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This paper conceptualises and presents a number of asset management building blocks required to establish

holistic management for highway filter drains in the UK roads network. This is accomplished by evaluating current

maintenance and management thinking and by identifying how existing strategies are lacking and potentially

unsustainable. A condition assessment regime is hence described, tied to a measure of filter drain level of service

(drainability) and an asset-specific ageing/renewal model that adopts six discreet condition bands is proposed.

For this model to hold true, the Markov process is assumed to represent cumulative damage in a network. Drawing

from relevant asset management concepts, a decision support tool to inform and optimise managerial decisions in

respect to maintenance planning and resources allocation is also described.

Notation

ao base condition vector

a; condition vector in analysis year ¢

egr void ratio of as-new aggregate

G, Gsa  specific gravity of fouling and filter aggregate

materials, respectively

i, ] index for asset state
ky hydraulic conductivity
L asset life selected for analysis in Markov transition

probability matrix

Mg, My  mass of fouling and filter aggregate materials,
respectively

n number of condition bands used in Markov transition
probability matrix

P transition probability matrix

Poyo.63mm percentage by mass passing the 0-063-mm-size sieve

Pyyiomm  percentage by mass passing the 10-mm-size sieve
(fouling material)
Ppe percentage drain fouling

Dij transition probability from state i to state j

Re_a foulant to aggregate ratio

Rpv free voids ratio

Vi, Vo volume of fouling and filter materials aggregate,
respectively

VVERA volume of voids in as-new aggregate

Introduction

Highway filter drains (HFDs) are aggregate-filled trenches fitted
with a porous carrier pipe at the base used in the UK to drain
significant lengths of the highway network. The granular material
used, which is typically (but not restrictively) exposed at the
surface of the trench, allows for efficient removal of pavement
runoff due to its high porosity. It also enables the removal of
subsurface water from the pavement foundation and structural
layers. HFDs thus act as a combined drainage system. Such
systems can be advantageously employed in cutting situations
requiring significant groundwater removal, and because of their
large hydraulic capacities, they can also safely remove surface

Downloaded by [ LOUGHBOROUGH UNIVERSITY] on [15/10/15]. Copyright © ICE Publishing, al rights reserved.

brought to you by i CORE


https://core.ac.uk/display/288374583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Infrastructure Asset Management

Highway filter drains: precursors for
maintenance management
Stylianides, Frost, Fleming et al.

water during heavy storms. Filter drains are constructed in verges
and/or central reserves adjacent to the low edges of pavements
enabling surface water to run off the pavement directly onto the
trench and then permeate through the aggregate backfill to the
pipe at the base of the drain (Highways Agency, 1998).

HFDs have a finite operational life because of the reduction of
free voids space of the filter material as road detritus and other
fines enter the drainage trench, restricting the free flow of water.
Currently, there are no formal systems in place to manage or
monitor the performance of the drains and maintenance is
typically carried out as reactive work (find and fix) or emergency
work. Planned maintenance that is undertaken normally tends
to be based on empirical evidence or experience in a given
network with little formal monitoring or long-term planning of
investments.

The paradigm of management of highway assets has moved over
the years towards proactive philosophies, sustainable thinking and
rational economic justification of all maintenance and rehabilitation
work; this is evident in the various publications addressing the
need for efficient highway asset management (AM) presented
in recent years (DFT, 2014; BSL, 2014; Taggart et al., 2014; UK
Roads Board, 2005; UKRLG, 2013). These documents typically
offer a high-level overview of the fundamental concepts to be
developed and adopted by local authorities and network operators
to meet the minimum requirements of AM systems. They thus
usually introduce strategic frameworks to address what should be
done with existing groups of highway assets. Although being
mainly pavement focused or strategy oriented, they lack the
context that allows managers and road operators to establish how
these frameworks could be put in practice for drainage systems and
particularly HFDs.

This paper aims to establish precursors for a systematised
evaluation and comprehensive management of HFDs. Existing
HFD degradation characteristics and maintenance strategies are thus
evaluated, and concepts of maintenance and asset management
(MM, AM), condition assessment and deterioration modelling
are summarised and mapped to the drainage system in question. To
support the development of a maintenance and management platform
for this particular type of drainage asset, a set of management
building blocks and a number of HFD ad hoc variables to be
embedded within such a platform are hence defined and proposed.

The organisation of the paper is as follows: The next section
presents existing maintenance thinking and defines by evaluating
HFD maintenance practices the need for a better management
approach. In the third section, AM concepts are briefly introduced
in an effort to identify those elements that are required to form a
suitable filter drain management platform. This enables the writers
to conceptualise in the fourth section a condition assessment
regime mapped to an anticipated level of performance. Finally,
a deterioration modelling approach to be embedded within a
decision support tool (DST) is described in the final section.

HFD deterioration and maintenance thinking:
the need for a better approach

There is nothing novel about introducing AM thinking to HFD;
the principles adopted (on a strategic level at the least) all over
the highway sector for individual asset categories in the last
four decades could in principle be applied to HFD management.
With vast lengths of filter drains installed in the UK highways
network, there will soon be a backlog of maintenance work and a
requirement to invest in an intelligent and rational HFD-specific
management system (MS). If the climatic changes and their effect
on drainage assets are also taken into account (such systems
will eventually be further stressed and there will be a requirement
for increased runoff removal efficiency), it can be proposed
that the development of a structured methodology to support
maintenance decision making should be prioritised sooner rather
than later.

To move focus from an approach that solely factorises short-term
rehabilitation needs to a methodology that satisfies both the short-
term integrity and long-term sustainability of HFD, the current
HFD service and deterioration understanding and the existing
maintenance and rehabilitation frameworks are evaluated here.
How the current (maintenance) thinking translates to a need for a
better management approach is thus identified before a more
structured representation of the missing HFD AM elements can be
proposed through this work.

Current HFD deterioration understanding

Current UK design guides suggest that HFDs should achieve an
operational life of approximately 10 years. The filter material is
then expected to require replacement or recycling, and this is
often included in maintenance plans. However, during filter
drain field evaluations (Farrar, 1994; Farrar and Samuel, 1989;
Samuel and Farrar, 1988), acceptable performance of drains have
been observed after 20 years of operation with minimal or no
maintenance undertaken. These reports have also shown that
there can be a differentiation between the service life of type A
and type B (types A and B define different gradings of filter
material with type A being finer) backfilled trenches and an
implied correlation between filter specifications and modes of
failure. Type A is reported to be prone to collecting road detritus
at or near the surface of the drainage trench. Some of the key
findings of these studies indicate poor construction standards
and use of material that does not meet specification criteria,
hence implying that the asset’s longevity may have been affected
by poor construction quality. To fully capture a more accurate
representation of HFD (average) service lives (and taking into
account the aforementioned work), there is a need to further
evaluate deteriorated drains and collect appropriate condition data.

Since these reports have been published, there has not been any other
significant output (academic or industrial) whatsoever regarding
the asset’s performance and/or its degradation characteristics
and, more importantly, how to address key maintenance planning
issues.
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One exception to this, Rowlands and Ellis’s (2007) work,
addresses in situ recycling as a means of introducing a level of
sustainability and control over HFD maintenance operations.
The authors focus on a novel rehabilitation approach and offer
an overview of waste management issues during maintenance
work but do not introduce a theoretical framework to support
intervention time frames and holistic management; they instead
adopt the existing empirical HFD service life projections often
employed in the sector.

In the meantime, Highways England (HE) has brought forward a
policy of non-recommendation for use of HFD in new projects,
and this drainage option remains in UK standards for maintenance
and rehabilitation operations. There are a number of reasons for
this that may be attributed to design limitations (stone scattering
as a safety hazard, cost of suitably graded stone in some regions),
lack of engineered assessment methodologies to evaluate
performance drop (malfunction of drainage system may go
unnoticed) and the requirement for regular maintenance and
replacement of filter stone at end of service life. These should
presumably reinforce the case of introducing a holistic MS to deal
with HFD in the roads network.

Defining maintenance and maintenance strategies

In terms of maintenance thinking, routine, corrective, preventive,
predictive, proactive, and reactive strategies are terms often
adopted in the industry to deal with the various approaches used
for management of the physical assets in the UK’s highways.
These are often interrelated; the most obvious distinction between
the strategies is based on whether failure has occurred even
though the definition of a failed state for a number of assets
remains in many instances blurred (Uddin et al., 2013). It is thus
easier (in terms of HFD management) to define maintenance
using the terms proactive (prevent impending loss of acceptable
drainage capacity and employ evaluation methods factorising

Intervention triggers

condition or time) and reactive (run asset to failure and treat once
drainage capacity is below acceptable thresholds, or a firefighting
approach to maintenance (Swanson, 2001)). This of course
requires a clear definition of the asset’s functions, how these are
impaired, what the relevant failure modes are, what causes them
and how these can be detected, and lastly what the impact on the
pavement system and road user will be.

For HFD maintenance, interventions are still largely regarded as
necessary repair work. While the importance of drainage has
been highlighted as a main factor affecting long-term pavement
performance (Cedergren, 1974; Hudson, 1968; Mallic and El-Korchi,
2013; Robinson et al., 1998) and driver safety (Johnson and Chang,
1984), there has not been a targeted effort to introduce the means
for holistic drainage management or decision-aid toolkits. Drainage is
not central in pavement management systems (PMSs), and engineered
assessment techniques and rational maintenance strategies are in many
cases omitted or considered to a lesser extent (Haas et al, 1994;
Robinson et al., 1998). HFD are often in service until they fail in
removing surface runoff from the pavement in an efficient manner,
and there is still no way to predict or even classify functional failures.
The alternative maintenance thinking (the first being in essence
reactive) suggests implementing a time-based approach. Under this
strategy, HFD maintenance and rehabilitation may be specified in a
cyclic fashion (annual or biannual maintenance cycles or hard-time
replacement at the end of the HFD design life) — see Figure 1.

Time-based maintenance (TBM) policies are usually derived on the
premise of a bathtub curve (Klutke et al., 2003), which maps the
gradual deterioration of the asset to increasing failure rates as cause
and effect after a given service period (Ahmad and Kamaruddin,
2012; Yam et al., 2001). Under this scenario, maintenance, renewal
and rehabilitation (M,R&R) tasks are scheduled at predetermined
time or service intervals, and in general terms, time between
successive interventions remains constant for asset categories with

Approach
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Figure 1. Current maintenance thinking, intervention triggers and
philosophies
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similar design characteristics. If these assets do not present a
narrow failure distribution pattern that can be accurately predicted
(Swanson, 2001), two scenarios will subsequently be presented:
one, only part of the useful life of the asset will be utilised between
interventions, or two, failures will not be addressed in a timely
manner. Both scenarios will eventually incur additional costs to
road operators and users by imposing unnecessary treatments or
unexpected failures, with the latter imposing additionally a critical
safety hazard. Safety implications (in terms of limiting water
accumulation on the pavement surface and all relevant hazards)
thus commonly dominate the planning process of maintenance
operations under a reactive philosophy.

This suggests the reassessment of the existing HFD management
thinking in order to establish how effectively maintenance
interventions are planned and undertaken. From the studies and
field evaluations reported above, it can be concluded that the
degradation characteristics of in service HFD will not (restrictively)
be a function of operational life (or the current definition of HFD
service life is misleading). Takata et al. (2004) suggest that rates of
deterioration for various asset types depend on operational and
environmental conditions, and clearly, for filter drains, construction
quality and maintenance history will also have a role to play. Initial
projections of design lives of 10 years seem to be an underestimate,
but functional failures that are related to the surface water removal
capacity can appear within this period and will require attention.
Under a TBM approach, M,R&R actions that are usually trench
scarifying or vegetation control can be specified on annual/biannual
cycles; aggregate replacement (HFD reconstruction) is due after
5 or 10 years of service life.

A brief overview of highway infrastructure
asset management (IAMS) and a number of
drainage management fundamentals

Having established an overview of the current HFD maintenance
thinking, the need to redefine the existing HFD-specific management
model is proposed; an overview of a number of IAMS fundamentals
is thus presented as the topic of AM is evaluated adopting top-
down (British Standards, good-practise guides, design manuals) and
bottom-up (drainage condition assessment literature) approaches.
Some key features of PMSs are described, founded upon generic
AM thinking, and a number of elements that can be transferred to a
filter drain management framework are thus identified. This section
examines how the combination of existing AM know-how and
tactical drainage-explicit assessment literature may lack some of the
key fundamental prerequisites required to move towards holistic
management of this particular type of drainage asset.

The building blocks of AM - a top-down approach

A generic framework that describes the requirements for holistic
AM is proposed by Hassanain er al. (2003) using five key
operations, which are

= identify assets,
= identify performance requirements,

B assess performance,
®  plan maintenance,
B manage maintenance operations.

Similarly defined AM frameworks can be found in the literature; in
Wittwer et al. (2002), condition assessment and trade-off analysis
are included in the basic cycle of an AM framework (physical
condition and asset performance as descriptors of the effectiveness
of service delivery are often used hand in hand), whereas Dornan
(2002) goes into further detail in asset renewal/replacement analysis
methods (life-cycle cost, cost-effectiveness analysis or equivalent
annual cost) and asset disposal policies. In practice, even though
different definitions can be found, an AMS is the combination of
engineering and business practices to support decision making at
the strategic, network and project levels; in other words, it is a way
of doing business by adopting the right procedures to achieve
results cost effectively with the limitation of sparse resources
(Cambridge Systematics et al., 2006; Godau, 1999).

Individual asset-specific MSs like PMSs were founded on this
theoretical framework focusing on the key objective of cost-
effective infrastructure maintenance and operation. PMSs are
essentially the collection of all tools, technologies and processes
that help managers make better decisions and manage their
pavements more effectively. Their implementation since the late
1960s (Markow, 1995) came as a response to the shift from
design-and-build operations to the repair-and-maintain mode. At
this point, PMSs are abundantly available for use but other
highway-related MSs have emerged to deal with bridges (bridge
management systems), safety (safety management systems) and
in-house maintenance operations (maintenance management
systems) (Li and Sinha, 2004).

While all these systems address different asset categories and
functions within the highway network, they integrate at their cores
the same systems thinking and management principles (this work
emphasises how drainage management has not yet embedded such
an approach). They are fundamentally information driven, heavily
dependent on databases (inventory, condition, historic maintenance,
budgets, M,R&R options/impacts/costs) and employ a particular type
of analysis that allows asset managers to fine-tune interventions,
optimise asset life cycles and carry out investment decisions for
preservation, expansion and operation of any given network. The
data required for a MS are produced by monitoring and inventory
activities, while modelling provides the tools for planning, trade-off
analysis, ranking, and optimisation (Li et al., 1997). For PMS,
pavement performance models adopt either deterministic (Abaza,
2004; Abaza et al., 2001; Wong et al., 2003) or probabilistic (Abaza
et al., 2004; Golabi et al., 1982; Li et al., 1997) approaches, and
DSTs that integrate prioritisation or optimisation models.

The recently published Highways Infrastructure Asset Management
Guide (UKRLG, 2013) complements the ISO 55000 (BSI, 2014)
series on the topic of AM in the UK. The latter supersedes the
previous AM standards (PAS, 2008) and now offers an overview of
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AM, the requirements for an AM system and the guidelines for the
application of ISO 55001. The ISO is a high-level strategic guide
that introduces systems thinking and AM organisational precursors
in a business-oriented manifesto that aims to standardise AM. A
tactically oriented document, the UKRLG (2013) guide focuses on
physical assets in highway networks, offering 14 recommendations
to achieve an appropriate level of benefit from AM. These
recommendations deal with various themes, including life cycle
plans, performance management and monitoring, risk management
and AM policy and strategy. The drainage-specific guidance
document HMEP (2012) in turn focuses on establishing a cost-
effective approach to managing drainage assets, based on building
drainage-specific databases (inventory, condition, maintenance
intervals, frequency of failures, maintenance requirements, etc.)
and using this information to apply relevant AM principles. The
guide highlights various strategic requirements to be developed and
offers a number of concise recommendations (i.e. the requirement
to address the causes of problems as opposed to symptoms and
the requirement to use asset data to focus, support and inform
maintenance activities mapped to overall AM objectives). It also
proposes the adoption of proactive and prioritised programmes and
the need to support these using asset condition data.

All these documents describe a ‘high-level’ framework to be
developed but do not go into detail with regard to the inventory
data to be collected, the condition metrics to be established, the
performance indicators to be introduced or, lastly, the deterioration
and maintenance optimisation models to be built. For a number of
asset types (i.e. pavements) a wide spectrum of these parameters
can be found in relevant AM or asset assessment literature. This
will not hold true when drainage systems are to be evaluated; this
simply highlights that a top-down approach through the available
strategic and tactical publications will enable road administrators,
operators and local councils to establish the required AM
framework (or the AM know-how) but eventually the practical
end of such a system will need to be addressed: what kind of data
are to be collected, how are these to be used and in what sense
will the outputs reinforce the case of AM and be of true value.

Managing drainage assets: the bottom-up option

At the lowest AM tier, with a more operational focused
document, Spink et al. (2014) approach the issue of managing
drainage assets in the latest CIRIA publication that addresses
some of the questions raised in the previous sections. The guide
thus includes elements for inventory and condition data collection
and evaluation and a proposed performance assessment regime.
Being primarily focused on condition appraisal, the publication
defines structural and service conditions as the two main
parameters to be extracted through drainage condition surveys
building upon visual evaluation. Five discreet condition bands in
a one-fits-all assessment approach are included in the text.

While the proposed bands could be used to characterise individual
HFD sections, the methodology embedded in the assessment
procedure to reach them is rather generic. The deterioration

characteristics of HFD are not considered, and the boundaries
proposed to establish the discreet condition states are largely
empirical; these are derived by rating the asset employing visual
means rather than identifying and measuring the type and extent
of the severity of fouling in an evaluated section. In fact, no
framework for intrusive (or other non-destructive) evaluation is
described in detail and thus a large portion of the information
required to assess HFD is omitted (severity of sedimentation and
extent within filter media tied to HFD failure modes). The
condition evaluation adopting this approach would retrospectively
address only one of the (two) HFD failure modes; that would be
the reduction of surface runoff removal capacity (functional
failure) due to surface crusting (failure mode), and thus, the
duality of this particular drainage system is ignored.

Performance assessment in the guide is similarly based on visual
surveys, but these can take place only when water can be found
within the system (making assessments impossible during dry
periods) or the combination of the two condition components
identified (structural and service condition as a proxy for
performance). The former approach is largely reactive as it
suggests addressing the symptoms of HFD deterioration (reduced
performance) as opposed to what causes this (sedimentation and
reduced void space in trench) but can potentially allow the
identification of flooding hotspots and be of value at the network
level. The latter is again based only on evaluating the exposed
filter media and thus is bound to provide limited information on
the overall drainability of a section.

In simple terms, the major issue with this assessment approach
is that the essence of fouling, its extent within the HFD trench
and how that correlates to the drainability of a section are not
explicitly or adequately considered in determining maintenance
and renovation strategies. Since the sedimentation levels are
not quantified, the actual capacity of the drain to remove water
from the pavement system is not considered. In truth, a visual
inspection-based condition-rating index can offer a quick evaluation
methodology at the network level, it is though based on rating
(rather than measuring) physical characteristics of the aggregate
fill and bound to ignore some of the relevant information required
to draw conclusive remarks for the current condition of the asset.

Also of interest is how local authorities currently approach the
matter of managing drainage assets; adopting the UKRLG (2013)
code of practice, condition standards are proposed at three domains
here: safety, serviceability and sustainability. Maintenance plans
produced by councils, which can be considered the tactical and/or
operational side of the AM systems in place, suggest managing
drainage assets adopting a risk or a fire-fighting approach
(Bournemouth Borough Council, 2008; Middlesbrough Council,
2006; Suffolk County Council, 2008; Walsall Council, 2012).

Such plans will generally include guidelines for managing all
relevant transportation assets; in the cases of carriageways, footways
or cycle routes (and drawing from the Well Maintained Highways
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code of practice), a number of condition parameters (deflection,
surface defects, skidding resistance, weed growth, slipperiness, etc.)
are to be measured and mapped against the core objectives of a
highway maintenance regime for each domain. Drainage condition
standards lack any such parameters or metrics. Instead, the three core
objectives are streamlined against flooding risk, which is in principle
a measure of performance rather than physical condition. This can be
a facilitator of a reactive maintenance philosophy or of a preventive
one that is primarily based on subjective indicators due to the lack of
other condition metrics.

It is evident that our current thinking is lacking; in terms of planning,
management of investments and understanding the factors that drive
the deterioration of HFD, our strategies are largely underdeveloped
and are primarily based on empirical methods (and thus tend to be
reactive). This is due to a combination of factors; drainage has been
neglected in the past, efforts to implement assessment techniques
only partially addressed AM requirements, strategic guides offer
fundamental (strategic) concepts lacking the ‘engineering-end’ of the
management equation and empirical and/or time-based approaches
offer limited opportunities to evaluate the physical condition of an
asset and thus to collect relevant and specific HFD data.

(Re)paving the way for an HFD-MM system

Where top-down meets bottom-up

Maintenance thinking has evolved in recent decades to meet the
requirements for greater dependence on business and engineering
principles, use of benefits and costs through what-if and life-cycle
scenarios, rationalisation (and thus lesser dependence on generic
standards) and, lastly, accountability of data and of performance
projections. The sector’s thinking has long moved from considering
maintenance as necessary repair work, and the definition of
Robinson et al. (1998) of ‘maintenance as a management issue
concerned with delivering a defined quality of service, activities
and procedures, timing of interventions and resources of people
and materials’ conclusively illustrates the fact.

The adoption of AM principles in the highways sector has been
briefly described in the previous section. By identifying the gap
between introducing the AM know-how and embedding the
engineering prerequisites for this to be of value, the development
of a set of HFD management building blocks is proposed.
Looking to formulate an HFD-specific AM subsystem, the
particular characteristics of the asset are to be considered and
evaluated in a framework that will be in line with other existing
asset-specific AM systems and thus should include

= a geo (or network)-referenced inventory database of HFD,

= condition data classifying deficiencies accountable for
drainability levels,

B maintenance history,

® network-level HFD condition distributions,

= ageing/deterioration modelling and estimation of remaining
service life,

B intervention analysis and network level program costs mapped
to projected condition,

= optimisation of investments,

= project level analysis and tactical overview of maintenance
requirements for candidate projects.

The eight elements described here address the five key operations
defined by Hassanain et al. (2003), and will in principle allow
asset managers to approach the task of managing HFD employing
a rational set of decision-aid tools. Some of these themes look
trivial and a fair amount of relevant information can be found
scattered in the existing literature (e.g. drainage inventory and/or
condition data collection in Spink et al., 2014) potentially offering
some indications in respect to how to advance the framework.
Focusing on HFD-specific elements that deal with quantifying the
severity and extent of what drives the drop in serviceability levels
and reflect the engineering orientation of the system, a suitable
platform that deals with the ad hoc asset design features, how
these change during service life and what impact this has on
drainage capacity, needs to be defined.

Further expanding the proposed HFD management framework, the
need to develop and introduce the methodology to support such
elements as condition assessment, deterioration modelling, DSTs
and optimisation of investments are identified. The following
sections present the case of rational condition measuring that is
considered the cornerstone of the aforementioned elements, and
the tools that could eventually be developed using engineering
assessment techniques.

Making the case for rational condition evaluation
Assessing physical condition: measuring rather than rating
Condition metrics have been used in various infrastructure asset
groups; Sussman et al. (2001) suggest, for example, that in the case
of railway condition evaluation, such an approach demonstrates
potential for simplifying data interpretation, a fact that should in
principle reinforce the case for rational condition measuring.

In pavement surveys, condition metrics quantify (severity) known
characteristics of the various issues (distress) and map them to
an anticipated level of service. This idea is well communicated
and fairly understood. When reduced down to basics, condition
indicators for any asset type evaluate how much of a particular
type of severity is too much and how boundaries between
satisfactory and non-satisfactory performances can be drawn.

Coupling HFD and ballast condition evaluation

The same principle can be considered when HFD are evaluated.
To appreciate how the asset fails and what variables could
potentially be introduced in a condition assessment system (CAS),
HFD design requirements are initially presented. The aggregate
fill used in HFD trenches is primarily based on the type A and
type B aggregate envelopes that are expected to offer a range of
in situ vertical permeability values. It is practically impossible
and, in general terms, infeasible to directly measure how these
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values change within the effective operational life of an HFD
section (or prior to construction). The parameter that can be
studied while evaluating anticipated drainage capacity (surface or
subsurface) and thus the level of service is the change in available
void space within the filter as it reduces for in-service drains with
fines infiltrating the trench.

A solution to the problem of classifying drainage capacity of large
particle size aggregate materials with similar degradation properties
has been developed in the railway industry. The methodologies
established here aimed to form an inferred relationship between a
fouling index (a quantification of undesirable material within a
ballast section) and a drainability level (a quantitative estimation of
a section’s drainage capacity) for ballast evaluation. Selig and
Waters (1994) introduced a simple assessment regime and based
their condition evaluation on sampling, sieving and sorting of
ballast material, suggesting the introduction of the fouling index.
Building upon his work, a number of similar indices have been
developed, some taking into account a mass-based quantification
of foulants (Sussman et al., 2012), while others a volumetric
representation of the fouling extent (Anbazhagan er al, 2012;
Feldman and Nissen, 2002; Tenakoon et al., 2012). What is
important to extract from these ballast-related condition assessment
studies is the proposition that a combination of intrusive and
non-intrusive condition assessment surveys that build upon the use
of rational condition metrics (often correlating ground penetrating
radar surveys with fouling levels (Al-Qadi et al., 2008; Anbazhagan
et al., 2011; Leng and Al-Qadi, 2009)) can offer the data required
for maintenance planning and efficient resource allocation.

Evaluating asset distress and introducing condition
metrics for HFD

By evaluating the degraded characteristics of in-service drains,
Stylianides et al. (2015) proposed the adoption of the fouling
scales concept for the quantification of introduced material within
an HFD trench. The condition metrics developed (see Equations
la, 1b, 1c) and coupled to permeability trials suggest that an
inferred relation between available void space and hydraulic
performance can be extracted from site evaluations. This can in
principle enable asset owners to quantify the extent and severity
of the defection and thus to classify in-service performance of
individual HFD sections.
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The fouling indices proposed in the work (fouling here is
defined as the material found within a trench which is comprised
by the particle size matrix below a 10-mm-size cut-off), are
based on both mass and volumetric approaches and have been
used to classify field samples collected from drains that have
been in service for 10 years at the time. Figure 2 visualises
depth-specific condition classification of two particular in-
service HFD sections (namely, C and D) using particle size
distribution (PSD) curves and two volumetric fouling scales
(Re-as Rev).

These indices, used to simulate the drop in vertical permeability
values in laboratory tests conducted with type B aggregate
material, present how the drop in levels of service of HFD could
be estimated as a function of fouling levels (k, as a measure
of drainability; see Figure 3). It has been proposed that for Ry
values below 0-6, measured &, will be a function of the fouling
material (foulant-dominated sample), and hence the aggregate fill
would rate poorly in terms of drainage capacity.

Ageing and deterioration characteristics, failure modes
and functional failures

By employing a physical condition classification regime, an
engineered assessment system is introduced to quantify the extent
and severity of fouling within an HFD section. The next step
in formulating the HFD management framework is to use this
particular assessment approach in formulating a better understanding
of HFD degradation characteristics and a methodology to establish
discreet condition bands for the drains. HFD failure modes
are thus further evaluated in order to identify and introduce
these bands (considering that available assessment criteria (Spink
et al., 2014) underplay the duality of this particular drainage
design) and to investigate how deterioration can be quantified and
modelled.

Loss of drainage performance and failure modes

The research published on the evaluation of filter drains in the
UK’s highway network (see ‘HFD deterioration and maintenance
thinking: the need for a better approach’ section) suggests two
distinctive HFD failure modes. While limited, this literature
(along with HFD empirical understanding and field evaluation
conducted for this work) enables the writers to define HFD
condition bands after depicting what each failure mode and
functional failure represent.

The first mode, often correlated to the safety aspect, is presented
with a near-surface degradation pattern. Sediments block the
uppermost of the trench forming a cohesive crust that presents
relatively low permeability values (failure cause). This will
restrict the free flow of water through the surface of the HFD
(loss of function/functional failure) and inevitably runoff will
be redirected back to the carriageway, thus imposing a safety
hazard for drivers. This moves the HFD condition in an
undesirable state that requires timely consideration; the main
body of the filter material may at this point remain in an
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Figure 2. Fouling evaluation of field samples using PSD curves
and fouling scales
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acceptable state. Such failures have been reported to occur
every 57 years (probability of occurrence), but more quantitative
data are required to reinforce this projection. The second
failure mode manifests with a bottom-up degradation pattern.
Sediments will reach the lower sections of the trench and
start building up at the lower end of the HFD, reducing the
overall drainage capacity of the filter material. While the first
pattern can be currently evaluated by visual means (subjectively
at the least), the second manifests well below the surface of
the trench and depth-specific assessment (based on intrusive
or non-intrusive techniques) is required to assess the expected
drop in serviceability levels. Depending on the severity of
fouling and extent in the HFD trench, this mode may lead
to reduced subsurface and surface water removal capacity.
The two modes can be linked in an HFD-explicit ageing
model, and this concept is further developed in the following
section.

Discreet condition states: defining the boundaries and
embedding maintenance activities

With no available quantitative data to represent the deterioration
progress of HFD in the highways network, Figure 4 represents a
conceptualised definition of six discreet HFD condition bands
along with the currently available renewal strategies that restore the
condition of the drains from a downstream band (lower drainage
capacity), to an upstream condition (higher drainage capacity).
The four main states proposed here are excellent condition, fair
condition, poor condition and very poor condition with two
subcategories representing the top-down failure modes: fair crusted
and poor crusted (EC, FC, PC, VPC, FCC and PCC, respectively).

The two crusted condition bands are critical for safety reasons and
are introduced here to enable separation of the two identified
failure modes through network surveys and previous field studies.
Lastly, the very poor condition represents an HFD section that
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Figure 3. Hydraulic conductivity values as a function of free-voids
ratio (Rry) for reconstructed samples

has surpassed its projected service life (reduced surface and
subsurface drainage capacities) and which presents a foulant-
dominated aggregate fill. The effect of the various available
maintenance options on the overall condition of a section is also
visualised in the diagram.

r - — = Shallow aggregate replacement = - = - = = = - =

Surface cleansing= - = - = - = - = . = . =
|

— = Shallow aggregate replacement = =« = = = . —

It is crucial to identify and establish for such a concept relevant
criteria to form the boundaries between each condition state
(linked to the condition assessment regime proposed). The
field and laboratory data presented in Stylianides et al. (2015)
suggest that a layer-by-layer analysis is required to classify the
serviceability levels of the trench and to evaluate the different
failure modes. The FC and PC states, for example, are manifested
in the uppermost of the drain and can thus be easily identified
under a reactive regime; if a more proactive (or on-condition)
approach is required (and this paper suggests that this is in fact
the case), a quantification of fouling levels (FL) mapped to
anticipated drainage capacity should be achieved.

The permeability trials conducted exhibit how &, as a function
of FL can be extracted in a controlled experiment. Being a
free draining material (void ratio of type B material measured
to range between 0-66 and 0-80) with a large void space, a
major drop in permeability values (and thus drainage capacity)
is expected only when fouling extent reaches significant
levels within the trench. A foulant-dominated fill will be one
for which the drainage capacity will be a function of the
foulant rather than the aggregate fill (k, < 5 mm/s, Ry < 0-6).
Its functionality will thus be hindered and the removal of
surface or subsurface water will be reduced. We can thus establish
certain boundaries between discreet condition states, and these

are presented (in a qualitative manner) in Table 1 linked to
anticipated FL.

Deterioration modelling

Employed with an HFD generic ageing/renewal model, asset
owners can assess and characterise filter drain sections within
an evaluated network according to quantitative fouling and
performance levels. In line with PMS presented in previous
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Figure 4. General ageing/renewal model proposed for evaluation
of HFD
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Condition Condition criteria Anticipated performance
band
Surface Subsurface Surface Subsurface

1. EC Highly porous Highly porous Free draining Free draining
(minimal to zero FL) (minimal to zero FL)

2. FC Highly porous Highly porous No impact on drainage No impact on drainage
(minimal to moderate FL)  (minimal to moderate FL) performance performance

3. FCC Reduced porosity Highly porous Reduced water removal No impact on drainage
(moderate to high FL) (minimal to moderate FL) capacity performance

4. PC Minimal porosity Minimal porosity Minimal water removal Minimal water removal
(high to very high FL) (high to very high FL) capacity capacity

5. PCC Foulant-dominated fill Minimal porosity Zero water removal capacity  Minimal water removal

(high to very high FL) capacity
6. VPC Foulant-dominated fill Foulant-dominated fill Zero water removal capacity ~ Zero water removal capacity

Table 1. HFD discreet condition bands and condition criteria and
anticipated drainage performance

sections, to add value to this model, a mathematical representation
of ageing and renewal policies should be considered.

In its simplest form, a generalised deterioration/renewal mathematical
model conceptualised by De La Garza and Krueger (2007) is
depicted in Equation 2. In principle, the model determines the
annual change in the asset condition by calculating the effects of
maintenance treatments on the various condition levels and then
ageing the resulting condition distributions according to the adopted

deterioration rates.

Condition;(t
Condition(t + 1) = Conditionj(t)—%onl()
)

, Condition,(t) ST Ry(0-> " Ra(1)

2. Dy

Deterioration rates (denoted by D;; and Dj,) can be extracted using
either probabilistic or deterministic means, while Ry; and R;; denote
the upstream condition changes due to maintenance interventions
(ie. the impact of maintenance options on condition states).
Focusing back to HFD management requirements, the impact of
treatment options on condition states (R values) and a methodology
to predict deterioration (D values) using the proposed condition
classification framework (Table 1, Figure 4) should be defined.

An example of such a work in the sector has recently been
presented by Costello et al. (2011), which describes a DST for
managing ancillary assets using proactive principles. The
methodology in this work draws from standard inventory
collection practices and adopts five discreet condition bands and
probabilistic Markov chains to simulate the deterioration of the
assets (and to tackle the absence of historic condition data
reported in the work). Once the required data for year one is

collected (using a simplified CAS), a base condition vector is
established to describe the condition distribution of assets within
the network with bands ranging between excellent to very poor.
The authors then calculate and present deteriorated states (the
ageing process) using a transition probability matrix throughout
the planning horizon in a given network. Having no records of
deterioration rates, engineering judgement is used and a linear
model to set up a life-cycle planning model is defined.

Looking back to HFD deterioration understanding, empirical
evidence suggests a larger than 10-year operational life (reported
to extend past the 20-year mark in some cases). Similar to the
ancillary assets case, the typically reactive HFD management
approach falls short in terms of enabling the collection and use of
relevant condition information that could be embedded in a
deterioration model (and thus allow the extraction of relevant D
values as per De La Garza and Krueger, 2007). To enable a
network level evaluation of HFD and predict the condition of
the drainage network in discreet condition bands, a Markov
probabilities transition matrix is proposed to represent ageing in a
defined network. The six condition states (n-EC, FC, FCC, PC,
PCC, VPC) introduced in this work (Table 1) are adopted, and
an asset life (L) equal to 25 years is used; lastly, the deterioration
is assumed to progress in a linear manner. The calibration and
the level of accuracy of such a probability matrix will inevitably
be a result of the collection of annual network-level condition
data.

Using this scenario and adopting a base condition vector to
denote 100% of the HFD network to lie within the excellent
condition band (year 0), the progression of deterioration can be
extracted for the whole network using the transition probabilities
(extracted using Equations 3a, 3b). This is done by basic matrix
manipulation; to extract the first year’s deteriorated vector (a;),
one needs to multiply the base condition vector (ay = [1, 0, 0, 0,
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0, 0]) with the probability matrix P; to calculate the condition
distribution at any future year, a, = @, P = a,P' can be used.
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Adopting the transition probabilities matrix (TPM) and using
the parameters described in the previous paragraphs, one can
graphically represent the deterioration of HFD in a given network
as shown in Figure 5.

Defining a pragmatic HFD DST

Central to AM systems are asset renewal and replacement analysis
methods. These are economic efficiency assessments of the
impact of all M,R&R actions to exhibit the effect of intervention
strategies on the asset’s future condition (the positive effect of
maintenance) mapped against anticipated project costs. This
will allow the development of a multiyear HFD maintenance
programme for an entire road network.

Figure 5 represents HFD ageing (at the network level) assuming no
maintenance interventions during a 30-year period; it is a graphical
representation of how year 0 condition distributions in the network

(denoted by the base vector ;) are projected in a specified planning
horizon using the TPM proposed in Equation 3b. When interventions
are to be taken into account, a DST is essential to dictate how and
when maintenance is triggered, how investment scenarios should be
formulated and what strategies are to be selected. By taking current
and future condition data into account (assuming the Markov process
can be used to model the deterioration process), asset owners
adopting a DST will be able to address

®  What is the cost of to-date deferred maintenance (current
maintenance backlog)?

= What are the remaining service lives?

What should be prioritised?

= What is the optimum maintenance strategy to be formulated
for a defined planning horizon?

The structure of such a DST can be seen in Figure 6. The tool
requires the definition of a clear system objective which can be
the maximisation of HFD network performance or minimisation
of maintenance costs over a planning horizon. The proposed DST
uses such inputs as inventory and condition data, deterioration models
and maintenance options impacts and unit rates. By embedding
performance targets and constraints (financial or minimum condition
based), asset owners and managers will be able to establish rational
and targeted maintenance scheduling at first, and eventually, optimal
lifecycles and long-term investment planning.

Conclusions

AM strategies have given rise to sustainable management of
transportation assets in recent times. This paper suggests that
drainage should be embedded in AM systems (or drainage
management should adopt AM thinking) and a rational approach to
establish proactive means to manage HFD should be formulated.
Current practices tend to ignore the collection of relevant information
to enable the use of such an approach, and focus instead on reactive
or risk-based philosophies that often translate to incurred costs to
both road operators and road users.
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Figure 5. Distribution of HFD network condition bands adopting
L = 25 and linear deterioration progression; ap = [1, 0, 0, 0, 0, 0]
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T

Figure 6. DST structure adopted by Wong et al. (2003) and
modified for HFD MS

Existing maintenance thinking and AM strategies have been
evaluated through available guides and relevant publications, and
the need to address a number of HFD-specific issues has been
identified. The fact that strategic AM documents introduce only the
fundamental concepts to be developed and drainage-related literature
is limited and insufficient to support the prerequisites for holistic
management suggest the need to address the following questions

What kind of HFD data are to be collected?

How are these to be used?

In what sense will the outputs reinforce the case of AM and
be of true value?

The paper has focused on conceptualising the engineering end of
AM by introducing HFD condition metrics and tools to project
ageing and deterioration (using a Markov TPM) and a DST
framework that could enable road engineers to monitor life-cycle
costs by embedding the aforementioned management elements.

By defining two distinctive HFD failure modes and the resulting
functional impairment, a general ageing/renewal model has been
conceptualised. Mapped to a deterioration mathematical model,

six discreet condition bands to represent the ageing of the asset
have been introduced. Looking at the limited field evaluations and
the existing historical data available (primarily empirical network
understanding), it is proposed that current projections of HFD
service lives underestimate the capacity of the asset to operate at
acceptable service levels.

While based on engineering judgement and limited field and
laboratory evaluations, a rational (and network specific) approach to
classify the performance of the asset is proposed (also recognising
the need to separate the surface and subsurface functions of the
drain). The condition and performance information to be collected
should provide the quantitative basis for informed maintenance
planning; this thinking can address the need to assess the physical
condition, level of service and the effect of proposed treatment
options of HFD in a specified planning horizon, while focusing on
easily attainable and processed management data.

Further work

To introduce an HFD management platform, a number of filter-
drain-specific parameters have been conceptualised and introduced
in this paper. While variables and condition metrics to establish a
CAS have been presented, the embedded methodology assumes
an intrusive approach that factorises fouling levels and rational
quantification of sedimentation in HFD trenches.

Central to this research is the development of a network level,
non-intrusive assessment approach, which ties the relevant condition
concepts with performance and drainability levels (while the
measurement of water flows within specific HFD sections as a direct
measurement of drainage capacity could form the basis for direct
extraction of performance levels). An objective of the work is thus the
integration of ground-penetrating radar surveys within a CAS and the
extraction of relevant condition information for HFD. This will enable
a network level evaluation and the collection of relevant condition
data to implement and optimise the required deterioration modelling
and DST. Relevant trials are hence currently being undertaken in
collaboration with the industrial partner, pavement testing services
(PTS), and the evaluation of HFD shows promising results.

Further hydraulic trials and quantification of permeability values
will also enable and validate the comparison of the various
condition bands introduced. The concept of sedimentation and
reduced drainage capacity is clearly well understood in the
industry. The requirement is the establishment of rational
engineered indices that classify drainage performance and allow
asset owners and operators to target maintenance interventions
according to needs and life-cycle projections.
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the editor at journals@ice.org.uk. Your contribution
will be forwarded to the author(s) for a reply and, if
considered appropriate by the editorial panel, will be
published as a discussion in a future issue of the journal.
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