corresponds to two points on the integral surface Mc,h, while each boundary
point corresponds to one point. As can be seen in Fig. 10, there are two types of integral surfaces in the
reduced system: the torus T2 and the sphere S2.

Comment. We will explain in more detail why in this case it is not the entire line segment c1 = 0
(located inside the RPM), but only the portion from the origin to the point of contact of the ellipses Σ4

and Σ5 that corresponds to the bifurcation curve Σ2.
In this case, the integral C1 defines on the plane (ω1, ω2) a family of curves of the form

I1(I1 − I3)ω
2
1 − I2(I3 − I2)ω

2
2 = c1.

When c1 �= 0, this relation defines a pair of hyperbolas, while when c1 = 0, it defines a pair of intersecting
straight lines (and the parametrization (20) does not work). When the sign of c1 changes, these curves are
deformed as follows:

Fig. 8.

If the change of the sign of c1 occurs in region I of the bifurcation diagram (i.e., above the point of
contact of the curves Σ4 and Σ5), then the integral manifolds that are always located far from the origin
ω1 = ω2 = 0 are deformed without bifurcations when the sign changes.

If we cross the straight line c1 = 0 in the direction from region IV to region V (or vice versa), then, as
can be seen in Fig. 8, the projection of the integral manifold on the plane (ω1, ω2) passes through the origin
of the plane. After bifurcation, having passed through the singular manifold with a pair of critical circles,
the integral manifold itself, consisting of a pair of tori, turns into a pair of tori. A similar bifurcation of
the tori in the three-dimensional space can be schematically depicted as
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Fig. 9.

where these curves must be multiplied by S1 to obtain the corresponding two-dimensional surfaces.
Classification of trajectories for I2 < I3 < I1. We now proceed to determining the possible types

of trajectories. As we have seen above (see Section 4), the trajectories of the system are defined by the
straight lines

ϕ±
1 = kϕ2 + c3, c3 = const, k2 =

(I1 − I3)(I3 − I2)
I1I2

. (26)

Proposition 5. In this case, all the nonsingular trajectories of the system are closed.

The proof of this proposition is almost a verbatim repetition of the proof of closure in Proposition 4,
therefore we will omit it.

6. Absolute Dynamics2

6.1. General Equations for Orientation of the Body and the Shell

Let us now consider the problem of describing the orientation of the inner body and the shell. For this, we
define three coordinate systems:

• an inertial coordinate system Cxyz in which the center of mass is fixed,
• a moving coordinate system Cx1x2x3 rigidly attached to the inner body,
• a moving coordinate system Cx1x2x3 rigidly attached to the shell.

Since the angular velocities of the bodies were written above in terms of the moving axes Cx1x2x3, as
rotation matrices describing the configuration of the system we choose:

• Q ∈ SO(3), the matrix of rotation of the fixed axes relative to the inner body, with projections of the
fixed unit vectors on the axes Cx1x2x3 written in the columns,

• S ∈ SO(3), the matrix of rotation of the shell relative to the inner body, with projections of the unit
vectors of the shell on the axes Cx1x2x3 written in the columns.

If we denote the coordinates of an arbitrary vector in each of the above systems as

r0 = (x, y, z) in the system Cxyz,
r = (x1, x2, x3) in the system Cx1x2x3,
R = (X1,X2,X3) in the system CX1X2X3,

then obviously

r = Qr0 = SR.

The evolution of the matrices Q and S is governed by

Q̇ = ω̃Q, Ṡ = (ω̃ − Ω̃)S,

ω̃ =

⎛⎝ 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞⎠, Ω̃ =

⎛⎝ 0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

⎞⎠, (27)

2As we have mentioned above (see Section 2), the term absolute dynamics is used solely for the sake of brevity and is not
associated with the existence of an absolute coordinate system
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where ωi and Ωi are the projections of the absolute angular velocities of the body and the shell on the axes
Ox1x2x3.

Remark 1. If we let α, β, γ denote the columns of the matrix Q, then in the vector form the matrix
equation for Q will have the form of the well-known Poisson equations

α̇ = α × ω, β̇ = β × ω, γ̇ = γ × ω.

Thus, if ω(t) and Ω(t) are known, then to describe the configuration of the system it is necessary to
integrate equations (27). We will not analyze these equations in the general case, but will only consider
the problem of what kind of motion the body and the shell execute when the angular velocities ω and Ω
define the fixed points in the system (5).

6.2. Absolute Motion of Bodies with Constant ω and Ω.

To simplify the calculations, both the fixed axes Oxyz and the axes OX1X2X3 rigidly attached to the shell
can be chosen in an arbitrary manner (the choice of the latter is motivated by the spherical symmetry of
the shell). First of all, note that the evolution of the angular momentum M = IsΩ + Iω is governed by

Ṁ = M × ω.

This implies that the momentum vector remains constant in the fixed axes. Using this, we choose

Cz ‖ M , Cx ⊥ M , Cy ⊥ M .

Since all projections of ωi and Ωi remain constant for the fixed points of the system (5), the first matrix
equation (27) can be integrated to give

Q =

⎛⎝ ω2
ν1

sin(ν1t + θ) −ω2
ν1

cos(ν1t + θ) ω1
ν1−ω1

ν1
sin(ν1t + θ) ω1

ν1
cos(ν1t + θ) ω2

ν1− cos(ν1t + θ) − sin(ν1t + θ) 0

⎞⎠, (28)

where ν1 =
√

ω2
1 + ω2

2, θ = const.
Similarly, we can integrate the equation for S. To get it in the simplest form, we choose a coordinate

system CX1X2X3 attached to the shell in such a manner that at the initial moment of time it coincides
with Cx1x2x3. We finally get

S =

⎛⎜⎜⎝
(Ω2−ω2)2

ν2
2

cos(ν2t) + (Ω1−ω1)2

ν2
2

(Ω1−ω1)(Ω2−ω2)
ν2
2

(1 − cos(ν2t)) Ω2−ω2
ν2

sin(ν2t)
(Ω1−ω1)(Ω2−ω2)

ν2
2

(1 − cos(ν2t))
(Ω1−ω1)2

ν2
2

cos(ν2t) + (Ω2−ω2)2

ν2
2

−Ω1−ω1
ν2

sin(ν2t)

−Ω2−ω2
ν2

sin(ν2t) Ω1−ω1
ν2

sin(ν2t) cos(ν2t)

⎞⎟⎟⎠, (29)

where ν2 =
√

(Ω1 − ω1)2 + (Ω2 − ω2)2.
That is, when ω and Ω are constant, the system executes double-period motion, i.e., nonsingular

trajectories in the phase space are periodic (if ν1
ν2

∈ Q) and quasiperiodic (if ν1
ν2

/∈ Q) orbits of two-
dimensional tori.

Appendix.
Stability of Equilibrium Points in Hamiltonian Systems with a Rank-Two Poisson
Structure

Let J be a Poisson structure of rank 2 and H be a Hamiltonian. How should the stability of equilibrium
points be checked in this case on a symplectic leaf and on a Poisson manifold in general?

Note that a Poisson structure of rank 2 can be represented locally in a neighborhood of a regular
point as ξ ∧ η, where ξ and η are some vector fields. Sometimes such a representation can be defined
globally (then the Poisson structure is called decomposable (see [Konyaev, 2014]). But even if a global
representation does not exist, it is not difficult to find it locally. Note that in order for the decomposable



January 21, 2015 11:49 ws ijbc

Topology and Bifurcations in Nonholonomic Mechanics 21

bivector ξ ∧ η to define a Poisson structure, it is necessary and sufficient that (at regular points) the
condition [ξ,η] = fξ + gη is satisfied for certain functions f and g.

If such a decomposition of the Poisson structure is specified, then the question of stability is resolved
by calculating the Hessian of the function H restricted to a symplectic leaf. The following statement shows
how this can be done without calculating the Casimir functions C1, . . . , Ck and without explicitly imposing
the restriction H|Mc , where Mc = {Ci = ci, i = 1, 2 . . . , k}.
Theorem 2. Let x0 be an equilibrium point of a Hamiltonian system ẋ = J dH(x) and

μH(x0) =
∣∣∣∣ξ(ξ(H)) ξ(η(H))
ξ(η(H)) η(η(H))

∣∣∣∣
where ξ(H) is the derivative H along the vector field ξ (the value of the determinant is taken at the
point x0). Then

(1) if μh(x0) > 0, then x0 is a stable equilibrium point;
(2) if μh(x0) < 0, then x0 is an unstable equilibrium point.

Proof. In the neighborhood of x0, let us consider a local coordinate system x1, x2, C1, . . . , Ck, where
C1, . . . , Ck are the Casimir functions, and x1 and x2 are regarded as local coordinates on the symplectic
leaf Mc such that at the point x0 we have ∂x1 = ξ, ∂x2 = η (it is clear that we can always ensure that this
condition is satisfied at one distinguished point, making, if necessary, a linear change of variables).

Since the rank of J equals two, we can consider our Hamiltonian system as a system with one degree of
freedom in which the Casimirs C1, . . . , Ck play the role of parameters. The fact that x0 is the equilibrium
point means that ∂H

∂x1
= ∂H

∂x2
= 0. Its stability (both on an individual symplectic leaf and on the entire

Poisson manifold) is guaranteed by the well-known inequality

det d2H(x0) =

∣∣∣∣∣
∂2H
∂x2

1
(x0) ∂2H

∂x1∂x2
(x0)

∂2H
∂x1∂x2

(x0) ∂2H
∂x2

2
(x0)

∣∣∣∣∣ > 0.

Conversely, instability is guaranteed by the opposite (strict) inequality. Therefore, it suffices to verify that
μH(x0) = det d2H(x0).

This fact is almost obvious. Indeed, since ξ and η are tangent to the symplectic leaves, we have

ξ = ξ1∂x1 + ξ2∂x2, η = η1∂x1 + η2∂x2

where ξi and ηi are smooth functions such that ξ1(x0) = η2(x0) = 1, ξ2(x0) = η1(x0) = 0. Hence we obtain
by direct calculation

ξ(ξ(H)) =
2∑

i,j=1

∂2H

∂xi∂xj
ξiξj +

(
terms containing ∂H

∂x1
and ∂H

∂x2

)
.

Since at the point under consideration ∂H
∂x1

(x0) = ∂H
∂x2

(x0) = 0, the second term vanishes. Furthermore,
due to the special selection of our coordinate system, we have ξ1(x0) = 1, ξ2(x0) = 0. This yields

ξ(ξ(H))|x0 =
∂2H

∂x2
1

(x0).

Likewise, η(η(H))|x0 = ∂2H
∂x2

2
(x0) and ξ(η(H))|x0 = ∂2H

∂x1∂x2
(x0). In other words, μH(x0) = det d2H(x0),

Q.E.D. �

Remark 2. If μh(x0) = 0, then the question of stability requires further investigation.
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Conclusion

In conclusion, we mention some issues associated with this study and requiring further investigation.
It would be interesting to understand the generality of the investigated integration procedure in non-
holonomic mechanics, that is, to find new physically interesting problems that can be solved using this
procedure. We note that there exist brackets of rank two of a somewhat different nature — chaotic Poisson
brackets. There is not a single Casimir function for them, and the system that is defined on them may
exhibit chaotic behavior. Such brackets occur in the well-known Suslov problem. It would be interesting to
find out the mechanism of formation of such brackets and to identify additional mechanically substantial
problems in which they are encountered.
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