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Abstract

Uterine myomas or fibroids are common, benign smooth-muscle tumours that can grow
to 10 cm or more in diameter and are routinely removed surgically. They are typically
slow growing, well-vascularised, spherical tumours that, on a macro-scale, are a structurally
uniform, hard elastic material. We present a multi-phase mathematical model of a fully
vascularised myoma growing within a surrounding elastic tissue. Adopting a continuum
approach, the model assumes the conservation of mass and momentum of four phases, namely
cells/collagen, extracellular fluid, arterial and venous phases. The cell/collagen phase is
treated as a poro-elastic material, based on a linear stress-strain relationship, and Darcy’s
law is applied to describe flow in the extracellular fluid and the two vascular phases. The
supply of extracellular fluid is dependent on the capillary flow rate and mean capillary
pressure expressed in terms of the arterial and venous pressures. Cell growth and division
is limited to the myoma domain and dependent on the local stress in the material. The
resulting model consists of a system of non-linear partial differential equations with two
moving boundaries.

Numerical solutions of the model successfully reproduce qualitatively the clinically ob-
served three-phase “fast-slow-fast” growth profile that is typical for myomas. The results
suggest that this growth profile requires stress-induced resistance to growth by the surround-
ing tissue and a switch like cell growth response to stress. Analysis of large-time solutions
reveal that whilst there is a functioning vasculature throughout the myoma exponential
growth results, otherwise power-law growth is predicted. An extensive survey of the effect
of parameters on model solutions is also presented and, in particular, the enhanced growth
caused by factors such as oestrogen is predicted by the model.

Keywords: uterine myoma, continuum model, stress-strain relation, vascular flow, numerical
solution, perturbation analysis.

1 Introduction

Uterine leiomyomata, also known as fibroids or myomas, are the most common smooth muscle
tumours that develop in 20%-40% of women of reproductive age. Their growth depends greatly
on sex hormones and this is exploited as a pre-surgery treatment, where administering a hormone
agonist often leads to myoma shrinkage, aiding surgical removal. For most women they are
asymptomatic, but they can cause painful menstruation (with excessive bleeding), abnormal
urinary function and infertility. In the worst cases, hysterectomy is the main treatment. The
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estimated total cost of myomas in the USA during 2010 is between around $6-35 billion [7].
In this paper we present, to our knowledge, the first mathematical model of uterine myoma
growth. This is a first step into a theoretical investigation on myoma growth, ultimately aimed
at obtaining a better understanding of the interplay of hormones and uterine environment on
myoma growth, to provide new insights that could lead to improved therapies.

Myomas originate from the smooth muscle cells of the uterus. They generally grow in a
spherical shape and, on the macroscopic scale, the cells appear to be distributed uniformly
throughout. In addition to the smooth muscle component, they also possess a significant extra-
cellular matrix consisting of fibroblasts [26]. They are therefore highly fibrous with the collagen
fibrils randomly oriented, a characteristic different from the adjacent myometrium in which the
collagen fibrils are aligned in an orderly fashion [20, 30]. Clinically relevant myomas can be
several centimetres in diameter and are usually fully vascularised, with angiogenesis continu-
ously taking place; the absence of necrotic regions in most myomas [11] distinguishes them from
other large solid tumours, where poorly vascularised necrotic zones are a prominent feature in
vivo [17]. The study by Walocha et al. [35] demonstrated that while small myomas (∼ 2 mm
in diameter) appear to be avascular, at 4 mm in diameter blood vessels begin to invade from
the periphery, leading to a chaotic, but functioning, network of blood vessels in large myomas
(> 10 mm). Various distinctive stages of growth have been reported by Mavrelos et al. [25] in
their study on the history of fibroids, in which small (< 20 mm) and large (> 50 mm) fibroids
demonstrated fast growth while intermediate size fibroids grew at a slower rate. Our aim here
is to construct a mathematical model incorporating the key factors and processes, particularly
the vasculature, that is capable of describing the growth and development of large size myomas
which are clinically relevant and exhibiting the distinct stages of growth as reported by obser-
vations above. We first give a short account below of the current understanding of the processes
governing the growth dynamics and a brief overview on related modelling literature.

The growth of a tumours in general involves complex chemical and mechanical interactions.
In the case of myomas, the presence of oestrogen and progesterone up-regulates expression of a
plethora of growth factors both within myocytes and fibroblasts, enhancing cell proliferation and
collagen deposit [26], while at the same time the change in homeostasis in myomas accompanied
by altered mechanical stresses, suggests the interplay between the chemical and mechanical
effects and the role of stress in cell growth and fibroid development [20]. In vitro studies on
tumour spheroids have also demonstrated resistance to tumour growth as a result of stress
accumulated both within the tumour as well as in the surrounding medium. For example, by
culturing spheroids in gels of different agarose concentrations, and hence stiffness, Helmlinger et
al. [15] showed that increasing the stiffness of the gel, and thus the stress generated by growth,
reduces the tumour growth rate and its final size.

Various mathematical models have been proposed to model the dynamics of tumour growth,
see for example the review article by Lowengrub et al. [21] and references therein. While most of
these models have focussed on the chemical factors, more recently a number of models involved
the concept of stress have been developed. Jones et al. [18] considered a single phase model,
evaluating the residual stress as the tumour developed (in free suspension) but did not considered
the feedback of the stress generated. A two phase model proposed by Roose et al. [31] studied
the effect of stress on the development of small size tumours in which nutrient supply is a
limiting factor for growth with both the tumour and the surrounding agorose gel assumed poro-
elastic. Constitutively, a thermo-elastic model was adopted by these models to describe the
stress response to tumour expansion while the stress build-up is evaluated using a stress rate
equation. The model by Chen et al. [8] employed a hyper-elastic strain energy function for
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the description of the surrounding gel and its subsequent evaluation of stresses induced by the
continuous growth of tumour. These models while adopting different approaches demonstrated
similar results that the feedback of stress ultimately results in a reduction of the tumour size.
Mathematical models describing vascular flow in tumours have been investigated by a number
of authors mainly using hybrid discrete-continuum models, in which the vascular network is
described as connected discrete elements in the solution domain, e.g. [6, 21, 22]. Byrne and
coworkers [4, 16] used multi-phase, continuum models to study vascular tumour growth, in
which all phases behave as fluids, except for an additional pressure term for the cellular phase
that forces cells to move in order to alleviate stress under high compression. However, these
continuum models are aimed at describing soft tissue solid tumours and the assumption that all
phases are fluid-like are not suited for the fibrous material in myomas.

We propose a mathematical model to investigate the roles of stress and vasculature on
myoma development. While the presence of sex hormones is necessary to stimulate myoma
growth, we will as a first approximation assume that they are present at uniform representative
concentration levels; this approximation seems reasonable as our model will describe growth over
10-20 years and we assume in the current study that the monthly variations even out in the long
term. The explicit treatment of these hormones, extending current and previous work [9], will be
the subject of a future publication. We employ a continuum approach and focus our attention
on the growth of larger myomas (> 4 mm in diameter) and will thus assume angiogenesis is
continuously occurring throughout the myoma in a uniform manner such that nutrient is able
to reach all parts of the myoma simultaneously, at the same time the fluid seepage from the
vasculature will make up for the main extracellular fluid supply that sustains the new cell growth.
We thus propose a multi-phase model with a fluid phase for the extracelluar water, a solid phase
consisting mainly of myocytes, fibroblasts, collagen fibrils and two vascular phases, an arterial
phase and a venous phase; this is a novel approach that explicitly considers vasculature in a
solid-stress based continuum model of tumours. Furthermore, assuming two vascular phases, the
reason for which is discussed in the next section, is also a novel feature for a continuum model of
tumours, though a similar approach was proposed in a model of liver lobules [3]. Although most
biological tissues are anisotropic in nature, the randomness in the orientation of collagen fibrils
within myomas and the observed spherical shape lend us the description of the tumour as an
isotropic material; similar assumption will also be adopted for the surrounding tissues assuming
that anisotropy in the material property of the surrounding tissue does not play a significant role
in regulating myoma development. Further details of the assumptions will be given in the next
section when we present the mathematical model. The sections of this paper is thus organised
as follows. In Section 2, detailed formulation of the model is presented and spherical symmetry
is assumed for further analysis. Results of numerical simulations of the model are presented in
Section 3 and a conclusion with a summary and a brief discussion is given in Section 4.

2 Mathematical model

The mathematical model we proposed here considers the growth of a myoma embedded in a
surrounding tissue. The spatial domain x ∈ Ω(t), bounded by a closed curve Γ∞(x, t) = 0
(which could represent infinity), consists of a region occupied by the myoma x ∈ ΩM (t) and a
surrounding tissue region x ∈ ΩT (t) = Ω(t)/ΩM (t), separated by a closed curve Γ(x, t) = 0.
These regions are illustrated in Figure 1. In the absence of the myoma Ω = ΩT will be a fixed
space, but the growth of the myoma within may deform it. We will assume the myoma has
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Figure 1: Schematic of the model system. The domain is restricted by a closed (possibly infinite)
surface consisting of the myoma ΩM (t) and surrounding tissue ΩT (t), separated by a closed
interface given by Γ(x, t) = 0 (with outward normal n). Each region consist of cells (volume

fraction φ
(i)
s , i = 1, 2), extracellular space (φ

(i)
w ), arteries/arterioles (φa) and veins/venules (φv).

The volume fractions of the vasculature are assumed to be constant throughout, but that of
cells and extracellular space may differ between the myoma and surrounding tissue indicated by
the superscripts “(1)” and “(2)”, respectively.

developed sufficiently to have its own blood supply, and that adequate nutrients for growth are
present throughout. In this respect, myoma tissue is taken to be similar to normal tissue and
we assume in the modelling that there is no significant difference between the blood supply of
the two. The continuum approach requires that each control unit volume contains a sufficient
number of cells and that the average properties immediately surrounding a point are taken to be
the elastic properties of that point. The stress generated is therefore the average force per unit
area between these adjacent ’particles’ each consisting a number of cells. Note that in addition
to the description given in the text, the variables are also listed in Table 1.

All space in both regions are assumed to be occupied by cells and collagen (combined volume
fraction φs), extracellular space (principally water, φw) and vasculature (arteries φa and veins
φv). The separate treatment of arteries and veins distinguishes the current model to that of
related vascular tumour models, which consider only a single vasculature phase [4, 16]; the
benefits of doing this will be made clear after equation (2.5). There being no other material in
the regions means that the sum of these fractions is equal to unity, i.e.

φs + φw + φa + φv = 1. (2.1)

In general the volume fractions will not be the same throughout the domain. In our assumption
of the blood supply being similar in the two tissue types, we assume that φa and φv are constant
throughout; in the absence of detailed histological data to suggest otherwise, this is a reasonable
starting point. Implicit in this assumption is that as the myoma grows, new vasculature is
being generated to maintain the constant volume fraction. However, the cellular densities may
be different between the two tissues, but constrained by equation (2.1). As with the vascular
volume fractions, we will assume, as a first approximation, that the volume fractions φs and φw
are constant within the two tissues (but not necessarily equal), denoting them as φ

(1)
s and φ

(1)
w

for myomas and φ
(2)
s and φ

(2)
w for the surrounding tissue. We note that φs accounts for both
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Variable Representation dimension

vs(x, t) solid phase velocity field length/time
vw(x, t) water velocity field length/time
va(x, t) artery blood flow velocity field length/time
vv(x, t) vein blood flow velocity field length/time

pa(x, t) arterial fluid pressure force/area
pv(x, t) venous fluid pressure force/area
pw(x, t) extracellular fluid pressure force/area
prs(x, t) reaction stress force/area

ε(x, t) strain tensor in solid phase none
σ(x, t) stress tensor in solid phase force/area
S(x, t) volume growth rate per unit volume time−1

Table 1: List of model variables.

living cells and collagen fibre and we assume that as cells grow collagen is being laid down at
the same time, in such a way that the proportion of cells and collagen remains constant (we will
henceforth refer to this phase as the “solid phase”). Under these assumptions, both the myoma
and the surrounding tissue are therefore incompressible. We note that the superscript notation
applies to all variables listed in Table 1 and parameters to distinguish between quantities inside
and outside the myoma, however, in the discussion prior to Section 2.2 they will not be present
in the formulation on the understanding that the same equations apply to all variables in both
regions.

Blood flow in the model is driven by the pressure difference between the arteries and veins
on the boundary, namely pa∞ and pv∞ , respectively. These generate a flow with mean velocities
va in the arteries and vv in the veins. We assume volume transfer from the arteries to the veins
is proportional to the difference in pressure between arteries, pa, and veins, pv, to represent
flow in the capillaries connecting them. We assume that fluid from the capillaries leaks into the
extracellular space at a rate mutually proportional to the capillary flow rate (∝ (pa−pv)) and the
difference between capillary blood pressure, ψ(pa, pv) (assumed equal to the mean blood pressure,
i.e. ψ(pa, pv) = (φapa+φvpv)/(φa+φv)) and extracellular fluid pressure, pw, in accordance with
Starling’s law (assuming negligible osmotic pressure). The volume conservation equations for
blood flow are thus

φa∇ · va = −α (pa − pv), (2.2)

φv∇ · vv = α (pa − pv) − α1(pa − pv) (ψ((pa, pv) − pw) , (2.3)

where α is the hydraulic conductivity coefficient and α1 the leakage rate constant, recalling that
φa and φv are assumed constant.

In order for tissue to grow, fluid is taken in from the environment to be converted into new
cellular material. Let S be the volumetric cell growth rate per unit volume, then conservation
of volume of the solid phase means that

φs∇ · vs = S, (2.4)

where vs is the velocity of the solid phase. The function S will in general depend on many
factors and is discussed further below. The absorption of extracellular fluid by the growing
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cells and the volume gained from blood vessel leakage lead to the following volume conservation
equation for the extracellular fluid phase,

φw∇ · vw = −S + α1 (pa − pv) (ψ(pa, pv) − pw) . (2.5)

The separate treatment of the arterial and venous phases means that the capillary flow rate
(α(pa − pv)) and mean capillary pressure (ψ(pa, pv)) can be deduced naturally from the model.
Furthermore, the nonlinearity in the vascular leakage term in equation (2.5) ensures that the
proposed model is not invariant to changes in vascular pressure difference on the outer boundary,
i.e. pa∞ − pv∞ ; consequently, the effect of factors, such as oestrogen, that alters the blood flow
can potentially be predicted by the model (see Section 3.3).

For simplicity we assume that growth, and hence new volume, occurs only in the myoma
part of the domain, so that S = 0 in the surrounding tissue. Within the myoma we assume that
S is a bounded, non-negative function such that S ∈ [0, Smax], where Smax is the maximum
growth rate of of the solid phase material. In many models describing tissue or tumour growth,
it is assumed that the growth division of cells is dependent on a nutrient source, however, in
myomas it seems reasonable to assume that they are well vascularised and nutrient limitation
is not an issue, even in large myomas; features such as necrotic cores are absent in benign
myomas [11]. Furthermore, S will in general be dependent on the availability of extracellular
fluid to create new volume, but this is not a concern in the current model due to the assumption
that φw is constant. However, the colonies are dense and it is well known from experimental
studies that cell proliferation may be influenced by the feedback of the growth-induced stress
(see, for example, Helmlinger et al. [15]). The feedback processes involved are complex (e.g.
mechanotransduction within the cells) and a detailed description is beyond the scope of the
present study. We will therefore adopt a simple, but representative, form in this study, namely,

S =


Smax x ∈ ΩM , Tr(σs)/3 + pw∞ > 0,

Smax
1 + |Tr(σs)/3 + pw∞ |m/σmc

, x ∈ ΩM , Tr(σs)/3 + pw∞ ≤ 0,

0 x ∈ ΩT ,

(2.6)

where σs is the Cauchy stress tensor for the solid phase, Tr(σs)/3 is the mean normal stress,
−pw∞ is the mean normal background environmental stress (discussed in Section 2.1) such that
Tr(σs)/3 + pw∞ is the effective mean stress for material deformation. The modelling assumes
that under normal conditions cells experience stress according to Tr(σs)/3 = −pw∞ , such that
if Tr(σs)/3 < −pw∞ then cells are under compression and if Tr(σs)/3 > −pw∞ then they are
under tension. In broad agreement with [15], the function S is chosen so that the growth rate will
drop significantly under high compression, i.e. below a threshold stress Tr(σs)/3 + pw∞ < −σc,
where σc is some critical stress level. Under tension, i.e. Tr(σs)/3+pw∞ > 0, Tomasek et al. [34]
noted that mechanical tension is a signal for tissue generation; however, it turns out that since
the myoma is always growing (as S ≥ 0) the myoma cells are never under tension, so we have
assumed S = Smax for simplicity.

To describe the stress within myomas and the surrounding tissue, we use ideas stemming
from mixture theory. This approach has been widely used to describe multi-phase interactions
including that of tumour growth; see, for example, [1, 5] and the references therein. We assume
that the relaxation timescales of the myoma constituents are much shorter than that of growth
and we thus neglect inertia in our system. Hence, conservation of momentum leads to the
following force balance equations for each of the four phases,

0 = ∇ · (φiσi) + Fi, (2.7)
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where σi is the stress tensor for phase i, with i = a, v, s, w, and Fi is a body force. The system
being in equilibrium implies that

Fa + Fv + Fw + Fs = 0, (2.8)

see, for example, [1, 16]. For the fluid phases, we adopt the usual assumptions for (Darcy) flow
in a porous media, whereby the stress tensors reduce to

σa = −pa I, σv = −pv I, σw = −pw I, (2.9)

and the corresponding body forces account for the drag between the solid-fluid phases, hence

Fa = pa∇φa −
φa
ka
va, (2.10)

Fv = pv∇φv −
φv
kv
vv, (2.11)

Fw = pw∇φw −
φw
kw

(vw − vs), (2.12)

where the first term on each of the right-hand sides ensures that flow is generated only by
pressure gradients; however, with the assumption that the φis are piecewise constant in Ω, these
terms are zero. The constants kis are permeability coefficients that are in general dependent
on the fluid properties, the permeability of the porous media and inversely related to the drag
coefficients between the fluid-solid phases. Combining (2.7) and (2.9)-(2.12), leads to

va = − ka∇pa, vv = − kv∇pv, vw − vs = − kw∇pw, (2.13)

which are the Darcy’s law formulations for flow in a porous media.
Using (2.7)-(2.9) we have the force balance for the solid phase

∇ · (φsσs) = ∇ (φwpw + φapa + φvpv) . (2.14)

The solid phase is viewed as an isotropic elastic solid that over a small time interval the elastic
response is assumed to be locally linear. The proposed stress-strain relationship takes into
account the stress generated by deformation and growth of the tissue. We assume that the
stress generated in the vasculature is contained by the vessel walls and the environmental stress
experienced by the solid phase is that of extracellular pressure, pw. The linear stress-strain
relation is

σs = − pwI + 2µ ε + λ eI − Kη I − prsI, (2.15)

where I is the identity matrix. The first term on the right-hand side is the contribution to
the stress from environmental pressure. The second and third are the stress generated by
deformation, where ε is the strain tensor and e is the dilatation, defined as

ε =
1

2
(∇u+ (∇u)T ) and e = ∇ · u,

where u is the displacement of the solid phase and µ and λ are Lamé constants. The fourth
term describes stress induced by volumetric cell growth, in which η is the strain induced per unit
volume and K = 2µ/3 +λ is the bulk modulus; this term is analogous to modelling the thermal
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expansion of materials (see Landau and Lifshitz [19]) and assumed in the tumour models of Jones
et al. [18] and Roose et al. [31]. The final term, prs, is an arbitrary pressure that describes the
reaction stress resulting from the incompressibility assumption, i.e. the volume fraction of the
solid phase, φs, being piecewise constant. In general, prs cannot be prescribed and consequently
tissue stress can only be determined using the force balance equation (2.14); see, for example,
Spencer [32]. The stress-strain relation (2.15) is only valid for small strain over a small time
interval and cannot be used to describe stress build-up over a prolonged period of continuous
growth. As with related studies [18, 31], we evaluate this accumulated stress by differentiating
the constitutive equation (2.15) with respect to time, noting, in particular, vs = ∂u/∂t [32].
The principal of material invariance requires the objectivity of the quantities in the resulting
stress rate equation to be observed. There are many definitions for the time derivative that
preserves objectivity, of which the Jaumann derivative is commonly used for the stress rate
Dσs/Dt, defined as

Dσs

Dt
=

Dσs

Dt
+ ωσs − σsω, (2.16)

where D/Dt = ∂/∂t + vs · ∇ is the material derivative and ω = −(∇vs − (∇vs)T )/2 is the
second-order vorticity tensor (see, for example, Roose et al. [31] and Fowler and Noon [13]). We
thus derive the stress rate equation from (2.15) as

Dσs

D t
= − Dpw

D t
I + µ (∇vs+(∇vs)T ) + λ∇ · vs I − K

S

φs
I − Dprs

D t
I, (2.17)

where it is assumed that Dη/Dt = S/φs. The function η defined in this way ensures that in the
absence of any reaction stress, as in unrestricted tissue growth, the total normal stress σkk is
not affected by tissue growth by virtue of equation (2.4); this is equivalent to thermal expansion
of materials not leading to additional stress [19].

In the full three-dimensional problem there are twenty-two variables for each region, listed
in Table 1, consisting of four velocities each with three components, four pressures and six
components of the symmetric stress tensor σs, and there are twenty-two independent equations,
namely (2.2)-(2.5), (2.13), (2.14) and (2.17), so that given appropriate boundary conditions
(discussed in Section 2.2) the system of partial differential equations form a well-posed system.
The fact that myomas tend to grow spherically will enable a substantial reduction of the system
to be made, this being discussed in Section 2.3.

2.1 Non-dimensionalisation

Before we proceed to analyse the equations, it is convenient to write the equations in dimen-
sionless form. The spatial variable x is scaled with a representative initial length-scale L and
time is scaled with maximum myoma cell growth rate Smax, hence

x = L x̂, t =
t̂

Smax
,

where the quantities with hats are dimensionless. For the simulations of Section 3, |x̂| = 1 and
t = 1 represents about 2.5 mm and 1.5 years, respectively. The dependent variables are scaled
as follows

va = Lαp0 v̂a, vv = Lαp0 v̂v, vs = LSmax v̂s, vw = LSmax v̂w,

p∗ = p0 p̂∗ + pw∞ , σij = − pw∞δij + p0 σ̂ij , S = Smax Ŝ,
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where, ∗ = a, v, w and

p0 = pa∞ − pv∞ , pw∞ =
φapa∞ + φvpv∞

φa + φv
= ψ(pa∞ , pv∞).

Here, pa∞ and pv∞ are the far field arterial and venous pressures respectively, hence p0 is the far-
field pressure difference, and pw∞ is the mean far-field fluid pressure in tissues (i.e. the weighted
average of the arterial and venous pressures there). The constant p0 can be approximated by
the mean arterial pressure of about 104 Pa. The parameters are rescaled accordingly,

α̂1 =
α1 p

2
0

Smax
, µ̂ =

µ

p0
, λ̂ =

λ

p0
, K̂ =

K

p0
, σ̂c =

σc
p0
,

k̂a =
ka
αL2

, k̂v =
kv
αL2

, k̂w =
kw p0

L2 Smax
, ξ =

Smax
αp0

,

where the last dimensionless parameter is the ratio of volume rate of water intake by growing
cells and the volume rate of water flow in the blood; as cellular intake of water represents a
very small fraction of the water flowing through the tissues it follows that ξ � 1. The hats
of the rescaled variables and parameters are dropped in the following analysis for brevity. The
dimensionless mass conservation equations are as follows

φa∇ · va = −(pa − pv), (2.18)

φv∇ · vv = (pa − pv) − ξ α1(pa − pv) (ψ(pa, pv)− pw) , (2.19)

φw∇ · vw = α1(pa − pv) (ψ(pa, pv)− pw) − S, (2.20)

φs∇ · vs = S. (2.21)

In the remainder of the paper we will use ξ � 1 and simplify equation (2.19) assuming that ξ = 0.
The remaining equations take the same form as before and are included here for completeness.
The equations describing Darcy’s Law are

va = −ka∇pa, (2.22)

vv = −kv∇pv, (2.23)

vw − vs = −kw∇pw, (2.24)

the force balance equation is

∇ · φsσs = ∇(φapa + φvpv + φwpw), (2.25)

and the stress-strain rate equation is

Dσs

Dt
= − Dpw

Dt
I + µ(∇vs + (∇vs)T ) + λ∇ · vsI − K

S

φs
I − Dprs

Dt
I. (2.26)

The dimensionless form for the growth rate functions is

S =


1 x ∈ ΩM , Tr(σs) > 0,(

1 + (−Tr(σs)/3)m/σmc
)−1

x ∈ ΩM , Tr(σs) < 0,
0 x ∈ ΩT .

(2.27)

9



2.2 Boundary conditions: general case

Let the surfaces Γ(x, t) = 0 and Γ∞(x, t) = 0, shown in Figure 1, have outward unit normals
n and n∞ respectively. These boundaries move with the local cellular velocity leading to the
kinematic conditions,

∂ Γ

∂ t
+ vs

∣∣
Γ=0
· ∇Γ = 0,

∂ Γ∞
∂ t

+ vs
∣∣
Γ∞=0

· ∇Γ∞ = 0.

At the interface the cellular material inside and outside the myoma must be moving at the same
velocity, i.e. vs is continuous across the boundary. We also assume continuity of the pressures
pa, pv and pw, extracellular fluid flux φwvw and the force normal to the interface, hence,

Γ = 0 : vs
(1) = vs

(2), φ
(1)
w vw

(1) = φ
(2)
w vw

(2), va
(1) = va

(2), vv
(1) = vv

(2),

p
(1)
w = p

(2)
w , p

(1)
a = p

(2)
a , p

(1)
v = p

(2)
v , n ·

(
Σ(1) − Σ(2)

)
· n = 0,

where Σ(i) = φ
(i)
s σs

(i)−(φ
(i)
w p

(i)
w +φap

(i)
a +φvp

(i)
v )I, recalling that the volume fractions of arteries

and veins are taken to be equal in both tumour and surrounding tissue regions. On the outer
boundary given by Γ∞ = 0 (which could be at infinity), with outward normal n∞, we impose

Γ∞ = 0 : p(2)
w = 0, p(2)

a =
φv

φa + φv
, p(2)

v = − φa
φa + φv

, n∞ ·Σ(2) · n∞ = 0,

where the conditions on pa and pv are derived following non-dimensionalisation and the latter
conditions represent zero normal force on the outer boundary. Further boundary conditions
depend on the specific setup, e.g. the location of origin.

Initially, the regions will be contained within boundaries according to

t = 0 : Γ(x, 0) = Γ(0)(x), Γ∞(x, 0) = Γ(0)
∞ (x),

and initial conditions on the stresses to close equations (2.26).

2.3 Spherical geometry

By exploiting the spherical properties of myoma, the model can be significantly reduced. We
assume the entire domain Ω is a sphere centred at the origin r = 0, where r ≥ 0 is the radial
coordinate. The part of the domain occupied by the myoma (i.e. ΩM ) is assumed to be 0 ≤
r < R(t) and that for the surrounding tissue (ΩT ) is R(t) < r < R∞(t), where the radii R(t)
and R∞(t) (in the finite-sized domain case) are moving boundaries. Assuming radial symmetry
implies that displacement only occurs in the r direction, hence the angular velocities are all zero
and the stress tensor σs reduces to the diagonal matrix

σs =

 σrr 0 0
0 σθθ 0
0 0 σφφ

 ,

where θ ∈ [0, π] is the polar angle and φ ∈ [0, 2π) is the azimuthal angle. Moreover, radial sym-
metry implies that the angular stresses are equal, i.e. σθθ = σφφ [8], and that the second-order
vorticity tensor, w, in the Jaumann derivative in equation (2.16), is zero (i.e. D/Dt = D/Dt).
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The radially symmetric forms of (2.2)-(2.5), (2.13) and (2.14) in spherical geometry are
straightforward to derive using standard results. Explicit treatment of the arbitrary reaction
stress, prs, can be avoided by subtracting the evolution equations (2.17) of σrr and σθθ, namely(

∂

∂t
+ vs

∂

∂r

)
σrr = −

(
∂

∂t
+ vs

∂

∂r

)
(pw + prs) + 2µ

∂vs
∂r

+ λ

(
∂vs
∂r

+ 2
vs
r

)
− K

S

φs
,(

∂

∂t
+ vs

∂

∂r

)
σθθ = −

(
∂

∂t
+ vs

∂

∂r

)
(pw + prs) + 2µ

vs
r

+ λ

(
∂vs
∂r

+ 2
vs
r

)
−K S

φs
,

where vs is the solid phase velocity in the radial direction, to obtain a single equation for a new
variable σ̄ = σrr − σθθ, see equation (2.32). Let v∗ be the other radial velocities for ∗ = w, a, v,
then the full system of equations for the myoma and surrounding tissue, with the superscripts
(1) and (2) absent for clarity, are

φs
r2

∂(r2vs)

∂r
= S, (2.28)

φw
r2

∂(r2vw)

∂r
= −S + α1 (pa − pv) (ψ(pa, pv)− pw) , (2.29)

vw − vs = −kw
∂pw
∂r

, (2.30)

φs

(
∂σrr
∂r

+
2

r
σ̄

)
= φw

∂pw
∂r

+ φa
∂pa
∂r

+ φv
∂pv
∂r

, (2.31)

∂σ̄

∂t
+ vs

∂σ̄

∂r
= 2µ

(
∂vs
∂r
− vs

r

)
, (2.32)

with S = 0 when r > R(t), and for the vasculature

φa
r2

∂(r2va)

∂r
= −(pa − pv), (2.33)

φv
r2

∂(r2vv)

∂r
= pa − pv, (2.34)

va = −ka
∂pa
∂r

, (2.35)

vv = −kv
∂pv
∂r

, (2.36)

where we have imposed ξ = 0, as discussed above, in equation (2.34). Combining equations
(2.28)-(2.30) leads to the useful equation

1

r2

∂

∂r

(
r2∂pw

∂r

)
− γ2 (pa − pv) pw =

S

kw

(
1

φw
+

1

φs

)
− γ2 (pa − pv)ψ(pa, pv), (2.37)

where γ2 = α1/kwφw. We assume that the length-scale L in the non-dimensionalisation section
is the initial radius of the myoma (we assume L ≈ 2.5 mm). The full set of initial and boundary
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conditions are as follows

t = 0 : R = 1, R∞ = R0
∞, σ̄(1) = σ̄(2) = 0,

r = 0 : v
(1)
s = v

(1)
w = v

(1)
a = v

(1)
v = 0,

r = R(t) : v
(1)
s = v

(2)
s , φ

(1)
w v

(1)
w = φ

(2)
w v

(2)
w , v

(1)
a = v

(2)
a , v

(1)
v = v

(2)
v ,

p
(1)
w = p

(2)
w , p

(1)
a = p

(2)
a , p

(1)
v = p

(2)
v ,

φ
(1)
s σ

(1)
rr − φ

(2)
s σ

(2)
rr = (φ

(1)
w − φ(2)

w ) pw,

r = R∞(t) (or ∞) : p(2)
w = 0, p(2)

a =
φv

φa + φv
, p(2)

v = − φa
φa + φv

, σ
(2)
rr = 0,

(2.38)

and the moving boundaries satisfy

dR

dt
= v(1)

s (R(t), t),
dR∞
dt

= v(2)
s (R∞(t), t), (2.39)

the latter being relevant for R∞ < ∞. We note that in the last condition imposed on the
r = R(t) interface, we have used continuity of pi and φj , for i = w, a, v and j = a, v, to derive
the force balance. The initial condition σ̄ = 0 implies that at the initial state the material is
evenly stressed in all directions. The growth rate is given by

S =


1 r < R(t), σkk > 0,(

1 + (−σkk/3)m/σmc
)−1

r < R(t), σkk < 0,
0 r > R(t),

(2.40)

where σkk = Tr(σs) = 3σrr − 2 σ̄.
We note that a positive right-hand side to (2.29) means that the fluid is seeping out of

the vasculature at a faster rate than that being used in the growth of cells. In the limit of
zero blood pressure difference, i.e. pa − pv = 0, then using (2.28), (2.29) and (2.38), we have
vw = −φsvs/φw < 0 (since S ≥ 0); here, the extracellular fluid is being “passively” drawn
in from the surrounding tissue. This is the situation in all avascular growth models in which
extracellular fluid transport is explicitly considered and mass is conserved, e.g. [5, 8, 31]. The
balance between vascular and passively sourced extracellular fluid is discussed in Section 3.

The reduced system consists of nine variables for each region and two more in R(t) and
R∞(t); there are altogether twenty boundary and initial conditions in (2.38) and hence we
expect the system (2.28)-(2.40) to be well-posed.

2.3.1 Analytical solution of vascular equations

The vascular equations (2.33)-(2.36) and boundary conditions (2.38) form a closed system. For
the finite sized domain case, R∞ <∞, we can deduce the conserved quantity

φa ka pa + φv kv pv =
φa φv
φa + φv

(ka − kv) , (2.41)

and the differential equation for p̄ = pa − pv,

1

r2

∂

∂r

(
r2∂p̄

∂r

)
− δ 2 p̄ = 0,

12



where δ 2 = (φaka + φvkv)/(φaφvkakv), subject to ∂p̄/∂r|r=0 = 0 and p̄(R∞, t) = 1; which on
solution gives

p = pa − pv =
R∞ sinh(δ r)

r sinh(δ R∞)
, (2.42)

leading to

pa = β +

(
φv

φa + φv
− β

)
R∞ sinh(δ r)

r sinh(δ R∞)
, (2.43)

pv = β −
(

φa
φa + φv

+ β

)
R∞ sinh(δ r)

r sinh(δ R∞)
, (2.44)

va =

(
β − φv

φa + φv

)
R∞ (sinh(δr)− δr cosh(δ r))

r2 sinh(δ R∞)
, (2.45)

vv =

(
β +

φa
φa + φv

)
R∞ (sinh(δr)− δr cosh(δ r))

r2 sinh(δ R∞)
, (2.46)

where

β =
φaφv(ka − kv)

(φa + φv)(kaφa + kvφv)
,

recalling that φa and φv are taken to be identical for both tumour and surrounding tissue regions
and similarly are ka and kv.

On an infinite domain, i.e. R∞ =∞, bounded solutions are not possible. The limits ka →∞
and kv →∞, i.e. negligible drag in the vessels, lead to uniform presure distribution pa ≡ pa(∞)
and pv ≡ pv(∞), but with va → −∞ and vv → ∞ as r → ∞. For this case we will neglect the
flow velocities, and assume

pa ≡
φv

φa + φv
, pv ≡ − φa

φa + φv
, (2.47)

which represents a situation in which the entire domain has a uniform capillary network with
an even blood supply throughout. We note for this case, equation (2.29) reduces to

φw
r2

∂(r2vw)

∂r
= −S − α1 pw, (2.48)

and (2.37) reduces to

1

r2

∂

∂r

(
r2∂pw

∂r

)
− γ2 pw =

S

kw

(
1

φw
+

1

φs

)
, (2.49)

recalling that γ2 = α1/kwφw.

2.3.2 Analytical solutions for r > R(t)

In this region S ≡ 0, so equation (2.28) integrates to give

v(2)
s =

.
RR 2

r 2
, (2.50)
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where
.
R = dR/dt. In the finite domain case,

.
R∞ =

.
RR 2/R 2

∞, hence

R 3
∞ − R 0

∞
3

= R 3 − 1, (2.51)

which states that the change in volume of the entire domain volume is equal to the volume
change in the myoma, as expected.

Equation (2.32) becomes

∂σ̄(2)

∂t
+

.
RR 2

r 2

∂σ̄(2)

∂r
= − 6µ(2)

.
RR 2

r 3
,

subject to σ̄(2)(r, 0) = 0 and R(0) = 1, which, using the method of characteristics, solves to give

σ̄(2) = 2µ(2) ln

(
1 − R 3 − 1

r 3

)
. (2.52)

Integrating equation (2.31), using (2.52), leads to

σ(2)
rr =

φ
(2)
w

φ
(2)
s

p(2)
w +

φa

φ
(2)
s

pa +
φv

φ
(2)
s

pv +
4µ(2)

3

(
dilog((R 3−1)/R 3

∞)− dilog((R 3−1)/r 3)
)
,(2.53)

where dilog(x) = −
∫ x

0 ln(1−w)/w dw is the dilogarithm (or Spence’s function), such that
dilog(0) = 0 (relevant for R∞ →∞) and dilog(1) = π2/6.

3 Numerical Simulations

The simulations to follow are the combination of the numerical solution of equations (2.28)-(2.32)
and (2.38) and the analytical solutions (2.43), (2.44) and (2.52). For ease of computation, the
myoma and surrounding tissue regions were mapped onto the unit interval using r = R(t)ρ and
r = R(t) + (1− ρ)(R∞(t)−R(t)), respectively, so that in both regions the coordinate r = R(t)
is mapped to ρ = 1. We rescale all the variables and boundary conditions accordingly, where
we note in particular the stress rate equation (2.32) for r < R(t) becomes

∂σ̄(1)

∂t
+

(
v

(1)
s

R
− Ṙ

R
ρ

)
∂σ̄

∂ρ
=

2µ

R

(
∂v

(1)
s

∂ρ
− v

(1)
s

ρ

)
, (3.54)

where Ṙ = dR/dt. The equations were solved using a time-step adaptive, predictor-corrector
scheme incorporating the Numerical Algorithms Group (NAG) routine D02RAF (a boundary
value solver) to solve simultaneously equations (2.28)-(2.31), an implicit second-order accurate
hybrid scheme (the same as that used in [36]) for equation (3.54) and the trapezium rule for
R(t). The dilog function was approximated using NAG routine D01AJF (an integration routine
that is able to handle logarithmic singularities). To simulate the infinite sized domain case,
the surrounding tissue region was truncated, at r = RT say, where the analytical solutions
of Section 2.3.2 were used to the generate boundary conditions there and, by solving (2.49)

(with S = 0 and using p
(2)
w (∞, t) = 0), closure of the numerical problem was achieved via the

relationship p
(2)
w (RT , t) = p

(1)
w (R, t) e−γRT /RT . The solutions of the equations often evolve to

form a boundary layer at ρ = 1 and a contracting spatial mesh was used such that ρi+1 − ρi =
ν(ρi− ρi−1), where ν < 1, which enabled the simulations to run for large time using fewer mesh
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Parameter interpretation values

R0
∞ initial coordinate of outer boundary 30

µ(1), µ(2) Lamé constant 10
m exponent of the growth function 60
σc critical stress threshold 21.1
ka permeability constant for the arteries 104

kv permeability constant for the veins 104

k
(1)
w , k

(2)
w permeability constant for extracellular fluid 0.05

α1 transport coefficient between vasculature and fluid 0.1
φa arterial volume fraction 0.05
φv venous volume fraction 0.05

φ
(1)
w , φ

(2)
w extracellular fluid fraction 0.05

φ
(1)
s , φ

(2)
s cell volume fraction 0.85

Table 2: Table showing the standard values of the dimensionless parameters used in the simu-
lations. The derived parameters are δ ≈ 0.0632, β = 0 and γ ≈ 2.282 and since ka = kv then
the mean capillary pressure is given by ψ(pa, pv) = 0 from equation (2.41). See Section 3.1 for a
discussion on these parameters. In the simulations presented, t = 1 represents about 1.5 years,
r = 1 about 2.5 mm and 1 unit of stress or pressure is about 104 Pa.

points. For shorter simulations 200 points were sufficient, whilst for the longer runs up to 3000
points were used. The values of the parameters used in the simulations below are listed in Table
2, unless stated otherwise, and are discussed in Section 3.1.

An important factor concerning myoma growth as predicted by the model are the two ways
in which extracellular fluid is supplied to the tissue. These two ways are:

(1) Seepage from vasculature into the extracellular fluid. This will be referred to as “vascular-
influx”.

(2) Extracellular fluid drawn in “passively” from the surrounding tissue. This will be referred
to as “passive-influx”.

We will first present the standard simulation of the non-dimensionalised system and then discuss
the effects of the surrounding tissue, vascular efficiency and sources of extracellular fluid on
growth.

3.1 Standard simulation

Very small myomas (of size 1-3 mm in diameter) are usually avascular and, by about 4 mm in
diameter, blood vessels begin to invade from the periphery and infiltrate deep into the myoma
(see for example [35]). We assume in the simulations to follow that the myoma is fully vascu-
larised from the start and that the initial radius of R(0) = 1 represents about 2.5 mm, within a
surrounding tissue of about 75 mm (R∞(0) = 30). As discussed in the introduction, Mavrelos et
al. [25] used clinical data to show that small (< 20 mm in diameter) and large myomas (> 50 mm
in diameter) develop at a faster rate (volume growth of 51.3% and 40% in a year, respectively)
than those in between (volume growth of 16.8% in a year). This data suggests that growth
between 4-20 mm will be about 12 years and between 20-50 mm will be about 18 years, whereby
the combined total of about 30 years covers nearly the entire reproductive period in women.
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Figure 2: Evolution of the myoma radius R(t) and the growth rate dR/dt for the “standard
simulation”, noting that t = 1 is approximately 1.5 years and R = 1 represents a radius of about
2.5 mm. Parameters listed in Table 2.

There is considerable variation in this data and our aim in selecting the parameters in Table 2 is
to produce results that (1) reproduce qualitatively the fast-slow-fast growth pattern in myoma,
(2) ensure water in the core of the myoma is mostly sourced from the vasculature (i.e. the
right-hand side of (2.29) is positive at r = 0) and (3) are sensitive to blood pressure variations
(reflecting the effect of sex hormones on blood supply). On account of the variability of data
in [25] and the simplifying assumptions used in the model, we do not expect the parameters to
be definitive. The value µ = 10 corresponds to an elastic modulus of about 105 Pa, which is
3-4 times that of the hardest (soft-tissue) solid tumour listed in Netti et al. [27]. As necrotic
regions are not usually observed in myomas, the vasculature parameters are chosen to make
δ � 1, so that, whilst the myoma is of a biological relevant size, the vascular pressure difference
pa − pv = O(1) over the whole of the region. We note that we have prescribed a large value to
the exponent m in equation (2.40), reflecting a consistent level of growth whilst −σkk/3 < σc
and negligible growth when experiencing high compressive stress, i.e. −σkk/3 > σc.

In Figure 2, we show the evolution of the radius R and growth rate dR/dt using the standard
parameter set of Table 2. As desired, we obtain qualitatively the fast-slow-fast phases of growth
as observed in [25], where the second fast phase commences when R ≈ 10, corresponding to
a myoma of diameter of about 50 mm. We will refer to these three growth phases as Phase
1, 2 and 3, respectively. In the early stages (Phase 1), the stress levels, σkk, are sufficiently
small (Figures 3) so that it has negligible impact on growth and hence the volume growth rate
S ∼ 1 throughout the myoma region; this continues to be the case until −σkk/3 ≈ σc due to the
exponent m in (2.40) being large. This low initial stress is due to small myomas causing only
a small displacement, and hence stress, in the surrounding tissue. However, as can be observed
from Figures 3, the resistance by the surrounding tissue to growth of a “medium-sized” myoma
leads to stress building up to the threshold level σc, causing retardation of growth (Phase 2).
Eventually, the myoma reaches such a size that the surrounding tissue becomes sufficiently thin
so that it is no longer able to impart adequate resistance to restrict growth, consequently in time
the magnitude of the stress in the myoma will drop significantly and the growth rate will return
to an unconstrained level (Phase 3), where S ∼ 1. We note from the right-hand plot of Figure
4 that throughout the time period of the simulation the vascular pressure difference drops from
pa− pv = 1 to about 0.6 over the domain, and consistently about 0.6 in the myoma. The effects
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Figure 3: Dimensionless stress profiles at time t = 2 (solid curve), 5 (dashed curve), 10 (dotted
curve) for the standard simulation. See Table 2 for parameter values and its caption for the
scale in dimensional terms.

-20

-15

-10

-5

 0

 5

 0  5  10  15  20  25  30  35

flu
id

 p
re

ss
ur

e 
(p

w
 )

distance (r )

-0.4

-0.2

 0

 0.2

 0.4

 0  5  10  15  20  25  30  35

ar
te

ria
l a

nd
 v

en
ou

s 
pr

es
su

re
 (p

a,
 p

v )

distance (r )

Figure 4: Dimensionless extracellular fluid pressure distribution pw (left) and the distributions
of arterial and venous pressures pa and pv (right) at times t = 2 (solid curve), 5 (dashed curve),
10 (dotted curve) from the standard simulation. See Table 2 for parameter values and caption
for scale. Note that the arterial and venous pressures at the various time shown are almost
identical but the interface between the myoma and the surrounding tissue, marked out by the
diamonds, move outwards as time increases.

of the vasculature will be discussed further in Sections 3.3 and 3.4. If growth was allowed to
continue, the model predicts a further growth phase when myomas reach sizes well beyond that
which is relevant biologically, where pa−pv drops to negligible levels (this is discussed in Section
3.5).

The stress being negative within the myoma, as can be seen in Figure 3, is to be expected
as growth continuously causes compressive stress between cells. We note in this simulation that

within the myoma σ(1) ≈ 0 (not shown) so that σ
(1)
rr ≈ σ

(1)
θθ , i.e. cells within the myoma are

experiencing uniform stress from all directions. In contrast, the non-growing surrounding tissue
is compressed in the r direction by the growing myoma, but is stretched (hence, experiencing
tensile stress) in the angular directions. The tensile force will in fact continue to build up and,

from (2.52) and (2.53), we see that σ
(2)
θθ (R, t)→∞ as R→∞. The distribution of σ

(1)
rr attains
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Figure 5: Distribution of dimensionless cell (left) and fluid velocity (right) at time t = 2 (solid
curve), 5 (dashed curve), 10 (dotted curve) for the standard simulation. See Table 2 for param-
eter values and caption for the scale.

its minimum around t = 11, before the rapid growth resumes as the stress subsides.
The plots in Figure 4 show the distribution of extracellular pressure (left) and vascular

pressure (right) at various time points. Initially, rapid growth leads to high consumption of
extracellular fluid to produce new cells, that generates high negative pressure in the myoma
core. As growth slows in Phase 2, the pressure subsides as growth slows (t = 5 and t = 10
curves in the Figure), which then builds up again as rapid growth resumes in Phase 3. The
sources of extracellular fluid, i.e. from the vasculature or being drawn in from surrounding
tissue, are investigated in Section 3.4.

Figure 5 shows the distribution of cell velocity (left) and extracellular fluid velocity (right)
at times t = 2, 5 and 10. As shown in Figure 3, the stress distribution, and consequently the
growth rate S (not shown), are fairly uniform throughout the myoma, so the cell velocity vs
is approximately linear for r < R (which makes the right-hand side of (2.32) small, leading to
σ ≈ 0) and decays according to (2.50) for r > R. All of the profiles of vw are qualitatively similar
and show, except in the vicinity of the interface at r = R, that extracellular fluid is generally
flowing away from the myoma centre. In the core of the moyoma at t = 2, the demand for
fluid for cell growth volume is met by the vasculature (i.e. vascular-influx dominated, we note
vw ≥ 0 there), however, in the interface region, extracellular fluid is being drawn in from the
surrounding tissue (passive-influx) at a sufficient rate to dominate that from blood flow (hence
vw < 0). As r increases into the surrounding tissue the effect of myoma growth subsides, and
since in this region pw ∼ 0 then from (2.30) vw ≈ vs.

3.2 Effect of surrounding tissue on growth

In the standard simulation, the surrounding tissue imparts a resistive stress that reduces the
rate of growth during Phase 2. This continues until the surrounding tissue becomes sufficiently
thin and its ability to impart stress subsides and growth moves into Phase 3. We thus expect
thickness of this tissue to have a significant effect on growth after Phase 1. This turns out to
be the case as is illustrated in Figure 6. We note that R∞(0) = 30 corresponds to a diameter
of 15 cm, which is approximately the dimension of the pelvic cavity. The figure shows that
increasing R∞(0) has the effect of reducing the duration of Phase 1, and slowing the growth and
extending the duration of Phase 2. We note that the vascular pressure difference will be higher in
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Figure 7: Dependence on parameters governing vascular flow and efficiency on the evolution of
myoma radii, R(t). On the left, the effect of the far-field vascular pressure difference is shown for
the given factors Ψ. Shown on the right the effect of vascular permeability ka = kv on growth.
All the other parameters are listed in Table 2 and those adjusted by the factor Ψ are listed in
Table 3.

myomas surrounded by a thinner tissue, which contributes partly to the enhancement of growth
rate. By allowing growth to continue beyond biologically relevant constraints, the solutions will
eventually settle to the Phase 4 profile discussed in Section 3.5. Note that larger surrounding
tissues result in higher stress levels leading to smaller tumour sizes; this is in good qualitative
agreement with the predictions of other tumour growth models [8, 31] (albeit avascular growth)
as well as experimental observations [15].

3.3 Effect of blood flow on growth

Sex hormones, such as oestrogen, are believed to play a major role in the growth of myomas
[12, 24, 28, 29]. The presence of oestrogen induces vesodilation leading to an increase in blood
flow maintaining nutrient supply to the myoma cells [29]. In menopause, without the sustained
oestrogen production, myomas cease to grow and often shrink in sizes [12]. This is exploited in
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Parameter values (Ψ = 1) values (Ψ = 3) values (Ψ = 0.3)

µ(1), µ(2) 10 3.3 33.3
σc 21.1 7.03 70.3

k
(1)
w , k

(2)
w 0.05 0.15 0.015

α1 0.1 0.9 0.009

Table 3: Adjusted parameter values corresponding to vascular pressure difference factor Ψ.

the treatment of myomas, where gonadotropin-releasing hormone (GnRH) agonists are used to
reduce oestrogen production, thereby causing myoma shrinkage and facilitating their surgical
removal. Although, oestrogen is not considered in the current model, we can simulate its effects
by altering flow characteristics of the blood. We will investigate two ways in which this can be
done, firstly effecting the far-field pressure difference (p0 = pa∞ − pv∞ in dimensional terms),
reflecting a change in flow into the uterus, and secondly effecting the extent of permeability of
the vessels in the uterus (parameters ka and kv).

Due to the way the system was non-dimensionalised, an adjustment of p0 affects the di-
mensionless values of a number of parameters. More specifically, if we set p0 7→ Ψp0, where
Ψ is a dimensionless factor, then the relevant dimensionless parameters are affected as follows,
µ 7→ µ/Ψ, α1 7→ Ψ2α1, kw 7→ Ψkw and σc 7→ σc/Ψ. The modified values used in the simulations
shown in Figure 7 are listed in Table 3. It would be expected that decreasing Ψ would slow
myoma growth and this is observed in the figure. The Phase 1 of growth is relatively unaffected
by Ψ, but the timescale of Phase 2 is extended as Ψ decreases. The similarities in Phase 1 is
due to the choice of the growth function S being a function of stress only, which is constant
until Phase 2 begins. The reason for the differences in results here is due to the nonlinearity
of equation (2.29) leading to the nonlinear scaling of α1 in terms of Ψ. We note that the role
of nutrients is not considered in the current model and a reduced blood supply will mean a
reduction in nutrients and probably the growth rate as well (though the lack of necrosis in most
myomas suggests that they are seldom nutrient limited).

An increase of the vascular permeability constants ka and kv would have the expected effect
of enhancing growth and this is indeed shown to be the case in the right of Figure 7. Over a
biologically relevant timescale, the most dramatic effects are observed for values of ka = kv ∈
(102, 106). Growth using permeability values of ka = kv = 102 or less (or equivalently δ & 2)
is indistinguishable from the avascular case (corresponds to ka = kv = 0); here, the pressure
difference drops down to near zero close to the edge of the surrounding tissue, resulting in
pa − pv ∼ 0 throughout the myoma. For ka = kv = 106 or more (equivalently δ . 0.0063) the
growth follows more-or-less that of ka = kv =∞; however, the solutions will eventually diverge
as R increases and the pressure difference drops to zero in the core.

3.4 Vascular versus passive influx in myomas

The right-hand side of equation (2.29), namely F = −S+α1(pa− pv)(ψ(pa, pv)− pw), describes
the local rate of change of fluid volume. If the predominant extracellular fluid source is via
vascular influx then this function will be positive, whilst negativity would suggest that passive
influx is the dominant source. We are not aware of any detailed quantitative experimental study
of the source of extracellular fluid in tissues, but under normal circumstances, it is likely that in
vascularised myomas, fluid would mostly be sourced via vascular influx; which was assumed in
the choice of standard parameters in Table 2. In this section we investigate the effect of some
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Figure 8: Bifurcation diagrams in parameter-R space, showing regions in which the source of
water in the myoma is vascular-influx dominated (labelled V) and passive-influx dominated
(labelled P), for myomas growing at a maximum rate (i.e. S ≡ 1 in the myoma region). The
lines marks the path ∂vw/∂r = 0 at r = 0 in kw−R (left), α1−R (middle) and δ−R (right) space,
where in each case all other parameters are fixed. The biologically relevant regions correspond
to R . 20. The � symbols indicate the points corresponding to the values presented in Table 2.

of the parameters on the dominant source of extracellular fluid. To simplify the analysis we
focus on the case when S ∼ 1, which means that the analysis is directly relevant for growth

Phases 1 and 3 and we also assume φ
(1)
w = φ

(2)
w and k

(1)
w = k

(2)
w , as is the case of the parameters

in Table 2. In avascular myomas and tumours extracellular fluid transport is entirely through
passive influx, and a simple definition to describe the transition point between passive- and
vascular-influx dominated flow is when F = 0 at r = 0. The reduced system and the method of
solution used is presented in Appendix A.

The plots in Figure 8 show the bifurcation curves that separate the regions in parameter-R
space between vascular-influx and passive-influx dominated flow (as defined above) sources of
extracellular fluid at r = 0. We recall that the constant kw is the permeability coefficient, which
encompasses porosity of media and is inversely related to the drag between fluid-solid phases.
In the region of R . 20 the resistance to passive-influx is reduced as kw increases, meaning that
fluid is able to penetrate deeper (hence k′w(R) > 0 on the bifurcation curve). However, as R
increases beyond 20, the vascular pressure difference decreases becoming exponentially small at
r = 0; so along the bifurcation the reduced effectiveness of blood supply is compensated by a
reduction in permeability. For small myomas it is easy for fluid to be transported throughout
via passive-influx, so the vessels need to be very leaky (i.e. large α1) in order for vascular-influx
to dominate, however, as R increases (up R . 20) the passive transport is effected more by drag
and so the leakage rate can be reduced. Once again, for R & 20, the decrease in blood flow
means that to compensate the vessels must be increasingly leaky as r increases. In fact the the
first two curves are directly related since the system derived in Appendix A is invariant under
the transformation pw 7→ Υ−1 pw, α1 7→ Υα1 and kw 7→ Υkw, for any Υ ∈ R/{0}. It follows that
along the bifurcation curve F (α1/kw) = R, where F is some function, and is the reason for the
apparent horizontal symmetry in the shape of the first two curves. The � symbols denote the
points on the bifurcation curve corresponding to the data in Table 2, the left-hand one being of
biological relevance (i.e. R . 15 − 20); we note that the initial condition of R = 1 lies in the
region V.

The parameter δ is inversely related to the permeability of the myoma’s vasculature. The
data values of Table 2 give δ ≈ 0.06 so that for R = 10 the vascular pressure difference at r = 0
is about 57% of the maximum at the r = R∞ boundary, reducing to 10% when R ≈ 69. For
R . 0.73, fluid transport is dominated by passive-influx, whilst in 0.73 . R . 10 the reduction
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of extracellular fluid permeability means that, for small enough δ, vascular-influx will dominate.
For R & 10 the efficiency of blood-flow must increase in order to compensate for increase in
myoma size, hence the descent of the bifurcation curve.

3.5 Long time behaviour

Further insights into the behaviour of the model solutions can be gleaned from examining them
in large time. Such solutions perhaps have no direct relevance biologically, as myomas will not
be permitted to grow for so long, but they do indicate which particular mechanisms are most
important in each of the growth phases discussed above. The plot of the growth rate in Figure
2 is extended in the left of Figure 9 to t = 100. The circled numbers in the figure are labels for
the growth phases, the first three of which already discussed in Section 3.1. Phases 1 and 3 are

characterised by low levels of stress within the myoma so growth is given by R ≈ R[∗]e
t/3φ

(1)
s

where R[∗] is a constant (R[∗] = 1 in Phase 1). Phases 2 and 4 are more interesting.
The intermediate growth phase, Phase 2, is a period in which the surrounding material

becomes stretched and stressed by the growing myoma, but being considerably larger than the
myoma at this stage it is able to impart stress that has the effect of reducing S(σkk) in the
growing region. In Appendix B, we analyse the model in an extreme version of this scenario,
in which the surrounding tissue is extended to infinity, i.e. R∞ = ∞, the vascular pressure
difference is set to pa − pv = 1 throughout the domain (see Section 2.3.1) and we seek solutions
in the limit R(t) → ∞. This limit of the model is a reasonable approximation to the full one
provided R/R∞ � 1 and pa − pv is approximately constant in the myoma. For large R, the
analysis shows that the stresses imparted by the surrounding material are constant at leading
order over most of the myoma, namely σkk ∼ σ∗rr, where σ∗rr is the solution to equation (B.17).
Consequently, S is constant at leading order and therefore growth is exponential, such that

Ṙ/R = Θ ∼ S(σ∗rr)/3φ
(1)
s as R → ∞. The right plot in Figure 9 shows the evolution of Θ in

time, where the predicted large-time value is indicated by the dashed line.
In Phase 4, the vasculature pressure difference in pa − pv is exponentially small across most

of the myoma as R→∞, and it is only in the rim region, where R−r = O(1/δ), is the difference
of O(1) size. In the absence of vasculature, the only source of fluid in the core of the myoma is
via passive-influx, and in large myomas that leads to an ever increasing build up in extracellular
fluid pressure and consequently stress from the force balance equation (2.31). In Appendix C,
term balancing arguments is used to show that growth evolves according to

R ∼ R[4] t
(m+1)/2m,

as t→∞, where R[4] is a constant. In the case of Phase 4 growth shown in the left of Figure 9,

we obtain R ∼ R[4] t
61/120, however, this large time solution takes a very long time to emerge

in the simulation (see Appendix C).

4 Conclusion

The relatively simple structure and geometry of myomas are desirable properties for mathemat-
ical modelling, since the simplifying assumptions that are commonly used to reduce the more
complex tumour models (e.g. spherical symmetry and isotropy) are well suited to myomas in
vivo. The absence of necrosis [11], even when they are large, suggest that the vasculature func-
tions well in myomas, unlike most other large solid tumours. This is most likely due to the slow
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Appendix B.

growth of myomas (over 15-25 years), allowing for a more robust vascular system to develop.
On account of the hard, elastic nature of myomas, we modelled this using a solid mechanics
approach to describe the effects of stress on myoma growth within a surrounding tissue. As a
first approximation, we have assumed isotropy of the material and that the volume fractions
of all components are constant within the myoma and the surrounding tissue. We proposed
a simple linear stress-strain relationship, which, on differentiation with respect to time, was
made applicable to an evolution problem with accumulated stress. Coupled to this we modelled
fluid flow in the blood and extracellular space using standard approaches for modelling flow in a
porous media; in particularly, we treated separately arterial and venous flow, which distinguishes
this model to those studied in [4, 16]. Since the growth of myomas requires the conversion of
extracellular fluid into cellular material, the fluid transport within myomas plays a major role in
their growth; the current model considers two fluid sources, which we termed “vascular-influx”
and “passive-influx”.

The fast-slow-fast growth pattern of myoma growth, as described by Mavrelos et al. [25], was
captured by the model (described as growth Phases 1, 2 and 3). Nutrient limitation is unlikely
to be the only cause of this, as necrosis is largely absent in myomas. Our model suggests
that this growth pattern can be explained by the combination of (1) stress build-up through
myoma growth and resistance by the outer tissue and (2) the near cessation of cell growth
in high compressive stress conditions. Initially, stress is low and hence growth is unhindered
due to negligible displacement in the surrounding tissue (Phase 1), but when the displacement
becomes non-negligible, it imparts stress that builds up in the myoma causing the slowing of
growth (Phase 2), until the surrounding tissue is stretched sufficiently thin so that its ability to
resist growth subsides and growth is able to accelerate once again (Phase 3). We note that in
order for these growth phases to be visibly distinct as they appear to be clinically, there needed
to be a sharp transition around a critical stress level σc in the growth function S.

The explicit treatment of vascular transport in the model provides a number of insights into
the extracellular fluid flow in myomas. When myomas are small and avascular (< 2− 3 mm in
diameter), flow is dominated by passive-influx of fluid from the surrounding tissue. However, the
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balance shifts to dominance via vascular-influx for larger myomas (> 5 mm in diameter). Whilst
vascular-influx is effective, the analysis of Section 3.5 showed that growth will be exponential,
maximally fast in Phases 1 and 3 (due to S ∼ 1 in the myoma) and much slower in Phase 2.
Although not relevant for myomas in clinical terms, but would be the case for most other large
solid tumours, a collapse in blood flow in the core of the myomas leads to power-law growth
(Phase 4). Of course, the collapse in blood flow means that the delivery of nutrients and oxygen
ceases and necrosis will develop, a feature the current model is not set up to predict.

The parameters used in the simulations were chosen to produce results that resemble the
observed characteristic growth pattern of myomas. We made informed guesses for the volume
fraction parameters, but there is very little data available to improve our estimates of the other
parameters. The surgical removal of myomas is very common and there is potentially no shortage
of samples that could be used for ex vivo experiments; for example, to determine more precisely
the volume fractions, the permeability of the blood vessels (e.g. obtain estimates for vascular
porosity and tortuosity), hydraulic conductivity of the non-vascular phases and the material
properties of a myoma (e.g. estimates for the Lamé constants µ and λ). From our numerical
experiments, we found that the model results are qualitatively robust to parameter changes, and
only quantitatively sensitive to changes in µ, σc and m (not shown). This sensitivity is due to
the term −σkk/3σc in S being raised to a large power m (being necessarily large to induce near
cessation of growth under sufficient compressive stress), so that the effects of small changes in
the stress related parameter values are somewhat magnified. We note that our choice of function
S was to agree in simple terms the qualitative description of stress-inhibited growth in [15] and
there is scope for refinement in our future work (see below).

Described in this paper is a first attempt to model uterine myoma growth. This model
forms the foundation of future work investigating the interplay of factors, such as hormones and
environment, on myoma growth and how these factors can be manipulated to best control it. As
a pre-surgical treatment, the size of myomas are reduced using gonadotropin-releasing hormone
(GnRH) agonists, which has the effect of reducing oestrogen production and, in turn, reduces
blood flow into the uterus. Typically, the myoma shrinks to about half in size over a three
month period [10, 14]. Interestingly, following the termination of treatment, if the shrunken
myomas are not removed they will grow back to the original size within about 6 months, i.e. in
a much shorter time than it took to grow the same volume before treatment [10, 14]. Though the
model qualitatively predicts the action of oestrogen (Section 3.3), it will not be able to predict
volume reduction by this treatment due to the constraint S ≥ 0, meaning that the myoma
can only increase in size. What causes the initial shrinkage and relatively rapid regrowth is
unclear, but the absence of necrosis suggests that cell death is not likely to be the only cause.
We will be investigating plausible mechanisms for this. Further modelling extensions will be to
relax the fixed volume fraction assumption and allow for inhomogeneities in the material. This
will enable the consideration of other plausible growth effecting mechanisms, such as contact
inhibition, that will lead to a refinement of growth function S. Many, but not all, myomas are
enclosed in fibrous capsules, which will undoubtedly effect growth and the stress within; this may
require the separation of the cellular and collagen components of the solid phase to realistically
describe this process. Incorporating these additional features will hopefully provide a modelling
framework by which realistic predictions can be made for hormone therapies. Nevertheless, the
results presented in this paper are encouraging and provide a number of predictions that would
benefit considerably from experimental verification.
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Appendix A: Vascular versus passive influx in myomas

By setting S = 1, the bifurcation plots in Figure 8 are generated by solving

1

r2

∂

∂r

(
r2∂pw

∂r

)
− α1

φw kw

R∞ sinh(δ r)

r sinh(δ R∞)
pw =


1

kw

(
1

φw
+

1

φs

)
r < R,

0 R < r < R∞,

using (2.37) (with ψ(pa, pv) = 0 using the values in Table 2) and (2.42) for pa − pv, and the
boundary conditions

r = 0
∂p

(1)
w

∂r
= 0, p(1)

w = −sinh(δ R∞)

α1 δ R∞
,

r = R p(1)
w = p(2)

w ,
∂p

(1)
w

∂r
=

∂p
(2)
w

∂r
,

r = R∞ p
(2)
w = 0,

where the second condition at r = 0 results from pw = 1/(α1(pa − pv)) and (2.42) in the limit
r → 0 and the second condition at r = R follows from (2.30) and (2.38) with uniform φw
and kw. This is a fourth-order ODE system with five boundary conditions and hence there is
a free parameter to be determined as part of the solution. This system was solved using the
MATLAB boundary value solver bvp4c and the Newton-Raphson method was used to iteratively
determine the free parameter. A simple continuation procedure was employed to complete the
curves shown in Figure 8.

Appendix B: Large time analysis of intermediate growth phase

The numerical results show that up to t = 25 there are three apparently distinct phases of growth,
an initial accelerating phase in which the small myoma grows with little resistance from the outer
tissue, an intermediate phase of near linear growth in which the stiffness of outer material slows
growth, and a final (transitory) acceleration phase in which the outer tissue becomes thin (due
to volume conservation) and resistance to growth becomes negligible. Throughout these phases
the vascular pressure difference, pa − pv, is O(1); when the myoma becomes large, pa − pv → 0
over most of the myoma causing growth to eventually slow down.

To analyse the second, intermediate growth phase, we assume that pa − pv ≡ 1 throughout
the domain and we assume that the outer tissue extends to infinity. The latter assumption
reflects the relative large volume difference between the relatively small myoma and the outer
tissue during this growth phase. With these assumptions, the large time solutions (equivalently,
as R→∞) are exponential and we write

Ṙ

R
∼ Θ, (B.1)
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as R → ∞; typically Θ � 1 in the biologically relevant case. It will be shown in Section B.2.2
that

Θ ∼ S(σ∗rr)

3φ
(1)
s

, (B.2)

where σ∗rr is the solution to the implicit equation (B.17). To facilitate the analysis we rescale
the variables as follows

r = Rρ, vs = Ṙ v̂s, vw = Ṙ v̂w, pw = p̂w, σrr = σ̂rr, σ = σ̂,

so that the equations become

1

ρ2

∂(ρ2v̂s)

∂ρ
=

Ŝ

Θφs
, (B.3)

1

ρ2

∂(ρ2v̂w)

∂ρ
= − Ŝ

Θφw
− α1

Θφw
p̂w, (B.4)

v̂w − v̂s = − kw
ΘR2

∂p̂w
∂ρ

, (B.5)

∂σ̂rr
∂ρ

+
2

ρ
σ̂ =

φw
φs

∂p̂w
∂ρ

, (B.6)

1

Θ

∂σ̂

∂t
+ (v̂s − ρ)

∂σ̂

∂ρ
= 2µ

(
∂v̂s
∂ρ
− v̂s

ρ

)
, (B.7)

where Ŝ = S(σ̂kk/3) and σ̂kk = 3σ̂rr − 2σ̂. From the numerical simulations, it turns out that
within the myoma σ � 1 over the entire region except in a boundary layer region at ρ = 1; in
fact this is true when non-zero initial conditions are imposed on σ(ρ, 0) as long as σ(0, 0) = 0
(a demonstration of this is given by the linear stability analysis of Section B.3). It is useful to
combine equations (B.3)-(B.5) to obtain

1

R2

1

ρ2

∂

∂ρ

(
ρ2∂p̂w

∂ρ

)
− γ2 p̂w =

Ŝ

kw

(
1

φs
+

1

φw

)
, (B.8)

where γ2 = α1/kwφw. For simplicity, we assume φ
(1)
w = φ

(2)
w = φw as was adopted in the

simulations, and we subject these equations to the following

ρ = 0 v̂
(1)
s = 0, v̂

(1)
w = 0,

ρ = 1 v̂
(1)
s = v̂

(2)
s = 1, v̂

(1)
w = v̂

(2)
w , p̂

(1)
w = p̂

(2)
w , φ

(1)
s σ̂

(1)
rr = φ

(2)
s σ̂

(2)
rr ,

ρ =∞ p̂
(2)
w = 0, σ̂

(2)
rr = 0.

 (B.9)

The analysis for φ
(1)
w 6= φ

(2)
w follows the same lines, but the water pressure pw scales with R, as

opposed to being O(1) when φ
(1)
w = φ

(2)
w , where it can be shown that pw(1, t) ∼ R(t)Θ(φ

(1)
w −

φ
(2)
w )/kwγ(φ

(1)
w + φ

(2)
w ) as R(t)→∞.
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B.1 ρ > 1

With Ŝ = 0, the equations can be solved for the tissue region, giving

v̂(2)
s =

1

ρ2
,

v̂(2)
w =

1

ρ2
+
P0 kw (γRρ+ 1)

R2 Θ ρ2
e−γR(ρ−1),

p̂(2)
w =

P0

ρ
e−γR(ρ−1),

σ̂(2)
rr = −4µ(2)

3
dilog

(
1

ρ3
− 1

R3ρ3

)
+
P0 φw

ρ φ
(2)
s

e−γR(ρ−1),

and σ̂ = 2µ ln
(
1−1/ρ3+1/(ρ3R3)

)
and recalling dilog(x) = −

∫ x
0 ln(1 − w)/w dw, and, in par-

ticular,

ρ = 1 v̂(2)
s = 1, v̂w = 1 +

P0 kw (γR+ 1)

R2 Θ
, p̂(2)

w = P0,

σ̂(2)
rr = −4µ(2)

3
dilog

(
1− 1

R3

)
+
P0 φw

φ
(2)
s

,

 (B.10)

where P0 is a constant of integration.

B.2 ρ < 1

There are two layers in the limit R → ∞, an outer layer where ρ = O(1) and an inner layer
where 1− ρ = O(1/R).

B.2.1 Inner region, 1− ρ = O(1/R)

Writing ρ = 1− ρ̂/R, where ρ̂ = O(1) as R→∞, the inner equations become

R
∂v̂s
∂ρ̂
− 2 v̂s

1−ρ̂/R
= − Ŝ

φ
(1)
s

, (B.11)

v̂w − v̂s =
kw

ΘR

∂pw
∂ρ̂

, (B.12)

∂2p̂w
∂ρ̂2

− 1

R

2

(1−ρ̂/R)

∂pw
∂ρ̂
− γ2 p̂w =

Ŝ

kw

(
1

φ
(1)
s

+
1

φw

)
, (B.13)

R
∂σ̂rr
∂ρ̂

− 2

1−ρ̂/R
σ̂ = R

φw

φ
(1)
s

∂p̂w
∂ρ̂

, (B.14)

and we adopt the following expansions

v̂(1)
s ∼ v̂[i]

s0 , v̂(1)
w ∼ v̂[i]

w0
, p̂(1)

w ∼ p̂[i]
w0
, σ̂(1)

rr ∼ σ̂[i]
rr0 , σ̂ ∼ σ̂[i]

0 , Θ ∼ Θ0.

Imposing the boundary conditions (B.10) we obtain v̂
[i]
s0 = 1, v̂

[i]
w0 = 1 and

σ̂[i]
rr0 = −2φ

(2)
s µ(2) π2

9φ
(1)
s

+
φw

φ
(1)
s

p̂[i]
w0
, (B.15)
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using the fact dilog(1) = π2/6, where

∂2p̂
[i]
w0

∂ρ̂2
− γ2 p̂[i]

w0
=

S(σ̂
[i]
kk0
/3)

kw

(
1

φ
(1)
s

+
1

φw

)
,

which cannot be solved analytically for general S(.), but we can deduce that

p̂[i]
w0
∼ −

S(σ̂
[i]
kk0
/3)

γ2 kw

(
1

φ
(1)
s

+
1

φw

)
,

as ρ̂→∞, where σ̂
[i]
kk0

= 3σ̂
[i]
rr0 − 2σ̂

[i]
0 .

B.2.2 Outer region, ρ = O(1)

We assume the following expansions

v̂(1)
s ∼ v̂[o]

s0 , v̂(1)
w ∼ v̂[o]

w0
, p̂(1)

w ∼ p̂[o]
w0
, σ̂(1)

rr ∼ σ̂[o]
rr0 , Θ ∼ Θ0,

and adopting the assumption that σ̂ � 1 (in fact σ = O(1/R) is sufficient, see Section B.3),

then σ̂
[o]
kk0
/3 = σ̂

[o]
rr0 . At leading order (B.8) leads to

p̂[o]
w0
∼ − φw S(σ̂

[o]
rr0)

α1

(
1

φ
(1)
s

+
1

φw

)
, (B.16)

whereby matching implies σ̂
[o]
rr0 = σ̂

[i]
kk0
/3 as ρ→ 1− and ρ̂→∞, respectively. Integrating (B.6),

with σ̂ � 1, and using (B.15) and (B.16) leads to the fixed point problem

σ∗rr = − 2φ
(2)
s µ(2) π2

9φ
(1)
s

− S(σ∗rr)φw

α1 φ
(1)
s

(
1 +

φw

φ
(1)
s

)
, (B.17)

where we have defined σ∗rr = σ̂
[o]
rr0 which is a constant; note that since Ŝ is a monotonically

decreasing, continuous function, then this constant is unique. With Ŝ being constant to leading

order, then integrating (B.3) and from (B.5) we have v̂
[o]
s0 = v̂

[o]
w0 = Ŝ(σ∗rr)ρ/3φ

(1)
s Θ0, where in

order to match with v̂
[i]
s0 = v̂

[i]
w0 = 1 as ρ→ 1 we determine the leading order growth constant as

Θ0 = Ŝ(σ∗rr)/3φ
(1)
s , confirming the approximation (B.2).

A complete analysis requires additional correction terms in powers of 1/R and explicit con-
sideration of σ.

B.3 Linear stability analysis of outer region solution

To strengthen the claim σ � 1 in the outer region we undertake a linear stability analysis of a
reduced system relevant to the problem of Section B.2.2, under a perturbation of σ of the form

σ ∼ εΣ(ρ) eω t,

where ε = ||σ(ρ, 0)||∞ � 1 (such that 1/R � ε is assumed), Σ(ρ) is a differentiable, initial
distribution function (with Σ(0) = 0 assumed) and exponent ω is such that, in general, stability
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of the unperturbed state requires <(ω) < 0 for all its solutions. The reduced system is given by
(B.3)-(B.8) with R→∞ and we expand the other variables as follows

v̂s ∼ ρ + ε Vs(ρ) eω t, p̂w ∼ −
φwS(σ∗rr0)

α1

(
1

φ
(1)
s

+
1

φw

)
+ ε Pw(ρ) eω t,

σ̂rr ∼ σ∗rr + εΣrr(ρ) eω t,
Ṙ

R
∼ Θ0 + εΘ1 e

ω t,

with v̂w = v̂s to this order and noting that σ̂kk ∼ 3σ∗rr + ε (3Σrr − 2Σ) eω t. Substituting these
expansions into (B.7) yields on integration at O(ε),

Vs(ρ) = − ρ 3ω φ
(1)
s

2S(σ∗rr)µ
(1)

∫ 1

ρ

Σ(ρ̂)

ρ̂
dρ̂,

using Vs(1) = 0 (as v̂s(1, t) = 1); we note that the integral is bounded ∀ρ ∈ [0, 1] because
Σ(0) = 0. The function Σrr(ρ) can now be determined from (B.3), that leads from (B.6) and
(B.8) to two formulations for Pw(ρ), which, due to Σ(ρ) being arbitrary, supplies a consistency
condition requiring that ω takes a unique value, namely

ω = − 4S′(σ∗rr)α1 φ
(1)
s µ(1)

3
(
α1φ

(1)
s + φw S′(σ∗rr)(φ

(1)
s + φw)

) .
Since S′(σ∗rr) > 0, it follows that ω < 0; hence, any small perturbation to σ, satisfying 1/R(t)�
||σ(ρ, 0)||∞ = O(ε)� 1, decays exponentially to at least O(1/R) or smaller.

Appendix C: Phase 4 growth analysis

The leading order growth behaviour during Phase 4 as t → ∞ can be determined using term
balancing arguments. Except for the relatively thin outer rim, growth is approximately described
by equations (B.3)-(B.8) with α1 = 0 (i.e. vascular-influx switched off). We suppose R ∼ R[4] t

χ,
where R[4] is a constant and χ > 0 is the power-law growth constant to be determined. It

immediately follows that Ṙ/R = Θ = O(1/t) and, since the scalings prescribed in Appendix
Appendix B imply v̂s = O(1), equation (B.3) implies S = O(1/t) and hence σkk = O(t1/m)
from (2.40). Using (B.5) it follows that pw = O(t2χ−1) leading to σrr = O(t2χ−1) from (B.6).
Assuming σkk = O(σrr), as is supported numerically, then we can deduce 2χ − 1 = 1/m and
hence,

R ∼ R[4] t
(m+1)/2m,

as t→∞.
Using the parameters in Table 2 we expect in the simulations that R ∼ R[4] t

61/120 in large
time. This is indeed the case, but it took t ≈ 50000 and R ≈ 1300 for the exponent (m+ 1)/2m
to be within 5% of the final theoretical value, and t ≈ 90000 and R ≈ 1550 to be within 1%.
Faster convergence was observed with larger values of kw.
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